Linux 3.11-rc3
[cris-mirror.git] / drivers / mtd / ubi / fastmap.c
blob154275182b4b22d8943e4be1ba6d5eb119694e3a
1 /*
2 * Copyright (c) 2012 Linutronix GmbH
3 * Author: Richard Weinberger <richard@nod.at>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
16 #include <linux/crc32.h>
17 #include "ubi.h"
19 /**
20 * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device.
21 * @ubi: UBI device description object
23 size_t ubi_calc_fm_size(struct ubi_device *ubi)
25 size_t size;
27 size = sizeof(struct ubi_fm_hdr) + \
28 sizeof(struct ubi_fm_scan_pool) + \
29 sizeof(struct ubi_fm_scan_pool) + \
30 (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \
31 (sizeof(struct ubi_fm_eba) + \
32 (ubi->peb_count * sizeof(__be32))) + \
33 sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES;
34 return roundup(size, ubi->leb_size);
38 /**
39 * new_fm_vhdr - allocate a new volume header for fastmap usage.
40 * @ubi: UBI device description object
41 * @vol_id: the VID of the new header
43 * Returns a new struct ubi_vid_hdr on success.
44 * NULL indicates out of memory.
46 static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id)
48 struct ubi_vid_hdr *new;
50 new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
51 if (!new)
52 goto out;
54 new->vol_type = UBI_VID_DYNAMIC;
55 new->vol_id = cpu_to_be32(vol_id);
57 /* UBI implementations without fastmap support have to delete the
58 * fastmap.
60 new->compat = UBI_COMPAT_DELETE;
62 out:
63 return new;
66 /**
67 * add_aeb - create and add a attach erase block to a given list.
68 * @ai: UBI attach info object
69 * @list: the target list
70 * @pnum: PEB number of the new attach erase block
71 * @ec: erease counter of the new LEB
72 * @scrub: scrub this PEB after attaching
74 * Returns 0 on success, < 0 indicates an internal error.
76 static int add_aeb(struct ubi_attach_info *ai, struct list_head *list,
77 int pnum, int ec, int scrub)
79 struct ubi_ainf_peb *aeb;
81 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
82 if (!aeb)
83 return -ENOMEM;
85 aeb->pnum = pnum;
86 aeb->ec = ec;
87 aeb->lnum = -1;
88 aeb->scrub = scrub;
89 aeb->copy_flag = aeb->sqnum = 0;
91 ai->ec_sum += aeb->ec;
92 ai->ec_count++;
94 if (ai->max_ec < aeb->ec)
95 ai->max_ec = aeb->ec;
97 if (ai->min_ec > aeb->ec)
98 ai->min_ec = aeb->ec;
100 list_add_tail(&aeb->u.list, list);
102 return 0;
106 * add_vol - create and add a new volume to ubi_attach_info.
107 * @ai: ubi_attach_info object
108 * @vol_id: VID of the new volume
109 * @used_ebs: number of used EBS
110 * @data_pad: data padding value of the new volume
111 * @vol_type: volume type
112 * @last_eb_bytes: number of bytes in the last LEB
114 * Returns the new struct ubi_ainf_volume on success.
115 * NULL indicates an error.
117 static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id,
118 int used_ebs, int data_pad, u8 vol_type,
119 int last_eb_bytes)
121 struct ubi_ainf_volume *av;
122 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
124 while (*p) {
125 parent = *p;
126 av = rb_entry(parent, struct ubi_ainf_volume, rb);
128 if (vol_id > av->vol_id)
129 p = &(*p)->rb_left;
130 else if (vol_id > av->vol_id)
131 p = &(*p)->rb_right;
134 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
135 if (!av)
136 goto out;
138 av->highest_lnum = av->leb_count = 0;
139 av->vol_id = vol_id;
140 av->used_ebs = used_ebs;
141 av->data_pad = data_pad;
142 av->last_data_size = last_eb_bytes;
143 av->compat = 0;
144 av->vol_type = vol_type;
145 av->root = RB_ROOT;
147 dbg_bld("found volume (ID %i)", vol_id);
149 rb_link_node(&av->rb, parent, p);
150 rb_insert_color(&av->rb, &ai->volumes);
152 out:
153 return av;
157 * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it
158 * from it's original list.
159 * @ai: ubi_attach_info object
160 * @aeb: the to be assigned SEB
161 * @av: target scan volume
163 static void assign_aeb_to_av(struct ubi_attach_info *ai,
164 struct ubi_ainf_peb *aeb,
165 struct ubi_ainf_volume *av)
167 struct ubi_ainf_peb *tmp_aeb;
168 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
170 p = &av->root.rb_node;
171 while (*p) {
172 parent = *p;
174 tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
175 if (aeb->lnum != tmp_aeb->lnum) {
176 if (aeb->lnum < tmp_aeb->lnum)
177 p = &(*p)->rb_left;
178 else
179 p = &(*p)->rb_right;
181 continue;
182 } else
183 break;
186 list_del(&aeb->u.list);
187 av->leb_count++;
189 rb_link_node(&aeb->u.rb, parent, p);
190 rb_insert_color(&aeb->u.rb, &av->root);
194 * update_vol - inserts or updates a LEB which was found a pool.
195 * @ubi: the UBI device object
196 * @ai: attach info object
197 * @av: the volume this LEB belongs to
198 * @new_vh: the volume header derived from new_aeb
199 * @new_aeb: the AEB to be examined
201 * Returns 0 on success, < 0 indicates an internal error.
