Linux 3.11-rc3
[cris-mirror.git] / drivers / mtd / nand / nand_base.c
blobdfcd0a565c5b3e8f66d9b24077ae3701f132ee36
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 * Credits:
15 * David Woodhouse for adding multichip support
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
20 * TODO:
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/leds.h>
46 #include <linux/io.h>
47 #include <linux/mtd/partitions.h>
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51 .eccbytes = 3,
52 .eccpos = {0, 1, 2},
53 .oobfree = {
54 {.offset = 3,
55 .length = 2},
56 {.offset = 6,
57 .length = 2} }
60 static struct nand_ecclayout nand_oob_16 = {
61 .eccbytes = 6,
62 .eccpos = {0, 1, 2, 3, 6, 7},
63 .oobfree = {
64 {.offset = 8,
65 . length = 8} }
68 static struct nand_ecclayout nand_oob_64 = {
69 .eccbytes = 24,
70 .eccpos = {
71 40, 41, 42, 43, 44, 45, 46, 47,
72 48, 49, 50, 51, 52, 53, 54, 55,
73 56, 57, 58, 59, 60, 61, 62, 63},
74 .oobfree = {
75 {.offset = 2,
76 .length = 38} }
79 static struct nand_ecclayout nand_oob_128 = {
80 .eccbytes = 48,
81 .eccpos = {
82 80, 81, 82, 83, 84, 85, 86, 87,
83 88, 89, 90, 91, 92, 93, 94, 95,
84 96, 97, 98, 99, 100, 101, 102, 103,
85 104, 105, 106, 107, 108, 109, 110, 111,
86 112, 113, 114, 115, 116, 117, 118, 119,
87 120, 121, 122, 123, 124, 125, 126, 127},
88 .oobfree = {
89 {.offset = 2,
90 .length = 78} }
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96 struct mtd_oob_ops *ops);
99 * For devices which display every fart in the system on a separate LED. Is
100 * compiled away when LED support is disabled.
102 DEFINE_LED_TRIGGER(nand_led_trigger);
104 static int check_offs_len(struct mtd_info *mtd,
105 loff_t ofs, uint64_t len)
107 struct nand_chip *chip = mtd->priv;
108 int ret = 0;
110 /* Start address must align on block boundary */
111 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
112 pr_debug("%s: unaligned address\n", __func__);
113 ret = -EINVAL;
116 /* Length must align on block boundary */
117 if (len & ((1 << chip->phys_erase_shift) - 1)) {
118 pr_debug("%s: length not block aligned\n", __func__);
119 ret = -EINVAL;
122 return ret;
126 * nand_release_device - [GENERIC] release chip
127 * @mtd: MTD device structure
129 * Release chip lock and wake up anyone waiting on the device.
131 static void nand_release_device(struct mtd_info *mtd)
133 struct nand_chip *chip = mtd->priv;
135 /* Release the controller and the chip */
136 spin_lock(&chip->controller->lock);
137 chip->controller->active = NULL;
138 chip->state = FL_READY;
139 wake_up(&chip->controller->wq);
140 spin_unlock(&chip->controller->lock);
144 * nand_read_byte - [DEFAULT] read one byte from the chip
145 * @mtd: MTD device structure
147 * Default read function for 8bit buswidth
149 static uint8_t nand_read_byte(struct mtd_info *mtd)
151 struct nand_chip *chip = mtd->priv;
152 return readb(chip->IO_ADDR_R);
156 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
157 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
158 * @mtd: MTD device structure
160 * Default read function for 16bit buswidth with endianness conversion.
163 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 struct nand_chip *chip = mtd->priv;
166 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 * nand_read_word - [DEFAULT] read one word from the chip
171 * @mtd: MTD device structure
173 * Default read function for 16bit buswidth without endianness conversion.
175 static u16 nand_read_word(struct mtd_info *mtd)
177 struct nand_chip *chip = mtd->priv;
178 return readw(chip->IO_ADDR_R);
182 * nand_select_chip - [DEFAULT] control CE line
183 * @mtd: MTD device structure
184 * @chipnr: chipnumber to select, -1 for deselect
186 * Default select function for 1 chip devices.
188 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 struct nand_chip *chip = mtd->priv;
192 switch (chipnr) {
193 case -1:
194 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
195 break;
196 case 0:
197 break;
199 default:
200 BUG();
205 * nand_write_buf - [DEFAULT] write buffer to chip
206 * @mtd: MTD device structure
207 * @buf: data buffer
208 * @len: number of bytes to write
210 * Default write function for 8bit buswidth.
212 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
214 int i;
215 struct nand_chip *chip = mtd->priv;
217 for (i = 0; i < len; i++)
218 writeb(buf[i], chip->IO_ADDR_W);
222 * nand_read_buf - [DEFAULT] read chip data into buffer
223 * @mtd: MTD device structure
224 * @buf: buffer to store date
225 * @len: number of bytes to read
227 * Default read function for 8bit buswidth.
229 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
231 int i;
232 struct nand_chip *chip = mtd->priv;
234 for (i = 0; i < len; i++)
235 buf[i] = readb(chip->IO_ADDR_R);
239 * nand_write_buf16 - [DEFAULT] write buffer to chip
240 * @mtd: MTD device structure
241 * @buf: data buffer
242 * @len: number of bytes to write
244 * Default write function for 16bit buswidth.
246 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
248 int i;
249 struct nand_chip *chip = mtd->priv;
250 u16 *p = (u16 *) buf;
251 len >>= 1;
253 for (i = 0; i < len; i++)
254 writew(p[i], chip->IO_ADDR_W);
259 * nand_read_buf16 - [DEFAULT] read chip data into buffer
260 * @mtd: MTD device structure
261 * @buf: buffer to store date
262 * @len: number of bytes to read
264 * Default read function for 16bit buswidth.
266 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
268 int i;
269 struct nand_chip *chip = mtd->priv;
270 u16 *p = (u16 *) buf;
271 len >>= 1;
273 for (i = 0; i < len; i++)
274 p[i] = readw(chip->IO_ADDR_R);
278 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
279 * @mtd: MTD device structure
280 * @ofs: offset from device start
281 * @getchip: 0, if the chip is already selected
283 * Check, if the block is bad.
285 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
287 int page, chipnr, res = 0, i = 0;
288 struct nand_chip *chip = mtd->priv;
289 u16 bad;
291 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
292 ofs += mtd->erasesize - mtd->writesize;
294 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
296 if (getchip) {
297 chipnr = (int)(ofs >> chip->chip_shift);
299 nand_get_device(mtd, FL_READING);
301 /* Select the NAND device */
302 chip->select_chip(mtd, chipnr);
305 do {
306 if (chip->options & NAND_BUSWIDTH_16) {
307 chip->cmdfunc(mtd, NAND_CMD_READOOB,
308 chip->badblockpos & 0xFE, page);
309 bad = cpu_to_le16(chip->read_word(mtd));
310 if (chip->badblockpos & 0x1)
311 bad >>= 8;
312 else
313 bad &= 0xFF;
314 } else {
315 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
316 page);
317 bad = chip->read_byte(mtd);
320 if (likely(chip->badblockbits == 8))
321 res = bad != 0xFF;
322 else
323 res = hweight8(bad) < chip->badblockbits;
324 ofs += mtd->writesize;
325 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
326 i++;
327 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
329 if (getchip) {
330 chip->select_chip(mtd, -1);
331 nand_release_device(mtd);
334 return res;
338 * nand_default_block_markbad - [DEFAULT] mark a block bad
339 * @mtd: MTD device structure
340 * @ofs: offset from device start
342 * This is the default implementation, which can be overridden by a hardware
343 * specific driver. We try operations in the following order, according to our
344 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
345 * (1) erase the affected block, to allow OOB marker to be written cleanly
346 * (2) update in-memory BBT
347 * (3) write bad block marker to OOB area of affected block
348 * (4) update flash-based BBT
349 * Note that we retain the first error encountered in (3) or (4), finish the
350 * procedures, and dump the error in the end.
352 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
354 struct nand_chip *chip = mtd->priv;
355 uint8_t buf[2] = { 0, 0 };
356 int block, res, ret = 0, i = 0;
357 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
359 if (write_oob) {
360 struct erase_info einfo;
362 /* Attempt erase before marking OOB */
363 memset(&einfo, 0, sizeof(einfo));
364 einfo.mtd = mtd;
365 einfo.addr = ofs;
366 einfo.len = 1 << chip->phys_erase_shift;
367 nand_erase_nand(mtd, &einfo, 0);
370 /* Get block number */
371 block = (int)(ofs >> chip->bbt_erase_shift);
372 /* Mark block bad in memory-based BBT */
373 if (chip->bbt)
374 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
376 /* Write bad block marker to OOB */
377 if (write_oob) {
378 struct mtd_oob_ops ops;
379 loff_t wr_ofs = ofs;
381 nand_get_device(mtd, FL_WRITING);
383 ops.datbuf = NULL;
384 ops.oobbuf = buf;
385 ops.ooboffs = chip->badblockpos;
386 if (chip->options & NAND_BUSWIDTH_16) {
387 ops.ooboffs &= ~0x01;
388 ops.len = ops.ooblen = 2;
389 } else {
390 ops.len = ops.ooblen = 1;
392 ops.mode = MTD_OPS_PLACE_OOB;
394 /* Write to first/last page(s) if necessary */
395 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
396 wr_ofs += mtd->erasesize - mtd->writesize;
397 do {
398 res = nand_do_write_oob(mtd, wr_ofs, &ops);
399 if (!ret)
400 ret = res;
402 i++;
403 wr_ofs += mtd->writesize;
404 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
406 nand_release_device(mtd);
409 /* Update flash-based bad block table */
410 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
411 res = nand_update_bbt(mtd, ofs);
412 if (!ret)
413 ret = res;
416 if (!ret)
417 mtd->ecc_stats.badblocks++;
419 return ret;
423 * nand_check_wp - [GENERIC] check if the chip is write protected
424 * @mtd: MTD device structure
426 * Check, if the device is write protected. The function expects, that the
427 * device is already selected.
429 static int nand_check_wp(struct mtd_info *mtd)
431 struct nand_chip *chip = mtd->priv;
433 /* Broken xD cards report WP despite being writable */
434 if (chip->options & NAND_BROKEN_XD)
435 return 0;
437 /* Check the WP bit */
438 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
439 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
443 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
444 * @mtd: MTD device structure
445 * @ofs: offset from device start
446 * @getchip: 0, if the chip is already selected
447 * @allowbbt: 1, if its allowed to access the bbt area
449 * Check, if the block is bad. Either by reading the bad block table or
450 * calling of the scan function.
452 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
453 int allowbbt)
455 struct nand_chip *chip = mtd->priv;
457 if (!chip->bbt)
458 return chip->block_bad(mtd, ofs, getchip);
460 /* Return info from the table */
461 return nand_isbad_bbt(mtd, ofs, allowbbt);
465 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
466 * @mtd: MTD device structure
467 * @timeo: Timeout
469 * Helper function for nand_wait_ready used when needing to wait in interrupt
470 * context.
472 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
474 struct nand_chip *chip = mtd->priv;
475 int i;
477 /* Wait for the device to get ready */
478 for (i = 0; i < timeo; i++) {
479 if (chip->dev_ready(mtd))
480 break;
481 touch_softlockup_watchdog();
482 mdelay(1);
486 /* Wait for the ready pin, after a command. The timeout is caught later. */
487 void nand_wait_ready(struct mtd_info *mtd)
489 struct nand_chip *chip = mtd->priv;
490 unsigned long timeo = jiffies + msecs_to_jiffies(20);
492 /* 400ms timeout */
493 if (in_interrupt() || oops_in_progress)
494 return panic_nand_wait_ready(mtd, 400);
496 led_trigger_event(nand_led_trigger, LED_FULL);
497 /* Wait until command is processed or timeout occurs */
498 do {
499 if (chip->dev_ready(mtd))
500 break;
501 touch_softlockup_watchdog();
502 } while (time_before(jiffies, timeo));
503 led_trigger_event(nand_led_trigger, LED_OFF);
505 EXPORT_SYMBOL_GPL(nand_wait_ready);
508 * nand_command - [DEFAULT] Send command to NAND device
509 * @mtd: MTD device structure
510 * @command: the command to be sent
511 * @column: the column address for this command, -1 if none
512 * @page_addr: the page address for this command, -1 if none
514 * Send command to NAND device. This function is used for small page devices
515 * (512 Bytes per page).
