2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
72 #include <linux/if_vlan.h>
75 #include <linux/ethtool.h>
83 #include <asm/byteorder.h>
84 #include <asm/uaccess.h>
87 #define DRV_NAME "acenic"
91 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
92 #define ACE_IS_TIGON_I(ap) 0
93 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
95 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
96 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
99 #ifndef PCI_VENDOR_ID_ALTEON
100 #define PCI_VENDOR_ID_ALTEON 0x12ae
102 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
103 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
106 #ifndef PCI_DEVICE_ID_3COM_3C985
107 #define PCI_DEVICE_ID_3COM_3C985 0x0001
109 #ifndef PCI_VENDOR_ID_NETGEAR
110 #define PCI_VENDOR_ID_NETGEAR 0x1385
111 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
113 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
114 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
119 * Farallon used the DEC vendor ID by mistake and they seem not
122 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
123 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
126 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
128 #ifndef PCI_VENDOR_ID_SGI
129 #define PCI_VENDOR_ID_SGI 0x10a9
131 #ifndef PCI_DEVICE_ID_SGI_ACENIC
132 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
135 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl
) = {
136 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
,
137 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
138 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER
,
139 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
140 { PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C985
,
141 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
142 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620
,
143 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
144 { PCI_VENDOR_ID_NETGEAR
, PCI_DEVICE_ID_NETGEAR_GA620T
,
145 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
147 * Farallon used the DEC vendor ID on their cards incorrectly,
148 * then later Alteon's ID.
150 { PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_FARALLON_PN9000SX
,
151 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
152 { PCI_VENDOR_ID_ALTEON
, PCI_DEVICE_ID_FARALLON_PN9100T
,
153 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
154 { PCI_VENDOR_ID_SGI
, PCI_DEVICE_ID_SGI_ACENIC
,
155 PCI_ANY_ID
, PCI_ANY_ID
, PCI_CLASS_NETWORK_ETHERNET
<< 8, 0xffff00, },
158 MODULE_DEVICE_TABLE(pci
, acenic_pci_tbl
);
160 #define ace_sync_irq(irq) synchronize_irq(irq)
162 #ifndef offset_in_page
163 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
166 #define ACE_MAX_MOD_PARMS 8
167 #define BOARD_IDX_STATIC 0
168 #define BOARD_IDX_OVERFLOW -1
173 * These must be defined before the firmware is included.
175 #define MAX_TEXT_LEN 96*1024
176 #define MAX_RODATA_LEN 8*1024
177 #define MAX_DATA_LEN 2*1024
179 #ifndef tigon2FwReleaseLocal
180 #define tigon2FwReleaseLocal 0
184 * This driver currently supports Tigon I and Tigon II based cards
185 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
186 * GA620. The driver should also work on the SGI, DEC and Farallon
187 * versions of the card, however I have not been able to test that
190 * This card is really neat, it supports receive hardware checksumming
191 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
192 * firmware. Also the programming interface is quite neat, except for
193 * the parts dealing with the i2c eeprom on the card ;-)
195 * Using jumbo frames:
197 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
198 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
199 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
200 * interface number and <MTU> being the MTU value.
204 * When compiled as a loadable module, the driver allows for a number
205 * of module parameters to be specified. The driver supports the
206 * following module parameters:
208 * trace=<val> - Firmware trace level. This requires special traced
209 * firmware to replace the firmware supplied with
210 * the driver - for debugging purposes only.
212 * link=<val> - Link state. Normally you want to use the default link
213 * parameters set by the driver. This can be used to
214 * override these in case your switch doesn't negotiate
215 * the link properly. Valid values are:
216 * 0x0001 - Force half duplex link.
217 * 0x0002 - Do not negotiate line speed with the other end.
218 * 0x0010 - 10Mbit/sec link.
219 * 0x0020 - 100Mbit/sec link.
220 * 0x0040 - 1000Mbit/sec link.
221 * 0x0100 - Do not negotiate flow control.
222 * 0x0200 - Enable RX flow control Y
223 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
224 * Default value is 0x0270, ie. enable link+flow
225 * control negotiation. Negotiating the highest
226 * possible link speed with RX flow control enabled.
228 * When disabling link speed negotiation, only one link
229 * speed is allowed to be specified!