203 static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai,
204 struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh,
205 struct ubi_ainf_peb *new_aeb)
207 struct rb_node **p = &av->root.rb_node, *parent = NULL;
208 struct ubi_ainf_peb *aeb, *victim;
209 int cmp_res;
211 while (*p) {
212 parent = *p;
213 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
215 if (be32_to_cpu(new_vh->lnum) != aeb->lnum) {
216 if (be32_to_cpu(new_vh->lnum) < aeb->lnum)
217 p = &(*p)->rb_left;
218 else
219 p = &(*p)->rb_right;
221 continue;
224 /* This case can happen if the fastmap gets written
225 * because of a volume change (creation, deletion, ..).
226 * Then a PEB can be within the persistent EBA and the pool.
228 if (aeb->pnum == new_aeb->pnum) {
229 ubi_assert(aeb->lnum == new_aeb->lnum);
230 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
232 return 0;
235 cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh);
236 if (cmp_res < 0)
237 return cmp_res;
239 /* new_aeb is newer */
240 if (cmp_res & 1) {
241 victim = kmem_cache_alloc(ai->aeb_slab_cache,
242 GFP_KERNEL);
243 if (!victim)
244 return -ENOMEM;
246 victim->ec = aeb->ec;
247 victim->pnum = aeb->pnum;
248 list_add_tail(&victim->u.list, &ai->erase);
250 if (av->highest_lnum == be32_to_cpu(new_vh->lnum))
251 av->last_data_size = \
252 be32_to_cpu(new_vh->data_size);
254 dbg_bld("vol %i: AEB %i's PEB %i is the newer",
255 av->vol_id, aeb->lnum, new_aeb->pnum);
257 aeb->ec = new_aeb->ec;
258 aeb->pnum = new_aeb->pnum;
259 aeb->copy_flag = new_vh->copy_flag;
260 aeb->scrub = new_aeb->scrub;
261 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
263 /* new_aeb is older */
264 } else {
265 dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it",
266 av->vol_id, aeb->lnum, new_aeb->pnum);
267 list_add_tail(&new_aeb->u.list, &ai->erase);
270 return 0;
272 /* This LEB is new, let's add it to the volume */
274 if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) {
275 av->highest_lnum = be32_to_cpu(new_vh->lnum);
276 av->last_data_size = be32_to_cpu(new_vh->data_size);
279 if (av->vol_type == UBI_STATIC_VOLUME)
280 av->used_ebs = be32_to_cpu(new_vh->used_ebs);
282 av->leb_count++;
284 rb_link_node(&new_aeb->u.rb, parent, p);
285 rb_insert_color(&new_aeb->u.rb, &av->root);
287 return 0;
291 * process_pool_aeb - we found a non-empty PEB in a pool.
292 * @ubi: UBI device object
293 * @ai: attach info object
294 * @new_vh: the volume header derived from new_aeb
295 * @new_aeb: the AEB to be examined
297 * Returns 0 on success, < 0 indicates an internal error.
299 static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai,
300 struct ubi_vid_hdr *new_vh,
301 struct ubi_ainf_peb *new_aeb)
303 struct ubi_ainf_volume *av, *tmp_av = NULL;
304 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
305 int found = 0;
307 if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID ||
308 be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) {
309 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
311 return 0;
314 /* Find the volume this SEB belongs to */
315 while (*p) {
316 parent = *p;
317 tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb);
319 if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id)
320 p = &(*p)->rb_left;
321 else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id)
322 p = &(*p)->rb_right;
323 else {
324 found = 1;
325 break;
329 if (found)
330 av = tmp_av;
331 else {
332 ubi_err("orphaned volume in fastmap pool!");
333 return UBI_BAD_FASTMAP;
336 ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id);
338 return update_vol(ubi, ai, av, new_vh, new_aeb);
342 * unmap_peb - unmap a PEB.
343 * If fastmap detects a free PEB in the pool it has to check whether
344 * this PEB has been unmapped after writing the fastmap.
346 * @ai: UBI attach info object
347 * @pnum: The PEB to be unmapped
349 static void unmap_peb(struct ubi_attach_info *ai, int pnum)
351 struct ubi_ainf_volume *av;
352 struct rb_node *node, *node2;
353 struct ubi_ainf_peb *aeb;
355 for (node = rb_first(&ai->volumes); node; node = rb_next(node)) {
356 av = rb_entry(node, struct ubi_ainf_volume, rb);
358 for (node2 = rb_first(&av->root); node2;
359 node2 = rb_next(node2)) {
360 aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb);
361 if (aeb->pnum == pnum) {
362 rb_erase(&aeb->u.rb, &av->root);
363 kmem_cache_free(ai->aeb_slab_cache, aeb);
364 return;
371 * scan_pool - scans a pool for changed (no longer empty PEBs).
372 * @ubi: UBI device object
373 * @ai: attach info object
374 * @pebs: an array of all PEB numbers in the to be scanned pool
375 * @pool_size: size of the pool (number of entries in @pebs)
376 * @max_sqnum: pointer to the maximal sequence number
377 * @eba_orphans: list of PEBs which need to be scanned
378 * @free: list of PEBs which are most likely free (and go into @ai->free)
380 * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned.
381 * < 0 indicates an internal error.
