2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
52 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
54 static struct workqueue_struct
*workqueue
;
55 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
63 module_param(use_spi_crc
, bool, 0);
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable
;
74 bool mmc_assume_removable
= 1;
76 EXPORT_SYMBOL(mmc_assume_removable
);
77 module_param_named(removable
, mmc_assume_removable
, bool, 0644);
80 "MMC/SD cards are removable and may be removed during suspend");
83 * Internal function. Schedule delayed work in the MMC work queue.
85 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
88 return queue_delayed_work(workqueue
, work
, delay
);
92 * Internal function. Flush all scheduled work from the MMC work queue.
94 static void mmc_flush_scheduled_work(void)
96 flush_workqueue(workqueue
);
99 #ifdef CONFIG_FAIL_MMC_REQUEST
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
105 static void mmc_should_fail_request(struct mmc_host
*host
,
106 struct mmc_request
*mrq
)
108 struct mmc_command
*cmd
= mrq
->cmd
;
109 struct mmc_data
*data
= mrq
->data
;
110 static const int data_errors
[] = {
119 if (cmd
->error
|| data
->error
||
120 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
123 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
124 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
127 #else /* CONFIG_FAIL_MMC_REQUEST */
129 static inline void mmc_should_fail_request(struct mmc_host
*host
,
130 struct mmc_request
*mrq
)
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
146 struct mmc_command
*cmd
= mrq
->cmd
;
147 int err
= cmd
->error
;
149 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
150 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
154 if (err
&& cmd
->retries
&& !mmc_card_removed(host
->card
)) {
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
162 mmc_should_fail_request(host
, mrq
);
164 led_trigger_event(host
->led
, LED_OFF
);
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host
), cmd
->opcode
, err
,
168 cmd
->resp
[0], cmd
->resp
[1],
169 cmd
->resp
[2], cmd
->resp
[3]);
172 pr_debug("%s: %d bytes transferred: %d\n",
174 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host
), mrq
->stop
->opcode
,
181 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
182 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
188 mmc_host_clk_release(host
);
192 EXPORT_SYMBOL(mmc_request_done
);
195 mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
197 #ifdef CONFIG_MMC_DEBUG
199 struct scatterlist
*sg
;
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host
), mrq
->sbc
->opcode
,
205 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host
), mrq
->cmd
->opcode
,
210 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host
), mrq
->data
->blksz
,
216 mrq
->data
->blocks
, mrq
->data
->flags
,
217 mrq
->data
->timeout_ns
/ 1000000,
218 mrq
->data
->timeout_clks
);
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host
), mrq
->stop
->opcode
,
224 mrq
->stop
->arg
, mrq
->stop
->flags
);
227 WARN_ON(!host
->claimed
);
232 BUG_ON(mrq
->data
->blksz
> host
->max_blk_size
);
233 BUG_ON(mrq
->data
->blocks
> host
->max_blk_count
);
234 BUG_ON(mrq
->data
->blocks
* mrq
->data
->blksz
>
237 #ifdef CONFIG_MMC_DEBUG
239 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
241 BUG_ON(sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
);
244 mrq
->cmd
->data
= mrq
->data
;
245 mrq
->data
->error
= 0;
246 mrq
->data
->mrq
= mrq
;
248 mrq
->data
->stop
= mrq
->stop
;
249 mrq
->stop
->error
= 0;
250 mrq
->stop
->mrq
= mrq
;
253 mmc_host_clk_hold(host
);
254 led_trigger_event(host
->led
, LED_FULL
);
255 host
->ops
->request(host
, mrq
);
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
268 void mmc_start_bkops(struct mmc_card
*card
, bool from_exception
)
272 bool use_busy_signal
;
276 if (!card
->ext_csd
.bkops_en
|| mmc_card_doing_bkops(card
))
279 err
= mmc_read_bkops_status(card
);
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card
->host
), err
);
286 if (!card
->ext_csd
.raw_bkops_status
)
289 if (card
->ext_csd
.raw_bkops_status
< EXT_CSD_BKOPS_LEVEL_2
&&
293 mmc_claim_host(card
->host
);
294 if (card
->ext_csd
.raw_bkops_status
>= EXT_CSD_BKOPS_LEVEL_2
) {
295 timeout
= MMC_BKOPS_MAX_TIMEOUT
;
296 use_busy_signal
= true;
299 use_busy_signal
= false;
302 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
303 EXT_CSD_BKOPS_START
, 1, timeout
, use_busy_signal
);
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card
->host
), err
);
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
315 if (!use_busy_signal
)
316 mmc_card_set_doing_bkops(card
);
318 mmc_release_host(card
->host
);
320 EXPORT_SYMBOL(mmc_start_bkops
);
323 * mmc_wait_data_done() - done callback for data request
324 * @mrq: done data request
326 * Wakes up mmc context, passed as a callback to host controller driver
328 static void mmc_wait_data_done(struct mmc_request
*mrq
)
330 mrq
->host
->context_info
.is_done_rcv
= true;
331 wake_up_interruptible(&mrq
->host
->context_info
.wait
);
334 static void mmc_wait_done(struct mmc_request
*mrq
)
336 complete(&mrq
->completion
);
340 *__mmc_start_data_req() - starts data request
341 * @host: MMC host to start the request
342 * @mrq: data request to start
344 * Sets the done callback to be called when request is completed by the card.
345 * Starts data mmc request execution
347 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
349 mrq
->done
= mmc_wait_data_done
;
351 if (mmc_card_removed(host
->card
)) {
352 mrq
->cmd
->error
= -ENOMEDIUM
;
353 mmc_wait_data_done(mrq
);
356 mmc_start_request(host
, mrq
);
361 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
363 init_completion(&mrq
->completion
);
364 mrq
->done
= mmc_wait_done
;
365 if (mmc_card_removed(host
->card
)) {
366 mrq
->cmd
->error
= -ENOMEDIUM
;
367 complete(&mrq
->completion
);
370 mmc_start_request(host
, mrq
);
375 * mmc_wait_for_data_req_done() - wait for request completed
376 * @host: MMC host to prepare the command.
377 * @mrq: MMC request to wait for
379 * Blocks MMC context till host controller will ack end of data request
380 * execution or new request notification arrives from the block layer.
381 * Handles command retries.
383 * Returns enum mmc_blk_status after checking errors.
385 static int mmc_wait_for_data_req_done(struct mmc_host
*host
,
386 struct mmc_request
*mrq
,
387 struct mmc_async_req
*next_req
)
389 struct mmc_command
*cmd
;
390 struct mmc_context_info
*context_info
= &host
->context_info
;
395 wait_event_interruptible(context_info
->wait
,
396 (context_info
->is_done_rcv
||
397 context_info
->is_new_req
));
398 spin_lock_irqsave(&context_info
->lock
, flags
);
399 context_info
->is_waiting_last_req
= false;
400 spin_unlock_irqrestore(&context_info
->lock
, flags
);
401 if (context_info
->is_done_rcv
) {
402 context_info
->is_done_rcv
= false;
403 context_info
->is_new_req
= false;
406 if (!cmd
->error
|| !cmd
->retries
||
407 mmc_card_removed(host
->card
)) {
408 err
= host
->areq
->err_check(host
->card
,
410 break; /* return err */
412 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
414 cmd
->opcode
, cmd
->error
);
417 host
->ops
->request(host
, mrq
);
418 continue; /* wait for done/new event again */
420 } else if (context_info
->is_new_req
) {
421 context_info
->is_new_req
= false;
423 err
= MMC_BLK_NEW_REQUEST
;
424 break; /* return err */
431 static void mmc_wait_for_req_done(struct mmc_host
*host
,
432 struct mmc_request
*mrq
)
434 struct mmc_command
*cmd
;
437 wait_for_completion(&mrq
->completion
);
442 * If host has timed out waiting for the sanitize
443 * to complete, card might be still in programming state
444 * so let's try to bring the card out of programming
447 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
448 if (!mmc_interrupt_hpi(host
->card
)) {
449 pr_warning("%s: %s: Interrupted sanitize\n",
450 mmc_hostname(host
), __func__
);
454 pr_err("%s: %s: Failed to interrupt sanitize\n",
455 mmc_hostname(host
), __func__
);
458 if (!cmd
->error
|| !cmd
->retries
||
459 mmc_card_removed(host
->card
))
462 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
463 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
466 host
->ops
->request(host
, mrq
);
471 * mmc_pre_req - Prepare for a new request
472 * @host: MMC host to prepare command
473 * @mrq: MMC request to prepare for
474 * @is_first_req: true if there is no previous started request
475 * that may run in parellel to this call, otherwise false
477 * mmc_pre_req() is called in prior to mmc_start_req() to let
478 * host prepare for the new request. Preparation of a request may be
479 * performed while another request is running on the host.
