Linux 3.11-rc3
[cris-mirror.git] / drivers / mmc / core / core.c
blob49a5bca418bdb7a6edf24669a9821851b9593aa9
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
52 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 removable,
80 "MMC/SD cards are removable and may be removed during suspend");
83 * Internal function. Schedule delayed work in the MMC work queue.
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 unsigned long delay)
88 return queue_delayed_work(workqueue, work, delay);
92 * Internal function. Flush all scheduled work from the MMC work queue.
94 static void mmc_flush_scheduled_work(void)
96 flush_workqueue(workqueue);
99 #ifdef CONFIG_FAIL_MMC_REQUEST
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
105 static void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
108 struct mmc_command *cmd = mrq->cmd;
109 struct mmc_data *data = mrq->data;
110 static const int data_errors[] = {
111 -ETIMEDOUT,
112 -EILSEQ,
113 -EIO,
116 if (!data)
117 return;
119 if (cmd->error || data->error ||
120 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 return;
123 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
124 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
127 #else /* CONFIG_FAIL_MMC_REQUEST */
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 struct mmc_request *mrq)
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
149 if (err && cmd->retries && mmc_host_is_spi(host)) {
150 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 cmd->retries = 0;
154 if (err && cmd->retries && !mmc_card_removed(host->card)) {
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
159 if (mrq->done)
160 mrq->done(mrq);
161 } else {
162 mmc_should_fail_request(host, mrq);
164 led_trigger_event(host->led, LED_OFF);
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host), cmd->opcode, err,
168 cmd->resp[0], cmd->resp[1],
169 cmd->resp[2], cmd->resp[3]);
171 if (mrq->data) {
172 pr_debug("%s: %d bytes transferred: %d\n",
173 mmc_hostname(host),
174 mrq->data->bytes_xfered, mrq->data->error);
177 if (mrq->stop) {
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host), mrq->stop->opcode,
180 mrq->stop->error,
181 mrq->stop->resp[0], mrq->stop->resp[1],
182 mrq->stop->resp[2], mrq->stop->resp[3]);
185 if (mrq->done)
186 mrq->done(mrq);
188 mmc_host_clk_release(host);
192 EXPORT_SYMBOL(mmc_request_done);
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
197 #ifdef CONFIG_MMC_DEBUG
198 unsigned int i, sz;
199 struct scatterlist *sg;
200 #endif
202 if (mrq->sbc) {
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host), mrq->sbc->opcode,
205 mrq->sbc->arg, mrq->sbc->flags);
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->cmd->opcode,
210 mrq->cmd->arg, mrq->cmd->flags);
212 if (mrq->data) {
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host), mrq->data->blksz,
216 mrq->data->blocks, mrq->data->flags,
217 mrq->data->timeout_ns / 1000000,
218 mrq->data->timeout_clks);
221 if (mrq->stop) {
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->arg, mrq->stop->flags);
227 WARN_ON(!host->claimed);
229 mrq->cmd->error = 0;
230 mrq->cmd->mrq = mrq;
231 if (mrq->data) {
232 BUG_ON(mrq->data->blksz > host->max_blk_size);
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
237 #ifdef CONFIG_MMC_DEBUG
238 sz = 0;
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
253 mmc_host_clk_hold(host);
254 led_trigger_event(host->led, LED_FULL);
255 host->ops->request(host, mrq);
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
270 int err;
271 int timeout;
272 bool use_busy_signal;
274 BUG_ON(!card);
276 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 return;
279 err = mmc_read_bkops_status(card);
280 if (err) {
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card->host), err);
283 return;
286 if (!card->ext_csd.raw_bkops_status)
287 return;
289 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 from_exception)
291 return;
293 mmc_claim_host(card->host);
294 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 timeout = MMC_BKOPS_MAX_TIMEOUT;
296 use_busy_signal = true;
297 } else {
298 timeout = 0;
299 use_busy_signal = false;
302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 if (err) {
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card->host), err);
307 goto out;
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
315 if (!use_busy_signal)
316 mmc_card_set_doing_bkops(card);
317 out:
318 mmc_release_host(card->host);
320 EXPORT_SYMBOL(mmc_start_bkops);
323 * mmc_wait_data_done() - done callback for data request
324 * @mrq: done data request
326 * Wakes up mmc context, passed as a callback to host controller driver
328 static void mmc_wait_data_done(struct mmc_request *mrq)
330 mrq->host->context_info.is_done_rcv = true;
331 wake_up_interruptible(&mrq->host->context_info.wait);
334 static void mmc_wait_done(struct mmc_request *mrq)
336 complete(&mrq->completion);
340 *__mmc_start_data_req() - starts data request
341 * @host: MMC host to start the request
342 * @mrq: data request to start
344 * Sets the done callback to be called when request is completed by the card.
345 * Starts data mmc request execution
347 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
349 mrq->done = mmc_wait_data_done;
350 mrq->host = host;
351 if (mmc_card_removed(host->card)) {
352 mrq->cmd->error = -ENOMEDIUM;
353 mmc_wait_data_done(mrq);
354 return -ENOMEDIUM;
356 mmc_start_request(host, mrq);
358 return 0;
361 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
363 init_completion(&mrq->completion);
364 mrq->done = mmc_wait_done;
365 if (mmc_card_removed(host->card)) {
366 mrq->cmd->error = -ENOMEDIUM;
367 complete(&mrq->completion);
368 return -ENOMEDIUM;
370 mmc_start_request(host, mrq);
371 return 0;
375 * mmc_wait_for_data_req_done() - wait for request completed
376 * @host: MMC host to prepare the command.
377 * @mrq: MMC request to wait for
379 * Blocks MMC context till host controller will ack end of data request
380 * execution or new request notification arrives from the block layer.
381 * Handles command retries.
383 * Returns enum mmc_blk_status after checking errors.
385 static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 struct mmc_request *mrq,
387 struct mmc_async_req *next_req)
389 struct mmc_command *cmd;
390 struct mmc_context_info *context_info = &host->context_info;
391 int err;
392 unsigned long flags;
394 while (1) {
395 wait_event_interruptible(context_info->wait,
396 (context_info->is_done_rcv ||
397 context_info->is_new_req));
398 spin_lock_irqsave(&context_info->lock, flags);
399 context_info->is_waiting_last_req = false;
400 spin_unlock_irqrestore(&context_info->lock, flags);
401 if (context_info->is_done_rcv) {
402 context_info->is_done_rcv = false;
403 context_info->is_new_req = false;
404 cmd = mrq->cmd;
406 if (!cmd->error || !cmd->retries ||
407 mmc_card_removed(host->card)) {
408 err = host->areq->err_check(host->card,
409 host->areq);
410 break; /* return err */
411 } else {
412 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
413 mmc_hostname(host),
414 cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 host->ops->request(host, mrq);
418 continue; /* wait for done/new event again */
420 } else if (context_info->is_new_req) {
421 context_info->is_new_req = false;
422 if (!next_req) {
423 err = MMC_BLK_NEW_REQUEST;
424 break; /* return err */
428 return err;
431 static void mmc_wait_for_req_done(struct mmc_host *host,
432 struct mmc_request *mrq)
434 struct mmc_command *cmd;
436 while (1) {
437 wait_for_completion(&mrq->completion);
439 cmd = mrq->cmd;
442 * If host has timed out waiting for the sanitize
443 * to complete, card might be still in programming state
444 * so let's try to bring the card out of programming
445 * state.
447 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
448 if (!mmc_interrupt_hpi(host->card)) {
449 pr_warning("%s: %s: Interrupted sanitize\n",
450 mmc_hostname(host), __func__);
451 cmd->error = 0;
452 break;
453 } else {
454 pr_err("%s: %s: Failed to interrupt sanitize\n",
455 mmc_hostname(host), __func__);
458 if (!cmd->error || !cmd->retries ||
459 mmc_card_removed(host->card))
460 break;
462 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
463 mmc_hostname(host), cmd->opcode, cmd->error);
464 cmd->retries--;
465 cmd->error = 0;
466 host->ops->request(host, mrq);
471 * mmc_pre_req - Prepare for a new request
472 * @host: MMC host to prepare command
473 * @mrq: MMC request to prepare for
474 * @is_first_req: true if there is no previous started request
475 * that may run in parellel to this call, otherwise false
477 * mmc_pre_req() is called in prior to mmc_start_req() to let
478 * host prepare for the new request. Preparation of a request may be
479 * performed while another request is running on the host.