383 static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai,
384 int *pebs, int pool_size, unsigned long long *max_sqnum,
385 struct list_head *eba_orphans, struct list_head *free)
387 struct ubi_vid_hdr *vh;
388 struct ubi_ec_hdr *ech;
389 struct ubi_ainf_peb *new_aeb, *tmp_aeb;
390 int i, pnum, err, found_orphan, ret = 0;
392 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
393 if (!ech)
394 return -ENOMEM;
396 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
397 if (!vh) {
398 kfree(ech);
399 return -ENOMEM;
402 dbg_bld("scanning fastmap pool: size = %i", pool_size);
405 * Now scan all PEBs in the pool to find changes which have been made
406 * after the creation of the fastmap
408 for (i = 0; i < pool_size; i++) {
409 int scrub = 0;
411 pnum = be32_to_cpu(pebs[i]);
413 if (ubi_io_is_bad(ubi, pnum)) {
414 ubi_err("bad PEB in fastmap pool!");
415 ret = UBI_BAD_FASTMAP;
416 goto out;
419 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
420 if (err && err != UBI_IO_BITFLIPS) {
421 ubi_err("unable to read EC header! PEB:%i err:%i",
422 pnum, err);
423 ret = err > 0 ? UBI_BAD_FASTMAP : err;
424 goto out;
425 } else if (ret == UBI_IO_BITFLIPS)
426 scrub = 1;
428 if (be32_to_cpu(ech->image_seq) != ubi->image_seq) {
429 ubi_err("bad image seq: 0x%x, expected: 0x%x",
430 be32_to_cpu(ech->image_seq), ubi->image_seq);
431 err = UBI_BAD_FASTMAP;
432 goto out;
435 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
436 if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) {
437 unsigned long long ec = be64_to_cpu(ech->ec);
438 unmap_peb(ai, pnum);
439 dbg_bld("Adding PEB to free: %i", pnum);
440 if (err == UBI_IO_FF_BITFLIPS)
441 add_aeb(ai, free, pnum, ec, 1);
442 else
443 add_aeb(ai, free, pnum, ec, 0);
444 continue;
445 } else if (err == 0 || err == UBI_IO_BITFLIPS) {
446 dbg_bld("Found non empty PEB:%i in pool", pnum);
448 if (err == UBI_IO_BITFLIPS)
449 scrub = 1;
451 found_orphan = 0;
452 list_for_each_entry(tmp_aeb, eba_orphans, u.list) {
453 if (tmp_aeb->pnum == pnum) {
454 found_orphan = 1;
455 break;
458 if (found_orphan) {
459 kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
460 list_del(&tmp_aeb->u.list);
463 new_aeb = kmem_cache_alloc(ai->aeb_slab_cache,
464 GFP_KERNEL);
465 if (!new_aeb) {
466 ret = -ENOMEM;
467 goto out;
470 new_aeb->ec = be64_to_cpu(ech->ec);
471 new_aeb->pnum = pnum;
472 new_aeb->lnum = be32_to_cpu(vh->lnum);
473 new_aeb->sqnum = be64_to_cpu(vh->sqnum);
474 new_aeb->copy_flag = vh->copy_flag;
475 new_aeb->scrub = scrub;
477 if (*max_sqnum < new_aeb->sqnum)
478 *max_sqnum = new_aeb->sqnum;
480 err = process_pool_aeb(ubi, ai, vh, new_aeb);
481 if (err) {
482 ret = err > 0 ? UBI_BAD_FASTMAP : err;
483 goto out;
485 } else {
486 /* We are paranoid and fall back to scanning mode */
487 ubi_err("fastmap pool PEBs contains damaged PEBs!");
488 ret = err > 0 ? UBI_BAD_FASTMAP : err;
489 goto out;
494 out:
495 ubi_free_vid_hdr(ubi, vh);
496 kfree(ech);
497 return ret;
501 * count_fastmap_pebs - Counts the PEBs found by fastmap.
502 * @ai: The UBI attach info object
504 static int count_fastmap_pebs(struct ubi_attach_info *ai)
506 struct ubi_ainf_peb *aeb;
507 struct ubi_ainf_volume *av;
508 struct rb_node *rb1, *rb2;
509 int n = 0;
511 list_for_each_entry(aeb, &ai->erase, u.list)
512 n++;
514 list_for_each_entry(aeb, &ai->free, u.list)
515 n++;
517 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
518 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
519 n++;
521 return n;
525 * ubi_attach_fastmap - creates ubi_attach_info from a fastmap.
526 * @ubi: UBI device object
527 * @ai: UBI attach info object
528 * @fm: the fastmap to be attached
530 * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable.
531 * < 0 indicates an internal error.
533 static int ubi_attach_fastmap(struct ubi_device *ubi,
534 struct ubi_attach_info *ai,
535 struct ubi_fastmap_layout *fm)
537 struct list_head used, eba_orphans, free;
538 struct ubi_ainf_volume *av;
539 struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb;
540 struct ubi_ec_hdr *ech;
541 struct ubi_fm_sb *fmsb;
542 struct ubi_fm_hdr *fmhdr;
543 struct ubi_fm_scan_pool *fmpl1, *fmpl2;
544 struct ubi_fm_ec *fmec;
545 struct ubi_fm_volhdr *fmvhdr;
546 struct ubi_fm_eba *fm_eba;
547 int ret, i, j, pool_size, wl_pool_size;
548 size_t fm_pos = 0, fm_size = ubi->fm_size;
549 unsigned long long max_sqnum = 0;
550 void *fm_raw = ubi->fm_buf;
552 INIT_LIST_HEAD(&used);
553 INIT_LIST_HEAD(&free);
554 INIT_LIST_HEAD(&eba_orphans);
555 INIT_LIST_HEAD(&ai->corr);
556 INIT_LIST_HEAD(&ai->free);
557 INIT_LIST_HEAD(&ai->erase);
558 INIT_LIST_HEAD(&ai->alien);
559 ai->volumes = RB_ROOT;
560 ai->min_ec = UBI_MAX_ERASECOUNTER;
562 ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab",
563 sizeof(struct ubi_ainf_peb),
564 0, 0, NULL);
565 if (!ai->aeb_slab_cache) {
566 ret = -ENOMEM;
567 goto fail;
570 fmsb = (struct ubi_fm_sb *)(fm_raw);
571 ai->max_sqnum = fmsb->sqnum;
572 fm_pos += sizeof(struct ubi_fm_sb);
573 if (fm_pos >= fm_size)
574 goto fail_bad;
576 fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
577 fm_pos += sizeof(*fmhdr);
578 if (fm_pos >= fm_size)
579 goto fail_bad;
581 if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) {
582 ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x",
583 be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC);
584 goto fail_bad;
587 fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
588 fm_pos += sizeof(*fmpl1);
589 if (fm_pos >= fm_size)
590 goto fail_bad;
591 if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) {
592 ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
593 be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC);
594 goto fail_bad;
597 fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
598 fm_pos += sizeof(*fmpl2);
599 if (fm_pos >= fm_size)
600 goto fail_bad;
601 if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) {
602 ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
603 be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC);