517 static void nand_command(struct mtd_info *mtd, unsigned int command,
518 int column, int page_addr)
520 register struct nand_chip *chip = mtd->priv;
521 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
523 /* Write out the command to the device */
524 if (command == NAND_CMD_SEQIN) {
525 int readcmd;
527 if (column >= mtd->writesize) {
528 /* OOB area */
529 column -= mtd->writesize;
530 readcmd = NAND_CMD_READOOB;
531 } else if (column < 256) {
532 /* First 256 bytes --> READ0 */
533 readcmd = NAND_CMD_READ0;
534 } else {
535 column -= 256;
536 readcmd = NAND_CMD_READ1;
538 chip->cmd_ctrl(mtd, readcmd, ctrl);
539 ctrl &= ~NAND_CTRL_CHANGE;
541 chip->cmd_ctrl(mtd, command, ctrl);
543 /* Address cycle, when necessary */
544 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
545 /* Serially input address */
546 if (column != -1) {
547 /* Adjust columns for 16 bit buswidth */
548 if (chip->options & NAND_BUSWIDTH_16)
549 column >>= 1;
550 chip->cmd_ctrl(mtd, column, ctrl);
551 ctrl &= ~NAND_CTRL_CHANGE;
553 if (page_addr != -1) {
554 chip->cmd_ctrl(mtd, page_addr, ctrl);
555 ctrl &= ~NAND_CTRL_CHANGE;
556 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
557 /* One more address cycle for devices > 32MiB */
558 if (chip->chipsize > (32 << 20))
559 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
561 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
564 * Program and erase have their own busy handlers status and sequential
565 * in needs no delay
567 switch (command) {
569 case NAND_CMD_PAGEPROG:
570 case NAND_CMD_ERASE1:
571 case NAND_CMD_ERASE2:
572 case NAND_CMD_SEQIN:
573 case NAND_CMD_STATUS:
574 return;
576 case NAND_CMD_RESET:
577 if (chip->dev_ready)
578 break;
579 udelay(chip->chip_delay);
580 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
581 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
582 chip->cmd_ctrl(mtd,
583 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
584 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
586 return;
588 /* This applies to read commands */
589 default:
591 * If we don't have access to the busy pin, we apply the given
592 * command delay
594 if (!chip->dev_ready) {
595 udelay(chip->chip_delay);
596 return;
600 * Apply this short delay always to ensure that we do wait tWB in
601 * any case on any machine.
603 ndelay(100);
605 nand_wait_ready(mtd);
609 * nand_command_lp - [DEFAULT] Send command to NAND large page device
610 * @mtd: MTD device structure
611 * @command: the command to be sent
612 * @column: the column address for this command, -1 if none
613 * @page_addr: the page address for this command, -1 if none
615 * Send command to NAND device. This is the version for the new large page
616 * devices. We don't have the separate regions as we have in the small page
617 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
619 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
620 int column, int page_addr)
622 register struct nand_chip *chip = mtd->priv;
624 /* Emulate NAND_CMD_READOOB */
625 if (command == NAND_CMD_READOOB) {
626 column += mtd->writesize;
627 command = NAND_CMD_READ0;
630 /* Command latch cycle */
631 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
633 if (column != -1 || page_addr != -1) {
634 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
636 /* Serially input address */
637 if (column != -1) {
638 /* Adjust columns for 16 bit buswidth */
639 if (chip->options & NAND_BUSWIDTH_16)
640 column >>= 1;
641 chip->cmd_ctrl(mtd, column, ctrl);
642 ctrl &= ~NAND_CTRL_CHANGE;
643 chip->cmd_ctrl(mtd, column >> 8, ctrl);
645 if (page_addr != -1) {
646 chip->cmd_ctrl(mtd, page_addr, ctrl);
647 chip->cmd_ctrl(mtd, page_addr >> 8,
648 NAND_NCE | NAND_ALE);
649 /* One more address cycle for devices > 128MiB */
650 if (chip->chipsize > (128 << 20))
651 chip->cmd_ctrl(mtd, page_addr >> 16,
652 NAND_NCE | NAND_ALE);
655 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
658 * Program and erase have their own busy handlers status, sequential
659 * in, and deplete1 need no delay.
661 switch (command) {
663 case NAND_CMD_CACHEDPROG:
664 case NAND_CMD_PAGEPROG:
665 case NAND_CMD_ERASE1:
666 case NAND_CMD_ERASE2:
667 case NAND_CMD_SEQIN:
668 case NAND_CMD_RNDIN:
669 case NAND_CMD_STATUS:
670 return;
672 case NAND_CMD_RESET:
673 if (chip->dev_ready)
674 break;
675 udelay(chip->chip_delay);
676 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
677 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
678 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
679 NAND_NCE | NAND_CTRL_CHANGE);
680 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
682 return;
684 case NAND_CMD_RNDOUT:
685 /* No ready / busy check necessary */
686 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
687 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
688 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
689 NAND_NCE | NAND_CTRL_CHANGE);
690 return;
692 case NAND_CMD_READ0:
693 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
694 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
695 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
696 NAND_NCE | NAND_CTRL_CHANGE);
698 /* This applies to read commands */
699 default:
701 * If we don't have access to the busy pin, we apply the given
702 * command delay.
704 if (!chip->dev_ready) {
705 udelay(chip->chip_delay);
706 return;
711 * Apply this short delay always to ensure that we do wait tWB in
712 * any case on any machine.
714 ndelay(100);
716 nand_wait_ready(mtd);
720 * panic_nand_get_device - [GENERIC] Get chip for selected access
721 * @chip: the nand chip descriptor
722 * @mtd: MTD device structure
723 * @new_state: the state which is requested
725 * Used when in panic, no locks are taken.
727 static void panic_nand_get_device(struct nand_chip *chip,
728 struct mtd_info *mtd, int new_state)
730 /* Hardware controller shared among independent devices */
731 chip->controller->active = chip;
732 chip->state = new_state;
736 * nand_get_device - [GENERIC] Get chip for selected access
737 * @mtd: MTD device structure
738 * @new_state: the state which is requested
740 * Get the device and lock it for exclusive access
742 static int
743 nand_get_device(struct mtd_info *mtd, int new_state)
745 struct nand_chip *chip = mtd->priv;
746 spinlock_t *lock = &chip->controller->lock;
747 wait_queue_head_t *wq = &chip->controller->wq;
748 DECLARE_WAITQUEUE(wait, current);
749 retry:
750 spin_lock(lock);
752 /* Hardware controller shared among independent devices */
753 if (!chip->controller->active)
754 chip->controller->active = chip;
756 if (chip->controller->active == chip && chip->state == FL_READY) {
757 chip->state = new_state;
758 spin_unlock(lock);
759 return 0;
761 if (new_state == FL_PM_SUSPENDED) {
762 if (chip->controller->active->state == FL_PM_SUSPENDED) {
763 chip->state = FL_PM_SUSPENDED;
764 spin_unlock(lock);
765 return 0;
768 set_current_state(TASK_UNINTERRUPTIBLE);
769 add_wait_queue(wq, &wait);
770 spin_unlock(lock);
771 schedule();
772 remove_wait_queue(wq, &wait);
773 goto retry;
777 * panic_nand_wait - [GENERIC] wait until the command is done
778 * @mtd: MTD device structure
779 * @chip: NAND chip structure
780 * @timeo: timeout
782 * Wait for command done. This is a helper function for nand_wait used when
783 * we are in interrupt context. May happen when in panic and trying to write
784 * an oops through mtdoops.
786 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
787 unsigned long timeo)
789 int i;
790 for (i = 0; i < timeo; i++) {
791 if (chip->dev_ready) {
792 if (chip->dev_ready(mtd))
793 break;
794 } else {
795 if (chip->read_byte(mtd) & NAND_STATUS_READY)
796 break;
798 mdelay(1);
803 * nand_wait - [DEFAULT] wait until the command is done
804 * @mtd: MTD device structure
805 * @chip: NAND chip structure
807 * Wait for command done. This applies to erase and program only. Erase can
808 * take up to 400ms and program up to 20ms according to general NAND and
809 * SmartMedia specs.
811 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
814 int status, state = chip->state;
815 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
817 led_trigger_event(nand_led_trigger, LED_FULL);
820 * Apply this short delay always to ensure that we do wait tWB in any
821 * case on any machine.
823 ndelay(100);
825 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
827 if (in_interrupt() || oops_in_progress)
828 panic_nand_wait(mtd, chip, timeo);
829 else {
830 timeo = jiffies + msecs_to_jiffies(timeo);
831 while (time_before(jiffies, timeo)) {
832 if (chip->dev_ready) {
833 if (chip->dev_ready(mtd))
834 break;
835 } else {
836 if (chip->read_byte(mtd) & NAND_STATUS_READY)
837 break;
839 cond_resched();
842 led_trigger_event(nand_led_trigger, LED_OFF);
844 status = (int)chip->read_byte(mtd);
845 /* This can happen if in case of timeout or buggy dev_ready */
846 WARN_ON(!(status & NAND_STATUS_READY));
847 return status;
851 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
852 * @mtd: mtd info
853 * @ofs: offset to start unlock from
854 * @len: length to unlock
855 * @invert: when = 0, unlock the range of blocks within the lower and
856 * upper boundary address
857 * when = 1, unlock the range of blocks outside the boundaries
858 * of the lower and upper boundary address
860 * Returs unlock status.
862 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
863 uint64_t len, int invert)
865 int ret = 0;
866 int status, page;
867 struct nand_chip *chip = mtd->priv;
869 /* Submit address of first page to unlock */
870 page = ofs >> chip->page_shift;
871 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
873 /* Submit address of last page to unlock */
874 page = (ofs + len) >> chip->page_shift;
875 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
876 (page | invert) & chip->pagemask);
878 /* Call wait ready function */
879 status = chip->waitfunc(mtd, chip);
880 /* See if device thinks it succeeded */
881 if (status & NAND_STATUS_FAIL) {
882 pr_debug("%s: error status = 0x%08x\n",
883 __func__, status);
884 ret = -EIO;
887 return ret;
891 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
892 * @mtd: mtd info
893 * @ofs: offset to start unlock from
894 * @len: length to unlock
896 * Returns unlock status.
898 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
900 int ret = 0;
901 int chipnr;
902 struct nand_chip *chip = mtd->priv;
904 pr_debug("%s: start = 0x%012llx, len = %llu\n",
905 __func__, (unsigned long long)ofs, len);
907 if (check_offs_len(mtd, ofs, len))
908 ret = -EINVAL;
910 /* Align to last block address if size addresses end of the device */
911 if (ofs + len == mtd->size)
912 len -= mtd->erasesize;
914 nand_get_device(mtd, FL_UNLOCKING);
916 /* Shift to get chip number */
917 chipnr = ofs >> chip->chip_shift;
919 chip->select_chip(mtd, chipnr);
921 /* Check, if it is write protected */
922 if (nand_check_wp(mtd)) {
923 pr_debug("%s: device is write protected!\n",
924 __func__);
925 ret = -EIO;
926 goto out;
929 ret = __nand_unlock(mtd, ofs, len, 0);
931 out:
932 chip->select_chip(mtd, -1);
933 nand_release_device(mtd);
935 return ret;
937 EXPORT_SYMBOL(nand_unlock);
940 * nand_lock - [REPLACEABLE] locks all blocks present in the device
941 * @mtd: mtd info
942 * @ofs: offset to start unlock from
943 * @len: length to unlock
945 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
946 * have this feature, but it allows only to lock all blocks, not for specified
947 * range for block. Implementing 'lock' feature by making use of 'unlock', for
948 * now.
950 * Returns lock status.
952 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
954 int ret = 0;
955 int chipnr, status, page;
956 struct nand_chip *chip = mtd->priv;
958 pr_debug("%s: start = 0x%012llx, len = %llu\n",
959 __func__, (unsigned long long)ofs, len);
961 if (check_offs_len(mtd, ofs, len))
962 ret = -EINVAL;
964 nand_get_device(mtd, FL_LOCKING);
966 /* Shift to get chip number */
967 chipnr = ofs >> chip->chip_shift;
969 chip->select_chip(mtd, chipnr);
971 /* Check, if it is write protected */
972 if (nand_check_wp(mtd)) {
973 pr_debug("%s: device is write protected!\n",
974 __func__);
975 status = MTD_ERASE_FAILED;
976 ret = -EIO;
977 goto out;
980 /* Submit address of first page to lock */
981 page = ofs >> chip->page_shift;
982 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
984 /* Call wait ready function */
985 status = chip->waitfunc(mtd, chip);
986 /* See if device thinks it succeeded */
987 if (status & NAND_STATUS_FAIL) {
988 pr_debug("%s: error status = 0x%08x\n",
989 __func__, status);
990 ret = -EIO;
991 goto out;
994 ret = __nand_unlock(mtd, ofs, len, 0x1);
996 out:
997 chip->select_chip(mtd, -1);
998 nand_release_device(mtd);
1000 return ret;
1002 EXPORT_SYMBOL(nand_lock);
1005 * nand_read_page_raw - [INTERN] read raw page data without ecc
1006 * @mtd: mtd info structure
1007 * @chip: nand chip info structure
1008 * @buf: buffer to store read data
1009 * @oob_required: caller requires OOB data read to chip->oob_poi
1010 * @page: page number to read
1012 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1014 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1015 uint8_t *buf, int oob_required, int page)
1017 chip->read_buf(mtd, buf, mtd->writesize);
1018 if (oob_required)
1019 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1020 return 0;
1024 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1025 * @mtd: mtd info structure
1026 * @chip: nand chip info structure
1027 * @buf: buffer to store read data
1028 * @oob_required: caller requires OOB data read to chip->oob_poi
1029 * @page: page number to read
1031 * We need a special oob layout and handling even when OOB isn't used.
