Linux 3.11-rc3
[cris-mirror.git] / drivers / media / tuners / tda18271-common.c
blob18c77afe2e4ff8f32345a56d6aae199de1062c74
1 /*
2 tda18271-common.c - driver for the Philips / NXP TDA18271 silicon tuner
4 Copyright (C) 2007, 2008 Michael Krufky <mkrufky@linuxtv.org>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "tda18271-priv.h"
23 static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
25 struct tda18271_priv *priv = fe->tuner_priv;
26 enum tda18271_i2c_gate gate;
27 int ret = 0;
29 switch (priv->gate) {
30 case TDA18271_GATE_DIGITAL:
31 case TDA18271_GATE_ANALOG:
32 gate = priv->gate;
33 break;
34 case TDA18271_GATE_AUTO:
35 default:
36 switch (priv->mode) {
37 case TDA18271_DIGITAL:
38 gate = TDA18271_GATE_DIGITAL;
39 break;
40 case TDA18271_ANALOG:
41 default:
42 gate = TDA18271_GATE_ANALOG;
43 break;
47 switch (gate) {
48 case TDA18271_GATE_ANALOG:
49 if (fe->ops.analog_ops.i2c_gate_ctrl)
50 ret = fe->ops.analog_ops.i2c_gate_ctrl(fe, enable);
51 break;
52 case TDA18271_GATE_DIGITAL:
53 if (fe->ops.i2c_gate_ctrl)
54 ret = fe->ops.i2c_gate_ctrl(fe, enable);
55 break;
56 default:
57 ret = -EINVAL;
58 break;
61 return ret;
64 /*---------------------------------------------------------------------*/
66 static void tda18271_dump_regs(struct dvb_frontend *fe, int extended)
68 struct tda18271_priv *priv = fe->tuner_priv;
69 unsigned char *regs = priv->tda18271_regs;
71 tda_reg("=== TDA18271 REG DUMP ===\n");
72 tda_reg("ID_BYTE = 0x%02x\n", 0xff & regs[R_ID]);
73 tda_reg("THERMO_BYTE = 0x%02x\n", 0xff & regs[R_TM]);
74 tda_reg("POWER_LEVEL_BYTE = 0x%02x\n", 0xff & regs[R_PL]);
75 tda_reg("EASY_PROG_BYTE_1 = 0x%02x\n", 0xff & regs[R_EP1]);
76 tda_reg("EASY_PROG_BYTE_2 = 0x%02x\n", 0xff & regs[R_EP2]);
77 tda_reg("EASY_PROG_BYTE_3 = 0x%02x\n", 0xff & regs[R_EP3]);
78 tda_reg("EASY_PROG_BYTE_4 = 0x%02x\n", 0xff & regs[R_EP4]);
79 tda_reg("EASY_PROG_BYTE_5 = 0x%02x\n", 0xff & regs[R_EP5]);
80 tda_reg("CAL_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_CPD]);
81 tda_reg("CAL_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_CD1]);
82 tda_reg("CAL_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_CD2]);
83 tda_reg("CAL_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_CD3]);
84 tda_reg("MAIN_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_MPD]);
85 tda_reg("MAIN_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_MD1]);
86 tda_reg("MAIN_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_MD2]);
87 tda_reg("MAIN_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_MD3]);
89 /* only dump extended regs if DBG_ADV is set */
90 if (!(tda18271_debug & DBG_ADV))
91 return;
93 /* W indicates write-only registers.