604 goto fail_bad;
607 pool_size = be16_to_cpu(fmpl1->size);
608 wl_pool_size = be16_to_cpu(fmpl2->size);
609 fm->max_pool_size = be16_to_cpu(fmpl1->max_size);
610 fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size);
612 if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) {
613 ubi_err("bad pool size: %i", pool_size);
614 goto fail_bad;
617 if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) {
618 ubi_err("bad WL pool size: %i", wl_pool_size);
619 goto fail_bad;
623 if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE ||
624 fm->max_pool_size < 0) {
625 ubi_err("bad maximal pool size: %i", fm->max_pool_size);
626 goto fail_bad;
629 if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE ||
630 fm->max_wl_pool_size < 0) {
631 ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size);
632 goto fail_bad;
635 /* read EC values from free list */
636 for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) {
637 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
638 fm_pos += sizeof(*fmec);
639 if (fm_pos >= fm_size)
640 goto fail_bad;
642 add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum),
643 be32_to_cpu(fmec->ec), 0);
646 /* read EC values from used list */
647 for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) {
648 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
649 fm_pos += sizeof(*fmec);
650 if (fm_pos >= fm_size)
651 goto fail_bad;
653 add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
654 be32_to_cpu(fmec->ec), 0);
657 /* read EC values from scrub list */
658 for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) {
659 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
660 fm_pos += sizeof(*fmec);
661 if (fm_pos >= fm_size)
662 goto fail_bad;
664 add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
665 be32_to_cpu(fmec->ec), 1);
668 /* read EC values from erase list */
669 for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) {
670 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
671 fm_pos += sizeof(*fmec);
672 if (fm_pos >= fm_size)
673 goto fail_bad;
675 add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum),
676 be32_to_cpu(fmec->ec), 1);
679 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
680 ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count);
682 /* Iterate over all volumes and read their EBA table */
683 for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) {
684 fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
685 fm_pos += sizeof(*fmvhdr);
686 if (fm_pos >= fm_size)
687 goto fail_bad;
689 if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) {
690 ubi_err("bad fastmap vol header magic: 0x%x, " \
691 "expected: 0x%x",
692 be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC);
693 goto fail_bad;
696 av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id),
697 be32_to_cpu(fmvhdr->used_ebs),
698 be32_to_cpu(fmvhdr->data_pad),
699 fmvhdr->vol_type,
700 be32_to_cpu(fmvhdr->last_eb_bytes));
702 if (!av)
703 goto fail_bad;
705 ai->vols_found++;
706 if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id))
707 ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id);
709 fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
710 fm_pos += sizeof(*fm_eba);
711 fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs));
712 if (fm_pos >= fm_size)
713 goto fail_bad;
715 if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) {
716 ubi_err("bad fastmap EBA header magic: 0x%x, " \
717 "expected: 0x%x",
718 be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC);
719 goto fail_bad;
722 for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) {
723 int pnum = be32_to_cpu(fm_eba->pnum[j]);
725 if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0)
726 continue;
728 aeb = NULL;
729 list_for_each_entry(tmp_aeb, &used, u.list) {
730 if (tmp_aeb->pnum == pnum) {
731 aeb = tmp_aeb;
732 break;
736 /* This can happen if a PEB is already in an EBA known
737 * by this fastmap but the PEB itself is not in the used
738 * list.
739 * In this case the PEB can be within the fastmap pool
740 * or while writing the fastmap it was in the protection
741 * queue.
743 if (!aeb) {
744 aeb = kmem_cache_alloc(ai->aeb_slab_cache,
745 GFP_KERNEL);
746 if (!aeb) {
747 ret = -ENOMEM;
749 goto fail;
752 aeb->lnum = j;
753 aeb->pnum = be32_to_cpu(fm_eba->pnum[j]);
754 aeb->ec = -1;
755 aeb->scrub = aeb->copy_flag = aeb->sqnum = 0;
756 list_add_tail(&aeb->u.list, &eba_orphans);
757 continue;
760 aeb->lnum = j;
762 if (av->highest_lnum <= aeb->lnum)
763 av->highest_lnum = aeb->lnum;
765 assign_aeb_to_av(ai, aeb, av);
767 dbg_bld("inserting PEB:%i (LEB %i) to vol %i",
768 aeb->pnum, aeb->lnum, av->vol_id);
771 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
772 if (!ech) {
773 ret = -ENOMEM;
774 goto fail;
777 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans,
778 u.list) {
779 int err;
781 if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) {
782 ubi_err("bad PEB in fastmap EBA orphan list");
783 ret = UBI_BAD_FASTMAP;
784 kfree(ech);
785 goto fail;
788 err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0);
789 if (err && err != UBI_IO_BITFLIPS) {
790 ubi_err("unable to read EC header! PEB:%i " \
791 "err:%i", tmp_aeb->pnum, err);
792 ret = err > 0 ? UBI_BAD_FASTMAP : err;
793 kfree(ech);
795 goto fail;
796 } else if (err == UBI_IO_BITFLIPS)
797 tmp_aeb->scrub = 1;
799 tmp_aeb->ec = be64_to_cpu(ech->ec);
800 assign_aeb_to_av(ai, tmp_aeb, av);
803 kfree(ech);
806 ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum,
807 &eba_orphans, &free);
808 if (ret)
809 goto fail;
811 ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum,
812 &eba_orphans, &free);
813 if (ret)
814 goto fail;
816 if (max_sqnum > ai->max_sqnum)
817 ai->max_sqnum = max_sqnum;
819 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list)
820 list_move_tail(&tmp_aeb->u.list, &ai->free);
823 * If fastmap is leaking PEBs (must not happen), raise a
824 * fat warning and fall back to scanning mode.