231 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232 * to wait for more packets to arive before
233 * interrupting the host, from the time the first
236 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
237 * to wait for more packets to arive in the transmit ring,
238 * before interrupting the host, after transmitting the
239 * first packet in the ring.
241 * max_tx_desc=<val> - maximum number of transmit descriptors
242 * (packets) transmitted before interrupting the host.
244 * max_rx_desc=<val> - maximum number of receive descriptors
245 * (packets) received before interrupting the host.
247 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
248 * increments of the NIC's on board memory to be used for
249 * transmit and receive buffers. For the 1MB NIC app. 800KB
250 * is available, on the 1/2MB NIC app. 300KB is available.
251 * 68KB will always be available as a minimum for both
252 * directions. The default value is a 50/50 split.
253 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
254 * operations, default (1) is to always disable this as
255 * that is what Alteon does on NT. I have not been able
256 * to measure any real performance differences with
257 * this on my systems. Set <val>=0 if you want to
258 * enable these operations.
260 * If you use more than one NIC, specify the parameters for the
261 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
262 * run tracing on NIC #2 but not on NIC #1 and #3.
266 * - Proper multicast support.
267 * - NIC dump support.
268 * - More tuning parameters.
270 * The mini ring is not used under Linux and I am not sure it makes sense
271 * to actually use it.
273 * New interrupt handler strategy:
275 * The old interrupt handler worked using the traditional method of
276 * replacing an skbuff with a new one when a packet arrives. However
277 * the rx rings do not need to contain a static number of buffer
278 * descriptors, thus it makes sense to move the memory allocation out
279 * of the main interrupt handler and do it in a bottom half handler
280 * and only allocate new buffers when the number of buffers in the
281 * ring is below a certain threshold. In order to avoid starving the
282 * NIC under heavy load it is however necessary to force allocation
283 * when hitting a minimum threshold. The strategy for alloction is as
286 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
287 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
288 * the buffers in the interrupt handler
289 * RX_RING_THRES - maximum number of buffers in the rx ring
290 * RX_MINI_THRES - maximum number of buffers in the mini ring
291 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
293 * One advantagous side effect of this allocation approach is that the
294 * entire rx processing can be done without holding any spin lock
295 * since the rx rings and registers are totally independent of the tx
296 * ring and its registers. This of course includes the kmalloc's of
297 * new skb's. Thus start_xmit can run in parallel with rx processing
298 * and the memory allocation on SMP systems.
300 * Note that running the skb reallocation in a bottom half opens up
301 * another can of races which needs to be handled properly. In
302 * particular it can happen that the interrupt handler tries to run
303 * the reallocation while the bottom half is either running on another
304 * CPU or was interrupted on the same CPU. To get around this the
305 * driver uses bitops to prevent the reallocation routines from being
308 * TX handling can also be done without holding any spin lock, wheee
309 * this is fun! since tx_ret_csm is only written to by the interrupt
310 * handler. The case to be aware of is when shutting down the device
311 * and cleaning up where it is necessary to make sure that
312 * start_xmit() is not running while this is happening. Well DaveM
313 * informs me that this case is already protected against ... bye bye
314 * Mr. Spin Lock, it was nice to know you.
316 * TX interrupts are now partly disabled so the NIC will only generate
317 * TX interrupts for the number of coal ticks, not for the number of
318 * TX packets in the queue. This should reduce the number of TX only,
319 * ie. when no RX processing is done, interrupts seen.
323 * Threshold values for RX buffer allocation - the low water marks for
324 * when to start refilling the rings are set to 75% of the ring
325 * sizes. It seems to make sense to refill the rings entirely from the
326 * intrrupt handler once it gets below the panic threshold, that way
327 * we don't risk that the refilling is moved to another CPU when the
328 * one running the interrupt handler just got the slab code hot in its
331 #define RX_RING_SIZE 72
332 #define RX_MINI_SIZE 64
333 #define RX_JUMBO_SIZE 48
335 #define RX_PANIC_STD_THRES 16
336 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
337 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
338 #define RX_PANIC_MINI_THRES 12
339 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
340 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
341 #define RX_PANIC_JUMBO_THRES 6
342 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
343 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
347 * Size of the mini ring entries, basically these just should be big
348 * enough to take TCP ACKs
350 #define ACE_MINI_SIZE 100
352 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
353 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
354 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
357 * There seems to be a magic difference in the effect between 995 and 996
358 * but little difference between 900 and 995 ... no idea why.