94 * Register dump for write-only registers shows last value written. */
96 tda_reg("EXTENDED_BYTE_1 = 0x%02x\n", 0xff & regs[R_EB1]);
97 tda_reg("EXTENDED_BYTE_2 = 0x%02x\n", 0xff & regs[R_EB2]);
98 tda_reg("EXTENDED_BYTE_3 = 0x%02x\n", 0xff & regs[R_EB3]);
99 tda_reg("EXTENDED_BYTE_4 = 0x%02x\n", 0xff & regs[R_EB4]);
100 tda_reg("EXTENDED_BYTE_5 = 0x%02x\n", 0xff & regs[R_EB5]);
101 tda_reg("EXTENDED_BYTE_6 = 0x%02x\n", 0xff & regs[R_EB6]);
102 tda_reg("EXTENDED_BYTE_7 = 0x%02x\n", 0xff & regs[R_EB7]);
103 tda_reg("EXTENDED_BYTE_8 = 0x%02x\n", 0xff & regs[R_EB8]);
104 tda_reg("EXTENDED_BYTE_9 W = 0x%02x\n", 0xff & regs[R_EB9]);
105 tda_reg("EXTENDED_BYTE_10 = 0x%02x\n", 0xff & regs[R_EB10]);
106 tda_reg("EXTENDED_BYTE_11 = 0x%02x\n", 0xff & regs[R_EB11]);
107 tda_reg("EXTENDED_BYTE_12 = 0x%02x\n", 0xff & regs[R_EB12]);
108 tda_reg("EXTENDED_BYTE_13 = 0x%02x\n", 0xff & regs[R_EB13]);
109 tda_reg("EXTENDED_BYTE_14 = 0x%02x\n", 0xff & regs[R_EB14]);
110 tda_reg("EXTENDED_BYTE_15 = 0x%02x\n", 0xff & regs[R_EB15]);
111 tda_reg("EXTENDED_BYTE_16 W = 0x%02x\n", 0xff & regs[R_EB16]);
112 tda_reg("EXTENDED_BYTE_17 W = 0x%02x\n", 0xff & regs[R_EB17]);
113 tda_reg("EXTENDED_BYTE_18 = 0x%02x\n", 0xff & regs[R_EB18]);
114 tda_reg("EXTENDED_BYTE_19 W = 0x%02x\n", 0xff & regs[R_EB19]);
115 tda_reg("EXTENDED_BYTE_20 W = 0x%02x\n", 0xff & regs[R_EB20]);
116 tda_reg("EXTENDED_BYTE_21 = 0x%02x\n", 0xff & regs[R_EB21]);
117 tda_reg("EXTENDED_BYTE_22 = 0x%02x\n", 0xff & regs[R_EB22]);
118 tda_reg("EXTENDED_BYTE_23 = 0x%02x\n", 0xff & regs[R_EB23]);
121 int tda18271_read_regs(struct dvb_frontend *fe)
123 struct tda18271_priv *priv = fe->tuner_priv;
124 unsigned char *regs = priv->tda18271_regs;
125 unsigned char buf = 0x00;
126 int ret;
127 struct i2c_msg msg[] = {
128 { .addr = priv->i2c_props.addr, .flags = 0,
129 .buf = &buf, .len = 1 },
130 { .addr = priv->i2c_props.addr, .flags = I2C_M_RD,
131 .buf = regs, .len = 16 }
134 tda18271_i2c_gate_ctrl(fe, 1);
136 /* read all registers */
137 ret = i2c_transfer(priv->i2c_props.adap, msg, 2);
139 tda18271_i2c_gate_ctrl(fe, 0);
141 if (ret != 2)
142 tda_err("ERROR: i2c_transfer returned: %d\n", ret);
144 if (tda18271_debug & DBG_REG)
145 tda18271_dump_regs(fe, 0);
147 return (ret == 2 ? 0 : ret);
150 int tda18271_read_extended(struct dvb_frontend *fe)
152 struct tda18271_priv *priv = fe->tuner_priv;
153 unsigned char *regs = priv->tda18271_regs;
154 unsigned char regdump[TDA18271_NUM_REGS];
155 unsigned char buf = 0x00;
156 int ret, i;
157 struct i2c_msg msg[] = {
158 { .addr = priv->i2c_props.addr, .flags = 0,
159 .buf = &buf, .len = 1 },
160 { .addr = priv->i2c_props.addr, .flags = I2C_M_RD,
161 .buf = regdump, .len = TDA18271_NUM_REGS }
164 tda18271_i2c_gate_ctrl(fe, 1);
166 /* read all registers */
167 ret = i2c_transfer(priv->i2c_props.adap, msg, 2);