825 * We do this here because in ubi_wl_init() it's too late
826 * and we cannot fall back to scanning.
828 if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count -
829 ai->bad_peb_count - fm->used_blocks))
830 goto fail_bad;
832 return 0;
834 fail_bad:
835 ret = UBI_BAD_FASTMAP;
836 fail:
837 return ret;
841 * ubi_scan_fastmap - scan the fastmap.
842 * @ubi: UBI device object
843 * @ai: UBI attach info to be filled
844 * @fm_anchor: The fastmap starts at this PEB
846 * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found,
847 * UBI_BAD_FASTMAP if one was found but is not usable.
848 * < 0 indicates an internal error.
850 int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai,
851 int fm_anchor)
853 struct ubi_fm_sb *fmsb, *fmsb2;
854 struct ubi_vid_hdr *vh;
855 struct ubi_ec_hdr *ech;
856 struct ubi_fastmap_layout *fm;
857 int i, used_blocks, pnum, ret = 0;
858 size_t fm_size;
859 __be32 crc, tmp_crc;
860 unsigned long long sqnum = 0;
862 mutex_lock(&ubi->fm_mutex);
863 memset(ubi->fm_buf, 0, ubi->fm_size);
865 fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL);
866 if (!fmsb) {
867 ret = -ENOMEM;
868 goto out;
871 fm = kzalloc(sizeof(*fm), GFP_KERNEL);
872 if (!fm) {
873 ret = -ENOMEM;
874 kfree(fmsb);
875 goto out;
878 ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb));
879 if (ret && ret != UBI_IO_BITFLIPS)
880 goto free_fm_sb;
881 else if (ret == UBI_IO_BITFLIPS)
882 fm->to_be_tortured[0] = 1;
884 if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) {
885 ubi_err("bad super block magic: 0x%x, expected: 0x%x",
886 be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC);
887 ret = UBI_BAD_FASTMAP;
888 goto free_fm_sb;
891 if (fmsb->version != UBI_FM_FMT_VERSION) {
892 ubi_err("bad fastmap version: %i, expected: %i",
893 fmsb->version, UBI_FM_FMT_VERSION);
894 ret = UBI_BAD_FASTMAP;
895 goto free_fm_sb;
898 used_blocks = be32_to_cpu(fmsb->used_blocks);
899 if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) {
900 ubi_err("number of fastmap blocks is invalid: %i", used_blocks);
901 ret = UBI_BAD_FASTMAP;
902 goto free_fm_sb;
905 fm_size = ubi->leb_size * used_blocks;
906 if (fm_size != ubi->fm_size) {
907 ubi_err("bad fastmap size: %zi, expected: %zi", fm_size,
908 ubi->fm_size);
909 ret = UBI_BAD_FASTMAP;
910 goto free_fm_sb;
913 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
914 if (!ech) {
915 ret = -ENOMEM;
916 goto free_fm_sb;
919 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
920 if (!vh) {
921 ret = -ENOMEM;
922 goto free_hdr;
925 for (i = 0; i < used_blocks; i++) {
926 pnum = be32_to_cpu(fmsb->block_loc[i]);
928 if (ubi_io_is_bad(ubi, pnum)) {
929 ret = UBI_BAD_FASTMAP;
930 goto free_hdr;
933 ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
934 if (ret && ret != UBI_IO_BITFLIPS) {
935 ubi_err("unable to read fastmap block# %i EC (PEB: %i)",
936 i, pnum);
937 if (ret > 0)
938 ret = UBI_BAD_FASTMAP;
939 goto free_hdr;
940 } else if (ret == UBI_IO_BITFLIPS)
941 fm->to_be_tortured[i] = 1;
943 if (!ubi->image_seq)
944 ubi->image_seq = be32_to_cpu(ech->image_seq);
946 if (be32_to_cpu(ech->image_seq) != ubi->image_seq) {
947 ret = UBI_BAD_FASTMAP;
948 goto free_hdr;
951 ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
952 if (ret && ret != UBI_IO_BITFLIPS) {
953 ubi_err("unable to read fastmap block# %i (PEB: %i)",
954 i, pnum);
955 goto free_hdr;
958 if (i == 0) {
959 if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) {
960 ubi_err("bad fastmap anchor vol_id: 0x%x," \
961 " expected: 0x%x",
962 be32_to_cpu(vh->vol_id),
963 UBI_FM_SB_VOLUME_ID);
964 ret = UBI_BAD_FASTMAP;
965 goto free_hdr;
967 } else {
968 if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) {
969 ubi_err("bad fastmap data vol_id: 0x%x," \
970 " expected: 0x%x",
971 be32_to_cpu(vh->vol_id),
972 UBI_FM_DATA_VOLUME_ID);
973 ret = UBI_BAD_FASTMAP;
974 goto free_hdr;
978 if (sqnum < be64_to_cpu(vh->sqnum))
979 sqnum = be64_to_cpu(vh->sqnum);
981 ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum,
982 ubi->leb_start, ubi->leb_size);
983 if (ret && ret != UBI_IO_BITFLIPS) {
984 ubi_err("unable to read fastmap block# %i (PEB: %i, " \
985 "err: %i)", i, pnum, ret);
986 goto free_hdr;
990 kfree(fmsb);
991 fmsb = NULL;
993 fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf);
994 tmp_crc = be32_to_cpu(fmsb2->data_crc);
995 fmsb2->data_crc = 0;
996 crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size);
997 if (crc != tmp_crc) {
998 ubi_err("fastmap data CRC is invalid");
999 ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc);
1000 ret = UBI_BAD_FASTMAP;
1001 goto free_hdr;
1004 fmsb2->sqnum = sqnum;
1006 fm->used_blocks = used_blocks;