481 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
482 bool is_first_req)
484 if (host->ops->pre_req) {
485 mmc_host_clk_hold(host);
486 host->ops->pre_req(host, mrq, is_first_req);
487 mmc_host_clk_release(host);
492 * mmc_post_req - Post process a completed request
493 * @host: MMC host to post process command
494 * @mrq: MMC request to post process for
495 * @err: Error, if non zero, clean up any resources made in pre_req
497 * Let the host post process a completed request. Post processing of
498 * a request may be performed while another reuqest is running.
500 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
501 int err)
503 if (host->ops->post_req) {
504 mmc_host_clk_hold(host);
505 host->ops->post_req(host, mrq, err);
506 mmc_host_clk_release(host);
511 * mmc_start_req - start a non-blocking request
512 * @host: MMC host to start command
513 * @areq: async request to start
514 * @error: out parameter returns 0 for success, otherwise non zero
516 * Start a new MMC custom command request for a host.
517 * If there is on ongoing async request wait for completion
518 * of that request and start the new one and return.
519 * Does not wait for the new request to complete.
521 * Returns the completed request, NULL in case of none completed.
522 * Wait for the an ongoing request (previoulsy started) to complete and
523 * return the completed request. If there is no ongoing request, NULL
524 * is returned without waiting. NULL is not an error condition.
526 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
527 struct mmc_async_req *areq, int *error)
529 int err = 0;
530 int start_err = 0;
531 struct mmc_async_req *data = host->areq;
533 /* Prepare a new request */
534 if (areq)
535 mmc_pre_req(host, areq->mrq, !host->areq);
537 if (host->areq) {
538 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
539 if (err == MMC_BLK_NEW_REQUEST) {
540 if (error)
541 *error = err;
543 * The previous request was not completed,
544 * nothing to return
546 return NULL;
549 * Check BKOPS urgency for each R1 response
551 if (host->card && mmc_card_mmc(host->card) &&
552 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
553 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
554 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
555 mmc_start_bkops(host->card, true);
558 if (!err && areq)
559 start_err = __mmc_start_data_req(host, areq->mrq);
561 if (host->areq)
562 mmc_post_req(host, host->areq->mrq, 0);
564 /* Cancel a prepared request if it was not started. */
565 if ((err || start_err) && areq)
566 mmc_post_req(host, areq->mrq, -EINVAL);
568 if (err)
569 host->areq = NULL;
570 else
571 host->areq = areq;
573 if (error)
574 *error = err;
575 return data;
577 EXPORT_SYMBOL(mmc_start_req);
580 * mmc_wait_for_req - start a request and wait for completion
581 * @host: MMC host to start command
582 * @mrq: MMC request to start
584 * Start a new MMC custom command request for a host, and wait
585 * for the command to complete. Does not attempt to parse the
586 * response.
588 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
590 __mmc_start_req(host, mrq);
591 mmc_wait_for_req_done(host, mrq);
593 EXPORT_SYMBOL(mmc_wait_for_req);
596 * mmc_interrupt_hpi - Issue for High priority Interrupt
597 * @card: the MMC card associated with the HPI transfer
599 * Issued High Priority Interrupt, and check for card status
600 * until out-of prg-state.
602 int mmc_interrupt_hpi(struct mmc_card *card)
604 int err;
605 u32 status;
606 unsigned long prg_wait;
608 BUG_ON(!card);
610 if (!card->ext_csd.hpi_en) {
611 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
612 return 1;
615 mmc_claim_host(card->host);
616 err = mmc_send_status(card, &status);
617 if (err) {
618 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
619 goto out;
622 switch (R1_CURRENT_STATE(status)) {
623 case R1_STATE_IDLE:
624 case R1_STATE_READY:
625 case R1_STATE_STBY:
626 case R1_STATE_TRAN:
628 * In idle and transfer states, HPI is not needed and the caller
629 * can issue the next intended command immediately
631 goto out;
632 case R1_STATE_PRG:
633 break;
634 default:
635 /* In all other states, it's illegal to issue HPI */
636 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
637 mmc_hostname(card->host), R1_CURRENT_STATE(status));
638 err = -EINVAL;
639 goto out;
642 err = mmc_send_hpi_cmd(card, &status);
643 if (err)
644 goto out;
646 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
647 do {
648 err = mmc_send_status(card, &status);
650 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
651 break;
652 if (time_after(jiffies, prg_wait))
653 err = -ETIMEDOUT;
654 } while (!err);
656 out:
657 mmc_release_host(card->host);
658 return err;
660 EXPORT_SYMBOL(mmc_interrupt_hpi);
663 * mmc_wait_for_cmd - start a command and wait for completion
664 * @host: MMC host to start command
665 * @cmd: MMC command to start
666 * @retries: maximum number of retries
668 * Start a new MMC command for a host, and wait for the command
669 * to complete. Return any error that occurred while the command
670 * was executing. Do not attempt to parse the response.
672 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
674 struct mmc_request mrq = {NULL};
676 WARN_ON(!host->claimed);
678 memset(cmd->resp, 0, sizeof(cmd->resp));
679 cmd->retries = retries;
681 mrq.cmd = cmd;
682 cmd->data = NULL;
684 mmc_wait_for_req(host, &mrq);
686 return cmd->error;
689 EXPORT_SYMBOL(mmc_wait_for_cmd);
692 * mmc_stop_bkops - stop ongoing BKOPS
693 * @card: MMC card to check BKOPS
695 * Send HPI command to stop ongoing background operations to
696 * allow rapid servicing of foreground operations, e.g. read/
697 * writes. Wait until the card comes out of the programming state
698 * to avoid errors in servicing read/write requests.
700 int mmc_stop_bkops(struct mmc_card *card)
702 int err = 0;
704 BUG_ON(!card);
705 err = mmc_interrupt_hpi(card);
708 * If err is EINVAL, we can't issue an HPI.
709 * It should complete the BKOPS.
711 if (!err || (err == -EINVAL)) {
712 mmc_card_clr_doing_bkops(card);
713 err = 0;
716 return err;
718 EXPORT_SYMBOL(mmc_stop_bkops);
720 int mmc_read_bkops_status(struct mmc_card *card)
722 int err;
723 u8 *ext_csd;
726 * In future work, we should consider storing the entire ext_csd.
728 ext_csd = kmalloc(512, GFP_KERNEL);
729 if (!ext_csd) {
730 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
731 mmc_hostname(card->host));
732 return -ENOMEM;
735 mmc_claim_host(card->host);
736 err = mmc_send_ext_csd(card, ext_csd);
737 mmc_release_host(card->host);
738 if (err)
739 goto out;
741 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
742 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
743 out:
744 kfree(ext_csd);
745 return err;
747 EXPORT_SYMBOL(mmc_read_bkops_status);
750 * mmc_set_data_timeout - set the timeout for a data command
751 * @data: data phase for command
752 * @card: the MMC card associated with the data transfer
754 * Computes the data timeout parameters according to the
755 * correct algorithm given the card type.
757 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
759 unsigned int mult;
762 * SDIO cards only define an upper 1 s limit on access.
764 if (mmc_card_sdio(card)) {
765 data->timeout_ns = 1000000000;
766 data->timeout_clks = 0;
767 return;
771 * SD cards use a 100 multiplier rather than 10
773 mult = mmc_card_sd(card) ? 100 : 10;
776 * Scale up the multiplier (and therefore the timeout) by
777 * the r2w factor for writes.
779 if (data->flags & MMC_DATA_WRITE)
780 mult <<= card->csd.r2w_factor;
782 data->timeout_ns = card->csd.tacc_ns * mult;
783 data->timeout_clks = card->csd.tacc_clks * mult;
786 * SD cards also have an upper limit on the timeout.
788 if (mmc_card_sd(card)) {
789 unsigned int timeout_us, limit_us;
791 timeout_us = data->timeout_ns / 1000;
792 if (mmc_host_clk_rate(card->host))
793 timeout_us += data->timeout_clks * 1000 /
794 (mmc_host_clk_rate(card->host) / 1000);
796 if (data->flags & MMC_DATA_WRITE)
798 * The MMC spec "It is strongly recommended
799 * for hosts to implement more than 500ms
800 * timeout value even if the card indicates
801 * the 250ms maximum busy length." Even the
802 * previous value of 300ms is known to be
803 * insufficient for some cards.
805 limit_us = 3000000;
806 else
807 limit_us = 100000;
810 * SDHC cards always use these fixed values.
812 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
813 data->timeout_ns = limit_us * 1000;
814 data->timeout_clks = 0;
819 * Some cards require longer data read timeout than indicated in CSD.
820 * Address this by setting the read timeout to a "reasonably high"
821 * value. For the cards tested, 300ms has proven enough. If necessary,
822 * this value can be increased if other problematic cards require this.