169 tda18271_i2c_gate_ctrl(fe, 0);
171 if (ret != 2)
172 tda_err("ERROR: i2c_transfer returned: %d\n", ret);
174 for (i = 0; i < TDA18271_NUM_REGS; i++) {
175 /* don't update write-only registers */
176 if ((i != R_EB9) &&
177 (i != R_EB16) &&
178 (i != R_EB17) &&
179 (i != R_EB19) &&
180 (i != R_EB20))
181 regs[i] = regdump[i];
184 if (tda18271_debug & DBG_REG)
185 tda18271_dump_regs(fe, 1);
187 return (ret == 2 ? 0 : ret);
190 static int __tda18271_write_regs(struct dvb_frontend *fe, int idx, int len,
191 bool lock_i2c)
193 struct tda18271_priv *priv = fe->tuner_priv;
194 unsigned char *regs = priv->tda18271_regs;
195 unsigned char buf[TDA18271_NUM_REGS + 1];
196 struct i2c_msg msg = { .addr = priv->i2c_props.addr, .flags = 0,
197 .buf = buf };
198 int i, ret = 1, max;
200 BUG_ON((len == 0) || (idx + len > sizeof(buf)));
202 switch (priv->small_i2c) {
203 case TDA18271_03_BYTE_CHUNK_INIT:
204 max = 3;
205 break;
206 case TDA18271_08_BYTE_CHUNK_INIT:
207 max = 8;
208 break;
209 case TDA18271_16_BYTE_CHUNK_INIT:
210 max = 16;
211 break;
212 case TDA18271_39_BYTE_CHUNK_INIT:
213 default:
214 max = 39;
219 * If lock_i2c is true, it will take the I2C bus for tda18271 private
220 * usage during the entire write ops, as otherwise, bad things could
221 * happen.
222 * During device init, several write operations will happen. So,
223 * tda18271_init_regs controls the I2C lock directly,
224 * disabling lock_i2c here.
226 if (lock_i2c) {
227 tda18271_i2c_gate_ctrl(fe, 1);
228 i2c_lock_adapter(priv->i2c_props.adap);
230 while (len) {
231 if (max > len)
232 max = len;
234 buf[0] = idx;
235 for (i = 1; i <= max; i++)
236 buf[i] = regs[idx - 1 + i];
238 msg.len = max + 1;
240 /* write registers */
241 ret = __i2c_transfer(priv->i2c_props.adap, &msg, 1);
242 if (ret != 1)
243 break;
245 idx += max;
246 len -= max;
248 if (lock_i2c) {
249 i2c_unlock_adapter(priv->i2c_props.adap);
250 tda18271_i2c_gate_ctrl(fe, 0);
253 if (ret != 1)
254 tda_err("ERROR: idx = 0x%x, len = %d, "
255 "i2c_transfer returned: %d\n", idx, max, ret);
257 return (ret == 1 ? 0 : ret);
260 int tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
262 return __tda18271_write_regs(fe, idx, len, true);
265 /*---------------------------------------------------------------------*/
267 static int __tda18271_charge_pump_source(struct dvb_frontend *fe,
268 enum tda18271_pll pll, int force,
269 bool lock_i2c)
271 struct tda18271_priv *priv = fe->tuner_priv;
272 unsigned char *regs = priv->tda18271_regs;
274 int r_cp = (pll == TDA18271_CAL_PLL) ? R_EB7 : R_EB4;
276 regs[r_cp] &= ~0x20;
277 regs[r_cp] |= ((force & 1) << 5);
279 return __tda18271_write_regs(fe, r_cp, 1, lock_i2c);
282 int tda18271_charge_pump_source(struct dvb_frontend *fe,
283 enum tda18271_pll pll, int force)
285 return __tda18271_charge_pump_source(fe, pll, force, true);