1008 ret = ubi_attach_fastmap(ubi, ai, fm);
1009 if (ret) {
1010 if (ret > 0)
1011 ret = UBI_BAD_FASTMAP;
1012 goto free_hdr;
1015 for (i = 0; i < used_blocks; i++) {
1016 struct ubi_wl_entry *e;
1018 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1019 if (!e) {
1020 while (i--)
1021 kfree(fm->e[i]);
1023 ret = -ENOMEM;
1024 goto free_hdr;
1027 e->pnum = be32_to_cpu(fmsb2->block_loc[i]);
1028 e->ec = be32_to_cpu(fmsb2->block_ec[i]);
1029 fm->e[i] = e;
1032 ubi->fm = fm;
1033 ubi->fm_pool.max_size = ubi->fm->max_pool_size;
1034 ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size;
1035 ubi_msg("attached by fastmap");
1036 ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size);
1037 ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
1038 ubi->fm_disabled = 0;
1040 ubi_free_vid_hdr(ubi, vh);
1041 kfree(ech);
1042 out:
1043 mutex_unlock(&ubi->fm_mutex);
1044 if (ret == UBI_BAD_FASTMAP)
1045 ubi_err("Attach by fastmap failed, doing a full scan!");
1046 return ret;
1048 free_hdr:
1049 ubi_free_vid_hdr(ubi, vh);
1050 kfree(ech);
1051 free_fm_sb:
1052 kfree(fmsb);
1053 kfree(fm);
1054 goto out;
1058 * ubi_write_fastmap - writes a fastmap.
1059 * @ubi: UBI device object
1060 * @new_fm: the to be written fastmap
1062 * Returns 0 on success, < 0 indicates an internal error.
1064 static int ubi_write_fastmap(struct ubi_device *ubi,
1065 struct ubi_fastmap_layout *new_fm)
1067 size_t fm_pos = 0;
1068 void *fm_raw;
1069 struct ubi_fm_sb *fmsb;
1070 struct ubi_fm_hdr *fmh;
1071 struct ubi_fm_scan_pool *fmpl1, *fmpl2;
1072 struct ubi_fm_ec *fec;
1073 struct ubi_fm_volhdr *fvh;
1074 struct ubi_fm_eba *feba;
1075 struct rb_node *node;
1076 struct ubi_wl_entry *wl_e;
1077 struct ubi_volume *vol;
1078 struct ubi_vid_hdr *avhdr, *dvhdr;
1079 struct ubi_work *ubi_wrk;
1080 int ret, i, j, free_peb_count, used_peb_count, vol_count;
1081 int scrub_peb_count, erase_peb_count;
1083 fm_raw = ubi->fm_buf;
1084 memset(ubi->fm_buf, 0, ubi->fm_size);
1086 avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
1087 if (!avhdr) {
1088 ret = -ENOMEM;
1089 goto out;
1092 dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID);
1093 if (!dvhdr) {
1094 ret = -ENOMEM;
1095 goto out_kfree;
1098 spin_lock(&ubi->volumes_lock);
1099 spin_lock(&ubi->wl_lock);
1101 fmsb = (struct ubi_fm_sb *)fm_raw;
1102 fm_pos += sizeof(*fmsb);
1103 ubi_assert(fm_pos <= ubi->fm_size);
1105 fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
1106 fm_pos += sizeof(*fmh);
1107 ubi_assert(fm_pos <= ubi->fm_size);
1109 fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC);
1110 fmsb->version = UBI_FM_FMT_VERSION;
1111 fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks);
1112 /* the max sqnum will be filled in while *reading* the fastmap */
1113 fmsb->sqnum = 0;
1115 fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC);
1116 free_peb_count = 0;
1117 used_peb_count = 0;
1118 scrub_peb_count = 0;
1119 erase_peb_count = 0;
1120 vol_count = 0;
1122 fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
1123 fm_pos += sizeof(*fmpl1);
1124 fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
1125 fmpl1->size = cpu_to_be16(ubi->fm_pool.size);
1126 fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size);
1128 for (i = 0; i < ubi->fm_pool.size; i++)
1129 fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]);
1131 fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
1132 fm_pos += sizeof(*fmpl2);
1133 fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
1134 fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size);
1135 fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size);
1137 for (i = 0; i < ubi->fm_wl_pool.size; i++)
1138 fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]);
1140 for (node = rb_first(&ubi->free); node; node = rb_next(node)) {
1141 wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1142 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1144 fec->pnum = cpu_to_be32(wl_e->pnum);
1145 fec->ec = cpu_to_be32(wl_e->ec);
1147 free_peb_count++;
1148 fm_pos += sizeof(*fec);
1149 ubi_assert(fm_pos <= ubi->fm_size);
1151 fmh->free_peb_count = cpu_to_be32(free_peb_count);
1153 for (node = rb_first(&ubi->used); node; node = rb_next(node)) {
1154 wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1155 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1157 fec->pnum = cpu_to_be32(wl_e->pnum);
1158 fec->ec = cpu_to_be32(wl_e->ec);
1160 used_peb_count++;
1161 fm_pos += sizeof(*fec);
1162 ubi_assert(fm_pos <= ubi->fm_size);
1164 fmh->used_peb_count = cpu_to_be32(used_peb_count);
1166 for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) {