1033 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1034 struct nand_chip *chip, uint8_t *buf,
1035 int oob_required, int page)
1037 int eccsize = chip->ecc.size;
1038 int eccbytes = chip->ecc.bytes;
1039 uint8_t *oob = chip->oob_poi;
1040 int steps, size;
1042 for (steps = chip->ecc.steps; steps > 0; steps--) {
1043 chip->read_buf(mtd, buf, eccsize);
1044 buf += eccsize;
1046 if (chip->ecc.prepad) {
1047 chip->read_buf(mtd, oob, chip->ecc.prepad);
1048 oob += chip->ecc.prepad;
1051 chip->read_buf(mtd, oob, eccbytes);
1052 oob += eccbytes;
1054 if (chip->ecc.postpad) {
1055 chip->read_buf(mtd, oob, chip->ecc.postpad);
1056 oob += chip->ecc.postpad;
1060 size = mtd->oobsize - (oob - chip->oob_poi);
1061 if (size)
1062 chip->read_buf(mtd, oob, size);
1064 return 0;
1068 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1069 * @mtd: mtd info structure
1070 * @chip: nand chip info structure
1071 * @buf: buffer to store read data
1072 * @oob_required: caller requires OOB data read to chip->oob_poi
1073 * @page: page number to read
1075 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1076 uint8_t *buf, int oob_required, int page)
1078 int i, eccsize = chip->ecc.size;
1079 int eccbytes = chip->ecc.bytes;
1080 int eccsteps = chip->ecc.steps;
1081 uint8_t *p = buf;
1082 uint8_t *ecc_calc = chip->buffers->ecccalc;
1083 uint8_t *ecc_code = chip->buffers->ecccode;
1084 uint32_t *eccpos = chip->ecc.layout->eccpos;
1085 unsigned int max_bitflips = 0;
1087 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1089 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1090 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1092 for (i = 0; i < chip->ecc.total; i++)
1093 ecc_code[i] = chip->oob_poi[eccpos[i]];
1095 eccsteps = chip->ecc.steps;
1096 p = buf;
1098 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1099 int stat;
1101 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1102 if (stat < 0) {
1103 mtd->ecc_stats.failed++;
1104 } else {
1105 mtd->ecc_stats.corrected += stat;
1106 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1109 return max_bitflips;
1113 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1114 * @mtd: mtd info structure
1115 * @chip: nand chip info structure
1116 * @data_offs: offset of requested data within the page
1117 * @readlen: data length
1118 * @bufpoi: buffer to store read data
1120 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1121 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1123 int start_step, end_step, num_steps;
1124 uint32_t *eccpos = chip->ecc.layout->eccpos;
1125 uint8_t *p;
1126 int data_col_addr, i, gaps = 0;
1127 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1128 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1129 int index = 0;
1130 unsigned int max_bitflips = 0;
1132 /* Column address within the page aligned to ECC size (256bytes) */
1133 start_step = data_offs / chip->ecc.size;
1134 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1135 num_steps = end_step - start_step + 1;
1137 /* Data size aligned to ECC ecc.size */
1138 datafrag_len = num_steps * chip->ecc.size;
1139 eccfrag_len = num_steps * chip->ecc.bytes;
1141 data_col_addr = start_step * chip->ecc.size;
1142 /* If we read not a page aligned data */
1143 if (data_col_addr != 0)
1144 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1146 p = bufpoi + data_col_addr;
1147 chip->read_buf(mtd, p, datafrag_len);
1149 /* Calculate ECC */
1150 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1151 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1154 * The performance is faster if we position offsets according to
1155 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1157 for (i = 0; i < eccfrag_len - 1; i++) {
1158 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1159 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1160 gaps = 1;
1161 break;
1164 if (gaps) {
1165 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1166 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1167 } else {
1169 * Send the command to read the particular ECC bytes take care
1170 * about buswidth alignment in read_buf.
1172 index = start_step * chip->ecc.bytes;
1174 aligned_pos = eccpos[index] & ~(busw - 1);
1175 aligned_len = eccfrag_len;
1176 if (eccpos[index] & (busw - 1))
1177 aligned_len++;
1178 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1179 aligned_len++;
1181 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1182 mtd->writesize + aligned_pos, -1);
1183 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1186 for (i = 0; i < eccfrag_len; i++)
1187 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1189 p = bufpoi + data_col_addr;
1190 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1191 int stat;
1193 stat = chip->ecc.correct(mtd, p,
1194 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1195 if (stat < 0) {
1196 mtd->ecc_stats.failed++;
1197 } else {
1198 mtd->ecc_stats.corrected += stat;
1199 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1202 return max_bitflips;
1206 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1207 * @mtd: mtd info structure
1208 * @chip: nand chip info structure
1209 * @buf: buffer to store read data
1210 * @oob_required: caller requires OOB data read to chip->oob_poi
1211 * @page: page number to read
1213 * Not for syndrome calculating ECC controllers which need a special oob layout.
1215 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1216 uint8_t *buf, int oob_required, int page)
1218 int i, eccsize = chip->ecc.size;
1219 int eccbytes = chip->ecc.bytes;
1220 int eccsteps = chip->ecc.steps;
1221 uint8_t *p = buf;
1222 uint8_t *ecc_calc = chip->buffers->ecccalc;
1223 uint8_t *ecc_code = chip->buffers->ecccode;
1224 uint32_t *eccpos = chip->ecc.layout->eccpos;
1225 unsigned int max_bitflips = 0;
1227 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1228 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1229 chip->read_buf(mtd, p, eccsize);
1230 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1232 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1234 for (i = 0; i < chip->ecc.total; i++)
1235 ecc_code[i] = chip->oob_poi[eccpos[i]];
1237 eccsteps = chip->ecc.steps;
1238 p = buf;
1240 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1241 int stat;
1243 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1244 if (stat < 0) {
1245 mtd->ecc_stats.failed++;
1246 } else {
1247 mtd->ecc_stats.corrected += stat;
1248 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1251 return max_bitflips;
1255 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1256 * @mtd: mtd info structure
1257 * @chip: nand chip info structure
1258 * @buf: buffer to store read data
1259 * @oob_required: caller requires OOB data read to chip->oob_poi
1260 * @page: page number to read
1262 * Hardware ECC for large page chips, require OOB to be read first. For this
1263 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1264 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1265 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1266 * the data area, by overwriting the NAND manufacturer bad block markings.
1268 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1269 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1271 int i, eccsize = chip->ecc.size;
1272 int eccbytes = chip->ecc.bytes;
1273 int eccsteps = chip->ecc.steps;
1274 uint8_t *p = buf;
1275 uint8_t *ecc_code = chip->buffers->ecccode;
1276 uint32_t *eccpos = chip->ecc.layout->eccpos;
1277 uint8_t *ecc_calc = chip->buffers->ecccalc;
1278 unsigned int max_bitflips = 0;
1280 /* Read the OOB area first */
1281 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1282 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1283 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1285 for (i = 0; i < chip->ecc.total; i++)
1286 ecc_code[i] = chip->oob_poi[eccpos[i]];
1288 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1289 int stat;
1291 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1292 chip->read_buf(mtd, p, eccsize);
1293 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1295 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1296 if (stat < 0) {
1297 mtd->ecc_stats.failed++;
1298 } else {
1299 mtd->ecc_stats.corrected += stat;
1300 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1303 return max_bitflips;
1307 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1308 * @mtd: mtd info structure
1309 * @chip: nand chip info structure
1310 * @buf: buffer to store read data
1311 * @oob_required: caller requires OOB data read to chip->oob_poi
1312 * @page: page number to read
1314 * The hw generator calculates the error syndrome automatically. Therefore we
1315 * need a special oob layout and handling.
1317 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1318 uint8_t *buf, int oob_required, int page)
1320 int i, eccsize = chip->ecc.size;
1321 int eccbytes = chip->ecc.bytes;
1322 int eccsteps = chip->ecc.steps;
1323 uint8_t *p = buf;
1324 uint8_t *oob = chip->oob_poi;
1325 unsigned int max_bitflips = 0;
1327 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1328 int stat;
1330 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1331 chip->read_buf(mtd, p, eccsize);
1333 if (chip->ecc.prepad) {
1334 chip->read_buf(mtd, oob, chip->ecc.prepad);
1335 oob += chip->ecc.prepad;
1338 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1339 chip->read_buf(mtd, oob, eccbytes);
1340 stat = chip->ecc.correct(mtd, p, oob, NULL);
1342 if (stat < 0) {
1343 mtd->ecc_stats.failed++;
1344 } else {
1345 mtd->ecc_stats.corrected += stat;
1346 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1349 oob += eccbytes;
1351 if (chip->ecc.postpad) {
1352 chip->read_buf(mtd, oob, chip->ecc.postpad);
1353 oob += chip->ecc.postpad;
1357 /* Calculate remaining oob bytes */
1358 i = mtd->oobsize - (oob - chip->oob_poi);
1359 if (i)
1360 chip->read_buf(mtd, oob, i);
1362 return max_bitflips;
1366 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1367 * @chip: nand chip structure
1368 * @oob: oob destination address
1369 * @ops: oob ops structure
1370 * @len: size of oob to transfer
1372 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1373 struct mtd_oob_ops *ops, size_t len)
1375 switch (ops->mode) {
1377 case MTD_OPS_PLACE_OOB:
1378 case MTD_OPS_RAW:
1379 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1380 return oob + len;
1382 case MTD_OPS_AUTO_OOB: {
1383 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1384 uint32_t boffs = 0, roffs = ops->ooboffs;
1385 size_t bytes = 0;
1387 for (; free->length && len; free++, len -= bytes) {
1388 /* Read request not from offset 0? */
1389 if (unlikely(roffs)) {
1390 if (roffs >= free->length) {
1391 roffs -= free->length;
1392 continue;
1394 boffs = free->offset + roffs;
1395 bytes = min_t(size_t, len,
1396 (free->length - roffs));
1397 roffs = 0;
1398 } else {
1399 bytes = min_t(size_t, len, free->length);
1400 boffs = free->offset;
1402 memcpy(oob, chip->oob_poi + boffs, bytes);
1403 oob += bytes;
1405 return oob;
1407 default:
1408 BUG();
1410 return NULL;
1414 * nand_do_read_ops - [INTERN] Read data with ECC
1415 * @mtd: MTD device structure
1416 * @from: offset to read from
1417 * @ops: oob ops structure
1419 * Internal function. Called with chip held.
1421 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1422 struct mtd_oob_ops *ops)
1424 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1425 struct nand_chip *chip = mtd->priv;
1426 struct mtd_ecc_stats stats;
1427 int ret = 0;
1428 uint32_t readlen = ops->len;
1429 uint32_t oobreadlen = ops->ooblen;
1430 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1431 mtd->oobavail : mtd->oobsize;
1433 uint8_t *bufpoi, *oob, *buf;
1434 unsigned int max_bitflips = 0;
1436 stats = mtd->ecc_stats;
1438 chipnr = (int)(from >> chip->chip_shift);
1439 chip->select_chip(mtd, chipnr);
1441 realpage = (int)(from >> chip->page_shift);
1442 page = realpage & chip->pagemask;
1444 col = (int)(from & (mtd->writesize - 1));
1446 buf = ops->datbuf;
1447 oob = ops->oobbuf;
1448 oob_required = oob ? 1 : 0;
1450 while (1) {
1451 bytes = min(mtd->writesize - col, readlen);
1452 aligned = (bytes == mtd->writesize);
1454 /* Is the current page in the buffer? */
1455 if (realpage != chip->pagebuf || oob) {
1456 bufpoi = aligned ? buf : chip->buffers->databuf;
1458 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1461 * Now read the page into the buffer. Absent an error,
1462 * the read methods return max bitflips per ecc step.