824 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
825 data->timeout_ns = 300000000;
826 data->timeout_clks = 0;
830 * Some cards need very high timeouts if driven in SPI mode.
831 * The worst observed timeout was 900ms after writing a
832 * continuous stream of data until the internal logic
833 * overflowed.
835 if (mmc_host_is_spi(card->host)) {
836 if (data->flags & MMC_DATA_WRITE) {
837 if (data->timeout_ns < 1000000000)
838 data->timeout_ns = 1000000000; /* 1s */
839 } else {
840 if (data->timeout_ns < 100000000)
841 data->timeout_ns = 100000000; /* 100ms */
845 EXPORT_SYMBOL(mmc_set_data_timeout);
848 * mmc_align_data_size - pads a transfer size to a more optimal value
849 * @card: the MMC card associated with the data transfer
850 * @sz: original transfer size
852 * Pads the original data size with a number of extra bytes in
853 * order to avoid controller bugs and/or performance hits
854 * (e.g. some controllers revert to PIO for certain sizes).
856 * Returns the improved size, which might be unmodified.
858 * Note that this function is only relevant when issuing a
859 * single scatter gather entry.
861 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
864 * FIXME: We don't have a system for the controller to tell
865 * the core about its problems yet, so for now we just 32-bit
866 * align the size.
868 sz = ((sz + 3) / 4) * 4;
870 return sz;
872 EXPORT_SYMBOL(mmc_align_data_size);
875 * __mmc_claim_host - exclusively claim a host
876 * @host: mmc host to claim
877 * @abort: whether or not the operation should be aborted
879 * Claim a host for a set of operations. If @abort is non null and
880 * dereference a non-zero value then this will return prematurely with
881 * that non-zero value without acquiring the lock. Returns zero
882 * with the lock held otherwise.
884 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
886 DECLARE_WAITQUEUE(wait, current);
887 unsigned long flags;
888 int stop;
890 might_sleep();
892 add_wait_queue(&host->wq, &wait);
893 spin_lock_irqsave(&host->lock, flags);
894 while (1) {
895 set_current_state(TASK_UNINTERRUPTIBLE);
896 stop = abort ? atomic_read(abort) : 0;
897 if (stop || !host->claimed || host->claimer == current)
898 break;
899 spin_unlock_irqrestore(&host->lock, flags);
900 schedule();
901 spin_lock_irqsave(&host->lock, flags);
903 set_current_state(TASK_RUNNING);
904 if (!stop) {
905 host->claimed = 1;
906 host->claimer = current;
907 host->claim_cnt += 1;
908 } else
909 wake_up(&host->wq);
910 spin_unlock_irqrestore(&host->lock, flags);
911 remove_wait_queue(&host->wq, &wait);
912 if (host->ops->enable && !stop && host->claim_cnt == 1)
913 host->ops->enable(host);
914 return stop;
917 EXPORT_SYMBOL(__mmc_claim_host);
920 * mmc_try_claim_host - try exclusively to claim a host
921 * @host: mmc host to claim
923 * Returns %1 if the host is claimed, %0 otherwise.
925 int mmc_try_claim_host(struct mmc_host *host)
927 int claimed_host = 0;
928 unsigned long flags;
930 spin_lock_irqsave(&host->lock, flags);
931 if (!host->claimed || host->claimer == current) {
932 host->claimed = 1;
933 host->claimer = current;
934 host->claim_cnt += 1;
935 claimed_host = 1;
937 spin_unlock_irqrestore(&host->lock, flags);
938 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
939 host->ops->enable(host);
940 return claimed_host;
942 EXPORT_SYMBOL(mmc_try_claim_host);
945 * mmc_release_host - release a host
946 * @host: mmc host to release
948 * Release a MMC host, allowing others to claim the host
949 * for their operations.
951 void mmc_release_host(struct mmc_host *host)
953 unsigned long flags;
955 WARN_ON(!host->claimed);
957 if (host->ops->disable && host->claim_cnt == 1)
958 host->ops->disable(host);
960 spin_lock_irqsave(&host->lock, flags);
961 if (--host->claim_cnt) {
962 /* Release for nested claim */
963 spin_unlock_irqrestore(&host->lock, flags);
964 } else {
965 host->claimed = 0;
966 host->claimer = NULL;
967 spin_unlock_irqrestore(&host->lock, flags);
968 wake_up(&host->wq);
971 EXPORT_SYMBOL(mmc_release_host);
974 * This is a helper function, which fetches a runtime pm reference for the
975 * card device and also claims the host.
977 void mmc_get_card(struct mmc_card *card)
979 pm_runtime_get_sync(&card->dev);
980 mmc_claim_host(card->host);
982 EXPORT_SYMBOL(mmc_get_card);
985 * This is a helper function, which releases the host and drops the runtime
986 * pm reference for the card device.
988 void mmc_put_card(struct mmc_card *card)
990 mmc_release_host(card->host);
991 pm_runtime_mark_last_busy(&card->dev);
992 pm_runtime_put_autosuspend(&card->dev);
994 EXPORT_SYMBOL(mmc_put_card);
997 * Internal function that does the actual ios call to the host driver,
998 * optionally printing some debug output.
1000 static inline void mmc_set_ios(struct mmc_host *host)
1002 struct mmc_ios *ios = &host->ios;
1004 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1005 "width %u timing %u\n",
1006 mmc_hostname(host), ios->clock, ios->bus_mode,
1007 ios->power_mode, ios->chip_select, ios->vdd,
1008 ios->bus_width, ios->timing);
1010 if (ios->clock > 0)
1011 mmc_set_ungated(host);
1012 host->ops->set_ios(host, ios);
1016 * Control chip select pin on a host.
1018 void mmc_set_chip_select(struct mmc_host *host, int mode)
1020 mmc_host_clk_hold(host);
1021 host->ios.chip_select = mode;
1022 mmc_set_ios(host);
1023 mmc_host_clk_release(host);
1027 * Sets the host clock to the highest possible frequency that
1028 * is below "hz".
1030 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1032 WARN_ON(hz < host->f_min);
1034 if (hz > host->f_max)
1035 hz = host->f_max;
1037 host->ios.clock = hz;
1038 mmc_set_ios(host);
1041 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1043 mmc_host_clk_hold(host);
1044 __mmc_set_clock(host, hz);
1045 mmc_host_clk_release(host);
1048 #ifdef CONFIG_MMC_CLKGATE
1050 * This gates the clock by setting it to 0 Hz.
1052 void mmc_gate_clock(struct mmc_host *host)
1054 unsigned long flags;
1056 spin_lock_irqsave(&host->clk_lock, flags);
1057 host->clk_old = host->ios.clock;
1058 host->ios.clock = 0;
1059 host->clk_gated = true;
1060 spin_unlock_irqrestore(&host->clk_lock, flags);
1061 mmc_set_ios(host);
1065 * This restores the clock from gating by using the cached
1066 * clock value.
1068 void mmc_ungate_clock(struct mmc_host *host)
1071 * We should previously have gated the clock, so the clock shall
1072 * be 0 here! The clock may however be 0 during initialization,
1073 * when some request operations are performed before setting
1074 * the frequency. When ungate is requested in that situation
1075 * we just ignore the call.
1077 if (host->clk_old) {
1078 BUG_ON(host->ios.clock);
1079 /* This call will also set host->clk_gated to false */
1080 __mmc_set_clock(host, host->clk_old);
1084 void mmc_set_ungated(struct mmc_host *host)
1086 unsigned long flags;
1089 * We've been given a new frequency while the clock is gated,
1090 * so make sure we regard this as ungating it.
1092 spin_lock_irqsave(&host->clk_lock, flags);
1093 host->clk_gated = false;
1094 spin_unlock_irqrestore(&host->clk_lock, flags);
1097 #else
1098 void mmc_set_ungated(struct mmc_host *host)
1101 #endif
1104 * Change the bus mode (open drain/push-pull) of a host.
1106 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1108 mmc_host_clk_hold(host);
1109 host->ios.bus_mode = mode;
1110 mmc_set_ios(host);
1111 mmc_host_clk_release(host);
1115 * Change data bus width of a host.
1117 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1119 mmc_host_clk_hold(host);
1120 host->ios.bus_width = width;
1121 mmc_set_ios(host);
1122 mmc_host_clk_release(host);
1126 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1127 * @vdd: voltage (mV)
1128 * @low_bits: prefer low bits in boundary cases
1130 * This function returns the OCR bit number according to the provided @vdd
1131 * value. If conversion is not possible a negative errno value returned.