1167 wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1168 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1170 fec->pnum = cpu_to_be32(wl_e->pnum);
1171 fec->ec = cpu_to_be32(wl_e->ec);
1173 scrub_peb_count++;
1174 fm_pos += sizeof(*fec);
1175 ubi_assert(fm_pos <= ubi->fm_size);
1177 fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count);
1180 list_for_each_entry(ubi_wrk, &ubi->works, list) {
1181 if (ubi_is_erase_work(ubi_wrk)) {
1182 wl_e = ubi_wrk->e;
1183 ubi_assert(wl_e);
1185 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1187 fec->pnum = cpu_to_be32(wl_e->pnum);
1188 fec->ec = cpu_to_be32(wl_e->ec);
1190 erase_peb_count++;
1191 fm_pos += sizeof(*fec);
1192 ubi_assert(fm_pos <= ubi->fm_size);
1195 fmh->erase_peb_count = cpu_to_be32(erase_peb_count);
1197 for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) {
1198 vol = ubi->volumes[i];
1200 if (!vol)
1201 continue;
1203 vol_count++;
1205 fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
1206 fm_pos += sizeof(*fvh);
1207 ubi_assert(fm_pos <= ubi->fm_size);
1209 fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC);
1210 fvh->vol_id = cpu_to_be32(vol->vol_id);
1211 fvh->vol_type = vol->vol_type;
1212 fvh->used_ebs = cpu_to_be32(vol->used_ebs);
1213 fvh->data_pad = cpu_to_be32(vol->data_pad);
1214 fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes);
1216 ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME ||
1217 vol->vol_type == UBI_STATIC_VOLUME);
1219 feba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
1220 fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs);
1221 ubi_assert(fm_pos <= ubi->fm_size);
1223 for (j = 0; j < vol->reserved_pebs; j++)
1224 feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]);
1226 feba->reserved_pebs = cpu_to_be32(j);
1227 feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC);
1229 fmh->vol_count = cpu_to_be32(vol_count);
1230 fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count);
1232 avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1233 avhdr->lnum = 0;
1235 spin_unlock(&ubi->wl_lock);
1236 spin_unlock(&ubi->volumes_lock);
1238 dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum);
1239 ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr);
1240 if (ret) {
1241 ubi_err("unable to write vid_hdr to fastmap SB!");
1242 goto out_kfree;
1245 for (i = 0; i < new_fm->used_blocks; i++) {
1246 fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum);
1247 fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec);
1250 fmsb->data_crc = 0;
1251 fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw,
1252 ubi->fm_size));
1254 for (i = 1; i < new_fm->used_blocks; i++) {
1255 dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1256 dvhdr->lnum = cpu_to_be32(i);
1257 dbg_bld("writing fastmap data to PEB %i sqnum %llu",
1258 new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum));
1259 ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr);
1260 if (ret) {
1261 ubi_err("unable to write vid_hdr to PEB %i!",
1262 new_fm->e[i]->pnum);
1263 goto out_kfree;
1267 for (i = 0; i < new_fm->used_blocks; i++) {
1268 ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size),
1269 new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size);
1270 if (ret) {
1271 ubi_err("unable to write fastmap to PEB %i!",
1272 new_fm->e[i]->pnum);
1273 goto out_kfree;
1277 ubi_assert(new_fm);
1278 ubi->fm = new_fm;
1280 dbg_bld("fastmap written!");
1282 out_kfree:
1283 ubi_free_vid_hdr(ubi, avhdr);
1284 ubi_free_vid_hdr(ubi, dvhdr);
1285 out:
1286 return ret;
1290 * erase_block - Manually erase a PEB.
1291 * @ubi: UBI device object
1292 * @pnum: PEB to be erased
1294 * Returns the new EC value on success, < 0 indicates an internal error.
1296 static int erase_block(struct ubi_device *ubi, int pnum)
1298 int ret;
1299 struct ubi_ec_hdr *ec_hdr;
1300 long long ec;
1302 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1303 if (!ec_hdr)
1304 return -ENOMEM;
1306 ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1307 if (ret < 0)
1308 goto out;
1309 else if (ret && ret != UBI_IO_BITFLIPS) {
1310 ret = -EINVAL;
1311 goto out;
1314 ret = ubi_io_sync_erase(ubi, pnum, 0);
1315 if (ret < 0)
1316 goto out;
1318 ec = be64_to_cpu(ec_hdr->ec);
1319 ec += ret;
1320 if (ec > UBI_MAX_ERASECOUNTER) {
1321 ret = -EINVAL;
1322 goto out;
1325 ec_hdr->ec = cpu_to_be64(ec);
1326 ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
1327 if (ret < 0)
1328 goto out;
1330 ret = ec;
1331 out:
1332 kfree(ec_hdr);
1333 return ret;
1337 * invalidate_fastmap - destroys a fastmap.
1338 * @ubi: UBI device object
1339 * @fm: the fastmap to be destroyed
1341 * Returns 0 on success, < 0 indicates an internal error.