1464 if (unlikely(ops->mode == MTD_OPS_RAW))
1465 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1466 oob_required,
1467 page);
1468 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1469 !oob)
1470 ret = chip->ecc.read_subpage(mtd, chip,
1471 col, bytes, bufpoi);
1472 else
1473 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1474 oob_required, page);
1475 if (ret < 0) {
1476 if (!aligned)
1477 /* Invalidate page cache */
1478 chip->pagebuf = -1;
1479 break;
1482 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1484 /* Transfer not aligned data */
1485 if (!aligned) {
1486 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1487 !(mtd->ecc_stats.failed - stats.failed) &&
1488 (ops->mode != MTD_OPS_RAW)) {
1489 chip->pagebuf = realpage;
1490 chip->pagebuf_bitflips = ret;
1491 } else {
1492 /* Invalidate page cache */
1493 chip->pagebuf = -1;
1495 memcpy(buf, chip->buffers->databuf + col, bytes);
1498 buf += bytes;
1500 if (unlikely(oob)) {
1501 int toread = min(oobreadlen, max_oobsize);
1503 if (toread) {
1504 oob = nand_transfer_oob(chip,
1505 oob, ops, toread);
1506 oobreadlen -= toread;
1510 if (chip->options & NAND_NEED_READRDY) {
1511 /* Apply delay or wait for ready/busy pin */
1512 if (!chip->dev_ready)
1513 udelay(chip->chip_delay);
1514 else
1515 nand_wait_ready(mtd);
1517 } else {
1518 memcpy(buf, chip->buffers->databuf + col, bytes);
1519 buf += bytes;
1520 max_bitflips = max_t(unsigned int, max_bitflips,
1521 chip->pagebuf_bitflips);
1524 readlen -= bytes;
1526 if (!readlen)
1527 break;
1529 /* For subsequent reads align to page boundary */
1530 col = 0;
1531 /* Increment page address */
1532 realpage++;
1534 page = realpage & chip->pagemask;
1535 /* Check, if we cross a chip boundary */
1536 if (!page) {
1537 chipnr++;
1538 chip->select_chip(mtd, -1);
1539 chip->select_chip(mtd, chipnr);
1542 chip->select_chip(mtd, -1);
1544 ops->retlen = ops->len - (size_t) readlen;
1545 if (oob)
1546 ops->oobretlen = ops->ooblen - oobreadlen;
1548 if (ret < 0)
1549 return ret;
1551 if (mtd->ecc_stats.failed - stats.failed)
1552 return -EBADMSG;
1554 return max_bitflips;
1558 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1559 * @mtd: MTD device structure
1560 * @from: offset to read from
1561 * @len: number of bytes to read
1562 * @retlen: pointer to variable to store the number of read bytes
1563 * @buf: the databuffer to put data
1565 * Get hold of the chip and call nand_do_read.
1567 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1568 size_t *retlen, uint8_t *buf)
1570 struct mtd_oob_ops ops;
1571 int ret;
1573 nand_get_device(mtd, FL_READING);
1574 ops.len = len;
1575 ops.datbuf = buf;
1576 ops.oobbuf = NULL;
1577 ops.mode = MTD_OPS_PLACE_OOB;
1578 ret = nand_do_read_ops(mtd, from, &ops);
1579 *retlen = ops.retlen;
1580 nand_release_device(mtd);
1581 return ret;
1585 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1586 * @mtd: mtd info structure
1587 * @chip: nand chip info structure
1588 * @page: page number to read
1590 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1591 int page)
1593 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1594 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1595 return 0;
1599 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1600 * with syndromes
1601 * @mtd: mtd info structure
1602 * @chip: nand chip info structure
1603 * @page: page number to read
1605 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1606 int page)
1608 uint8_t *buf = chip->oob_poi;
1609 int length = mtd->oobsize;
1610 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1611 int eccsize = chip->ecc.size;
1612 uint8_t *bufpoi = buf;
1613 int i, toread, sndrnd = 0, pos;
1615 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1616 for (i = 0; i < chip->ecc.steps; i++) {
1617 if (sndrnd) {
1618 pos = eccsize + i * (eccsize + chunk);
1619 if (mtd->writesize > 512)
1620 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1621 else
1622 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1623 } else
1624 sndrnd = 1;
1625 toread = min_t(int, length, chunk);
1626 chip->read_buf(mtd, bufpoi, toread);
1627 bufpoi += toread;
1628 length -= toread;
1630 if (length > 0)
1631 chip->read_buf(mtd, bufpoi, length);
1633 return 0;
1637 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1638 * @mtd: mtd info structure
1639 * @chip: nand chip info structure
1640 * @page: page number to write
1642 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1643 int page)
1645 int status = 0;
1646 const uint8_t *buf = chip->oob_poi;
1647 int length = mtd->oobsize;
1649 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1650 chip->write_buf(mtd, buf, length);
1651 /* Send command to program the OOB data */
1652 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1654 status = chip->waitfunc(mtd, chip);
1656 return status & NAND_STATUS_FAIL ? -EIO : 0;
1660 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1661 * with syndrome - only for large page flash
1662 * @mtd: mtd info structure
1663 * @chip: nand chip info structure
1664 * @page: page number to write
1666 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1667 struct nand_chip *chip, int page)
1669 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1670 int eccsize = chip->ecc.size, length = mtd->oobsize;
1671 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1672 const uint8_t *bufpoi = chip->oob_poi;
1675 * data-ecc-data-ecc ... ecc-oob
1676 * or
1677 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1679 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1680 pos = steps * (eccsize + chunk);
1681 steps = 0;
1682 } else
1683 pos = eccsize;
1685 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1686 for (i = 0; i < steps; i++) {
1687 if (sndcmd) {
1688 if (mtd->writesize <= 512) {
1689 uint32_t fill = 0xFFFFFFFF;
1691 len = eccsize;
1692 while (len > 0) {
1693 int num = min_t(int, len, 4);
1694 chip->write_buf(mtd, (uint8_t *)&fill,
1695 num);
1696 len -= num;
1698 } else {
1699 pos = eccsize + i * (eccsize + chunk);
1700 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1702 } else
1703 sndcmd = 1;
1704 len = min_t(int, length, chunk);
1705 chip->write_buf(mtd, bufpoi, len);
1706 bufpoi += len;
1707 length -= len;
1709 if (length > 0)
1710 chip->write_buf(mtd, bufpoi, length);
1712 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1713 status = chip->waitfunc(mtd, chip);
1715 return status & NAND_STATUS_FAIL ? -EIO : 0;
1719 * nand_do_read_oob - [INTERN] NAND read out-of-band
1720 * @mtd: MTD device structure
1721 * @from: offset to read from
1722 * @ops: oob operations description structure
1724 * NAND read out-of-band data from the spare area.
1726 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1727 struct mtd_oob_ops *ops)
1729 int page, realpage, chipnr;
1730 struct nand_chip *chip = mtd->priv;
1731 struct mtd_ecc_stats stats;
1732 int readlen = ops->ooblen;
1733 int len;
1734 uint8_t *buf = ops->oobbuf;
1735 int ret = 0;
1737 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1738 __func__, (unsigned long long)from, readlen);
1740 stats = mtd->ecc_stats;
1742 if (ops->mode == MTD_OPS_AUTO_OOB)
1743 len = chip->ecc.layout->oobavail;
1744 else
1745 len = mtd->oobsize;
1747 if (unlikely(ops->ooboffs >= len)) {
1748 pr_debug("%s: attempt to start read outside oob\n",
1749 __func__);
1750 return -EINVAL;
1753 /* Do not allow reads past end of device */
1754 if (unlikely(from >= mtd->size ||
1755 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1756 (from >> chip->page_shift)) * len)) {
1757 pr_debug("%s: attempt to read beyond end of device\n",
1758 __func__);
1759 return -EINVAL;
1762 chipnr = (int)(from >> chip->chip_shift);
1763 chip->select_chip(mtd, chipnr);
1765 /* Shift to get page */
1766 realpage = (int)(from >> chip->page_shift);
1767 page = realpage & chip->pagemask;
1769 while (1) {
1770 if (ops->mode == MTD_OPS_RAW)
1771 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1772 else
1773 ret = chip->ecc.read_oob(mtd, chip, page);
1775 if (ret < 0)
1776 break;
1778 len = min(len, readlen);
1779 buf = nand_transfer_oob(chip, buf, ops, len);
1781 if (chip->options & NAND_NEED_READRDY) {
1782 /* Apply delay or wait for ready/busy pin */
1783 if (!chip->dev_ready)
1784 udelay(chip->chip_delay);
1785 else
1786 nand_wait_ready(mtd);
1789 readlen -= len;
1790 if (!readlen)
1791 break;
1793 /* Increment page address */
1794 realpage++;
1796 page = realpage & chip->pagemask;
1797 /* Check, if we cross a chip boundary */
1798 if (!page) {
1799 chipnr++;
1800 chip->select_chip(mtd, -1);
1801 chip->select_chip(mtd, chipnr);
1804 chip->select_chip(mtd, -1);
1806 ops->oobretlen = ops->ooblen - readlen;
1808 if (ret < 0)
1809 return ret;
1811 if (mtd->ecc_stats.failed - stats.failed)
1812 return -EBADMSG;
1814 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1818 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1819 * @mtd: MTD device structure
1820 * @from: offset to read from
1821 * @ops: oob operation description structure
1823 * NAND read data and/or out-of-band data.
1825 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1826 struct mtd_oob_ops *ops)
1828 int ret = -ENOTSUPP;
1830 ops->retlen = 0;
1832 /* Do not allow reads past end of device */
1833 if (ops->datbuf && (from + ops->len) > mtd->size) {
1834 pr_debug("%s: attempt to read beyond end of device\n",
1835 __func__);
1836 return -EINVAL;
1839 nand_get_device(mtd, FL_READING);
1841 switch (ops->mode) {
1842 case MTD_OPS_PLACE_OOB:
1843 case MTD_OPS_AUTO_OOB:
1844 case MTD_OPS_RAW:
1845 break;
1847 default:
1848 goto out;
1851 if (!ops->datbuf)
1852 ret = nand_do_read_oob(mtd, from, ops);
1853 else
1854 ret = nand_do_read_ops(mtd, from, ops);
1856 out:
1857 nand_release_device(mtd);
1858 return ret;
1863 * nand_write_page_raw - [INTERN] raw page write function
1864 * @mtd: mtd info structure
1865 * @chip: nand chip info structure
1866 * @buf: data buffer
1867 * @oob_required: must write chip->oob_poi to OOB
1869 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1871 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1872 const uint8_t *buf, int oob_required)
1874 chip->write_buf(mtd, buf, mtd->writesize);
1875 if (oob_required)
1876 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1878 return 0;
1882 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1883 * @mtd: mtd info structure
1884 * @chip: nand chip info structure
1885 * @buf: data buffer
1886 * @oob_required: must write chip->oob_poi to OOB
1888 * We need a special oob layout and handling even when ECC isn't checked.