289 int tda18271_init_regs(struct dvb_frontend *fe)
291 struct tda18271_priv *priv = fe->tuner_priv;
292 unsigned char *regs = priv->tda18271_regs;
294 tda_dbg("initializing registers for device @ %d-%04x\n",
295 i2c_adapter_id(priv->i2c_props.adap),
296 priv->i2c_props.addr);
299 * Don't let any other I2C transfer to happen at adapter during init,
300 * as those could cause bad things
302 tda18271_i2c_gate_ctrl(fe, 1);
303 i2c_lock_adapter(priv->i2c_props.adap);
305 /* initialize registers */
306 switch (priv->id) {
307 case TDA18271HDC1:
308 regs[R_ID] = 0x83;
309 break;
310 case TDA18271HDC2:
311 regs[R_ID] = 0x84;
312 break;
315 regs[R_TM] = 0x08;
316 regs[R_PL] = 0x80;
317 regs[R_EP1] = 0xc6;
318 regs[R_EP2] = 0xdf;
319 regs[R_EP3] = 0x16;
320 regs[R_EP4] = 0x60;
321 regs[R_EP5] = 0x80;
322 regs[R_CPD] = 0x80;
323 regs[R_CD1] = 0x00;
324 regs[R_CD2] = 0x00;
325 regs[R_CD3] = 0x00;
326 regs[R_MPD] = 0x00;
327 regs[R_MD1] = 0x00;
328 regs[R_MD2] = 0x00;
329 regs[R_MD3] = 0x00;
331 switch (priv->id) {
332 case TDA18271HDC1:
333 regs[R_EB1] = 0xff;
334 break;
335 case TDA18271HDC2:
336 regs[R_EB1] = 0xfc;
337 break;
340 regs[R_EB2] = 0x01;
341 regs[R_EB3] = 0x84;
342 regs[R_EB4] = 0x41;
343 regs[R_EB5] = 0x01;
344 regs[R_EB6] = 0x84;
345 regs[R_EB7] = 0x40;
346 regs[R_EB8] = 0x07;
347 regs[R_EB9] = 0x00;
348 regs[R_EB10] = 0x00;
349 regs[R_EB11] = 0x96;
351 switch (priv->id) {
352 case TDA18271HDC1:
353 regs[R_EB12] = 0x0f;
354 break;
355 case TDA18271HDC2:
356 regs[R_EB12] = 0x33;
357 break;
360 regs[R_EB13] = 0xc1;
361 regs[R_EB14] = 0x00;
362 regs[R_EB15] = 0x8f;
363 regs[R_EB16] = 0x00;
364 regs[R_EB17] = 0x00;
366 switch (priv->id) {
367 case TDA18271HDC1:
368 regs[R_EB18] = 0x00;
369 break;
370 case TDA18271HDC2:
371 regs[R_EB18] = 0x8c;
372 break;
375 regs[R_EB19] = 0x00;
376 regs[R_EB20] = 0x20;
378 switch (priv->id) {
379 case TDA18271HDC1:
380 regs[R_EB21] = 0x33;
381 break;
382 case TDA18271HDC2:
383 regs[R_EB21] = 0xb3;
384 break;
387 regs[R_EB22] = 0x48;
388 regs[R_EB23] = 0xb0;
390 __tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS, false);
392 /* setup agc1 gain */
393 regs[R_EB17] = 0x00;
394 __tda18271_write_regs(fe, R_EB17, 1, false);
395 regs[R_EB17] = 0x03;
396 __tda18271_write_regs(fe, R_EB17, 1, false);
397 regs[R_EB17] = 0x43;
398 __tda18271_write_regs(fe, R_EB17, 1, false);
399 regs[R_EB17] = 0x4c;
400 __tda18271_write_regs(fe, R_EB17, 1, false);
402 /* setup agc2 gain */
403 if ((priv->id) == TDA18271HDC1) {
404 regs[R_EB20] = 0xa0;
405 __tda18271_write_regs(fe, R_EB20, 1, false);
406 regs[R_EB20] = 0xa7;
407 __tda18271_write_regs(fe, R_EB20, 1, false);
408 regs[R_EB20] = 0xe7;
409 __tda18271_write_regs(fe, R_EB20, 1, false);
410 regs[R_EB20] = 0xec;
411 __tda18271_write_regs(fe, R_EB20, 1, false);
414 /* image rejection calibration */