1343 static int invalidate_fastmap(struct ubi_device *ubi,
1344 struct ubi_fastmap_layout *fm)
1346 int ret, i;
1347 struct ubi_vid_hdr *vh;
1349 ret = erase_block(ubi, fm->e[0]->pnum);
1350 if (ret < 0)
1351 return ret;
1353 vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
1354 if (!vh)
1355 return -ENOMEM;
1357 /* deleting the current fastmap SB is not enough, an old SB may exist,
1358 * so create a (corrupted) SB such that fastmap will find it and fall
1359 * back to scanning mode in any case */
1360 vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1361 ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh);
1363 for (i = 0; i < fm->used_blocks; i++)
1364 ubi_wl_put_fm_peb(ubi, fm->e[i], i, fm->to_be_tortured[i]);
1366 return ret;
1370 * ubi_update_fastmap - will be called by UBI if a volume changes or
1371 * a fastmap pool becomes full.
1372 * @ubi: UBI device object
1374 * Returns 0 on success, < 0 indicates an internal error.
1376 int ubi_update_fastmap(struct ubi_device *ubi)
1378 int ret, i;
1379 struct ubi_fastmap_layout *new_fm, *old_fm;
1380 struct ubi_wl_entry *tmp_e;
1382 mutex_lock(&ubi->fm_mutex);
1384 ubi_refill_pools(ubi);
1386 if (ubi->ro_mode || ubi->fm_disabled) {
1387 mutex_unlock(&ubi->fm_mutex);
1388 return 0;
1391 ret = ubi_ensure_anchor_pebs(ubi);
1392 if (ret) {
1393 mutex_unlock(&ubi->fm_mutex);
1394 return ret;
1397 new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL);
1398 if (!new_fm) {
1399 mutex_unlock(&ubi->fm_mutex);
1400 return -ENOMEM;
1403 new_fm->used_blocks = ubi->fm_size / ubi->leb_size;
1405 for (i = 0; i < new_fm->used_blocks; i++) {
1406 new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1407 if (!new_fm->e[i]) {
1408 while (i--)
1409 kfree(new_fm->e[i]);
1411 kfree(new_fm);
1412 mutex_unlock(&ubi->fm_mutex);
1413 return -ENOMEM;
1417 old_fm = ubi->fm;
1418 ubi->fm = NULL;
1420 if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) {
1421 ubi_err("fastmap too large");
1422 ret = -ENOSPC;
1423 goto err;
1426 for (i = 1; i < new_fm->used_blocks; i++) {
1427 spin_lock(&ubi->wl_lock);
1428 tmp_e = ubi_wl_get_fm_peb(ubi, 0);
1429 spin_unlock(&ubi->wl_lock);
1431 if (!tmp_e && !old_fm) {
1432 int j;
1433 ubi_err("could not get any free erase block");
1435 for (j = 1; j < i; j++)
1436 ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0);
1438 ret = -ENOSPC;
1439 goto err;
1440 } else if (!tmp_e && old_fm) {
1441 ret = erase_block(ubi, old_fm->e[i]->pnum);
1442 if (ret < 0) {
1443 int j;
1445 for (j = 1; j < i; j++)
1446 ubi_wl_put_fm_peb(ubi, new_fm->e[j],
1447 j, 0);
1449 ubi_err("could not erase old fastmap PEB");
1450 goto err;
1453 new_fm->e[i]->pnum = old_fm->e[i]->pnum;
1454 new_fm->e[i]->ec = old_fm->e[i]->ec;
1455 } else {
1456 new_fm->e[i]->pnum = tmp_e->pnum;
1457 new_fm->e[i]->ec = tmp_e->ec;
1459 if (old_fm)
1460 ubi_wl_put_fm_peb(ubi, old_fm->e[i], i,
1461 old_fm->to_be_tortured[i]);
1465 spin_lock(&ubi->wl_lock);
1466 tmp_e = ubi_wl_get_fm_peb(ubi, 1);
1467 spin_unlock(&ubi->wl_lock);
1469 if (old_fm) {
1470 /* no fresh anchor PEB was found, reuse the old one */
1471 if (!tmp_e) {
1472 ret = erase_block(ubi, old_fm->e[0]->pnum);
1473 if (ret < 0) {
1474 int i;
1475 ubi_err("could not erase old anchor PEB");
1477 for (i = 1; i < new_fm->used_blocks; i++)
1478 ubi_wl_put_fm_peb(ubi, new_fm->e[i],
1479 i, 0);
1480 goto err;
1483 new_fm->e[0]->pnum = old_fm->e[0]->pnum;
1484 new_fm->e[0]->ec = ret;
1485 } else {
1486 /* we've got a new anchor PEB, return the old one */
1487 ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0,
1488 old_fm->to_be_tortured[0]);
1490 new_fm->e[0]->pnum = tmp_e->pnum;
1491 new_fm->e[0]->ec = tmp_e->ec;
1493 } else {
1494 if (!tmp_e) {
1495 int i;
1496 ubi_err("could not find any anchor PEB");
1498 for (i = 1; i < new_fm->used_blocks; i++)
1499 ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0);
1501 ret = -ENOSPC;
1502 goto err;
1505 new_fm->e[0]->pnum = tmp_e->pnum;
1506 new_fm->e[0]->ec = tmp_e->ec;
1509 down_write(&ubi->work_sem);
1510 down_write(&ubi->fm_sem);
1511 ret = ubi_write_fastmap(ubi, new_fm);
1512 up_write(&ubi->fm_sem);
1513 up_write(&ubi->work_sem);
1515 if (ret)
1516 goto err;
1518 out_unlock:
1519 mutex_unlock(&ubi->fm_mutex);
1520 kfree(old_fm);
1521 return ret;
1523 err:
1524 kfree(new_fm);
1526 ubi_warn("Unable to write new fastmap, err=%i", ret);
1528 ret = 0;
1529 if (old_fm) {
1530 ret = invalidate_fastmap(ubi, old_fm);
1531 if (ret < 0)
1532 ubi_err("Unable to invalidiate current fastmap!");
1533 else if (ret)
1534 ret = 0;
1536 goto out_unlock;