1890 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1891 struct nand_chip *chip,
1892 const uint8_t *buf, int oob_required)
1894 int eccsize = chip->ecc.size;
1895 int eccbytes = chip->ecc.bytes;
1896 uint8_t *oob = chip->oob_poi;
1897 int steps, size;
1899 for (steps = chip->ecc.steps; steps > 0; steps--) {
1900 chip->write_buf(mtd, buf, eccsize);
1901 buf += eccsize;
1903 if (chip->ecc.prepad) {
1904 chip->write_buf(mtd, oob, chip->ecc.prepad);
1905 oob += chip->ecc.prepad;
1908 chip->read_buf(mtd, oob, eccbytes);
1909 oob += eccbytes;
1911 if (chip->ecc.postpad) {
1912 chip->write_buf(mtd, oob, chip->ecc.postpad);
1913 oob += chip->ecc.postpad;
1917 size = mtd->oobsize - (oob - chip->oob_poi);
1918 if (size)
1919 chip->write_buf(mtd, oob, size);
1921 return 0;
1924 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1925 * @mtd: mtd info structure
1926 * @chip: nand chip info structure
1927 * @buf: data buffer
1928 * @oob_required: must write chip->oob_poi to OOB
1930 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1931 const uint8_t *buf, int oob_required)
1933 int i, eccsize = chip->ecc.size;
1934 int eccbytes = chip->ecc.bytes;
1935 int eccsteps = chip->ecc.steps;
1936 uint8_t *ecc_calc = chip->buffers->ecccalc;
1937 const uint8_t *p = buf;
1938 uint32_t *eccpos = chip->ecc.layout->eccpos;
1940 /* Software ECC calculation */
1941 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1942 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1944 for (i = 0; i < chip->ecc.total; i++)
1945 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1947 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1951 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1952 * @mtd: mtd info structure
1953 * @chip: nand chip info structure
1954 * @buf: data buffer
1955 * @oob_required: must write chip->oob_poi to OOB
1957 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1958 const uint8_t *buf, int oob_required)
1960 int i, eccsize = chip->ecc.size;
1961 int eccbytes = chip->ecc.bytes;
1962 int eccsteps = chip->ecc.steps;
1963 uint8_t *ecc_calc = chip->buffers->ecccalc;
1964 const uint8_t *p = buf;
1965 uint32_t *eccpos = chip->ecc.layout->eccpos;
1967 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1968 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1969 chip->write_buf(mtd, p, eccsize);
1970 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1973 for (i = 0; i < chip->ecc.total; i++)
1974 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1976 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1978 return 0;
1983 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1984 * @mtd: mtd info structure
1985 * @chip: nand chip info structure
1986 * @column: column address of subpage within the page
1987 * @data_len: data length
1988 * @oob_required: must write chip->oob_poi to OOB
1990 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1991 struct nand_chip *chip, uint32_t offset,
1992 uint32_t data_len, const uint8_t *data_buf,
1993 int oob_required)
1995 uint8_t *oob_buf = chip->oob_poi;
1996 uint8_t *ecc_calc = chip->buffers->ecccalc;
1997 int ecc_size = chip->ecc.size;
1998 int ecc_bytes = chip->ecc.bytes;
1999 int ecc_steps = chip->ecc.steps;
2000 uint32_t *eccpos = chip->ecc.layout->eccpos;
2001 uint32_t start_step = offset / ecc_size;
2002 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2003 int oob_bytes = mtd->oobsize / ecc_steps;
2004 int step, i;
2006 for (step = 0; step < ecc_steps; step++) {
2007 /* configure controller for WRITE access */
2008 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2010 /* write data (untouched subpages already masked by 0xFF) */
2011 chip->write_buf(mtd, data_buf, ecc_size);
2013 /* mask ECC of un-touched subpages by padding 0xFF */
2014 if ((step < start_step) || (step > end_step))
2015 memset(ecc_calc, 0xff, ecc_bytes);
2016 else
2017 chip->ecc.calculate(mtd, data_buf, ecc_calc);
2019 /* mask OOB of un-touched subpages by padding 0xFF */
2020 /* if oob_required, preserve OOB metadata of written subpage */
2021 if (!oob_required || (step < start_step) || (step > end_step))
2022 memset(oob_buf, 0xff, oob_bytes);
2024 data_buf += ecc_size;
2025 ecc_calc += ecc_bytes;
2026 oob_buf += oob_bytes;
2029 /* copy calculated ECC for whole page to chip->buffer->oob */
2030 /* this include masked-value(0xFF) for unwritten subpages */
2031 ecc_calc = chip->buffers->ecccalc;
2032 for (i = 0; i < chip->ecc.total; i++)
2033 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2035 /* write OOB buffer to NAND device */
2036 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2038 return 0;
2043 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2044 * @mtd: mtd info structure
2045 * @chip: nand chip info structure
2046 * @buf: data buffer
2047 * @oob_required: must write chip->oob_poi to OOB
2049 * The hw generator calculates the error syndrome automatically. Therefore we
2050 * need a special oob layout and handling.
2052 static int nand_write_page_syndrome(struct mtd_info *mtd,
2053 struct nand_chip *chip,
2054 const uint8_t *buf, int oob_required)
2056 int i, eccsize = chip->ecc.size;
2057 int eccbytes = chip->ecc.bytes;
2058 int eccsteps = chip->ecc.steps;
2059 const uint8_t *p = buf;
2060 uint8_t *oob = chip->oob_poi;
2062 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2064 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2065 chip->write_buf(mtd, p, eccsize);
2067 if (chip->ecc.prepad) {
2068 chip->write_buf(mtd, oob, chip->ecc.prepad);
2069 oob += chip->ecc.prepad;
2072 chip->ecc.calculate(mtd, p, oob);
2073 chip->write_buf(mtd, oob, eccbytes);
2074 oob += eccbytes;
2076 if (chip->ecc.postpad) {
2077 chip->write_buf(mtd, oob, chip->ecc.postpad);
2078 oob += chip->ecc.postpad;
2082 /* Calculate remaining oob bytes */
2083 i = mtd->oobsize - (oob - chip->oob_poi);
2084 if (i)
2085 chip->write_buf(mtd, oob, i);
2087 return 0;
2091 * nand_write_page - [REPLACEABLE] write one page
2092 * @mtd: MTD device structure
2093 * @chip: NAND chip descriptor
2094 * @offset: address offset within the page
2095 * @data_len: length of actual data to be written
2096 * @buf: the data to write
2097 * @oob_required: must write chip->oob_poi to OOB
2098 * @page: page number to write
2099 * @cached: cached programming
2100 * @raw: use _raw version of write_page
2102 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2103 uint32_t offset, int data_len, const uint8_t *buf,
2104 int oob_required, int page, int cached, int raw)
2106 int status, subpage;
2108 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2109 chip->ecc.write_subpage)
2110 subpage = offset || (data_len < mtd->writesize);
2111 else
2112 subpage = 0;
2114 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2116 if (unlikely(raw))
2117 status = chip->ecc.write_page_raw(mtd, chip, buf,
2118 oob_required);
2119 else if (subpage)
2120 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2121 buf, oob_required);
2122 else
2123 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2125 if (status < 0)
2126 return status;
2129 * Cached progamming disabled for now. Not sure if it's worth the
2130 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2132 cached = 0;
2134 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2136 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2137 status = chip->waitfunc(mtd, chip);
2139 * See if operation failed and additional status checks are
2140 * available.
2142 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2143 status = chip->errstat(mtd, chip, FL_WRITING, status,
2144 page);
2146 if (status & NAND_STATUS_FAIL)
2147 return -EIO;
2148 } else {
2149 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2150 status = chip->waitfunc(mtd, chip);
2153 return 0;
2157 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2158 * @mtd: MTD device structure
2159 * @oob: oob data buffer
2160 * @len: oob data write length
2161 * @ops: oob ops structure
2163 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2164 struct mtd_oob_ops *ops)
2166 struct nand_chip *chip = mtd->priv;
2169 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2170 * data from a previous OOB read.
2172 memset(chip->oob_poi, 0xff, mtd->oobsize);
2174 switch (ops->mode) {
2176 case MTD_OPS_PLACE_OOB:
2177 case MTD_OPS_RAW:
2178 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2179 return oob + len;
2181 case MTD_OPS_AUTO_OOB: {
2182 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2183 uint32_t boffs = 0, woffs = ops->ooboffs;
2184 size_t bytes = 0;
2186 for (; free->length && len; free++, len -= bytes) {
2187 /* Write request not from offset 0? */
2188 if (unlikely(woffs)) {
2189 if (woffs >= free->length) {
2190 woffs -= free->length;
2191 continue;
2193 boffs = free->offset + woffs;
2194 bytes = min_t(size_t, len,
2195 (free->length - woffs));
2196 woffs = 0;
2197 } else {
2198 bytes = min_t(size_t, len, free->length);
2199 boffs = free->offset;
2201 memcpy(chip->oob_poi + boffs, oob, bytes);
2202 oob += bytes;
2204 return oob;
2206 default:
2207 BUG();
2209 return NULL;
2212 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2215 * nand_do_write_ops - [INTERN] NAND write with ECC
2216 * @mtd: MTD device structure
2217 * @to: offset to write to
2218 * @ops: oob operations description structure
2220 * NAND write with ECC.
2222 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2223 struct mtd_oob_ops *ops)
2225 int chipnr, realpage, page, blockmask, column;
2226 struct nand_chip *chip = mtd->priv;
2227 uint32_t writelen = ops->len;
2229 uint32_t oobwritelen = ops->ooblen;
2230 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2231 mtd->oobavail : mtd->oobsize;
2233 uint8_t *oob = ops->oobbuf;
2234 uint8_t *buf = ops->datbuf;
2235 int ret;
2236 int oob_required = oob ? 1 : 0;
2238 ops->retlen = 0;
2239 if (!writelen)
2240 return 0;
2242 /* Reject writes, which are not page aligned */
2243 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2244 pr_notice("%s: attempt to write non page aligned data\n",
2245 __func__);
2246 return -EINVAL;
2249 column = to & (mtd->writesize - 1);
2251 chipnr = (int)(to >> chip->chip_shift);
2252 chip->select_chip(mtd, chipnr);
2254 /* Check, if it is write protected */
2255 if (nand_check_wp(mtd)) {
2256 ret = -EIO;
2257 goto err_out;
2260 realpage = (int)(to >> chip->page_shift);
2261 page = realpage & chip->pagemask;
2262 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2264 /* Invalidate the page cache, when we write to the cached page */
2265 if (to <= (chip->pagebuf << chip->page_shift) &&
2266 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2267 chip->pagebuf = -1;
2269 /* Don't allow multipage oob writes with offset */
2270 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2271 ret = -EINVAL;
2272 goto err_out;
2275 while (1) {
2276 int bytes = mtd->writesize;
2277 int cached = writelen > bytes && page != blockmask;
2278 uint8_t *wbuf = buf;
2280 /* Partial page write? */
2281 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2282 cached = 0;
2283 bytes = min_t(int, bytes - column, (int) writelen);
2284 chip->pagebuf = -1;
2285 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2286 memcpy(&chip->buffers->databuf[column], buf, bytes);
2287 wbuf = chip->buffers->databuf;
2290 if (unlikely(oob)) {
2291 size_t len = min(oobwritelen, oobmaxlen);
2292 oob = nand_fill_oob(mtd, oob, len, ops);
2293 oobwritelen -= len;
2294 } else {
2295 /* We still need to erase leftover OOB data */
2296 memset(chip->oob_poi, 0xff, mtd->oobsize);
2298 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2299 oob_required, page, cached,
2300 (ops->mode == MTD_OPS_RAW));
2301 if (ret)
2302 break;
2304 writelen -= bytes;
2305 if (!writelen)
2306 break;
2308 column = 0;
2309 buf += bytes;
2310 realpage++;
2312 page = realpage & chip->pagemask;
2313 /* Check, if we cross a chip boundary */
2314 if (!page) {
2315 chipnr++;
2316 chip->select_chip(mtd, -1);
2317 chip->select_chip(mtd, chipnr);
2321 ops->retlen = ops->len - writelen;
2322 if (unlikely(oob))
2323 ops->oobretlen = ops->ooblen;
2325 err_out:
2326 chip->select_chip(mtd, -1);
2327 return ret;
2331 * panic_nand_write - [MTD Interface] NAND write with ECC
2332 * @mtd: MTD device structure
2333 * @to: offset to write to
2334 * @len: number of bytes to write
2335 * @retlen: pointer to variable to store the number of written bytes
2336 * @buf: the data to write
2338 * NAND write with ECC. Used when performing writes in interrupt context, this
2339 * may for example be called by mtdoops when writing an oops while in panic.
2341 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2342 size_t *retlen, const uint8_t *buf)
2344 struct nand_chip *chip = mtd->priv;
2345 struct mtd_oob_ops ops;
2346 int ret;
2348 /* Wait for the device to get ready */
2349 panic_nand_wait(mtd, chip, 400);
2351 /* Grab the device */
2352 panic_nand_get_device(chip, mtd, FL_WRITING);
2354 ops.len = len;
2355 ops.datbuf = (uint8_t *)buf;
2356 ops.oobbuf = NULL;
2357 ops.mode = MTD_OPS_PLACE_OOB;
2359 ret = nand_do_write_ops(mtd, to, &ops);
2361 *retlen = ops.retlen;
2362 return ret;
2366 * nand_write - [MTD Interface] NAND write with ECC
2367 * @mtd: MTD device structure
2368 * @to: offset to write to
2369 * @len: number of bytes to write
2370 * @retlen: pointer to variable to store the number of written bytes
2371 * @buf: the data to write
2373 * NAND write with ECC.
2375 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2376 size_t *retlen, const uint8_t *buf)
2378 struct mtd_oob_ops ops;
2379 int ret;
2381 nand_get_device(mtd, FL_WRITING);
2382 ops.len = len;
2383 ops.datbuf = (uint8_t *)buf;
2384 ops.oobbuf = NULL;
2385 ops.mode = MTD_OPS_PLACE_OOB;
2386 ret = nand_do_write_ops(mtd, to, &ops);
2387 *retlen = ops.retlen;
2388 nand_release_device(mtd);
2389 return ret;
2393 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2394 * @mtd: MTD device structure
2395 * @to: offset to write to
2396 * @ops: oob operation description structure
2398 * NAND write out-of-band.