416 /* low-band */
417 regs[R_EP3] = 0x1f;
418 regs[R_EP4] = 0x66;
419 regs[R_EP5] = 0x81;
420 regs[R_CPD] = 0xcc;
421 regs[R_CD1] = 0x6c;
422 regs[R_CD2] = 0x00;
423 regs[R_CD3] = 0x00;
424 regs[R_MPD] = 0xcd;
425 regs[R_MD1] = 0x77;
426 regs[R_MD2] = 0x08;
427 regs[R_MD3] = 0x00;
429 __tda18271_write_regs(fe, R_EP3, 11, false);
431 if ((priv->id) == TDA18271HDC2) {
432 /* main pll cp source on */
433 __tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 1, false);
434 msleep(1);
436 /* main pll cp source off */
437 __tda18271_charge_pump_source(fe, TDA18271_MAIN_PLL, 0, false);
440 msleep(5); /* pll locking */
442 /* launch detector */
443 __tda18271_write_regs(fe, R_EP1, 1, false);
444 msleep(5); /* wanted low measurement */
446 regs[R_EP5] = 0x85;
447 regs[R_CPD] = 0xcb;
448 regs[R_CD1] = 0x66;
449 regs[R_CD2] = 0x70;
451 __tda18271_write_regs(fe, R_EP3, 7, false);
452 msleep(5); /* pll locking */
454 /* launch optimization algorithm */
455 __tda18271_write_regs(fe, R_EP2, 1, false);
456 msleep(30); /* image low optimization completion */
458 /* mid-band */
459 regs[R_EP5] = 0x82;
460 regs[R_CPD] = 0xa8;
461 regs[R_CD2] = 0x00;
462 regs[R_MPD] = 0xa9;
463 regs[R_MD1] = 0x73;
464 regs[R_MD2] = 0x1a;
466 __tda18271_write_regs(fe, R_EP3, 11, false);
467 msleep(5); /* pll locking */
469 /* launch detector */
470 __tda18271_write_regs(fe, R_EP1, 1, false);
471 msleep(5); /* wanted mid measurement */
473 regs[R_EP5] = 0x86;
474 regs[R_CPD] = 0xa8;
475 regs[R_CD1] = 0x66;
476 regs[R_CD2] = 0xa0;
478 __tda18271_write_regs(fe, R_EP3, 7, false);
479 msleep(5); /* pll locking */
481 /* launch optimization algorithm */
482 __tda18271_write_regs(fe, R_EP2, 1, false);
483 msleep(30); /* image mid optimization completion */
485 /* high-band */
486 regs[R_EP5] = 0x83;
487 regs[R_CPD] = 0x98;
488 regs[R_CD1] = 0x65;
489 regs[R_CD2] = 0x00;
490 regs[R_MPD] = 0x99;
491 regs[R_MD1] = 0x71;
492 regs[R_MD2] = 0xcd;
494 __tda18271_write_regs(fe, R_EP3, 11, false);
495 msleep(5); /* pll locking */
497 /* launch detector */
498 __tda18271_write_regs(fe, R_EP1, 1, false);
499 msleep(5); /* wanted high measurement */
501 regs[R_EP5] = 0x87;
502 regs[R_CD1] = 0x65;
503 regs[R_CD2] = 0x50;
505 __tda18271_write_regs(fe, R_EP3, 7, false);
506 msleep(5); /* pll locking */
508 /* launch optimization algorithm */
509 __tda18271_write_regs(fe, R_EP2, 1, false);
510 msleep(30); /* image high optimization completion */
512 /* return to normal mode */
513 regs[R_EP4] = 0x64;
514 __tda18271_write_regs(fe, R_EP4, 1, false);
516 /* synchronize */
517 __tda18271_write_regs(fe, R_EP1, 1, false);
519 i2c_unlock_adapter(priv->i2c_props.adap);
520 tda18271_i2c_gate_ctrl(fe, 0);
522 return 0;
525 /*---------------------------------------------------------------------*/
528 * Standby modes, EP3 [7:5]