481 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
484 if (host
->ops
->pre_req
) {
485 mmc_host_clk_hold(host
);
486 host
->ops
->pre_req(host
, mrq
, is_first_req
);
487 mmc_host_clk_release(host
);
492 * mmc_post_req - Post process a completed request
493 * @host: MMC host to post process command
494 * @mrq: MMC request to post process for
495 * @err: Error, if non zero, clean up any resources made in pre_req
497 * Let the host post process a completed request. Post processing of
498 * a request may be performed while another reuqest is running.
500 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
503 if (host
->ops
->post_req
) {
504 mmc_host_clk_hold(host
);
505 host
->ops
->post_req(host
, mrq
, err
);
506 mmc_host_clk_release(host
);
511 * mmc_start_req - start a non-blocking request
512 * @host: MMC host to start command
513 * @areq: async request to start
514 * @error: out parameter returns 0 for success, otherwise non zero
516 * Start a new MMC custom command request for a host.
517 * If there is on ongoing async request wait for completion
518 * of that request and start the new one and return.
519 * Does not wait for the new request to complete.
521 * Returns the completed request, NULL in case of none completed.
522 * Wait for the an ongoing request (previoulsy started) to complete and
523 * return the completed request. If there is no ongoing request, NULL
524 * is returned without waiting. NULL is not an error condition.
526 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
527 struct mmc_async_req
*areq
, int *error
)
531 struct mmc_async_req
*data
= host
->areq
;
533 /* Prepare a new request */
535 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
538 err
= mmc_wait_for_data_req_done(host
, host
->areq
->mrq
, areq
);
539 if (err
== MMC_BLK_NEW_REQUEST
) {
543 * The previous request was not completed,
549 * Check BKOPS urgency for each R1 response
551 if (host
->card
&& mmc_card_mmc(host
->card
) &&
552 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
553 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
554 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
))
555 mmc_start_bkops(host
->card
, true);
559 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
562 mmc_post_req(host
, host
->areq
->mrq
, 0);
564 /* Cancel a prepared request if it was not started. */
565 if ((err
|| start_err
) && areq
)
566 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
577 EXPORT_SYMBOL(mmc_start_req
);
580 * mmc_wait_for_req - start a request and wait for completion
581 * @host: MMC host to start command
582 * @mrq: MMC request to start
584 * Start a new MMC custom command request for a host, and wait
585 * for the command to complete. Does not attempt to parse the
588 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
590 __mmc_start_req(host
, mrq
);
591 mmc_wait_for_req_done(host
, mrq
);
593 EXPORT_SYMBOL(mmc_wait_for_req
);
596 * mmc_interrupt_hpi - Issue for High priority Interrupt
597 * @card: the MMC card associated with the HPI transfer
599 * Issued High Priority Interrupt, and check for card status
600 * until out-of prg-state.
602 int mmc_interrupt_hpi(struct mmc_card
*card
)
606 unsigned long prg_wait
;
610 if (!card
->ext_csd
.hpi_en
) {
611 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
615 mmc_claim_host(card
->host
);
616 err
= mmc_send_status(card
, &status
);
618 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
622 switch (R1_CURRENT_STATE(status
)) {
628 * In idle and transfer states, HPI is not needed and the caller
629 * can issue the next intended command immediately
635 /* In all other states, it's illegal to issue HPI */
636 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
637 mmc_hostname(card
->host
), R1_CURRENT_STATE(status
));
642 err
= mmc_send_hpi_cmd(card
, &status
);
646 prg_wait
= jiffies
+ msecs_to_jiffies(card
->ext_csd
.out_of_int_time
);
648 err
= mmc_send_status(card
, &status
);
650 if (!err
&& R1_CURRENT_STATE(status
) == R1_STATE_TRAN
)
652 if (time_after(jiffies
, prg_wait
))
657 mmc_release_host(card
->host
);
660 EXPORT_SYMBOL(mmc_interrupt_hpi
);
663 * mmc_wait_for_cmd - start a command and wait for completion
664 * @host: MMC host to start command
665 * @cmd: MMC command to start
666 * @retries: maximum number of retries
668 * Start a new MMC command for a host, and wait for the command
669 * to complete. Return any error that occurred while the command
670 * was executing. Do not attempt to parse the response.
672 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
674 struct mmc_request mrq
= {NULL
};
676 WARN_ON(!host
->claimed
);
678 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
679 cmd
->retries
= retries
;
684 mmc_wait_for_req(host
, &mrq
);
689 EXPORT_SYMBOL(mmc_wait_for_cmd
);
692 * mmc_stop_bkops - stop ongoing BKOPS
693 * @card: MMC card to check BKOPS
695 * Send HPI command to stop ongoing background operations to
696 * allow rapid servicing of foreground operations, e.g. read/
697 * writes. Wait until the card comes out of the programming state
698 * to avoid errors in servicing read/write requests.
700 int mmc_stop_bkops(struct mmc_card
*card
)
705 err
= mmc_interrupt_hpi(card
);
708 * If err is EINVAL, we can't issue an HPI.
709 * It should complete the BKOPS.
711 if (!err
|| (err
== -EINVAL
)) {
712 mmc_card_clr_doing_bkops(card
);
718 EXPORT_SYMBOL(mmc_stop_bkops
);
720 int mmc_read_bkops_status(struct mmc_card
*card
)
726 * In future work, we should consider storing the entire ext_csd.
728 ext_csd
= kmalloc(512, GFP_KERNEL
);
730 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
731 mmc_hostname(card
->host
));
735 mmc_claim_host(card
->host
);
736 err
= mmc_send_ext_csd(card
, ext_csd
);
737 mmc_release_host(card
->host
);
741 card
->ext_csd
.raw_bkops_status
= ext_csd
[EXT_CSD_BKOPS_STATUS
];
742 card
->ext_csd
.raw_exception_status
= ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
];
747 EXPORT_SYMBOL(mmc_read_bkops_status
);
750 * mmc_set_data_timeout - set the timeout for a data command
751 * @data: data phase for command
752 * @card: the MMC card associated with the data transfer
754 * Computes the data timeout parameters according to the
755 * correct algorithm given the card type.
757 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
762 * SDIO cards only define an upper 1 s limit on access.
764 if (mmc_card_sdio(card
)) {
765 data
->timeout_ns
= 1000000000;
766 data
->timeout_clks
= 0;
771 * SD cards use a 100 multiplier rather than 10
773 mult
= mmc_card_sd(card
) ? 100 : 10;
776 * Scale up the multiplier (and therefore the timeout) by
777 * the r2w factor for writes.