2400 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2401 struct mtd_oob_ops *ops)
2403 int chipnr, page, status, len;
2404 struct nand_chip *chip = mtd->priv;
2406 pr_debug("%s: to = 0x%08x, len = %i\n",
2407 __func__, (unsigned int)to, (int)ops->ooblen);
2409 if (ops->mode == MTD_OPS_AUTO_OOB)
2410 len = chip->ecc.layout->oobavail;
2411 else
2412 len = mtd->oobsize;
2414 /* Do not allow write past end of page */
2415 if ((ops->ooboffs + ops->ooblen) > len) {
2416 pr_debug("%s: attempt to write past end of page\n",
2417 __func__);
2418 return -EINVAL;
2421 if (unlikely(ops->ooboffs >= len)) {
2422 pr_debug("%s: attempt to start write outside oob\n",
2423 __func__);
2424 return -EINVAL;
2427 /* Do not allow write past end of device */
2428 if (unlikely(to >= mtd->size ||
2429 ops->ooboffs + ops->ooblen >
2430 ((mtd->size >> chip->page_shift) -
2431 (to >> chip->page_shift)) * len)) {
2432 pr_debug("%s: attempt to write beyond end of device\n",
2433 __func__);
2434 return -EINVAL;
2437 chipnr = (int)(to >> chip->chip_shift);
2438 chip->select_chip(mtd, chipnr);
2440 /* Shift to get page */
2441 page = (int)(to >> chip->page_shift);
2444 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2445 * of my DiskOnChip 2000 test units) will clear the whole data page too
2446 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2447 * it in the doc2000 driver in August 1999. dwmw2.
2449 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2451 /* Check, if it is write protected */
2452 if (nand_check_wp(mtd)) {
2453 chip->select_chip(mtd, -1);
2454 return -EROFS;
2457 /* Invalidate the page cache, if we write to the cached page */
2458 if (page == chip->pagebuf)
2459 chip->pagebuf = -1;
2461 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2463 if (ops->mode == MTD_OPS_RAW)
2464 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2465 else
2466 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2468 chip->select_chip(mtd, -1);
2470 if (status)
2471 return status;
2473 ops->oobretlen = ops->ooblen;
2475 return 0;
2479 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2480 * @mtd: MTD device structure
2481 * @to: offset to write to
2482 * @ops: oob operation description structure
2484 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2485 struct mtd_oob_ops *ops)
2487 int ret = -ENOTSUPP;
2489 ops->retlen = 0;
2491 /* Do not allow writes past end of device */
2492 if (ops->datbuf && (to + ops->len) > mtd->size) {
2493 pr_debug("%s: attempt to write beyond end of device\n",
2494 __func__);
2495 return -EINVAL;
2498 nand_get_device(mtd, FL_WRITING);
2500 switch (ops->mode) {
2501 case MTD_OPS_PLACE_OOB:
2502 case MTD_OPS_AUTO_OOB:
2503 case MTD_OPS_RAW:
2504 break;
2506 default:
2507 goto out;
2510 if (!ops->datbuf)
2511 ret = nand_do_write_oob(mtd, to, ops);
2512 else
2513 ret = nand_do_write_ops(mtd, to, ops);
2515 out:
2516 nand_release_device(mtd);
2517 return ret;
2521 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2522 * @mtd: MTD device structure
2523 * @page: the page address of the block which will be erased
2525 * Standard erase command for NAND chips.
2527 static void single_erase_cmd(struct mtd_info *mtd, int page)
2529 struct nand_chip *chip = mtd->priv;
2530 /* Send commands to erase a block */
2531 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2532 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2536 * nand_erase - [MTD Interface] erase block(s)
2537 * @mtd: MTD device structure
2538 * @instr: erase instruction
2540 * Erase one ore more blocks.
2542 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2544 return nand_erase_nand(mtd, instr, 0);
2548 * nand_erase_nand - [INTERN] erase block(s)
2549 * @mtd: MTD device structure
2550 * @instr: erase instruction
2551 * @allowbbt: allow erasing the bbt area
2553 * Erase one ore more blocks.
2555 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2556 int allowbbt)
2558 int page, status, pages_per_block, ret, chipnr;
2559 struct nand_chip *chip = mtd->priv;
2560 loff_t len;
2562 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2563 __func__, (unsigned long long)instr->addr,
2564 (unsigned long long)instr->len);
2566 if (check_offs_len(mtd, instr->addr, instr->len))
2567 return -EINVAL;
2569 /* Grab the lock and see if the device is available */
2570 nand_get_device(mtd, FL_ERASING);
2572 /* Shift to get first page */
2573 page = (int)(instr->addr >> chip->page_shift);
2574 chipnr = (int)(instr->addr >> chip->chip_shift);
2576 /* Calculate pages in each block */
2577 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2579 /* Select the NAND device */
2580 chip->select_chip(mtd, chipnr);
2582 /* Check, if it is write protected */
2583 if (nand_check_wp(mtd)) {
2584 pr_debug("%s: device is write protected!\n",
2585 __func__);
2586 instr->state = MTD_ERASE_FAILED;
2587 goto erase_exit;
2590 /* Loop through the pages */
2591 len = instr->len;
2593 instr->state = MTD_ERASING;
2595 while (len) {
2596 /* Check if we have a bad block, we do not erase bad blocks! */
2597 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2598 chip->page_shift, 0, allowbbt)) {
2599 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2600 __func__, page);
2601 instr->state = MTD_ERASE_FAILED;
2602 goto erase_exit;
2606 * Invalidate the page cache, if we erase the block which
2607 * contains the current cached page.
2609 if (page <= chip->pagebuf && chip->pagebuf <
2610 (page + pages_per_block))
2611 chip->pagebuf = -1;
2613 chip->erase_cmd(mtd, page & chip->pagemask);
2615 status = chip->waitfunc(mtd, chip);
2618 * See if operation failed and additional status checks are
2619 * available
2621 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2622 status = chip->errstat(mtd, chip, FL_ERASING,
2623 status, page);
2625 /* See if block erase succeeded */
2626 if (status & NAND_STATUS_FAIL) {
2627 pr_debug("%s: failed erase, page 0x%08x\n",
2628 __func__, page);
2629 instr->state = MTD_ERASE_FAILED;
2630 instr->fail_addr =
2631 ((loff_t)page << chip->page_shift);
2632 goto erase_exit;
2635 /* Increment page address and decrement length */
2636 len -= (1 << chip->phys_erase_shift);
2637 page += pages_per_block;
2639 /* Check, if we cross a chip boundary */
2640 if (len && !(page & chip->pagemask)) {
2641 chipnr++;
2642 chip->select_chip(mtd, -1);
2643 chip->select_chip(mtd, chipnr);
2646 instr->state = MTD_ERASE_DONE;
2648 erase_exit:
2650 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2652 /* Deselect and wake up anyone waiting on the device */
2653 chip->select_chip(mtd, -1);
2654 nand_release_device(mtd);
2656 /* Do call back function */
2657 if (!ret)
2658 mtd_erase_callback(instr);
2660 /* Return more or less happy */
2661 return ret;
2665 * nand_sync - [MTD Interface] sync
2666 * @mtd: MTD device structure
2668 * Sync is actually a wait for chip ready function.
2670 static void nand_sync(struct mtd_info *mtd)
2672 pr_debug("%s: called\n", __func__);
2674 /* Grab the lock and see if the device is available */
2675 nand_get_device(mtd, FL_SYNCING);
2676 /* Release it and go back */
2677 nand_release_device(mtd);
2681 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2682 * @mtd: MTD device structure
2683 * @offs: offset relative to mtd start
2685 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2687 return nand_block_checkbad(mtd, offs, 1, 0);
2691 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2692 * @mtd: MTD device structure
2693 * @ofs: offset relative to mtd start
2695 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2697 struct nand_chip *chip = mtd->priv;
2698 int ret;
2700 ret = nand_block_isbad(mtd, ofs);
2701 if (ret) {
2702 /* If it was bad already, return success and do nothing */
2703 if (ret > 0)
2704 return 0;
2705 return ret;
2708 return chip->block_markbad(mtd, ofs);
2712 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2713 * @mtd: MTD device structure
2714 * @chip: nand chip info structure
2715 * @addr: feature address.
2716 * @subfeature_param: the subfeature parameters, a four bytes array.
2718 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2719 int addr, uint8_t *subfeature_param)
2721 int status;
2723 if (!chip->onfi_version)
2724 return -EINVAL;
2726 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2727 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2728 status = chip->waitfunc(mtd, chip);
2729 if (status & NAND_STATUS_FAIL)
2730 return -EIO;
2731 return 0;
2735 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2736 * @mtd: MTD device structure
2737 * @chip: nand chip info structure
2738 * @addr: feature address.
2739 * @subfeature_param: the subfeature parameters, a four bytes array.
2741 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2742 int addr, uint8_t *subfeature_param)
2744 if (!chip->onfi_version)
2745 return -EINVAL;
2747 /* clear the sub feature parameters */
2748 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2750 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2751 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2752 return 0;
2756 * nand_suspend - [MTD Interface] Suspend the NAND flash
2757 * @mtd: MTD device structure
2759 static int nand_suspend(struct mtd_info *mtd)
2761 return nand_get_device(mtd, FL_PM_SUSPENDED);
2765 * nand_resume - [MTD Interface] Resume the NAND flash
2766 * @mtd: MTD device structure
2768 static void nand_resume(struct mtd_info *mtd)
2770 struct nand_chip *chip = mtd->priv;
2772 if (chip->state == FL_PM_SUSPENDED)
2773 nand_release_device(mtd);
2774 else
2775 pr_err("%s called for a chip which is not in suspended state\n",
2776 __func__);
2779 /* Set default functions */
2780 static void nand_set_defaults(struct nand_chip *chip, int busw)
2782 /* check for proper chip_delay setup, set 20us if not */
2783 if (!chip->chip_delay)
2784 chip->chip_delay = 20;
2786 /* check, if a user supplied command function given */
2787 if (chip->cmdfunc == NULL)
2788 chip->cmdfunc = nand_command;
2790 /* check, if a user supplied wait function given */
2791 if (chip->waitfunc == NULL)
2792 chip->waitfunc = nand_wait;
2794 if (!chip->select_chip)
2795 chip->select_chip = nand_select_chip;
2796 if (!chip->read_byte)
2797 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2798 if (!chip->read_word)
2799 chip->read_word = nand_read_word;
2800 if (!chip->block_bad)
2801 chip->block_bad = nand_block_bad;
2802 if (!chip->block_markbad)
2803 chip->block_markbad = nand_default_block_markbad;
2804 if (!chip->write_buf)
2805 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2806 if (!chip->read_buf)
2807 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2808 if (!chip->scan_bbt)
2809 chip->scan_bbt = nand_default_bbt;
2811 if (!chip->controller) {
2812 chip->controller = &chip->hwcontrol;
2813 spin_lock_init(&chip->controller->lock);
2814 init_waitqueue_head(&chip->controller->wq);
2819 /* Sanitize ONFI strings so we can safely print them */
2820 static void sanitize_string(uint8_t *s, size_t len)
2822 ssize_t i;
2824 /* Null terminate */
2825 s[len - 1] = 0;
2827 /* Remove non printable chars */
2828 for (i = 0; i < len - 1; i++) {
2829 if (s[i] < ' ' || s[i] > 127)
2830 s[i] = '?';
2833 /* Remove trailing spaces */
2834 strim(s);
2837 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2839 int i;
2840 while (len--) {
2841 crc ^= *p++ << 8;
2842 for (i = 0; i < 8; i++)
2843 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2846 return crc;
2850 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2852 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2853 int *busw)
2855 struct nand_onfi_params *p = &chip->onfi_params;
2856 int i;
2857 int val;
2859 /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2860 if (chip->options & NAND_BUSWIDTH_16) {
2861 pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2862 return 0;
2864 /* Try ONFI for unknown chip or LP */
2865 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2866 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2867 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2868 return 0;
2870 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2871 for (i = 0; i < 3; i++) {
2872 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2873 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2874 le16_to_cpu(p->crc)) {
2875 pr_info("ONFI param page %d valid\n", i);
2876 break;
2880 if (i == 3)
2881 return 0;
2883 /* Check version */
2884 val = le16_to_cpu(p->revision);
2885 if (val & (1 << 5))
2886 chip->onfi_version = 23;
2887 else if (val & (1 << 4))
2888 chip->onfi_version = 22;
2889 else if (val & (1 << 3))
2890 chip->onfi_version = 21;
2891 else if (val & (1 << 2))
2892 chip->onfi_version = 20;
2893 else if (val & (1 << 1))
2894 chip->onfi_version = 10;
2896 if (!chip->onfi_version) {
2897 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2898 return 0;
2901 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2902 sanitize_string(p->model, sizeof(p->model));
2903 if (!mtd->name)
2904 mtd->name = p->model;
2905 mtd->writesize = le32_to_cpu(p->byte_per_page);
2906 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2907 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2908 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2909 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2910 *busw = 0;
2911 if (le16_to_cpu(p->features) & 1)
2912 *busw = NAND_BUSWIDTH_16;
2914 pr_info("ONFI flash detected\n");
2915 return 1;
2919 * nand_id_has_period - Check if an ID string has a given wraparound period
2920 * @id_data: the ID string
2921 * @arrlen: the length of the @id_data array
2922 * @period: the period of repitition
2924 * Check if an ID string is repeated within a given sequence of bytes at
2925 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2926 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
2927 * if the repetition has a period of @period; otherwise, returns zero.