1133 * Depending on the @low_bits flag the function prefers low or high OCR bits
1134 * on boundary voltages. For example,
1135 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1136 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1138 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1140 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1142 const int max_bit = ilog2(MMC_VDD_35_36);
1143 int bit;
1145 if (vdd < 1650 || vdd > 3600)
1146 return -EINVAL;
1148 if (vdd >= 1650 && vdd <= 1950)
1149 return ilog2(MMC_VDD_165_195);
1151 if (low_bits)
1152 vdd -= 1;
1154 /* Base 2000 mV, step 100 mV, bit's base 8. */
1155 bit = (vdd - 2000) / 100 + 8;
1156 if (bit > max_bit)
1157 return max_bit;
1158 return bit;
1162 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1163 * @vdd_min: minimum voltage value (mV)
1164 * @vdd_max: maximum voltage value (mV)
1166 * This function returns the OCR mask bits according to the provided @vdd_min
1167 * and @vdd_max values. If conversion is not possible the function returns 0.
1169 * Notes wrt boundary cases:
1170 * This function sets the OCR bits for all boundary voltages, for example
1171 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1172 * MMC_VDD_34_35 mask.
1174 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1176 u32 mask = 0;
1178 if (vdd_max < vdd_min)
1179 return 0;
1181 /* Prefer high bits for the boundary vdd_max values. */
1182 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1183 if (vdd_max < 0)
1184 return 0;
1186 /* Prefer low bits for the boundary vdd_min values. */
1187 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1188 if (vdd_min < 0)
1189 return 0;
1191 /* Fill the mask, from max bit to min bit. */
1192 while (vdd_max >= vdd_min)
1193 mask |= 1 << vdd_max--;
1195 return mask;
1197 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1199 #ifdef CONFIG_REGULATOR
1202 * mmc_regulator_get_ocrmask - return mask of supported voltages
1203 * @supply: regulator to use
1205 * This returns either a negative errno, or a mask of voltages that
1206 * can be provided to MMC/SD/SDIO devices using the specified voltage
1207 * regulator. This would normally be called before registering the
1208 * MMC host adapter.
1210 int mmc_regulator_get_ocrmask(struct regulator *supply)
1212 int result = 0;
1213 int count;
1214 int i;
1216 count = regulator_count_voltages(supply);
1217 if (count < 0)
1218 return count;
1220 for (i = 0; i < count; i++) {
1221 int vdd_uV;
1222 int vdd_mV;
1224 vdd_uV = regulator_list_voltage(supply, i);
1225 if (vdd_uV <= 0)
1226 continue;
1228 vdd_mV = vdd_uV / 1000;
1229 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1232 return result;
1234 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1237 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1238 * @mmc: the host to regulate
1239 * @supply: regulator to use
1240 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1242 * Returns zero on success, else negative errno.
1244 * MMC host drivers may use this to enable or disable a regulator using
1245 * a particular supply voltage. This would normally be called from the
1246 * set_ios() method.
1248 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1249 struct regulator *supply,
1250 unsigned short vdd_bit)
1252 int result = 0;
1253 int min_uV, max_uV;
1255 if (vdd_bit) {
1256 int tmp;
1257 int voltage;
1260 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1261 * bits this regulator doesn't quite support ... don't
1262 * be too picky, most cards and regulators are OK with
1263 * a 0.1V range goof (it's a small error percentage).
1265 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1266 if (tmp == 0) {
1267 min_uV = 1650 * 1000;
1268 max_uV = 1950 * 1000;
1269 } else {
1270 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1271 max_uV = min_uV + 100 * 1000;
1275 * If we're using a fixed/static regulator, don't call
1276 * regulator_set_voltage; it would fail.
1278 voltage = regulator_get_voltage(supply);
1280 if (!regulator_can_change_voltage(supply))
1281 min_uV = max_uV = voltage;
1283 if (voltage < 0)
1284 result = voltage;
1285 else if (voltage < min_uV || voltage > max_uV)
1286 result = regulator_set_voltage(supply, min_uV, max_uV);
1287 else
1288 result = 0;
1290 if (result == 0 && !mmc->regulator_enabled) {
1291 result = regulator_enable(supply);
1292 if (!result)
1293 mmc->regulator_enabled = true;
1295 } else if (mmc->regulator_enabled) {
1296 result = regulator_disable(supply);
1297 if (result == 0)
1298 mmc->regulator_enabled = false;
1301 if (result)
1302 dev_err(mmc_dev(mmc),
1303 "could not set regulator OCR (%d)\n", result);
1304 return result;
1306 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1308 int mmc_regulator_get_supply(struct mmc_host *mmc)
1310 struct device *dev = mmc_dev(mmc);
1311 struct regulator *supply;
1312 int ret;
1314 supply = devm_regulator_get(dev, "vmmc");
1315 mmc->supply.vmmc = supply;
1316 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1318 if (IS_ERR(supply))
1319 return PTR_ERR(supply);
1321 ret = mmc_regulator_get_ocrmask(supply);
1322 if (ret > 0)
1323 mmc->ocr_avail = ret;
1324 else
1325 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1327 return 0;
1329 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1331 #endif /* CONFIG_REGULATOR */
1334 * Mask off any voltages we don't support and select
1335 * the lowest voltage
1337 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1339 int bit;
1341 ocr &= host->ocr_avail;
1343 bit = ffs(ocr);
1344 if (bit) {
1345 bit -= 1;
1347 ocr &= 3 << bit;
1349 mmc_host_clk_hold(host);
1350 host->ios.vdd = bit;
1351 mmc_set_ios(host);
1352 mmc_host_clk_release(host);
1353 } else {
1354 pr_warning("%s: host doesn't support card's voltages\n",
1355 mmc_hostname(host));
1356 ocr = 0;
1359 return ocr;
1362 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1364 int err = 0;
1365 int old_signal_voltage = host->ios.signal_voltage;
1367 host->ios.signal_voltage = signal_voltage;
1368 if (host->ops->start_signal_voltage_switch) {
1369 mmc_host_clk_hold(host);
1370 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1371 mmc_host_clk_release(host);
1374 if (err)
1375 host->ios.signal_voltage = old_signal_voltage;
1377 return err;
1381 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1383 struct mmc_command cmd = {0};
1384 int err = 0;
1385 u32 clock;
1387 BUG_ON(!host);
1390 * Send CMD11 only if the request is to switch the card to
1391 * 1.8V signalling.
1393 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1394 return __mmc_set_signal_voltage(host, signal_voltage);
1397 * If we cannot switch voltages, return failure so the caller
1398 * can continue without UHS mode
1400 if (!host->ops->start_signal_voltage_switch)
1401 return -EPERM;
1402 if (!host->ops->card_busy)
1403 pr_warning("%s: cannot verify signal voltage switch\n",
1404 mmc_hostname(host));
1406 cmd.opcode = SD_SWITCH_VOLTAGE;
1407 cmd.arg = 0;
1408 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1410 err = mmc_wait_for_cmd(host, &cmd, 0);
1411 if (err)
1412 return err;
1414 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1415 return -EIO;
1417 mmc_host_clk_hold(host);
1419 * The card should drive cmd and dat[0:3] low immediately
1420 * after the response of cmd11, but wait 1 ms to be sure
1422 mmc_delay(1);
1423 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1424 err = -EAGAIN;
1425 goto power_cycle;
1428 * During a signal voltage level switch, the clock must be gated
1429 * for 5 ms according to the SD spec
1431 clock = host->ios.clock;
1432 host->ios.clock = 0;
1433 mmc_set_ios(host);
1435 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1437 * Voltages may not have been switched, but we've already
1438 * sent CMD11, so a power cycle is required anyway
1440 err = -EAGAIN;
1441 goto power_cycle;
1444 /* Keep clock gated for at least 5 ms */
1445 mmc_delay(5);
1446 host->ios.clock = clock;
1447 mmc_set_ios(host);
1449 /* Wait for at least 1 ms according to spec */
1450 mmc_delay(1);
1453 * Failure to switch is indicated by the card holding
1454 * dat[0:3] low
1456 if (host->ops->card_busy && host->ops->card_busy(host))
1457 err = -EAGAIN;
1459 power_cycle:
1460 if (err) {
1461 pr_debug("%s: Signal voltage switch failed, "
1462 "power cycling card\n", mmc_hostname(host));
1463 mmc_power_cycle(host);
1466 mmc_host_clk_release(host);
1468 return err;
1472 * Select timing parameters for host.
1474 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1476 mmc_host_clk_hold(host);
1477 host->ios.timing = timing;
1478 mmc_set_ios(host);
1479 mmc_host_clk_release(host);
1483 * Select appropriate driver type for host.