779 if (data
->flags
& MMC_DATA_WRITE
)
780 mult
<<= card
->csd
.r2w_factor
;
782 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
783 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
786 * SD cards also have an upper limit on the timeout.
788 if (mmc_card_sd(card
)) {
789 unsigned int timeout_us
, limit_us
;
791 timeout_us
= data
->timeout_ns
/ 1000;
792 if (mmc_host_clk_rate(card
->host
))
793 timeout_us
+= data
->timeout_clks
* 1000 /
794 (mmc_host_clk_rate(card
->host
) / 1000);
796 if (data
->flags
& MMC_DATA_WRITE
)
798 * The MMC spec "It is strongly recommended
799 * for hosts to implement more than 500ms
800 * timeout value even if the card indicates
801 * the 250ms maximum busy length." Even the
802 * previous value of 300ms is known to be
803 * insufficient for some cards.
810 * SDHC cards always use these fixed values.
812 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
813 data
->timeout_ns
= limit_us
* 1000;
814 data
->timeout_clks
= 0;
819 * Some cards require longer data read timeout than indicated in CSD.
820 * Address this by setting the read timeout to a "reasonably high"
821 * value. For the cards tested, 300ms has proven enough. If necessary,
822 * this value can be increased if other problematic cards require this.
824 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
825 data
->timeout_ns
= 300000000;
826 data
->timeout_clks
= 0;
830 * Some cards need very high timeouts if driven in SPI mode.
831 * The worst observed timeout was 900ms after writing a
832 * continuous stream of data until the internal logic
835 if (mmc_host_is_spi(card
->host
)) {
836 if (data
->flags
& MMC_DATA_WRITE
) {
837 if (data
->timeout_ns
< 1000000000)
838 data
->timeout_ns
= 1000000000; /* 1s */
840 if (data
->timeout_ns
< 100000000)
841 data
->timeout_ns
= 100000000; /* 100ms */
845 EXPORT_SYMBOL(mmc_set_data_timeout
);
848 * mmc_align_data_size - pads a transfer size to a more optimal value
849 * @card: the MMC card associated with the data transfer
850 * @sz: original transfer size
852 * Pads the original data size with a number of extra bytes in
853 * order to avoid controller bugs and/or performance hits
854 * (e.g. some controllers revert to PIO for certain sizes).
856 * Returns the improved size, which might be unmodified.
858 * Note that this function is only relevant when issuing a
859 * single scatter gather entry.
861 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
864 * FIXME: We don't have a system for the controller to tell
865 * the core about its problems yet, so for now we just 32-bit
868 sz
= ((sz
+ 3) / 4) * 4;
872 EXPORT_SYMBOL(mmc_align_data_size
);
875 * __mmc_claim_host - exclusively claim a host
876 * @host: mmc host to claim
877 * @abort: whether or not the operation should be aborted
879 * Claim a host for a set of operations. If @abort is non null and
880 * dereference a non-zero value then this will return prematurely with
881 * that non-zero value without acquiring the lock. Returns zero
882 * with the lock held otherwise.
884 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
886 DECLARE_WAITQUEUE(wait
, current
);
892 add_wait_queue(&host
->wq
, &wait
);
893 spin_lock_irqsave(&host
->lock
, flags
);
895 set_current_state(TASK_UNINTERRUPTIBLE
);
896 stop
= abort
? atomic_read(abort
) : 0;
897 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
899 spin_unlock_irqrestore(&host
->lock
, flags
);
901 spin_lock_irqsave(&host
->lock
, flags
);
903 set_current_state(TASK_RUNNING
);
906 host
->claimer
= current
;
907 host
->claim_cnt
+= 1;
910 spin_unlock_irqrestore(&host
->lock
, flags
);
911 remove_wait_queue(&host
->wq
, &wait
);
912 if (host
->ops
->enable
&& !stop
&& host
->claim_cnt
== 1)
913 host
->ops
->enable(host
);
917 EXPORT_SYMBOL(__mmc_claim_host
);
920 * mmc_try_claim_host - try exclusively to claim a host
921 * @host: mmc host to claim
923 * Returns %1 if the host is claimed, %0 otherwise.
925 int mmc_try_claim_host(struct mmc_host
*host
)
927 int claimed_host
= 0;
930 spin_lock_irqsave(&host
->lock
, flags
);
931 if (!host
->claimed
|| host
->claimer
== current
) {
933 host
->claimer
= current
;
934 host
->claim_cnt
+= 1;
937 spin_unlock_irqrestore(&host
->lock
, flags
);
938 if (host
->ops
->enable
&& claimed_host
&& host
->claim_cnt
== 1)
939 host
->ops
->enable(host
);
942 EXPORT_SYMBOL(mmc_try_claim_host
);
945 * mmc_release_host - release a host
946 * @host: mmc host to release
948 * Release a MMC host, allowing others to claim the host
949 * for their operations.
951 void mmc_release_host(struct mmc_host
*host
)
955 WARN_ON(!host
->claimed
);
957 if (host
->ops
->disable
&& host
->claim_cnt
== 1)
958 host
->ops
->disable(host
);
960 spin_lock_irqsave(&host
->lock
, flags
);
961 if (--host
->claim_cnt
) {
962 /* Release for nested claim */
963 spin_unlock_irqrestore(&host
->lock
, flags
);
966 host
->claimer
= NULL
;
967 spin_unlock_irqrestore(&host
->lock
, flags
);
971 EXPORT_SYMBOL(mmc_release_host
);
974 * This is a helper function, which fetches a runtime pm reference for the
975 * card device and also claims the host.
977 void mmc_get_card(struct mmc_card
*card
)
979 pm_runtime_get_sync(&card
->dev
);
980 mmc_claim_host(card
->host
);
982 EXPORT_SYMBOL(mmc_get_card
);
985 * This is a helper function, which releases the host and drops the runtime
986 * pm reference for the card device.
988 void mmc_put_card(struct mmc_card
*card
)
990 mmc_release_host(card
->host
);
991 pm_runtime_mark_last_busy(&card
->dev
);
992 pm_runtime_put_autosuspend(&card
->dev
);
994 EXPORT_SYMBOL(mmc_put_card
);
997 * Internal function that does the actual ios call to the host driver,
998 * optionally printing some debug output.
1000 static inline void mmc_set_ios(struct mmc_host
*host
)
1002 struct mmc_ios
*ios
= &host
->ios
;
1004 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1005 "width %u timing %u\n",
1006 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
1007 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
1008 ios
->bus_width
, ios
->timing
);
1011 mmc_set_ungated(host
);
1012 host
->ops
->set_ios(host
, ios
);
1016 * Control chip select pin on a host.
1018 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
1020 mmc_host_clk_hold(host
);
1021 host
->ios
.chip_select
= mode
;
1023 mmc_host_clk_release(host
);
1027 * Sets the host clock to the highest possible frequency that
1030 static void __mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1032 WARN_ON(hz
< host
->f_min
);
1034 if (hz
> host
->f_max
)
1037 host
->ios
.clock
= hz
;
1041 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1043 mmc_host_clk_hold(host
);
1044 __mmc_set_clock(host
, hz
);
1045 mmc_host_clk_release(host
);
1048 #ifdef CONFIG_MMC_CLKGATE
1050 * This gates the clock by setting it to 0 Hz.