530 * | SM || SM_LT || SM_XT || mode description
531 * |=====\\=======\\=======\\===================================
532 * | 0 || 0 || 0 || normal mode
533 * |-----||-------||-------||-----------------------------------
534 * | || || || standby mode w/ slave tuner output
535 * | 1 || 0 || 0 || & loop thru & xtal oscillator on
536 * |-----||-------||-------||-----------------------------------
537 * | 1 || 1 || 0 || standby mode w/ xtal oscillator on
538 * |-----||-------||-------||-----------------------------------
539 * | 1 || 1 || 1 || power off
543 int tda18271_set_standby_mode(struct dvb_frontend *fe,
544 int sm, int sm_lt, int sm_xt)
546 struct tda18271_priv *priv = fe->tuner_priv;
547 unsigned char *regs = priv->tda18271_regs;
549 if (tda18271_debug & DBG_ADV)
550 tda_dbg("sm = %d, sm_lt = %d, sm_xt = %d\n", sm, sm_lt, sm_xt);
552 regs[R_EP3] &= ~0xe0; /* clear sm, sm_lt, sm_xt */
553 regs[R_EP3] |= (sm ? (1 << 7) : 0) |
554 (sm_lt ? (1 << 6) : 0) |
555 (sm_xt ? (1 << 5) : 0);
557 return tda18271_write_regs(fe, R_EP3, 1);
560 /*---------------------------------------------------------------------*/
562 int tda18271_calc_main_pll(struct dvb_frontend *fe, u32 freq)
564 /* sets main post divider & divider bytes, but does not write them */
565 struct tda18271_priv *priv = fe->tuner_priv;
566 unsigned char *regs = priv->tda18271_regs;
567 u8 d, pd;
568 u32 div;
570 int ret = tda18271_lookup_pll_map(fe, MAIN_PLL, &freq, &pd, &d);
571 if (tda_fail(ret))
572 goto fail;
574 regs[R_MPD] = (0x7f & pd);
576 div = ((d * (freq / 1000)) << 7) / 125;
578 regs[R_MD1] = 0x7f & (div >> 16);
579 regs[R_MD2] = 0xff & (div >> 8);
580 regs[R_MD3] = 0xff & div;
581 fail:
582 return ret;
585 int tda18271_calc_cal_pll(struct dvb_frontend *fe, u32 freq)
587 /* sets cal post divider & divider bytes, but does not write them */
588 struct tda18271_priv *priv = fe->tuner_priv;
589 unsigned char *regs = priv->tda18271_regs;
590 u8 d, pd;
591 u32 div;
593 int ret = tda18271_lookup_pll_map(fe, CAL_PLL, &freq, &pd, &d);
594 if (tda_fail(ret))
595 goto fail;
597 regs[R_CPD] = pd;
599 div = ((d * (freq / 1000)) << 7) / 125;
601 regs[R_CD1] = 0x7f & (div >> 16);
602 regs[R_CD2] = 0xff & (div >> 8);
603 regs[R_CD3] = 0xff & div;
604 fail:
605 return ret;
608 /*---------------------------------------------------------------------*/
610 int tda18271_calc_bp_filter(struct dvb_frontend *fe, u32 *freq)
612 /* sets bp filter bits, but does not write them */
613 struct tda18271_priv *priv = fe->tuner_priv;
614 unsigned char *regs = priv->tda18271_regs;
615 u8 val;
617 int ret = tda18271_lookup_map(fe, BP_FILTER, freq, &val);
618 if (tda_fail(ret))
619 goto fail;
621 regs[R_EP1] &= ~0x07; /* clear bp filter bits */
622 regs[R_EP1] |= (0x07 & val);
623 fail:
624 return ret;
627 int tda18271_calc_km(struct dvb_frontend *fe, u32 *freq)