1485 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1487 mmc_host_clk_hold(host);
1488 host->ios.drv_type = drv_type;
1489 mmc_set_ios(host);
1490 mmc_host_clk_release(host);
1494 * Apply power to the MMC stack. This is a two-stage process.
1495 * First, we enable power to the card without the clock running.
1496 * We then wait a bit for the power to stabilise. Finally,
1497 * enable the bus drivers and clock to the card.
1499 * We must _NOT_ enable the clock prior to power stablising.
1501 * If a host does all the power sequencing itself, ignore the
1502 * initial MMC_POWER_UP stage.
1504 void mmc_power_up(struct mmc_host *host)
1506 int bit;
1508 if (host->ios.power_mode == MMC_POWER_ON)
1509 return;
1511 mmc_host_clk_hold(host);
1513 /* If ocr is set, we use it */
1514 if (host->ocr)
1515 bit = ffs(host->ocr) - 1;
1516 else
1517 bit = fls(host->ocr_avail) - 1;
1519 host->ios.vdd = bit;
1520 if (mmc_host_is_spi(host))
1521 host->ios.chip_select = MMC_CS_HIGH;
1522 else
1523 host->ios.chip_select = MMC_CS_DONTCARE;
1524 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1525 host->ios.power_mode = MMC_POWER_UP;
1526 host->ios.bus_width = MMC_BUS_WIDTH_1;
1527 host->ios.timing = MMC_TIMING_LEGACY;
1528 mmc_set_ios(host);
1530 /* Set signal voltage to 3.3V */
1531 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1534 * This delay should be sufficient to allow the power supply
1535 * to reach the minimum voltage.
1537 mmc_delay(10);
1539 host->ios.clock = host->f_init;
1541 host->ios.power_mode = MMC_POWER_ON;
1542 mmc_set_ios(host);
1545 * This delay must be at least 74 clock sizes, or 1 ms, or the
1546 * time required to reach a stable voltage.
1548 mmc_delay(10);
1550 mmc_host_clk_release(host);
1553 void mmc_power_off(struct mmc_host *host)
1555 if (host->ios.power_mode == MMC_POWER_OFF)
1556 return;
1558 mmc_host_clk_hold(host);
1560 host->ios.clock = 0;
1561 host->ios.vdd = 0;
1565 * Reset ocr mask to be the highest possible voltage supported for
1566 * this mmc host. This value will be used at next power up.
1568 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1570 if (!mmc_host_is_spi(host)) {
1571 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1572 host->ios.chip_select = MMC_CS_DONTCARE;
1574 host->ios.power_mode = MMC_POWER_OFF;
1575 host->ios.bus_width = MMC_BUS_WIDTH_1;
1576 host->ios.timing = MMC_TIMING_LEGACY;
1577 mmc_set_ios(host);
1580 * Some configurations, such as the 802.11 SDIO card in the OLPC
1581 * XO-1.5, require a short delay after poweroff before the card
1582 * can be successfully turned on again.
1584 mmc_delay(1);
1586 mmc_host_clk_release(host);
1589 void mmc_power_cycle(struct mmc_host *host)
1591 mmc_power_off(host);
1592 /* Wait at least 1 ms according to SD spec */
1593 mmc_delay(1);
1594 mmc_power_up(host);
1598 * Cleanup when the last reference to the bus operator is dropped.
1600 static void __mmc_release_bus(struct mmc_host *host)
1602 BUG_ON(!host);
1603 BUG_ON(host->bus_refs);
1604 BUG_ON(!host->bus_dead);
1606 host->bus_ops = NULL;
1610 * Increase reference count of bus operator
1612 static inline void mmc_bus_get(struct mmc_host *host)
1614 unsigned long flags;
1616 spin_lock_irqsave(&host->lock, flags);
1617 host->bus_refs++;
1618 spin_unlock_irqrestore(&host->lock, flags);
1622 * Decrease reference count of bus operator and free it if
1623 * it is the last reference.
1625 static inline void mmc_bus_put(struct mmc_host *host)
1627 unsigned long flags;
1629 spin_lock_irqsave(&host->lock, flags);
1630 host->bus_refs--;
1631 if ((host->bus_refs == 0) && host->bus_ops)
1632 __mmc_release_bus(host);
1633 spin_unlock_irqrestore(&host->lock, flags);
1637 * Assign a mmc bus handler to a host. Only one bus handler may control a
1638 * host at any given time.
1640 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1642 unsigned long flags;
1644 BUG_ON(!host);
1645 BUG_ON(!ops);
1647 WARN_ON(!host->claimed);
1649 spin_lock_irqsave(&host->lock, flags);
1651 BUG_ON(host->bus_ops);
1652 BUG_ON(host->bus_refs);
1654 host->bus_ops = ops;
1655 host->bus_refs = 1;
1656 host->bus_dead = 0;
1658 spin_unlock_irqrestore(&host->lock, flags);
1662 * Remove the current bus handler from a host.
1664 void mmc_detach_bus(struct mmc_host *host)
1666 unsigned long flags;
1668 BUG_ON(!host);
1670 WARN_ON(!host->claimed);
1671 WARN_ON(!host->bus_ops);
1673 spin_lock_irqsave(&host->lock, flags);
1675 host->bus_dead = 1;
1677 spin_unlock_irqrestore(&host->lock, flags);
1679 mmc_bus_put(host);
1683 * mmc_detect_change - process change of state on a MMC socket
1684 * @host: host which changed state.
1685 * @delay: optional delay to wait before detection (jiffies)
1687 * MMC drivers should call this when they detect a card has been
1688 * inserted or removed. The MMC layer will confirm that any
1689 * present card is still functional, and initialize any newly
1690 * inserted.
1692 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1694 #ifdef CONFIG_MMC_DEBUG
1695 unsigned long flags;
1696 spin_lock_irqsave(&host->lock, flags);
1697 WARN_ON(host->removed);
1698 spin_unlock_irqrestore(&host->lock, flags);
1699 #endif
1700 host->detect_change = 1;
1701 mmc_schedule_delayed_work(&host->detect, delay);
1704 EXPORT_SYMBOL(mmc_detect_change);
1706 void mmc_init_erase(struct mmc_card *card)
1708 unsigned int sz;
1710 if (is_power_of_2(card->erase_size))
1711 card->erase_shift = ffs(card->erase_size) - 1;
1712 else
1713 card->erase_shift = 0;
1716 * It is possible to erase an arbitrarily large area of an SD or MMC
1717 * card. That is not desirable because it can take a long time
1718 * (minutes) potentially delaying more important I/O, and also the
1719 * timeout calculations become increasingly hugely over-estimated.
1720 * Consequently, 'pref_erase' is defined as a guide to limit erases
1721 * to that size and alignment.
1723 * For SD cards that define Allocation Unit size, limit erases to one
1724 * Allocation Unit at a time. For MMC cards that define High Capacity
1725 * Erase Size, whether it is switched on or not, limit to that size.
1726 * Otherwise just have a stab at a good value. For modern cards it
1727 * will end up being 4MiB. Note that if the value is too small, it
1728 * can end up taking longer to erase.
1730 if (mmc_card_sd(card) && card->ssr.au) {
1731 card->pref_erase = card->ssr.au;
1732 card->erase_shift = ffs(card->ssr.au) - 1;
1733 } else if (card->ext_csd.hc_erase_size) {
1734 card->pref_erase = card->ext_csd.hc_erase_size;
1735 } else {
1736 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1737 if (sz < 128)
1738 card->pref_erase = 512 * 1024 / 512;
1739 else if (sz < 512)
1740 card->pref_erase = 1024 * 1024 / 512;
1741 else if (sz < 1024)
1742 card->pref_erase = 2 * 1024 * 1024 / 512;
1743 else
1744 card->pref_erase = 4 * 1024 * 1024 / 512;
1745 if (card->pref_erase < card->erase_size)
1746 card->pref_erase = card->erase_size;
1747 else {
1748 sz = card->pref_erase % card->erase_size;
1749 if (sz)
1750 card->pref_erase += card->erase_size - sz;
1755 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1756 unsigned int arg, unsigned int qty)
1758 unsigned int erase_timeout;
1760 if (arg == MMC_DISCARD_ARG ||
1761 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1762 erase_timeout = card->ext_csd.trim_timeout;
1763 } else if (card->ext_csd.erase_group_def & 1) {
1764 /* High Capacity Erase Group Size uses HC timeouts */
1765 if (arg == MMC_TRIM_ARG)
1766 erase_timeout = card->ext_csd.trim_timeout;
1767 else
1768 erase_timeout = card->ext_csd.hc_erase_timeout;
1769 } else {
1770 /* CSD Erase Group Size uses write timeout */
1771 unsigned int mult = (10 << card->csd.r2w_factor);
1772 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1773 unsigned int timeout_us;
1775 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1776 if (card->csd.tacc_ns < 1000000)
1777 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1778 else
1779 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1782 * ios.clock is only a target. The real clock rate might be
1783 * less but not that much less, so fudge it by multiplying by 2.