1052 void mmc_gate_clock(struct mmc_host
*host
)
1054 unsigned long flags
;
1056 spin_lock_irqsave(&host
->clk_lock
, flags
);
1057 host
->clk_old
= host
->ios
.clock
;
1058 host
->ios
.clock
= 0;
1059 host
->clk_gated
= true;
1060 spin_unlock_irqrestore(&host
->clk_lock
, flags
);
1065 * This restores the clock from gating by using the cached
1068 void mmc_ungate_clock(struct mmc_host
*host
)
1071 * We should previously have gated the clock, so the clock shall
1072 * be 0 here! The clock may however be 0 during initialization,
1073 * when some request operations are performed before setting
1074 * the frequency. When ungate is requested in that situation
1075 * we just ignore the call.
1077 if (host
->clk_old
) {
1078 BUG_ON(host
->ios
.clock
);
1079 /* This call will also set host->clk_gated to false */
1080 __mmc_set_clock(host
, host
->clk_old
);
1084 void mmc_set_ungated(struct mmc_host
*host
)
1086 unsigned long flags
;
1089 * We've been given a new frequency while the clock is gated,
1090 * so make sure we regard this as ungating it.
1092 spin_lock_irqsave(&host
->clk_lock
, flags
);
1093 host
->clk_gated
= false;
1094 spin_unlock_irqrestore(&host
->clk_lock
, flags
);
1098 void mmc_set_ungated(struct mmc_host
*host
)
1104 * Change the bus mode (open drain/push-pull) of a host.
1106 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1108 mmc_host_clk_hold(host
);
1109 host
->ios
.bus_mode
= mode
;
1111 mmc_host_clk_release(host
);
1115 * Change data bus width of a host.
1117 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1119 mmc_host_clk_hold(host
);
1120 host
->ios
.bus_width
= width
;
1122 mmc_host_clk_release(host
);
1126 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1127 * @vdd: voltage (mV)
1128 * @low_bits: prefer low bits in boundary cases
1130 * This function returns the OCR bit number according to the provided @vdd
1131 * value. If conversion is not possible a negative errno value returned.
1133 * Depending on the @low_bits flag the function prefers low or high OCR bits
1134 * on boundary voltages. For example,
1135 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1136 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1138 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1140 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1142 const int max_bit
= ilog2(MMC_VDD_35_36
);
1145 if (vdd
< 1650 || vdd
> 3600)
1148 if (vdd
>= 1650 && vdd
<= 1950)
1149 return ilog2(MMC_VDD_165_195
);
1154 /* Base 2000 mV, step 100 mV, bit's base 8. */
1155 bit
= (vdd
- 2000) / 100 + 8;
1162 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1163 * @vdd_min: minimum voltage value (mV)
1164 * @vdd_max: maximum voltage value (mV)
1166 * This function returns the OCR mask bits according to the provided @vdd_min
1167 * and @vdd_max values. If conversion is not possible the function returns 0.
1169 * Notes wrt boundary cases:
1170 * This function sets the OCR bits for all boundary voltages, for example
1171 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1172 * MMC_VDD_34_35 mask.
1174 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1178 if (vdd_max
< vdd_min
)
1181 /* Prefer high bits for the boundary vdd_max values. */
1182 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1186 /* Prefer low bits for the boundary vdd_min values. */
1187 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1191 /* Fill the mask, from max bit to min bit. */
1192 while (vdd_max
>= vdd_min
)
1193 mask
|= 1 << vdd_max
--;
1197 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1199 #ifdef CONFIG_REGULATOR
1202 * mmc_regulator_get_ocrmask - return mask of supported voltages
1203 * @supply: regulator to use
1205 * This returns either a negative errno, or a mask of voltages that
1206 * can be provided to MMC/SD/SDIO devices using the specified voltage
1207 * regulator. This would normally be called before registering the
1210 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1216 count
= regulator_count_voltages(supply
);
1220 for (i
= 0; i
< count
; i
++) {
1224 vdd_uV
= regulator_list_voltage(supply
, i
);
1228 vdd_mV
= vdd_uV
/ 1000;
1229 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1234 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1237 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1238 * @mmc: the host to regulate
1239 * @supply: regulator to use
1240 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1242 * Returns zero on success, else negative errno.
1244 * MMC host drivers may use this to enable or disable a regulator using
1245 * a particular supply voltage. This would normally be called from the
1248 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1249 struct regulator
*supply
,
1250 unsigned short vdd_bit
)
1260 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1261 * bits this regulator doesn't quite support ... don't
1262 * be too picky, most cards and regulators are OK with
1263 * a 0.1V range goof (it's a small error percentage).
1265 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1267 min_uV
= 1650 * 1000;
1268 max_uV
= 1950 * 1000;
1270 min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1271 max_uV
= min_uV
+ 100 * 1000;
1275 * If we're using a fixed/static regulator, don't call
1276 * regulator_set_voltage; it would fail.
1278 voltage
= regulator_get_voltage(supply
);
1280 if (!regulator_can_change_voltage(supply
))
1281 min_uV
= max_uV
= voltage
;
1285 else if (voltage
< min_uV
|| voltage
> max_uV
)
1286 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1290 if (result
== 0 && !mmc
->regulator_enabled
) {
1291 result
= regulator_enable(supply
);
1293 mmc
->regulator_enabled
= true;
1295 } else if (mmc
->regulator_enabled
) {
1296 result
= regulator_disable(supply
);
1298 mmc
->regulator_enabled
= false;
1302 dev_err(mmc_dev(mmc
),
1303 "could not set regulator OCR (%d)\n", result
);
1306 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1308 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1310 struct device
*dev
= mmc_dev(mmc
);
1311 struct regulator
*supply
;
1314 supply
= devm_regulator_get(dev
, "vmmc");
1315 mmc
->supply
.vmmc
= supply
;
1316 mmc
->supply
.vqmmc
= devm_regulator_get(dev
, "vqmmc");
1319 return PTR_ERR(supply
);
1321 ret
= mmc_regulator_get_ocrmask(supply
);
1323 mmc
->ocr_avail
= ret
;
1325 dev_warn(mmc_dev(mmc
), "Failed getting OCR mask: %d\n", ret
);
1329 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1331 #endif /* CONFIG_REGULATOR */
1334 * Mask off any voltages we don't support and select
1335 * the lowest voltage
1337 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1341 ocr
&= host
->ocr_avail
;
1349 mmc_host_clk_hold(host
);
1350 host
->ios
.vdd
= bit
;
1352 mmc_host_clk_release(host
);
1354 pr_warning("%s: host doesn't support card's voltages\n",
1355 mmc_hostname(host
));
1362 int __mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1365 int old_signal_voltage
= host
->ios
.signal_voltage
;
1367 host
->ios
.signal_voltage
= signal_voltage
;
1368 if (host
->ops
->start_signal_voltage_switch
) {
1369 mmc_host_clk_hold(host
);
1370 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1371 mmc_host_clk_release(host
);
1375 host
->ios
.signal_voltage
= old_signal_voltage
;
1381 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1383 struct mmc_command cmd
= {0};
1390 * Send CMD11 only if the request is to switch the card to
1393 if (signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1394 return __mmc_set_signal_voltage(host
, signal_voltage
);
1397 * If we cannot switch voltages, return failure so the caller
1398 * can continue without UHS mode
1400 if (!host
->ops
->start_signal_voltage_switch
)
1402 if (!host
->ops
->card_busy
)
1403 pr_warning("%s: cannot verify signal voltage switch\n",
1404 mmc_hostname(host
));
1406 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1408 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1410 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1414 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1417 mmc_host_clk_hold(host
);
1419 * The card should drive cmd and dat[0:3] low immediately
1420 * after the response of cmd11, but wait 1 ms to be sure
1423 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1428 * During a signal voltage level switch, the clock must be gated
1429 * for 5 ms according to the SD spec
1431 clock
= host
->ios
.clock
;
1432 host
->ios
.clock
= 0;
1435 if (__mmc_set_signal_voltage(host
, signal_voltage
)) {
1437 * Voltages may not have been switched, but we've already
1438 * sent CMD11, so a power cycle is required anyway
1444 /* Keep clock gated for at least 5 ms */
1446 host
->ios
.clock
= clock
;
1449 /* Wait for at least 1 ms according to spec */
1453 * Failure to switch is indicated by the card holding
1456 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1461 pr_debug("%s: Signal voltage switch failed, "
1462 "power cycling card\n", mmc_hostname(host
));
1463 mmc_power_cycle(host
);
1466 mmc_host_clk_release(host
);
1472 * Select timing parameters for host.