360 * There is now a default set of tuning parameters which is set, depending
361 * on whether or not the user enables Jumbo frames. It's assumed that if
362 * Jumbo frames are enabled, the user wants optimal tuning for that case.
364 #define DEF_TX_COAL 400 /* 996 */
365 #define DEF_TX_MAX_DESC 60 /* was 40 */
366 #define DEF_RX_COAL 120 /* 1000 */
367 #define DEF_RX_MAX_DESC 25
368 #define DEF_TX_RATIO 21 /* 24 */
370 #define DEF_JUMBO_TX_COAL 20
371 #define DEF_JUMBO_TX_MAX_DESC 60
372 #define DEF_JUMBO_RX_COAL 30
373 #define DEF_JUMBO_RX_MAX_DESC 6
374 #define DEF_JUMBO_TX_RATIO 21
376 #if tigon2FwReleaseLocal < 20001118
378 * Standard firmware and early modifications duplicate
379 * IRQ load without this flag (coal timer is never reset).
380 * Note that with this flag tx_coal should be less than
381 * time to xmit full tx ring.
382 * 400usec is not so bad for tx ring size of 128.
384 #define TX_COAL_INTS_ONLY 1 /* worth it */
387 * With modified firmware, this is not necessary, but still useful.
389 #define TX_COAL_INTS_ONLY 1
393 #define DEF_STAT (2 * TICKS_PER_SEC)
396 static int link_state
[ACE_MAX_MOD_PARMS
];
397 static int trace
[ACE_MAX_MOD_PARMS
];
398 static int tx_coal_tick
[ACE_MAX_MOD_PARMS
];
399 static int rx_coal_tick
[ACE_MAX_MOD_PARMS
];
400 static int max_tx_desc
[ACE_MAX_MOD_PARMS
];
401 static int max_rx_desc
[ACE_MAX_MOD_PARMS
];
402 static int tx_ratio
[ACE_MAX_MOD_PARMS
];
403 static int dis_pci_mem_inval
[ACE_MAX_MOD_PARMS
] = {1, 1, 1, 1, 1, 1, 1, 1};
405 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
406 MODULE_LICENSE("GPL");
407 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
408 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
409 MODULE_FIRMWARE("acenic/tg1.bin");
411 MODULE_FIRMWARE("acenic/tg2.bin");
413 module_param_array_named(link
, link_state
, int, NULL
, 0);
414 module_param_array(trace
, int, NULL
, 0);
415 module_param_array(tx_coal_tick
, int, NULL
, 0);
416 module_param_array(max_tx_desc
, int, NULL
, 0);
417 module_param_array(rx_coal_tick
, int, NULL
, 0);
418 module_param_array(max_rx_desc
, int, NULL
, 0);
419 module_param_array(tx_ratio
, int, NULL
, 0);
420 MODULE_PARM_DESC(link
, "AceNIC/3C985/NetGear link state");
421 MODULE_PARM_DESC(trace
, "AceNIC/3C985/NetGear firmware trace level");
422 MODULE_PARM_DESC(tx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
423 MODULE_PARM_DESC(max_tx_desc
, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
424 MODULE_PARM_DESC(rx_coal_tick
, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
425 MODULE_PARM_DESC(max_rx_desc
, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
426 MODULE_PARM_DESC(tx_ratio
, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
429 static const char version
[] =
430 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
431 " http://home.cern.ch/~jes/gige/acenic.html\n";
433 static int ace_get_settings(struct net_device
*, struct ethtool_cmd
*);
434 static int ace_set_settings(struct net_device
*, struct ethtool_cmd
*);
435 static void ace_get_drvinfo(struct net_device
*, struct ethtool_drvinfo
*);
437 static const struct ethtool_ops ace_ethtool_ops
= {
438 .get_settings
= ace_get_settings
,
439 .set_settings
= ace_set_settings
,
440 .get_drvinfo
= ace_get_drvinfo
,