1785 timeout_clks <<= 1;
1786 timeout_us += (timeout_clks * 1000) /
1787 (mmc_host_clk_rate(card->host) / 1000);
1789 erase_timeout = timeout_us / 1000;
1792 * Theoretically, the calculation could underflow so round up
1793 * to 1ms in that case.
1795 if (!erase_timeout)
1796 erase_timeout = 1;
1799 /* Multiplier for secure operations */
1800 if (arg & MMC_SECURE_ARGS) {
1801 if (arg == MMC_SECURE_ERASE_ARG)
1802 erase_timeout *= card->ext_csd.sec_erase_mult;
1803 else
1804 erase_timeout *= card->ext_csd.sec_trim_mult;
1807 erase_timeout *= qty;
1810 * Ensure at least a 1 second timeout for SPI as per
1811 * 'mmc_set_data_timeout()'
1813 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1814 erase_timeout = 1000;
1816 return erase_timeout;
1819 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1820 unsigned int arg,
1821 unsigned int qty)
1823 unsigned int erase_timeout;
1825 if (card->ssr.erase_timeout) {
1826 /* Erase timeout specified in SD Status Register (SSR) */
1827 erase_timeout = card->ssr.erase_timeout * qty +
1828 card->ssr.erase_offset;
1829 } else {
1831 * Erase timeout not specified in SD Status Register (SSR) so
1832 * use 250ms per write block.
1834 erase_timeout = 250 * qty;
1837 /* Must not be less than 1 second */
1838 if (erase_timeout < 1000)
1839 erase_timeout = 1000;
1841 return erase_timeout;
1844 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1845 unsigned int arg,
1846 unsigned int qty)
1848 if (mmc_card_sd(card))
1849 return mmc_sd_erase_timeout(card, arg, qty);
1850 else
1851 return mmc_mmc_erase_timeout(card, arg, qty);
1854 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1855 unsigned int to, unsigned int arg)
1857 struct mmc_command cmd = {0};
1858 unsigned int qty = 0;
1859 unsigned long timeout;
1860 int err;
1863 * qty is used to calculate the erase timeout which depends on how many
1864 * erase groups (or allocation units in SD terminology) are affected.
1865 * We count erasing part of an erase group as one erase group.
1866 * For SD, the allocation units are always a power of 2. For MMC, the
1867 * erase group size is almost certainly also power of 2, but it does not
1868 * seem to insist on that in the JEDEC standard, so we fall back to
1869 * division in that case. SD may not specify an allocation unit size,
1870 * in which case the timeout is based on the number of write blocks.
1872 * Note that the timeout for secure trim 2 will only be correct if the
1873 * number of erase groups specified is the same as the total of all
1874 * preceding secure trim 1 commands. Since the power may have been
1875 * lost since the secure trim 1 commands occurred, it is generally
1876 * impossible to calculate the secure trim 2 timeout correctly.
1878 if (card->erase_shift)
1879 qty += ((to >> card->erase_shift) -
1880 (from >> card->erase_shift)) + 1;
1881 else if (mmc_card_sd(card))
1882 qty += to - from + 1;
1883 else
1884 qty += ((to / card->erase_size) -
1885 (from / card->erase_size)) + 1;
1887 if (!mmc_card_blockaddr(card)) {
1888 from <<= 9;
1889 to <<= 9;
1892 if (mmc_card_sd(card))
1893 cmd.opcode = SD_ERASE_WR_BLK_START;
1894 else
1895 cmd.opcode = MMC_ERASE_GROUP_START;
1896 cmd.arg = from;
1897 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1898 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1899 if (err) {
1900 pr_err("mmc_erase: group start error %d, "
1901 "status %#x\n", err, cmd.resp[0]);
1902 err = -EIO;
1903 goto out;
1906 memset(&cmd, 0, sizeof(struct mmc_command));
1907 if (mmc_card_sd(card))
1908 cmd.opcode = SD_ERASE_WR_BLK_END;
1909 else
1910 cmd.opcode = MMC_ERASE_GROUP_END;
1911 cmd.arg = to;
1912 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1913 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1914 if (err) {
1915 pr_err("mmc_erase: group end error %d, status %#x\n",
1916 err, cmd.resp[0]);
1917 err = -EIO;
1918 goto out;
1921 memset(&cmd, 0, sizeof(struct mmc_command));
1922 cmd.opcode = MMC_ERASE;
1923 cmd.arg = arg;
1924 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1925 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1926 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1927 if (err) {
1928 pr_err("mmc_erase: erase error %d, status %#x\n",
1929 err, cmd.resp[0]);
1930 err = -EIO;
1931 goto out;
1934 if (mmc_host_is_spi(card->host))
1935 goto out;
1937 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1938 do {
1939 memset(&cmd, 0, sizeof(struct mmc_command));
1940 cmd.opcode = MMC_SEND_STATUS;
1941 cmd.arg = card->rca << 16;
1942 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1943 /* Do not retry else we can't see errors */
1944 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1945 if (err || (cmd.resp[0] & 0xFDF92000)) {
1946 pr_err("error %d requesting status %#x\n",
1947 err, cmd.resp[0]);
1948 err = -EIO;
1949 goto out;
1952 /* Timeout if the device never becomes ready for data and
1953 * never leaves the program state.
1955 if (time_after(jiffies, timeout)) {
1956 pr_err("%s: Card stuck in programming state! %s\n",
1957 mmc_hostname(card->host), __func__);
1958 err = -EIO;
1959 goto out;
1962 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1963 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1964 out:
1965 return err;
1969 * mmc_erase - erase sectors.
1970 * @card: card to erase
1971 * @from: first sector to erase
1972 * @nr: number of sectors to erase
1973 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1975 * Caller must claim host before calling this function.
1977 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1978 unsigned int arg)
1980 unsigned int rem, to = from + nr;
1982 if (!(card->host->caps & MMC_CAP_ERASE) ||
1983 !(card->csd.cmdclass & CCC_ERASE))
1984 return -EOPNOTSUPP;
1986 if (!card->erase_size)
1987 return -EOPNOTSUPP;
1989 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1990 return -EOPNOTSUPP;
1992 if ((arg & MMC_SECURE_ARGS) &&
1993 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1994 return -EOPNOTSUPP;
1996 if ((arg & MMC_TRIM_ARGS) &&
1997 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1998 return -EOPNOTSUPP;
2000 if (arg == MMC_SECURE_ERASE_ARG) {
2001 if (from % card->erase_size || nr % card->erase_size)
2002 return -EINVAL;
2005 if (arg == MMC_ERASE_ARG) {
2006 rem = from % card->erase_size;
2007 if (rem) {
2008 rem = card->erase_size - rem;
2009 from += rem;
2010 if (nr > rem)
2011 nr -= rem;
2012 else
2013 return 0;
2015 rem = nr % card->erase_size;
2016 if (rem)
2017 nr -= rem;
2020 if (nr == 0)
2021 return 0;
2023 to = from + nr;
2025 if (to <= from)
2026 return -EINVAL;
2028 /* 'from' and 'to' are inclusive */
2029 to -= 1;
2031 return mmc_do_erase(card, from, to, arg);
2033 EXPORT_SYMBOL(mmc_erase);
2035 int mmc_can_erase(struct mmc_card *card)
2037 if ((card->host->caps & MMC_CAP_ERASE) &&
2038 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2039 return 1;
2040 return 0;
2042 EXPORT_SYMBOL(mmc_can_erase);
2044 int mmc_can_trim(struct mmc_card *card)
2046 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2047 return 1;
2048 return 0;
2050 EXPORT_SYMBOL(mmc_can_trim);
2052 int mmc_can_discard(struct mmc_card *card)
2055 * As there's no way to detect the discard support bit at v4.5
2056 * use the s/w feature support filed.