1474 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1476 mmc_host_clk_hold(host
);
1477 host
->ios
.timing
= timing
;
1479 mmc_host_clk_release(host
);
1483 * Select appropriate driver type for host.
1485 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1487 mmc_host_clk_hold(host
);
1488 host
->ios
.drv_type
= drv_type
;
1490 mmc_host_clk_release(host
);
1494 * Apply power to the MMC stack. This is a two-stage process.
1495 * First, we enable power to the card without the clock running.
1496 * We then wait a bit for the power to stabilise. Finally,
1497 * enable the bus drivers and clock to the card.
1499 * We must _NOT_ enable the clock prior to power stablising.
1501 * If a host does all the power sequencing itself, ignore the
1502 * initial MMC_POWER_UP stage.
1504 void mmc_power_up(struct mmc_host
*host
)
1508 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1511 mmc_host_clk_hold(host
);
1513 /* If ocr is set, we use it */
1515 bit
= ffs(host
->ocr
) - 1;
1517 bit
= fls(host
->ocr_avail
) - 1;
1519 host
->ios
.vdd
= bit
;
1520 if (mmc_host_is_spi(host
))
1521 host
->ios
.chip_select
= MMC_CS_HIGH
;
1523 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1524 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1525 host
->ios
.power_mode
= MMC_POWER_UP
;
1526 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1527 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1530 /* Set signal voltage to 3.3V */
1531 __mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
);
1534 * This delay should be sufficient to allow the power supply
1535 * to reach the minimum voltage.
1539 host
->ios
.clock
= host
->f_init
;
1541 host
->ios
.power_mode
= MMC_POWER_ON
;
1545 * This delay must be at least 74 clock sizes, or 1 ms, or the
1546 * time required to reach a stable voltage.
1550 mmc_host_clk_release(host
);
1553 void mmc_power_off(struct mmc_host
*host
)
1555 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1558 mmc_host_clk_hold(host
);
1560 host
->ios
.clock
= 0;
1565 * Reset ocr mask to be the highest possible voltage supported for
1566 * this mmc host. This value will be used at next power up.
1568 host
->ocr
= 1 << (fls(host
->ocr_avail
) - 1);
1570 if (!mmc_host_is_spi(host
)) {
1571 host
->ios
.bus_mode
= MMC_BUSMODE_OPENDRAIN
;
1572 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1574 host
->ios
.power_mode
= MMC_POWER_OFF
;
1575 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1576 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1580 * Some configurations, such as the 802.11 SDIO card in the OLPC
1581 * XO-1.5, require a short delay after poweroff before the card
1582 * can be successfully turned on again.
1586 mmc_host_clk_release(host
);
1589 void mmc_power_cycle(struct mmc_host
*host
)
1591 mmc_power_off(host
);
1592 /* Wait at least 1 ms according to SD spec */
1598 * Cleanup when the last reference to the bus operator is dropped.
1600 static void __mmc_release_bus(struct mmc_host
*host
)
1603 BUG_ON(host
->bus_refs
);
1604 BUG_ON(!host
->bus_dead
);
1606 host
->bus_ops
= NULL
;
1610 * Increase reference count of bus operator
1612 static inline void mmc_bus_get(struct mmc_host
*host
)
1614 unsigned long flags
;
1616 spin_lock_irqsave(&host
->lock
, flags
);
1618 spin_unlock_irqrestore(&host
->lock
, flags
);
1622 * Decrease reference count of bus operator and free it if
1623 * it is the last reference.
1625 static inline void mmc_bus_put(struct mmc_host
*host
)
1627 unsigned long flags
;
1629 spin_lock_irqsave(&host
->lock
, flags
);
1631 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1632 __mmc_release_bus(host
);
1633 spin_unlock_irqrestore(&host
->lock
, flags
);
1637 * Assign a mmc bus handler to a host. Only one bus handler may control a
1638 * host at any given time.
1640 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1642 unsigned long flags
;
1647 WARN_ON(!host
->claimed
);
1649 spin_lock_irqsave(&host
->lock
, flags
);
1651 BUG_ON(host
->bus_ops
);
1652 BUG_ON(host
->bus_refs
);
1654 host
->bus_ops
= ops
;
1658 spin_unlock_irqrestore(&host
->lock
, flags
);
1662 * Remove the current bus handler from a host.
1664 void mmc_detach_bus(struct mmc_host
*host
)
1666 unsigned long flags
;
1670 WARN_ON(!host
->claimed
);
1671 WARN_ON(!host
->bus_ops
);
1673 spin_lock_irqsave(&host
->lock
, flags
);
1677 spin_unlock_irqrestore(&host
->lock
, flags
);
1683 * mmc_detect_change - process change of state on a MMC socket
1684 * @host: host which changed state.
1685 * @delay: optional delay to wait before detection (jiffies)
1687 * MMC drivers should call this when they detect a card has been
1688 * inserted or removed. The MMC layer will confirm that any
1689 * present card is still functional, and initialize any newly
1692 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1694 #ifdef CONFIG_MMC_DEBUG
1695 unsigned long flags
;
1696 spin_lock_irqsave(&host
->lock
, flags
);
1697 WARN_ON(host
->removed
);
1698 spin_unlock_irqrestore(&host
->lock
, flags
);
1700 host
->detect_change
= 1;
1701 mmc_schedule_delayed_work(&host
->detect
, delay
);
1704 EXPORT_SYMBOL(mmc_detect_change
);
1706 void mmc_init_erase(struct mmc_card
*card
)
1710 if (is_power_of_2(card
->erase_size
))
1711 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1713 card
->erase_shift
= 0;
1716 * It is possible to erase an arbitrarily large area of an SD or MMC
1717 * card. That is not desirable because it can take a long time
1718 * (minutes) potentially delaying more important I/O, and also the
1719 * timeout calculations become increasingly hugely over-estimated.
1720 * Consequently, 'pref_erase' is defined as a guide to limit erases
1721 * to that size and alignment.
1723 * For SD cards that define Allocation Unit size, limit erases to one
1724 * Allocation Unit at a time. For MMC cards that define High Capacity
1725 * Erase Size, whether it is switched on or not, limit to that size.
1726 * Otherwise just have a stab at a good value. For modern cards it
1727 * will end up being 4MiB. Note that if the value is too small, it
1728 * can end up taking longer to erase.