443 static void ace_watchdog(struct net_device
*dev
);
445 static const struct net_device_ops ace_netdev_ops
= {
446 .ndo_open
= ace_open
,
447 .ndo_stop
= ace_close
,
448 .ndo_tx_timeout
= ace_watchdog
,
449 .ndo_get_stats
= ace_get_stats
,
450 .ndo_start_xmit
= ace_start_xmit
,
451 .ndo_set_rx_mode
= ace_set_multicast_list
,
452 .ndo_validate_addr
= eth_validate_addr
,
453 .ndo_set_mac_address
= ace_set_mac_addr
,
454 .ndo_change_mtu
= ace_change_mtu
,
457 static int acenic_probe_one(struct pci_dev
*pdev
,
458 const struct pci_device_id
*id
)
460 struct net_device
*dev
;
461 struct ace_private
*ap
;
462 static int boards_found
;
464 dev
= alloc_etherdev(sizeof(struct ace_private
));
468 SET_NETDEV_DEV(dev
, &pdev
->dev
);
470 ap
= netdev_priv(dev
);
472 ap
->name
= pci_name(pdev
);
474 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
475 dev
->features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
477 dev
->watchdog_timeo
= 5*HZ
;
479 dev
->netdev_ops
= &ace_netdev_ops
;
480 SET_ETHTOOL_OPS(dev
, &ace_ethtool_ops
);
482 /* we only display this string ONCE */
486 if (pci_enable_device(pdev
))
487 goto fail_free_netdev
;
490 * Enable master mode before we start playing with the
491 * pci_command word since pci_set_master() will modify
494 pci_set_master(pdev
);
496 pci_read_config_word(pdev
, PCI_COMMAND
, &ap
->pci_command
);
498 /* OpenFirmware on Mac's does not set this - DOH.. */
499 if (!(ap
->pci_command
& PCI_COMMAND_MEMORY
)) {
500 printk(KERN_INFO
"%s: Enabling PCI Memory Mapped "
501 "access - was not enabled by BIOS/Firmware\n",
503 ap
->pci_command
= ap
->pci_command
| PCI_COMMAND_MEMORY
;
504 pci_write_config_word(ap
->pdev
, PCI_COMMAND
,
509 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &ap
->pci_latency
);
510 if (ap
->pci_latency
<= 0x40) {
511 ap
->pci_latency
= 0x40;
512 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, ap
->pci_latency
);
516 * Remap the regs into kernel space - this is abuse of
517 * dev->base_addr since it was means for I/O port
518 * addresses but who gives a damn.
520 dev
->base_addr
= pci_resource_start(pdev
, 0);
521 ap
->regs
= ioremap(dev
->base_addr
, 0x4000);
523 printk(KERN_ERR
"%s: Unable to map I/O register, "
524 "AceNIC %i will be disabled.\n",
525 ap
->name
, boards_found
);
526 goto fail_free_netdev
;
529 switch(pdev
->vendor
) {
530 case PCI_VENDOR_ID_ALTEON
:
531 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9100T
) {
532 printk(KERN_INFO
"%s: Farallon PN9100-T ",
535 printk(KERN_INFO
"%s: Alteon AceNIC ",
539 case PCI_VENDOR_ID_3COM
:
540 printk(KERN_INFO
"%s: 3Com 3C985 ", ap
->name
);
542 case PCI_VENDOR_ID_NETGEAR
:
543 printk(KERN_INFO
"%s: NetGear GA620 ", ap
->name
);
545 case PCI_VENDOR_ID_DEC
:
546 if (pdev
->device
== PCI_DEVICE_ID_FARALLON_PN9000SX
) {
547 printk(KERN_INFO
"%s: Farallon PN9000-SX ",
551 case PCI_VENDOR_ID_SGI
:
552 printk(KERN_INFO
"%s: SGI AceNIC ", ap
->name
);
555 printk(KERN_INFO
"%s: Unknown AceNIC ", ap
->name
);
559 printk("Gigabit Ethernet at 0x%08lx, ", dev
->base_addr
);
560 printk("irq %d\n", pdev
->irq
);
562 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
563 if ((readl(&ap
->regs
->HostCtrl
) >> 28) == 4) {
564 printk(KERN_ERR
"%s: Driver compiled without Tigon I"
565 " support - NIC disabled\n", dev
->name