2058 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2059 return 1;
2060 return 0;
2062 EXPORT_SYMBOL(mmc_can_discard);
2064 int mmc_can_sanitize(struct mmc_card *card)
2066 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2067 return 0;
2068 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2069 return 1;
2070 return 0;
2072 EXPORT_SYMBOL(mmc_can_sanitize);
2074 int mmc_can_secure_erase_trim(struct mmc_card *card)
2076 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2077 return 1;
2078 return 0;
2080 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2082 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2083 unsigned int nr)
2085 if (!card->erase_size)
2086 return 0;
2087 if (from % card->erase_size || nr % card->erase_size)
2088 return 0;
2089 return 1;
2091 EXPORT_SYMBOL(mmc_erase_group_aligned);
2093 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2094 unsigned int arg)
2096 struct mmc_host *host = card->host;
2097 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2098 unsigned int last_timeout = 0;
2100 if (card->erase_shift)
2101 max_qty = UINT_MAX >> card->erase_shift;
2102 else if (mmc_card_sd(card))
2103 max_qty = UINT_MAX;
2104 else
2105 max_qty = UINT_MAX / card->erase_size;
2107 /* Find the largest qty with an OK timeout */
2108 do {
2109 y = 0;
2110 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2111 timeout = mmc_erase_timeout(card, arg, qty + x);
2112 if (timeout > host->max_discard_to)
2113 break;
2114 if (timeout < last_timeout)
2115 break;
2116 last_timeout = timeout;
2117 y = x;
2119 qty += y;
2120 } while (y);
2122 if (!qty)
2123 return 0;
2125 if (qty == 1)
2126 return 1;
2128 /* Convert qty to sectors */
2129 if (card->erase_shift)
2130 max_discard = --qty << card->erase_shift;
2131 else if (mmc_card_sd(card))
2132 max_discard = qty;
2133 else
2134 max_discard = --qty * card->erase_size;
2136 return max_discard;
2139 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2141 struct mmc_host *host = card->host;
2142 unsigned int max_discard, max_trim;
2144 if (!host->max_discard_to)
2145 return UINT_MAX;
2148 * Without erase_group_def set, MMC erase timeout depends on clock
2149 * frequence which can change. In that case, the best choice is
2150 * just the preferred erase size.
2152 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2153 return card->pref_erase;
2155 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2156 if (mmc_can_trim(card)) {
2157 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2158 if (max_trim < max_discard)
2159 max_discard = max_trim;
2160 } else if (max_discard < card->erase_size) {
2161 max_discard = 0;
2163 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2164 mmc_hostname(host), max_discard, host->max_discard_to);
2165 return max_discard;
2167 EXPORT_SYMBOL(mmc_calc_max_discard);
2169 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2171 struct mmc_command cmd = {0};
2173 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2174 return 0;
2176 cmd.opcode = MMC_SET_BLOCKLEN;
2177 cmd.arg = blocklen;
2178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2179 return mmc_wait_for_cmd(card->host, &cmd, 5);
2181 EXPORT_SYMBOL(mmc_set_blocklen);
2183 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2184 bool is_rel_write)
2186 struct mmc_command cmd = {0};
2188 cmd.opcode = MMC_SET_BLOCK_COUNT;
2189 cmd.arg = blockcount & 0x0000FFFF;
2190 if (is_rel_write)
2191 cmd.arg |= 1 << 31;
2192 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2193 return mmc_wait_for_cmd(card->host, &cmd, 5);
2195 EXPORT_SYMBOL(mmc_set_blockcount);
2197 static void mmc_hw_reset_for_init(struct mmc_host *host)
2199 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2200 return;
2201 mmc_host_clk_hold(host);
2202 host->ops->hw_reset(host);
2203 mmc_host_clk_release(host);
2206 int mmc_can_reset(struct mmc_card *card)
2208 u8 rst_n_function;
2210 if (!mmc_card_mmc(card))
2211 return 0;
2212 rst_n_function = card->ext_csd.rst_n_function;
2213 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2214 return 0;
2215 return 1;
2217 EXPORT_SYMBOL(mmc_can_reset);
2219 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2221 struct mmc_card *card = host->card;
2223 if (!host->bus_ops->power_restore)
2224 return -EOPNOTSUPP;
2226 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2227 return -EOPNOTSUPP;
2229 if (!card)
2230 return -EINVAL;
2232 if (!mmc_can_reset(card))
2233 return -EOPNOTSUPP;
2235 mmc_host_clk_hold(host);
2236 mmc_set_clock(host, host->f_init);
2238 host->ops->hw_reset(host);
2240 /* If the reset has happened, then a status command will fail */
2241 if (check) {
2242 struct mmc_command cmd = {0};
2243 int err;
2245 cmd.opcode = MMC_SEND_STATUS;
2246 if (!mmc_host_is_spi(card->host))
2247 cmd.arg = card->rca << 16;
2248 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2249 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2250 if (!err) {
2251 mmc_host_clk_release(host);
2252 return -ENOSYS;
2256 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2257 if (mmc_host_is_spi(host)) {
2258 host->ios.chip_select = MMC_CS_HIGH;
2259 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2260 } else {
2261 host->ios.chip_select = MMC_CS_DONTCARE;
2262 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2264 host->ios.bus_width = MMC_BUS_WIDTH_1;
2265 host->ios.timing = MMC_TIMING_LEGACY;
2266 mmc_set_ios(host);
2268 mmc_host_clk_release(host);
2270 return host->bus_ops->power_restore(host);
2273 int mmc_hw_reset(struct mmc_host *host)
2275 return mmc_do_hw_reset(host, 0);
2277 EXPORT_SYMBOL(mmc_hw_reset);
2279 int mmc_hw_reset_check(struct mmc_host *host)
2281 return mmc_do_hw_reset(host, 1);
2283 EXPORT_SYMBOL(mmc_hw_reset_check);
2285 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2287 host->f_init = freq;
2289 #ifdef CONFIG_MMC_DEBUG
2290 pr_info("%s: %s: trying to init card at %u Hz\n",
2291 mmc_hostname(host), __func__, host->f_init);
2292 #endif
2293 mmc_power_up(host);
2296 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2297 * do a hardware reset if possible.
2299 mmc_hw_reset_for_init(host);
2302 * sdio_reset sends CMD52 to reset card. Since we do not know
2303 * if the card is being re-initialized, just send it. CMD52
2304 * should be ignored by SD/eMMC cards.
2306 sdio_reset(host);
2307 mmc_go_idle(host);
2309 mmc_send_if_cond(host, host->ocr_avail);
2311 /* Order's important: probe SDIO, then SD, then MMC */
2312 if (!mmc_attach_sdio(host))
2313 return 0;
2314 if (!mmc_attach_sd(host))
2315 return 0;
2316 if (!mmc_attach_mmc(host))
2317 return 0;
2319 mmc_power_off(host);
2320 return -EIO;
2323 int _mmc_detect_card_removed(struct mmc_host *host)
2325 int ret;
2327 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2328 return 0;
2330 if (!host->card || mmc_card_removed(host->card))
2331 return 1;
2333 ret = host->bus_ops->alive(host);
2336 * Card detect status and alive check may be out of sync if card is
2337 * removed slowly, when card detect switch changes while card/slot
2338 * pads are still contacted in hardware (refer to "SD Card Mechanical
2339 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2340 * detect work 200ms later for this case.
2342 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2343 mmc_detect_change(host, msecs_to_jiffies(200));
2344 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2347 if (ret) {
2348 mmc_card_set_removed(host->card);
2349 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2352 return ret;
2355 int mmc_detect_card_removed(struct mmc_host *host)
2357 struct mmc_card *card = host->card;
2358 int ret;
2360 WARN_ON(!host->claimed);
2362 if (!card)
2363 return 1;
2365 ret = mmc_card_removed(card);
2367 * The card will be considered unchanged unless we have been asked to
2368 * detect a change or host requires polling to provide card detection.
2370 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2371 return ret;
2373 host->detect_change = 0;
2374 if (!ret) {
2375 ret = _mmc_detect_card_removed(host);
2376 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2378 * Schedule a detect work as soon as possible to let a
2379 * rescan handle the card removal.
2381 cancel_delayed_work(&host->detect);
2382 mmc_detect_change(host, 0);
2386 return ret;
2388 EXPORT_SYMBOL(mmc_detect_card_removed);
2390 void mmc_rescan(struct work_struct *work)
2392 struct mmc_host *host =
2393 container_of(work, struct mmc_host, detect.work);
2394 int i;
2396 if (host->rescan_disable)
2397 return;
2399 /* If there is a non-removable card registered, only scan once */
2400 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2401 return;
2402 host->rescan_entered = 1;
2404 mmc_bus_get(host);
2407 * if there is a _removable_ card registered, check whether it is
2408 * still present
2410 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2411 && !(host->caps & MMC_CAP_NONREMOVABLE))
2412 host->bus_ops->detect(host);
2414 host->detect_change = 0;
2417 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2418 * the card is no longer present.