1730 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1731 card
->pref_erase
= card
->ssr
.au
;
1732 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1733 } else if (card
->ext_csd
.hc_erase_size
) {
1734 card
->pref_erase
= card
->ext_csd
.hc_erase_size
;
1736 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1738 card
->pref_erase
= 512 * 1024 / 512;
1740 card
->pref_erase
= 1024 * 1024 / 512;
1742 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1744 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1745 if (card
->pref_erase
< card
->erase_size
)
1746 card
->pref_erase
= card
->erase_size
;
1748 sz
= card
->pref_erase
% card
->erase_size
;
1750 card
->pref_erase
+= card
->erase_size
- sz
;
1755 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1756 unsigned int arg
, unsigned int qty
)
1758 unsigned int erase_timeout
;
1760 if (arg
== MMC_DISCARD_ARG
||
1761 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1762 erase_timeout
= card
->ext_csd
.trim_timeout
;
1763 } else if (card
->ext_csd
.erase_group_def
& 1) {
1764 /* High Capacity Erase Group Size uses HC timeouts */
1765 if (arg
== MMC_TRIM_ARG
)
1766 erase_timeout
= card
->ext_csd
.trim_timeout
;
1768 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1770 /* CSD Erase Group Size uses write timeout */
1771 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1772 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
1773 unsigned int timeout_us
;
1775 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1776 if (card
->csd
.tacc_ns
< 1000000)
1777 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
1779 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
1782 * ios.clock is only a target. The real clock rate might be
1783 * less but not that much less, so fudge it by multiplying by 2.
1786 timeout_us
+= (timeout_clks
* 1000) /
1787 (mmc_host_clk_rate(card
->host
) / 1000);
1789 erase_timeout
= timeout_us
/ 1000;
1792 * Theoretically, the calculation could underflow so round up
1793 * to 1ms in that case.
1799 /* Multiplier for secure operations */
1800 if (arg
& MMC_SECURE_ARGS
) {
1801 if (arg
== MMC_SECURE_ERASE_ARG
)
1802 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1804 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1807 erase_timeout
*= qty
;
1810 * Ensure at least a 1 second timeout for SPI as per
1811 * 'mmc_set_data_timeout()'
1813 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1814 erase_timeout
= 1000;
1816 return erase_timeout
;
1819 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1823 unsigned int erase_timeout
;
1825 if (card
->ssr
.erase_timeout
) {
1826 /* Erase timeout specified in SD Status Register (SSR) */
1827 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1828 card
->ssr
.erase_offset
;
1831 * Erase timeout not specified in SD Status Register (SSR) so
1832 * use 250ms per write block.
1834 erase_timeout
= 250 * qty
;
1837 /* Must not be less than 1 second */
1838 if (erase_timeout
< 1000)
1839 erase_timeout
= 1000;
1841 return erase_timeout
;
1844 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1848 if (mmc_card_sd(card
))
1849 return mmc_sd_erase_timeout(card
, arg
, qty
);
1851 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1854 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1855 unsigned int to
, unsigned int arg
)
1857 struct mmc_command cmd
= {0};
1858 unsigned int qty
= 0;
1859 unsigned long timeout
;
1863 * qty is used to calculate the erase timeout which depends on how many
1864 * erase groups (or allocation units in SD terminology) are affected.
1865 * We count erasing part of an erase group as one erase group.
1866 * For SD, the allocation units are always a power of 2. For MMC, the
1867 * erase group size is almost certainly also power of 2, but it does not
1868 * seem to insist on that in the JEDEC standard, so we fall back to
1869 * division in that case. SD may not specify an allocation unit size,
1870 * in which case the timeout is based on the number of write blocks.
1872 * Note that the timeout for secure trim 2 will only be correct if the
1873 * number of erase groups specified is the same as the total of all
1874 * preceding secure trim 1 commands. Since the power may have been
1875 * lost since the secure trim 1 commands occurred, it is generally
1876 * impossible to calculate the secure trim 2 timeout correctly.
1878 if (card
->erase_shift
)
1879 qty
+= ((to
>> card
->erase_shift
) -
1880 (from
>> card
->erase_shift
)) + 1;
1881 else if (mmc_card_sd(card
))
1882 qty
+= to
- from
+ 1;
1884 qty
+= ((to
/ card
->erase_size
) -
1885 (from
/ card
->erase_size
)) + 1;
1887 if (!mmc_card_blockaddr(card
)) {
1892 if (mmc_card_sd(card
))
1893 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1895 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1897 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1898 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1900 pr_err("mmc_erase: group start error %d, "
1901 "status %#x\n", err
, cmd
.resp
[0]);
1906 memset(&cmd
, 0, sizeof(struct mmc_command
));
1907 if (mmc_card_sd(card
))
1908 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1910 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1912 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1913 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1915 pr_err("mmc_erase: group end error %d, status %#x\n",
1921 memset(&cmd
, 0, sizeof(struct mmc_command
));
1922 cmd
.opcode
= MMC_ERASE
;
1924 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
1925 cmd
.cmd_timeout_ms
= mmc_erase_timeout(card
, arg
, qty
);
1926 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1928 pr_err("mmc_erase: erase error %d, status %#x\n",
1934 if (mmc_host_is_spi(card
->host
))
1937 timeout
= jiffies
+ msecs_to_jiffies(MMC_CORE_TIMEOUT_MS
);
1939 memset(&cmd
, 0, sizeof(struct mmc_command
));
1940 cmd
.opcode
= MMC_SEND_STATUS
;
1941 cmd
.arg
= card
->rca
<< 16;
1942 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1943 /* Do not retry else we can't see errors */
1944 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1945 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
1946 pr_err("error %d requesting status %#x\n",
1952 /* Timeout if the device never becomes ready for data and
1953 * never leaves the program state.
1955 if (time_after(jiffies
, timeout
)) {
1956 pr_err("%s: Card stuck in programming state! %s\n",
1957 mmc_hostname(card
->host
), __func__
);
1962 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
1963 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
1969 * mmc_erase - erase sectors.
1970 * @card: card to erase
1971 * @from: first sector to erase
1972 * @nr: number of sectors to erase
1973 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1975 * Caller must claim host before calling this function.
1977 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
1980 unsigned int rem
, to
= from
+ nr
;
1982 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
1983 !(card
->csd
.cmdclass
& CCC_ERASE
))
1986 if (!card
->erase_size
)
1989 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
1992 if ((arg
& MMC_SECURE_ARGS
) &&
1993 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1996 if ((arg
& MMC_TRIM_ARGS
) &&
1997 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2000 if (arg
== MMC_SECURE_ERASE_ARG
) {
2001 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2005 if (arg
== MMC_ERASE_ARG
) {
2006 rem
= from
% card
->erase_size
;
2008 rem
= card
->erase_size
- rem
;
2015 rem
= nr
% card
->erase_size
;
2028 /* 'from' and 'to' are inclusive */
2031 return mmc_do_erase(card
, from
, to
, arg
);
2033 EXPORT_SYMBOL(mmc_erase
);
2035 int mmc_can_erase(struct mmc_card
*card
)
2037 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2038 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2042 EXPORT_SYMBOL(mmc_can_erase
);
2044 int mmc_can_trim(struct mmc_card
*card
)
2046 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
)
2050 EXPORT_SYMBOL(mmc_can_trim
);
2052 int mmc_can_discard(struct mmc_card
*card
)
2055 * As there's no way to detect the discard support bit at v4.5
2056 * use the s/w feature support filed.