2929 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2931 int i, j;
2932 for (i = 0; i < period; i++)
2933 for (j = i + period; j < arrlen; j += period)
2934 if (id_data[i] != id_data[j])
2935 return 0;
2936 return 1;
2940 * nand_id_len - Get the length of an ID string returned by CMD_READID
2941 * @id_data: the ID string
2942 * @arrlen: the length of the @id_data array
2944 * Returns the length of the ID string, according to known wraparound/trailing
2945 * zero patterns. If no pattern exists, returns the length of the array.
2947 static int nand_id_len(u8 *id_data, int arrlen)
2949 int last_nonzero, period;
2951 /* Find last non-zero byte */
2952 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2953 if (id_data[last_nonzero])
2954 break;
2956 /* All zeros */
2957 if (last_nonzero < 0)
2958 return 0;
2960 /* Calculate wraparound period */
2961 for (period = 1; period < arrlen; period++)
2962 if (nand_id_has_period(id_data, arrlen, period))
2963 break;
2965 /* There's a repeated pattern */
2966 if (period < arrlen)
2967 return period;
2969 /* There are trailing zeros */
2970 if (last_nonzero < arrlen - 1)
2971 return last_nonzero + 1;
2973 /* No pattern detected */
2974 return arrlen;
2978 * Many new NAND share similar device ID codes, which represent the size of the
2979 * chip. The rest of the parameters must be decoded according to generic or
2980 * manufacturer-specific "extended ID" decoding patterns.
2982 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2983 u8 id_data[8], int *busw)
2985 int extid, id_len;
2986 /* The 3rd id byte holds MLC / multichip data */
2987 chip->cellinfo = id_data[2];
2988 /* The 4th id byte is the important one */
2989 extid = id_data[3];
2991 id_len = nand_id_len(id_data, 8);
2994 * Field definitions are in the following datasheets:
2995 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2996 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
2997 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
2999 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3000 * ID to decide what to do.
3002 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3003 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3004 id_data[5] != 0x00) {
3005 /* Calc pagesize */
3006 mtd->writesize = 2048 << (extid & 0x03);
3007 extid >>= 2;
3008 /* Calc oobsize */
3009 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3010 case 1:
3011 mtd->oobsize = 128;
3012 break;
3013 case 2:
3014 mtd->oobsize = 218;
3015 break;
3016 case 3:
3017 mtd->oobsize = 400;
3018 break;
3019 case 4:
3020 mtd->oobsize = 436;
3021 break;
3022 case 5:
3023 mtd->oobsize = 512;
3024 break;
3025 case 6:
3026 default: /* Other cases are "reserved" (unknown) */
3027 mtd->oobsize = 640;
3028 break;
3030 extid >>= 2;
3031 /* Calc blocksize */
3032 mtd->erasesize = (128 * 1024) <<
3033 (((extid >> 1) & 0x04) | (extid & 0x03));
3034 *busw = 0;
3035 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3036 (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3037 unsigned int tmp;
3039 /* Calc pagesize */
3040 mtd->writesize = 2048 << (extid & 0x03);
3041 extid >>= 2;
3042 /* Calc oobsize */
3043 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3044 case 0:
3045 mtd->oobsize = 128;
3046 break;
3047 case 1:
3048 mtd->oobsize = 224;
3049 break;
3050 case 2:
3051 mtd->oobsize = 448;
3052 break;
3053 case 3:
3054 mtd->oobsize = 64;
3055 break;
3056 case 4:
3057 mtd->oobsize = 32;
3058 break;
3059 case 5:
3060 mtd->oobsize = 16;
3061 break;
3062 default:
3063 mtd->oobsize = 640;
3064 break;
3066 extid >>= 2;
3067 /* Calc blocksize */
3068 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3069 if (tmp < 0x03)
3070 mtd->erasesize = (128 * 1024) << tmp;
3071 else if (tmp == 0x03)
3072 mtd->erasesize = 768 * 1024;
3073 else
3074 mtd->erasesize = (64 * 1024) << tmp;
3075 *busw = 0;
3076 } else {
3077 /* Calc pagesize */
3078 mtd->writesize = 1024 << (extid & 0x03);
3079 extid >>= 2;
3080 /* Calc oobsize */
3081 mtd->oobsize = (8 << (extid & 0x01)) *
3082 (mtd->writesize >> 9);
3083 extid >>= 2;
3084 /* Calc blocksize. Blocksize is multiples of 64KiB */
3085 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3086 extid >>= 2;
3087 /* Get buswidth information */
3088 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3093 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3094 * decodes a matching ID table entry and assigns the MTD size parameters for
3095 * the chip.
3097 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3098 struct nand_flash_dev *type, u8 id_data[8],
3099 int *busw)
3101 int maf_id = id_data[0];
3103 mtd->erasesize = type->erasesize;
3104 mtd->writesize = type->pagesize;
3105 mtd->oobsize = mtd->writesize / 32;
3106 *busw = type->options & NAND_BUSWIDTH_16;
3109 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3110 * some Spansion chips have erasesize that conflicts with size
3111 * listed in nand_ids table.
3112 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3114 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3115 && id_data[6] == 0x00 && id_data[7] == 0x00
3116 && mtd->writesize == 512) {
3117 mtd->erasesize = 128 * 1024;
3118 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3123 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3124 * heuristic patterns using various detected parameters (e.g., manufacturer,
3125 * page size, cell-type information).
3127 static void nand_decode_bbm_options(struct mtd_info *mtd,
3128 struct nand_chip *chip, u8 id_data[8])
3130 int maf_id = id_data[0];
3132 /* Set the bad block position */
3133 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3134 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3135 else
3136 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3139 * Bad block marker is stored in the last page of each block on Samsung
3140 * and Hynix MLC devices; stored in first two pages of each block on
3141 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3142 * AMD/Spansion, and Macronix. All others scan only the first page.
3144 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3145 (maf_id == NAND_MFR_SAMSUNG ||
3146 maf_id == NAND_MFR_HYNIX))
3147 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3148 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3149 (maf_id == NAND_MFR_SAMSUNG ||
3150 maf_id == NAND_MFR_HYNIX ||
3151 maf_id == NAND_MFR_TOSHIBA ||
3152 maf_id == NAND_MFR_AMD ||
3153 maf_id == NAND_MFR_MACRONIX)) ||
3154 (mtd->writesize == 2048 &&
3155 maf_id == NAND_MFR_MICRON))
3156 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3159 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3161 return type->id_len;
3164 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3165 struct nand_flash_dev *type, u8 *id_data, int *busw)
3167 if (!strncmp(type->id, id_data, type->id_len)) {
3168 mtd->writesize = type->pagesize;
3169 mtd->erasesize = type->erasesize;
3170 mtd->oobsize = type->oobsize;
3172 chip->cellinfo = id_data[2];
3173 chip->chipsize = (uint64_t)type->chipsize << 20;
3174 chip->options |= type->options;
3176 *busw = type->options & NAND_BUSWIDTH_16;
3178 return true;
3180 return false;
3184 * Get the flash and manufacturer id and lookup if the type is supported.
3186 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3187 struct nand_chip *chip,
3188 int busw,
3189 int *maf_id, int *dev_id,
3190 struct nand_flash_dev *type)
3192 int i, maf_idx;
3193 u8 id_data[8];
3195 /* Select the device */
3196 chip->select_chip(mtd, 0);
3199 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3200 * after power-up.
3202 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3204 /* Send the command for reading device ID */
3205 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3207 /* Read manufacturer and device IDs */
3208 *maf_id = chip->read_byte(mtd);
3209 *dev_id = chip->read_byte(mtd);
3212 * Try again to make sure, as some systems the bus-hold or other
3213 * interface concerns can cause random data which looks like a
3214 * possibly credible NAND flash to appear. If the two results do
3215 * not match, ignore the device completely.
3218 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3220 /* Read entire ID string */
3221 for (i = 0; i < 8; i++)
3222 id_data[i] = chip->read_byte(mtd);
3224 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3225 pr_info("%s: second ID read did not match "
3226 "%02x,%02x against %02x,%02x\n", __func__,
3227 *maf_id, *dev_id, id_data[0], id_data[1]);
3228 return ERR_PTR(-ENODEV);
3231 if (!type)
3232 type = nand_flash_ids;
3234 for (; type->name != NULL; type++) {
3235 if (is_full_id_nand(type)) {
3236 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3237 goto ident_done;
3238 } else if (*dev_id == type->dev_id) {
3239 break;
3243 chip->onfi_version = 0;
3244 if (!type->name || !type->pagesize) {
3245 /* Check is chip is ONFI compliant */
3246 if (nand_flash_detect_onfi(mtd, chip, &busw))
3247 goto ident_done;
3250 if (!type->name)
3251 return ERR_PTR(-ENODEV);
3253 if (!mtd->name)
3254 mtd->name = type->name;
3256 chip->chipsize = (uint64_t)type->chipsize << 20;
3258 if (!type->pagesize && chip->init_size) {
3259 /* Set the pagesize, oobsize, erasesize by the driver */
3260 busw = chip->init_size(mtd, chip, id_data);
3261 } else if (!type->pagesize) {
3262 /* Decode parameters from extended ID */
3263 nand_decode_ext_id(mtd, chip, id_data, &busw);
3264 } else {
3265 nand_decode_id(mtd, chip, type, id_data, &busw);
3267 /* Get chip options */
3268 chip->options |= type->options;
3271 * Check if chip is not a Samsung device. Do not clear the
3272 * options for chips which do not have an extended id.
3274 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3275 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3276 ident_done:
3278 /* Try to identify manufacturer */
3279 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3280 if (nand_manuf_ids[maf_idx].id == *maf_id)
3281 break;
3284 if (chip->options & NAND_BUSWIDTH_AUTO) {
3285 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3286 chip->options |= busw;
3287 nand_set_defaults(chip, busw);
3288 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3290 * Check, if buswidth is correct. Hardware drivers should set
3291 * chip correct!
3293 pr_info("NAND device: Manufacturer ID:"
3294 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3295 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3296 pr_warn("NAND bus width %d instead %d bit\n",
3297 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3298 busw ? 16 : 8);
3299 return ERR_PTR(-EINVAL);
3302 nand_decode_bbm_options(mtd, chip, id_data);
3304 /* Calculate the address shift from the page size */
3305 chip->page_shift = ffs(mtd->writesize) - 1;
3306 /* Convert chipsize to number of pages per chip -1 */
3307 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3309 chip->bbt_erase_shift = chip->phys_erase_shift =
3310 ffs(mtd->erasesize) - 1;
3311 if (chip->chipsize & 0xffffffff)
3312 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3313 else {
3314 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3315 chip->chip_shift += 32 - 1;
3318 chip->badblockbits = 8;
3319 chip->erase_cmd = single_erase_cmd;
3321 /* Do not replace user supplied command function! */
3322 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3323 chip->cmdfunc = nand_command_lp;
3325 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3326 " %dMiB, page size: %d, OOB size: %d\n",
3327 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3328 chip->onfi_version ? chip->onfi_params.model : type->name,
3329 (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
3331 return type;
3335 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3336 * @mtd: MTD device structure
3337 * @maxchips: number of chips to scan for
3338 * @table: alternative NAND ID table
3340 * This is the first phase of the normal nand_scan() function. It reads the
3341 * flash ID and sets up MTD fields accordingly.
3343 * The mtd->owner field must be set to the module of the caller.
3345 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3346 struct nand_flash_dev *table)
3348 int i, busw, nand_maf_id, nand_dev_id;
3349 struct nand_chip *chip = mtd->priv;
3350 struct nand_flash_dev *type;
3352 /* Get buswidth to select the correct functions */
3353 busw = chip->options & NAND_BUSWIDTH_16;
3354 /* Set the default functions */
3355 nand_set_defaults(chip, busw);
3357 /* Read the flash type */
3358 type = nand_get_flash_type(mtd, chip, busw,
3359 &nand_maf_id, &nand_dev_id, table);
3361 if (IS_ERR(type)) {
3362 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3363 pr_warn("No NAND device found\n");
3364 chip->select_chip(mtd, -1);
3365 return PTR_ERR(type);
3368 chip->select_chip(mtd, -1);
3370 /* Check for a chip array */
3371 for (i = 1; i < maxchips; i++) {
3372 chip->select_chip(mtd, i);
3373 /* See comment in nand_get_flash_type for reset */
3374 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3375 /* Send the command for reading device ID */
3376 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3377 /* Read manufacturer and device IDs */
3378 if (nand_maf_id != chip->read_byte(mtd) ||
3379 nand_dev_id != chip->read_byte(mtd)) {
3380 chip->select_chip(mtd, -1);
3381 break;
3383 chip->select_chip(mtd, -1);
3385 if (i > 1)
3386 pr_info("%d NAND chips detected\n", i);
3388 /* Store the number of chips and calc total size for mtd */
3389 chip->numchips = i;
3390 mtd->size = i * chip->chipsize;
3392 return 0;
3394 EXPORT_SYMBOL(nand_scan_ident);
3398 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3399 * @mtd: MTD device structure
3401 * This is the second phase of the normal nand_scan() function. It fills out
3402 * all the uninitialized function pointers with the defaults and scans for a
3403 * bad block table if appropriate.