629 /* sets K & M bits, but does not write them */
630 struct tda18271_priv *priv = fe->tuner_priv;
631 unsigned char *regs = priv->tda18271_regs;
632 u8 val;
634 int ret = tda18271_lookup_map(fe, RF_CAL_KMCO, freq, &val);
635 if (tda_fail(ret))
636 goto fail;
638 regs[R_EB13] &= ~0x7c; /* clear k & m bits */
639 regs[R_EB13] |= (0x7c & val);
640 fail:
641 return ret;
644 int tda18271_calc_rf_band(struct dvb_frontend *fe, u32 *freq)
646 /* sets rf band bits, but does not write them */
647 struct tda18271_priv *priv = fe->tuner_priv;
648 unsigned char *regs = priv->tda18271_regs;
649 u8 val;
651 int ret = tda18271_lookup_map(fe, RF_BAND, freq, &val);
652 if (tda_fail(ret))
653 goto fail;
655 regs[R_EP2] &= ~0xe0; /* clear rf band bits */
656 regs[R_EP2] |= (0xe0 & (val << 5));
657 fail:
658 return ret;
661 int tda18271_calc_gain_taper(struct dvb_frontend *fe, u32 *freq)
663 /* sets gain taper bits, but does not write them */
664 struct tda18271_priv *priv = fe->tuner_priv;
665 unsigned char *regs = priv->tda18271_regs;
666 u8 val;
668 int ret = tda18271_lookup_map(fe, GAIN_TAPER, freq, &val);
669 if (tda_fail(ret))
670 goto fail;
672 regs[R_EP2] &= ~0x1f; /* clear gain taper bits */
673 regs[R_EP2] |= (0x1f & val);
674 fail:
675 return ret;
678 int tda18271_calc_ir_measure(struct dvb_frontend *fe, u32 *freq)
680 /* sets IR Meas bits, but does not write them */
681 struct tda18271_priv *priv = fe->tuner_priv;
682 unsigned char *regs = priv->tda18271_regs;
683 u8 val;
685 int ret = tda18271_lookup_map(fe, IR_MEASURE, freq, &val);
686 if (tda_fail(ret))
687 goto fail;
689 regs[R_EP5] &= ~0x07;
690 regs[R_EP5] |= (0x07 & val);
691 fail:
692 return ret;
695 int tda18271_calc_rf_cal(struct dvb_frontend *fe, u32 *freq)
697 /* sets rf cal byte (RFC_Cprog), but does not write it */
698 struct tda18271_priv *priv = fe->tuner_priv;
699 unsigned char *regs = priv->tda18271_regs;
700 u8 val;
702 int ret = tda18271_lookup_map(fe, RF_CAL, freq, &val);
703 /* The TDA18271HD/C1 rf_cal map lookup is expected to go out of range
704 * for frequencies above 61.1 MHz. In these cases, the internal RF
705 * tracking filters calibration mechanism is used.
707 * There is no need to warn the user about this.
709 if (ret < 0)
710 goto fail;
712 regs[R_EB14] = val;
713 fail:
714 return ret;
717 int _tda_printk(struct tda18271_priv *state, const char *level,
718 const char *func, const char *fmt, ...)
720 struct va_format vaf;
721 va_list args;
722 int rtn;
724 va_start(args, fmt);
726 vaf.fmt = fmt;
727 vaf.va = &args;
729 if (state)
730 rtn = printk("%s%s: [%d-%04x|%c] %pV",
731 level, func, i2c_adapter_id(state->i2c_props.adap),
732 state->i2c_props.addr,
733 (state->role == TDA18271_MASTER) ? 'M' : 'S',
734 &vaf);
735 else
736 rtn = printk("%s%s: %pV", level, func, &vaf);
738 va_end(args);
740 return rtn;