2058 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2062 EXPORT_SYMBOL(mmc_can_discard
);
2064 int mmc_can_sanitize(struct mmc_card
*card
)
2066 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2068 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2072 EXPORT_SYMBOL(mmc_can_sanitize
);
2074 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2076 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
)
2080 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2082 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2085 if (!card
->erase_size
)
2087 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2091 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2093 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2096 struct mmc_host
*host
= card
->host
;
2097 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, timeout
;
2098 unsigned int last_timeout
= 0;
2100 if (card
->erase_shift
)
2101 max_qty
= UINT_MAX
>> card
->erase_shift
;
2102 else if (mmc_card_sd(card
))
2105 max_qty
= UINT_MAX
/ card
->erase_size
;
2107 /* Find the largest qty with an OK timeout */
2110 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2111 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2112 if (timeout
> host
->max_discard_to
)
2114 if (timeout
< last_timeout
)
2116 last_timeout
= timeout
;
2128 /* Convert qty to sectors */
2129 if (card
->erase_shift
)
2130 max_discard
= --qty
<< card
->erase_shift
;
2131 else if (mmc_card_sd(card
))
2134 max_discard
= --qty
* card
->erase_size
;
2139 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2141 struct mmc_host
*host
= card
->host
;
2142 unsigned int max_discard
, max_trim
;
2144 if (!host
->max_discard_to
)
2148 * Without erase_group_def set, MMC erase timeout depends on clock
2149 * frequence which can change. In that case, the best choice is
2150 * just the preferred erase size.
2152 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2153 return card
->pref_erase
;
2155 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2156 if (mmc_can_trim(card
)) {
2157 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2158 if (max_trim
< max_discard
)
2159 max_discard
= max_trim
;
2160 } else if (max_discard
< card
->erase_size
) {
2163 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2164 mmc_hostname(host
), max_discard
, host
->max_discard_to
);
2167 EXPORT_SYMBOL(mmc_calc_max_discard
);
2169 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2171 struct mmc_command cmd
= {0};
2173 if (mmc_card_blockaddr(card
) || mmc_card_ddr_mode(card
))
2176 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2178 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2179 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2181 EXPORT_SYMBOL(mmc_set_blocklen
);
2183 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2186 struct mmc_command cmd
= {0};
2188 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2189 cmd
.arg
= blockcount
& 0x0000FFFF;
2192 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2193 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2195 EXPORT_SYMBOL(mmc_set_blockcount
);
2197 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2199 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2201 mmc_host_clk_hold(host
);
2202 host
->ops
->hw_reset(host
);
2203 mmc_host_clk_release(host
);
2206 int mmc_can_reset(struct mmc_card
*card
)
2210 if (!mmc_card_mmc(card
))
2212 rst_n_function
= card
->ext_csd
.rst_n_function
;
2213 if ((rst_n_function
& EXT_CSD_RST_N_EN_MASK
) != EXT_CSD_RST_N_ENABLED
)
2217 EXPORT_SYMBOL(mmc_can_reset
);
2219 static int mmc_do_hw_reset(struct mmc_host
*host
, int check
)
2221 struct mmc_card
*card
= host
->card
;
2223 if (!host
->bus_ops
->power_restore
)
2226 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2232 if (!mmc_can_reset(card
))
2235 mmc_host_clk_hold(host
);
2236 mmc_set_clock(host
, host
->f_init
);
2238 host
->ops
->hw_reset(host
);
2240 /* If the reset has happened, then a status command will fail */
2242 struct mmc_command cmd
= {0};
2245 cmd
.opcode
= MMC_SEND_STATUS
;
2246 if (!mmc_host_is_spi(card
->host
))
2247 cmd
.arg
= card
->rca
<< 16;
2248 cmd
.flags
= MMC_RSP_SPI_R2
| MMC_RSP_R1
| MMC_CMD_AC
;
2249 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2251 mmc_host_clk_release(host
);
2256 host
->card
->state
&= ~(MMC_STATE_HIGHSPEED
| MMC_STATE_HIGHSPEED_DDR
);
2257 if (mmc_host_is_spi(host
)) {
2258 host
->ios
.chip_select
= MMC_CS_HIGH
;
2259 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
2261 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
2262 host
->ios
.bus_mode
= MMC_BUSMODE_OPENDRAIN
;
2264 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
2265 host
->ios
.timing
= MMC_TIMING_LEGACY
;
2268 mmc_host_clk_release(host
);
2270 return host
->bus_ops
->power_restore(host
);
2273 int mmc_hw_reset(struct mmc_host
*host
)
2275 return mmc_do_hw_reset(host
, 0);
2277 EXPORT_SYMBOL(mmc_hw_reset
);
2279 int mmc_hw_reset_check(struct mmc_host
*host
)
2281 return mmc_do_hw_reset(host
, 1);
2283 EXPORT_SYMBOL(mmc_hw_reset_check
);
2285 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2287 host
->f_init
= freq
;
2289 #ifdef CONFIG_MMC_DEBUG
2290 pr_info("%s: %s: trying to init card at %u Hz\n",
2291 mmc_hostname(host
), __func__
, host
->f_init
);
2296 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2297 * do a hardware reset if possible.
2299 mmc_hw_reset_for_init(host
);
2302 * sdio_reset sends CMD52 to reset card. Since we do not know
2303 * if the card is being re-initialized, just send it. CMD52
2304 * should be ignored by SD/eMMC cards.
2309 mmc_send_if_cond(host
, host
->ocr_avail
);
2311 /* Order's important: probe SDIO, then SD, then MMC */
2312 if (!mmc_attach_sdio(host
))
2314 if (!mmc_attach_sd(host
))
2316 if (!mmc_attach_mmc(host
))
2319 mmc_power_off(host
);
2323 int _mmc_detect_card_removed(struct mmc_host
*host
)
2327 if ((host
->caps
& MMC_CAP_NONREMOVABLE
) || !host
->bus_ops
->alive
)
2330 if (!host
->card
|| mmc_card_removed(host
->card
))
2333 ret
= host
->bus_ops
->alive(host
);
2336 * Card detect status and alive check may be out of sync if card is
2337 * removed slowly, when card detect switch changes while card/slot
2338 * pads are still contacted in hardware (refer to "SD Card Mechanical
2339 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2340 * detect work 200ms later for this case.
2342 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2343 mmc_detect_change(host
, msecs_to_jiffies(200));
2344 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2348 mmc_card_set_removed(host
->card
);
2349 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2355 int mmc_detect_card_removed(struct mmc_host
*host
)
2357 struct mmc_card
*card
= host
->card
;
2360 WARN_ON(!host
->claimed
);
2365 ret
= mmc_card_removed(card
);
2367 * The card will be considered unchanged unless we have been asked to
2368 * detect a change or host requires polling to provide card detection.
2370 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2373 host
->detect_change
= 0;
2375 ret
= _mmc_detect_card_removed(host
);
2376 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2378 * Schedule a detect work as soon as possible to let a
2379 * rescan handle the card removal.
2381 cancel_delayed_work(&host
->detect
);
2382 mmc_detect_change(host
, 0);
2388 EXPORT_SYMBOL(mmc_detect_card_removed
);
2390 void mmc_rescan(struct work_struct
*work
)
2392 struct mmc_host
*host
=
2393 container_of(work
, struct mmc_host
, detect
.work
);
2396 if (host
->rescan_disable
)
2399 /* If there is a non-removable card registered, only scan once */
2400 if ((host
->caps
& MMC_CAP_NONREMOVABLE
) && host
->rescan_entered
)
2402 host
->rescan_entered
= 1;
2407 * if there is a _removable_ card registered, check whether it is
2410 if (host
->bus_ops
&& host
->bus_ops
->detect
&& !host
->bus_dead
2411 && !(host
->caps
& MMC_CAP_NONREMOVABLE
))
2412 host
->bus_ops
->detect(host
);
2414 host
->detect_change
= 0;
2417 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2418 * the card is no longer present.
2423 /* if there still is a card present, stop here */
2424 if (host
->bus_ops
!= NULL
) {
2430 * Only we can add a new handler, so it's safe to
2431 * release the lock here.