3405 int nand_scan_tail(struct mtd_info *mtd)
3407 int i;
3408 struct nand_chip *chip = mtd->priv;
3410 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3411 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3412 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3414 if (!(chip->options & NAND_OWN_BUFFERS))
3415 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3416 if (!chip->buffers)
3417 return -ENOMEM;
3419 /* Set the internal oob buffer location, just after the page data */
3420 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3423 * If no default placement scheme is given, select an appropriate one.
3425 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3426 switch (mtd->oobsize) {
3427 case 8:
3428 chip->ecc.layout = &nand_oob_8;
3429 break;
3430 case 16:
3431 chip->ecc.layout = &nand_oob_16;
3432 break;
3433 case 64:
3434 chip->ecc.layout = &nand_oob_64;
3435 break;
3436 case 128:
3437 chip->ecc.layout = &nand_oob_128;
3438 break;
3439 default:
3440 pr_warn("No oob scheme defined for oobsize %d\n",
3441 mtd->oobsize);
3442 BUG();
3446 if (!chip->write_page)
3447 chip->write_page = nand_write_page;
3449 /* set for ONFI nand */
3450 if (!chip->onfi_set_features)
3451 chip->onfi_set_features = nand_onfi_set_features;
3452 if (!chip->onfi_get_features)
3453 chip->onfi_get_features = nand_onfi_get_features;
3456 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3457 * selected and we have 256 byte pagesize fallback to software ECC
3460 switch (chip->ecc.mode) {
3461 case NAND_ECC_HW_OOB_FIRST:
3462 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3463 if (!chip->ecc.calculate || !chip->ecc.correct ||
3464 !chip->ecc.hwctl) {
3465 pr_warn("No ECC functions supplied; "
3466 "hardware ECC not possible\n");
3467 BUG();
3469 if (!chip->ecc.read_page)
3470 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3472 case NAND_ECC_HW:
3473 /* Use standard hwecc read page function? */
3474 if (!chip->ecc.read_page)
3475 chip->ecc.read_page = nand_read_page_hwecc;
3476 if (!chip->ecc.write_page)
3477 chip->ecc.write_page = nand_write_page_hwecc;
3478 if (!chip->ecc.read_page_raw)
3479 chip->ecc.read_page_raw = nand_read_page_raw;
3480 if (!chip->ecc.write_page_raw)
3481 chip->ecc.write_page_raw = nand_write_page_raw;
3482 if (!chip->ecc.read_oob)
3483 chip->ecc.read_oob = nand_read_oob_std;
3484 if (!chip->ecc.write_oob)
3485 chip->ecc.write_oob = nand_write_oob_std;
3486 if (!chip->ecc.read_subpage)
3487 chip->ecc.read_subpage = nand_read_subpage;
3488 if (!chip->ecc.write_subpage)
3489 chip->ecc.write_subpage = nand_write_subpage_hwecc;
3491 case NAND_ECC_HW_SYNDROME:
3492 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3493 !chip->ecc.hwctl) &&
3494 (!chip->ecc.read_page ||
3495 chip->ecc.read_page == nand_read_page_hwecc ||
3496 !chip->ecc.write_page ||
3497 chip->ecc.write_page == nand_write_page_hwecc)) {
3498 pr_warn("No ECC functions supplied; "
3499 "hardware ECC not possible\n");
3500 BUG();
3502 /* Use standard syndrome read/write page function? */
3503 if (!chip->ecc.read_page)
3504 chip->ecc.read_page = nand_read_page_syndrome;
3505 if (!chip->ecc.write_page)
3506 chip->ecc.write_page = nand_write_page_syndrome;
3507 if (!chip->ecc.read_page_raw)
3508 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3509 if (!chip->ecc.write_page_raw)
3510 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3511 if (!chip->ecc.read_oob)
3512 chip->ecc.read_oob = nand_read_oob_syndrome;
3513 if (!chip->ecc.write_oob)
3514 chip->ecc.write_oob = nand_write_oob_syndrome;
3516 if (mtd->writesize >= chip->ecc.size) {
3517 if (!chip->ecc.strength) {
3518 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3519 BUG();
3521 break;
3523 pr_warn("%d byte HW ECC not possible on "
3524 "%d byte page size, fallback to SW ECC\n",
3525 chip->ecc.size, mtd->writesize);
3526 chip->ecc.mode = NAND_ECC_SOFT;
3528 case NAND_ECC_SOFT:
3529 chip->ecc.calculate = nand_calculate_ecc;
3530 chip->ecc.correct = nand_correct_data;
3531 chip->ecc.read_page = nand_read_page_swecc;
3532 chip->ecc.read_subpage = nand_read_subpage;
3533 chip->ecc.write_page = nand_write_page_swecc;
3534 chip->ecc.read_page_raw = nand_read_page_raw;
3535 chip->ecc.write_page_raw = nand_write_page_raw;
3536 chip->ecc.read_oob = nand_read_oob_std;
3537 chip->ecc.write_oob = nand_write_oob_std;
3538 if (!chip->ecc.size)
3539 chip->ecc.size = 256;
3540 chip->ecc.bytes = 3;
3541 chip->ecc.strength = 1;
3542 break;
3544 case NAND_ECC_SOFT_BCH:
3545 if (!mtd_nand_has_bch()) {
3546 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3547 BUG();
3549 chip->ecc.calculate = nand_bch_calculate_ecc;
3550 chip->ecc.correct = nand_bch_correct_data;
3551 chip->ecc.read_page = nand_read_page_swecc;
3552 chip->ecc.read_subpage = nand_read_subpage;
3553 chip->ecc.write_page = nand_write_page_swecc;
3554 chip->ecc.read_page_raw = nand_read_page_raw;
3555 chip->ecc.write_page_raw = nand_write_page_raw;
3556 chip->ecc.read_oob = nand_read_oob_std;
3557 chip->ecc.write_oob = nand_write_oob_std;
3559 * Board driver should supply ecc.size and ecc.bytes values to
3560 * select how many bits are correctable; see nand_bch_init()
3561 * for details. Otherwise, default to 4 bits for large page
3562 * devices.
3564 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3565 chip->ecc.size = 512;
3566 chip->ecc.bytes = 7;
3568 chip->ecc.priv = nand_bch_init(mtd,
3569 chip->ecc.size,
3570 chip->ecc.bytes,
3571 &chip->ecc.layout);
3572 if (!chip->ecc.priv) {
3573 pr_warn("BCH ECC initialization failed!\n");
3574 BUG();
3576 chip->ecc.strength =
3577 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3578 break;
3580 case NAND_ECC_NONE:
3581 pr_warn("NAND_ECC_NONE selected by board driver. "
3582 "This is not recommended!\n");
3583 chip->ecc.read_page = nand_read_page_raw;
3584 chip->ecc.write_page = nand_write_page_raw;
3585 chip->ecc.read_oob = nand_read_oob_std;
3586 chip->ecc.read_page_raw = nand_read_page_raw;
3587 chip->ecc.write_page_raw = nand_write_page_raw;
3588 chip->ecc.write_oob = nand_write_oob_std;
3589 chip->ecc.size = mtd->writesize;
3590 chip->ecc.bytes = 0;
3591 chip->ecc.strength = 0;
3592 break;
3594 default:
3595 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3596 BUG();
3599 /* For many systems, the standard OOB write also works for raw */
3600 if (!chip->ecc.read_oob_raw)
3601 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3602 if (!chip->ecc.write_oob_raw)
3603 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3606 * The number of bytes available for a client to place data into
3607 * the out of band area.
3609 chip->ecc.layout->oobavail = 0;
3610 for (i = 0; chip->ecc.layout->oobfree[i].length
3611 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3612 chip->ecc.layout->oobavail +=
3613 chip->ecc.layout->oobfree[i].length;
3614 mtd->oobavail = chip->ecc.layout->oobavail;
3617 * Set the number of read / write steps for one page depending on ECC
3618 * mode.
3620 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3621 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3622 pr_warn("Invalid ECC parameters\n");
3623 BUG();
3625 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3627 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3628 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3629 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3630 switch (chip->ecc.steps) {
3631 case 2:
3632 mtd->subpage_sft = 1;
3633 break;
3634 case 4:
3635 case 8:
3636 case 16:
3637 mtd->subpage_sft = 2;
3638 break;
3641 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3643 /* Initialize state */
3644 chip->state = FL_READY;
3646 /* Invalidate the pagebuffer reference */
3647 chip->pagebuf = -1;
3649 /* Large page NAND with SOFT_ECC should support subpage reads */
3650 if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3651 chip->options |= NAND_SUBPAGE_READ;
3653 /* Fill in remaining MTD driver data */
3654 mtd->type = MTD_NANDFLASH;
3655 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3656 MTD_CAP_NANDFLASH;
3657 mtd->_erase = nand_erase;
3658 mtd->_point = NULL;
3659 mtd->_unpoint = NULL;
3660 mtd->_read = nand_read;
3661 mtd->_write = nand_write;
3662 mtd->_panic_write = panic_nand_write;
3663 mtd->_read_oob = nand_read_oob;
3664 mtd->_write_oob = nand_write_oob;
3665 mtd->_sync = nand_sync;
3666 mtd->_lock = NULL;
3667 mtd->_unlock = NULL;
3668 mtd->_suspend = nand_suspend;
3669 mtd->_resume = nand_resume;
3670 mtd->_block_isbad = nand_block_isbad;
3671 mtd->_block_markbad = nand_block_markbad;
3672 mtd->writebufsize = mtd->writesize;
3674 /* propagate ecc info to mtd_info */
3675 mtd->ecclayout = chip->ecc.layout;
3676 mtd->ecc_strength = chip->ecc.strength;
3678 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3679 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3680 * properly set.
3682 if (!mtd->bitflip_threshold)
3683 mtd->bitflip_threshold = mtd->ecc_strength;
3685 /* Check, if we should skip the bad block table scan */
3686 if (chip->options & NAND_SKIP_BBTSCAN)
3687 return 0;
3689 /* Build bad block table */
3690 return chip->scan_bbt(mtd);
3692 EXPORT_SYMBOL(nand_scan_tail);
3695 * is_module_text_address() isn't exported, and it's mostly a pointless
3696 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3697 * to call us from in-kernel code if the core NAND support is modular.
3699 #ifdef MODULE
3700 #define caller_is_module() (1)
3701 #else
3702 #define caller_is_module() \
3703 is_module_text_address((unsigned long)__builtin_return_address(0))
3704 #endif
3707 * nand_scan - [NAND Interface] Scan for the NAND device
3708 * @mtd: MTD device structure
3709 * @maxchips: number of chips to scan for
3711 * This fills out all the uninitialized function pointers with the defaults.
3712 * The flash ID is read and the mtd/chip structures are filled with the
3713 * appropriate values. The mtd->owner field must be set to the module of the
3714 * caller.
3716 int nand_scan(struct mtd_info *mtd, int maxchips)
3718 int ret;
3720 /* Many callers got this wrong, so check for it for a while... */
3721 if (!mtd->owner && caller_is_module()) {
3722 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3723 BUG();
3726 ret = nand_scan_ident(mtd, maxchips, NULL);
3727 if (!ret)
3728 ret = nand_scan_tail(mtd);
3729 return ret;
3731 EXPORT_SYMBOL(nand_scan);
3734 * nand_release - [NAND Interface] Free resources held by the NAND device
3735 * @mtd: MTD device structure
3737 void nand_release(struct mtd_info *mtd)
3739 struct nand_chip *chip = mtd->priv;
3741 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3742 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3744 mtd_device_unregister(mtd);
3746 /* Free bad block table memory */
3747 kfree(chip->bbt);
3748 if (!(chip->options & NAND_OWN_BUFFERS))
3749 kfree(chip->buffers);
3751 /* Free bad block descriptor memory */
3752 if (chip->badblock_pattern && chip->badblock_pattern->options
3753 & NAND_BBT_DYNAMICSTRUCT)
3754 kfree(chip->badblock_pattern);
3756 EXPORT_SYMBOL_GPL(nand_release);
3758 static int __init nand_base_init(void)
3760 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3761 return 0;
3764 static void __exit nand_base_exit(void)
3766 led_trigger_unregister_simple(nand_led_trigger);
3769 module_init(nand_base_init);
3770 module_exit(nand_base_exit);
3772 MODULE_LICENSE("GPL");
3773 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3774 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3775 MODULE_DESCRIPTION("Generic NAND flash driver code");