2420 mmc_bus_put(host);
2421 mmc_bus_get(host);
2423 /* if there still is a card present, stop here */
2424 if (host->bus_ops != NULL) {
2425 mmc_bus_put(host);
2426 goto out;
2430 * Only we can add a new handler, so it's safe to
2431 * release the lock here.
2433 mmc_bus_put(host);
2435 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2436 mmc_claim_host(host);
2437 mmc_power_off(host);
2438 mmc_release_host(host);
2439 goto out;
2442 mmc_claim_host(host);
2443 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2444 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2445 break;
2446 if (freqs[i] <= host->f_min)
2447 break;
2449 mmc_release_host(host);
2451 out:
2452 if (host->caps & MMC_CAP_NEEDS_POLL)
2453 mmc_schedule_delayed_work(&host->detect, HZ);
2456 void mmc_start_host(struct mmc_host *host)
2458 host->f_init = max(freqs[0], host->f_min);
2459 host->rescan_disable = 0;
2460 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2461 mmc_power_off(host);
2462 else
2463 mmc_power_up(host);
2464 mmc_detect_change(host, 0);
2467 void mmc_stop_host(struct mmc_host *host)
2469 #ifdef CONFIG_MMC_DEBUG
2470 unsigned long flags;
2471 spin_lock_irqsave(&host->lock, flags);
2472 host->removed = 1;
2473 spin_unlock_irqrestore(&host->lock, flags);
2474 #endif
2476 host->rescan_disable = 1;
2477 cancel_delayed_work_sync(&host->detect);
2478 mmc_flush_scheduled_work();
2480 /* clear pm flags now and let card drivers set them as needed */
2481 host->pm_flags = 0;
2483 mmc_bus_get(host);
2484 if (host->bus_ops && !host->bus_dead) {
2485 /* Calling bus_ops->remove() with a claimed host can deadlock */
2486 host->bus_ops->remove(host);
2487 mmc_claim_host(host);
2488 mmc_detach_bus(host);
2489 mmc_power_off(host);
2490 mmc_release_host(host);
2491 mmc_bus_put(host);
2492 return;
2494 mmc_bus_put(host);
2496 BUG_ON(host->card);
2498 mmc_power_off(host);
2501 int mmc_power_save_host(struct mmc_host *host)
2503 int ret = 0;
2505 #ifdef CONFIG_MMC_DEBUG
2506 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2507 #endif
2509 mmc_bus_get(host);
2511 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2512 mmc_bus_put(host);
2513 return -EINVAL;
2516 if (host->bus_ops->power_save)
2517 ret = host->bus_ops->power_save(host);
2519 mmc_bus_put(host);
2521 mmc_power_off(host);
2523 return ret;
2525 EXPORT_SYMBOL(mmc_power_save_host);
2527 int mmc_power_restore_host(struct mmc_host *host)
2529 int ret;
2531 #ifdef CONFIG_MMC_DEBUG
2532 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2533 #endif
2535 mmc_bus_get(host);
2537 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2538 mmc_bus_put(host);
2539 return -EINVAL;
2542 mmc_power_up(host);
2543 ret = host->bus_ops->power_restore(host);
2545 mmc_bus_put(host);
2547 return ret;
2549 EXPORT_SYMBOL(mmc_power_restore_host);
2552 * Flush the cache to the non-volatile storage.
2554 int mmc_flush_cache(struct mmc_card *card)
2556 struct mmc_host *host = card->host;
2557 int err = 0;
2559 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2560 return err;
2562 if (mmc_card_mmc(card) &&
2563 (card->ext_csd.cache_size > 0) &&
2564 (card->ext_csd.cache_ctrl & 1)) {
2565 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2566 EXT_CSD_FLUSH_CACHE, 1, 0);
2567 if (err)
2568 pr_err("%s: cache flush error %d\n",
2569 mmc_hostname(card->host), err);
2572 return err;
2574 EXPORT_SYMBOL(mmc_flush_cache);
2577 * Turn the cache ON/OFF.
2578 * Turning the cache OFF shall trigger flushing of the data
2579 * to the non-volatile storage.
2580 * This function should be called with host claimed
2582 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2584 struct mmc_card *card = host->card;
2585 unsigned int timeout;
2586 int err = 0;
2588 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2589 mmc_card_is_removable(host))
2590 return err;
2592 if (card && mmc_card_mmc(card) &&
2593 (card->ext_csd.cache_size > 0)) {
2594 enable = !!enable;
2596 if (card->ext_csd.cache_ctrl ^ enable) {
2597 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2598 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2599 EXT_CSD_CACHE_CTRL, enable, timeout);
2600 if (err)
2601 pr_err("%s: cache %s error %d\n",
2602 mmc_hostname(card->host),
2603 enable ? "on" : "off",
2604 err);
2605 else
2606 card->ext_csd.cache_ctrl = enable;
2610 return err;
2612 EXPORT_SYMBOL(mmc_cache_ctrl);
2614 #ifdef CONFIG_PM
2617 * mmc_suspend_host - suspend a host
2618 * @host: mmc host
2620 int mmc_suspend_host(struct mmc_host *host)
2622 /* This function is deprecated */
2623 return 0;
2625 EXPORT_SYMBOL(mmc_suspend_host);
2628 * mmc_resume_host - resume a previously suspended host
2629 * @host: mmc host
2631 int mmc_resume_host(struct mmc_host *host)
2633 /* This function is deprecated */
2634 return 0;
2636 EXPORT_SYMBOL(mmc_resume_host);
2638 /* Do the card removal on suspend if card is assumed removeable
2639 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2640 to sync the card.
2642 int mmc_pm_notify(struct notifier_block *notify_block,
2643 unsigned long mode, void *unused)
2645 struct mmc_host *host = container_of(
2646 notify_block, struct mmc_host, pm_notify);
2647 unsigned long flags;
2648 int err = 0;
2650 switch (mode) {
2651 case PM_HIBERNATION_PREPARE:
2652 case PM_SUSPEND_PREPARE:
2653 spin_lock_irqsave(&host->lock, flags);
2654 host->rescan_disable = 1;
2655 spin_unlock_irqrestore(&host->lock, flags);
2656 cancel_delayed_work_sync(&host->detect);
2658 if (!host->bus_ops)
2659 break;
2661 /* Validate prerequisites for suspend */
2662 if (host->bus_ops->pre_suspend)
2663 err = host->bus_ops->pre_suspend(host);
2664 if (!err && host->bus_ops->suspend)
2665 break;
2667 /* Calling bus_ops->remove() with a claimed host can deadlock */
2668 host->bus_ops->remove(host);
2669 mmc_claim_host(host);
2670 mmc_detach_bus(host);
2671 mmc_power_off(host);
2672 mmc_release_host(host);
2673 host->pm_flags = 0;
2674 break;
2676 case PM_POST_SUSPEND:
2677 case PM_POST_HIBERNATION:
2678 case PM_POST_RESTORE:
2680 spin_lock_irqsave(&host->lock, flags);
2681 host->rescan_disable = 0;
2682 spin_unlock_irqrestore(&host->lock, flags);
2683 mmc_detect_change(host, 0);
2687 return 0;
2689 #endif
2692 * mmc_init_context_info() - init synchronization context
2693 * @host: mmc host
2695 * Init struct context_info needed to implement asynchronous
2696 * request mechanism, used by mmc core, host driver and mmc requests
2697 * supplier.
2699 void mmc_init_context_info(struct mmc_host *host)
2701 spin_lock_init(&host->context_info.lock);
2702 host->context_info.is_new_req = false;
2703 host->context_info.is_done_rcv = false;
2704 host->context_info.is_waiting_last_req = false;
2705 init_waitqueue_head(&host->context_info.wait);
2708 static int __init mmc_init(void)
2710 int ret;
2712 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2713 if (!workqueue)
2714 return -ENOMEM;
2716 ret = mmc_register_bus();
2717 if (ret)
2718 goto destroy_workqueue;
2720 ret = mmc_register_host_class();
2721 if (ret)
2722 goto unregister_bus;
2724 ret = sdio_register_bus();
2725 if (ret)
2726 goto unregister_host_class;
2728 return 0;
2730 unregister_host_class:
2731 mmc_unregister_host_class();
2732 unregister_bus:
2733 mmc_unregister_bus();
2734 destroy_workqueue:
2735 destroy_workqueue(workqueue);
2737 return ret;
2740 static void __exit mmc_exit(void)
2742 sdio_unregister_bus();
2743 mmc_unregister_host_class();
2744 mmc_unregister_bus();
2745 destroy_workqueue(workqueue);
2748 subsys_initcall(mmc_init);
2749 module_exit(mmc_exit);
2751 MODULE_LICENSE("GPL");