2435 if (host
->ops
->get_cd
&& host
->ops
->get_cd(host
) == 0) {
2436 mmc_claim_host(host
);
2437 mmc_power_off(host
);
2438 mmc_release_host(host
);
2442 mmc_claim_host(host
);
2443 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2444 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2446 if (freqs
[i
] <= host
->f_min
)
2449 mmc_release_host(host
);
2452 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2453 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2456 void mmc_start_host(struct mmc_host
*host
)
2458 host
->f_init
= max(freqs
[0], host
->f_min
);
2459 host
->rescan_disable
= 0;
2460 if (host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)
2461 mmc_power_off(host
);
2464 mmc_detect_change(host
, 0);
2467 void mmc_stop_host(struct mmc_host
*host
)
2469 #ifdef CONFIG_MMC_DEBUG
2470 unsigned long flags
;
2471 spin_lock_irqsave(&host
->lock
, flags
);
2473 spin_unlock_irqrestore(&host
->lock
, flags
);
2476 host
->rescan_disable
= 1;
2477 cancel_delayed_work_sync(&host
->detect
);
2478 mmc_flush_scheduled_work();
2480 /* clear pm flags now and let card drivers set them as needed */
2484 if (host
->bus_ops
&& !host
->bus_dead
) {
2485 /* Calling bus_ops->remove() with a claimed host can deadlock */
2486 host
->bus_ops
->remove(host
);
2487 mmc_claim_host(host
);
2488 mmc_detach_bus(host
);
2489 mmc_power_off(host
);
2490 mmc_release_host(host
);
2498 mmc_power_off(host
);
2501 int mmc_power_save_host(struct mmc_host
*host
)
2505 #ifdef CONFIG_MMC_DEBUG
2506 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2511 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->power_restore
) {
2516 if (host
->bus_ops
->power_save
)
2517 ret
= host
->bus_ops
->power_save(host
);
2521 mmc_power_off(host
);
2525 EXPORT_SYMBOL(mmc_power_save_host
);
2527 int mmc_power_restore_host(struct mmc_host
*host
)
2531 #ifdef CONFIG_MMC_DEBUG
2532 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2537 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->power_restore
) {
2543 ret
= host
->bus_ops
->power_restore(host
);
2549 EXPORT_SYMBOL(mmc_power_restore_host
);
2552 * Flush the cache to the non-volatile storage.
2554 int mmc_flush_cache(struct mmc_card
*card
)
2556 struct mmc_host
*host
= card
->host
;
2559 if (!(host
->caps2
& MMC_CAP2_CACHE_CTRL
))
2562 if (mmc_card_mmc(card
) &&
2563 (card
->ext_csd
.cache_size
> 0) &&
2564 (card
->ext_csd
.cache_ctrl
& 1)) {
2565 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2566 EXT_CSD_FLUSH_CACHE
, 1, 0);
2568 pr_err("%s: cache flush error %d\n",
2569 mmc_hostname(card
->host
), err
);
2574 EXPORT_SYMBOL(mmc_flush_cache
);
2577 * Turn the cache ON/OFF.
2578 * Turning the cache OFF shall trigger flushing of the data
2579 * to the non-volatile storage.
2580 * This function should be called with host claimed
2582 int mmc_cache_ctrl(struct mmc_host
*host
, u8 enable
)
2584 struct mmc_card
*card
= host
->card
;
2585 unsigned int timeout
;
2588 if (!(host
->caps2
& MMC_CAP2_CACHE_CTRL
) ||
2589 mmc_card_is_removable(host
))
2592 if (card
&& mmc_card_mmc(card
) &&
2593 (card
->ext_csd
.cache_size
> 0)) {
2596 if (card
->ext_csd
.cache_ctrl
^ enable
) {
2597 timeout
= enable
? card
->ext_csd
.generic_cmd6_time
: 0;
2598 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2599 EXT_CSD_CACHE_CTRL
, enable
, timeout
);
2601 pr_err("%s: cache %s error %d\n",
2602 mmc_hostname(card
->host
),
2603 enable
? "on" : "off",
2606 card
->ext_csd
.cache_ctrl
= enable
;
2612 EXPORT_SYMBOL(mmc_cache_ctrl
);
2617 * mmc_suspend_host - suspend a host
2620 int mmc_suspend_host(struct mmc_host
*host
)
2622 /* This function is deprecated */
2625 EXPORT_SYMBOL(mmc_suspend_host
);
2628 * mmc_resume_host - resume a previously suspended host
2631 int mmc_resume_host(struct mmc_host
*host
)
2633 /* This function is deprecated */
2636 EXPORT_SYMBOL(mmc_resume_host
);
2638 /* Do the card removal on suspend if card is assumed removeable
2639 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2642 int mmc_pm_notify(struct notifier_block
*notify_block
,
2643 unsigned long mode
, void *unused
)
2645 struct mmc_host
*host
= container_of(
2646 notify_block
, struct mmc_host
, pm_notify
);
2647 unsigned long flags
;
2651 case PM_HIBERNATION_PREPARE
:
2652 case PM_SUSPEND_PREPARE
:
2653 spin_lock_irqsave(&host
->lock
, flags
);
2654 host
->rescan_disable
= 1;
2655 spin_unlock_irqrestore(&host
->lock
, flags
);
2656 cancel_delayed_work_sync(&host
->detect
);
2661 /* Validate prerequisites for suspend */
2662 if (host
->bus_ops
->pre_suspend
)
2663 err
= host
->bus_ops
->pre_suspend(host
);
2664 if (!err
&& host
->bus_ops
->suspend
)
2667 /* Calling bus_ops->remove() with a claimed host can deadlock */
2668 host
->bus_ops
->remove(host
);
2669 mmc_claim_host(host
);
2670 mmc_detach_bus(host
);
2671 mmc_power_off(host
);
2672 mmc_release_host(host
);
2676 case PM_POST_SUSPEND
:
2677 case PM_POST_HIBERNATION
:
2678 case PM_POST_RESTORE
:
2680 spin_lock_irqsave(&host
->lock
, flags
);
2681 host
->rescan_disable
= 0;
2682 spin_unlock_irqrestore(&host
->lock
, flags
);
2683 mmc_detect_change(host
, 0);
2692 * mmc_init_context_info() - init synchronization context
2695 * Init struct context_info needed to implement asynchronous
2696 * request mechanism, used by mmc core, host driver and mmc requests
2699 void mmc_init_context_info(struct mmc_host
*host
)
2701 spin_lock_init(&host
->context_info
.lock
);
2702 host
->context_info
.is_new_req
= false;
2703 host
->context_info
.is_done_rcv
= false;
2704 host
->context_info
.is_waiting_last_req
= false;
2705 init_waitqueue_head(&host
->context_info
.wait
);
2708 static int __init
mmc_init(void)
2712 workqueue
= alloc_ordered_workqueue("kmmcd", 0);
2716 ret
= mmc_register_bus();
2718 goto destroy_workqueue
;
2720 ret
= mmc_register_host_class();
2722 goto unregister_bus
;
2724 ret
= sdio_register_bus();
2726 goto unregister_host_class
;
2730 unregister_host_class
:
2731 mmc_unregister_host_class();
2733 mmc_unregister_bus();
2735 destroy_workqueue(workqueue
);
2740 static void __exit
mmc_exit(void)
2742 sdio_unregister_bus();
2743 mmc_unregister_host_class();
2744 mmc_unregister_bus();
2745 destroy_workqueue(workqueue
);
2748 subsys_initcall(mmc_init
);
2749 module_exit(mmc_exit
);
2751 MODULE_LICENSE("GPL");