);
570 if (ace_allocate_descriptors(dev
))
571 goto fail_free_netdev
;
574 if (boards_found
>= ACE_MAX_MOD_PARMS
)
575 ap
->board_idx
= BOARD_IDX_OVERFLOW
;
577 ap
->board_idx
= boards_found
;
579 ap
->board_idx
= BOARD_IDX_STATIC
;
583 goto fail_free_netdev
;
585 if (register_netdev(dev
)) {
586 printk(KERN_ERR
"acenic: device registration failed\n");
589 ap
->name
= dev
->name
;
591 if (ap
->pci_using_dac
)
592 dev
->features
|= NETIF_F_HIGHDMA
;
594 pci_set_drvdata(pdev
, dev
);
600 ace_init_cleanup(dev
);
606 static void acenic_remove_one(struct pci_dev
*pdev
)
608 struct net_device
*dev
= pci_get_drvdata(pdev
);
609 struct ace_private
*ap
= netdev_priv(dev
);
610 struct ace_regs __iomem
*regs
= ap
->regs
;
613 unregister_netdev(dev
);
615 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
616 if (ap
->version
>= 2)
617 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
620 * This clears any pending interrupts
622 writel(1, ®s
->Mb0Lo
);
623 readl(®s
->CpuCtrl
); /* flush */
626 * Make sure no other CPUs are processing interrupts
627 * on the card before the buffers are being released.
628 * Otherwise one might experience some `interesting'
631 * Then release the RX buffers - jumbo buffers were
632 * already released in ace_close().
634 ace_sync_irq(dev
->irq
);
636 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++) {
637 struct sk_buff
*skb
= ap
->skb
->rx_std_skbuff
[i
].skb
;
640 struct ring_info
*ringp
;
643 ringp
= &ap
->skb
->rx_std_skbuff
[i
];
644 mapping
= dma_unmap_addr(ringp
, mapping
);
645 pci_unmap_page(ap
->pdev
, mapping
,
649 ap
->rx_std_ring
[i
].size
= 0;
650 ap
->skb
->rx_std_skbuff
[i
].skb
= NULL
;
655 if (ap
->version
>= 2) {
656 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++) {
657 struct sk_buff
*skb
= ap
->skb
->rx_mini_skbuff
[i
].skb
;
660 struct ring_info
*ringp
;
663 ringp
= &ap
->skb
->rx_mini_skbuff
[i
];
664 mapping
= dma_unmap_addr(ringp
,mapping
);
665 pci_unmap_page(ap
->pdev
, mapping
,
669 ap
->rx_mini_ring
[i
].size
= 0;
670 ap
->skb
->rx_mini_skbuff
[i
].skb
= NULL
;
676 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
677 struct sk_buff
*skb
= ap
->skb
->rx_jumbo_skbuff
[i
].skb
;
679 struct ring_info
*ringp
;
682 ringp
= &ap
->skb
->rx_jumbo_skbuff
[i
];
683 mapping
= dma_unmap_addr(ringp
, mapping
);
684 pci_unmap_page(ap
->pdev
, mapping
,
688 ap
->rx_jumbo_ring
[i
].size
= 0;
689 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
694 ace_init_cleanup(dev
);
698 static struct pci_driver acenic_pci_driver
= {
700 .id_table
= acenic_pci_tbl
,
701 .probe
= acenic_probe_one
,
702 .remove
= acenic_remove_one
,
705 static void ace_free_descriptors(struct net_device
*dev
)
707 struct ace_private
*ap
= netdev_priv(dev
);
710 if (ap
->rx_std_ring
!= NULL
) {
711 size
= (sizeof(struct rx_desc
) *
712 (RX_STD_RING_ENTRIES
+
713 RX_JUMBO_RING_ENTRIES
+
714 RX_MINI_RING_ENTRIES
+
715 RX_RETURN_RING_ENTRIES
));
716 pci_free_consistent(ap
->pdev
, size
, ap
->rx_std_ring
,
717 ap
->rx_ring_base_dma
);
718 ap
->rx_std_ring
= NULL
;
719 ap
->rx_jumbo_ring
= NULL
;
720 ap
->rx_mini_ring
= NULL
;
721 ap
->rx_return_ring
= NULL
;
723 if (ap
->evt_ring
!= NULL
) {
724 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
725 pci_free_consistent(ap
->pdev
, size
, ap
->evt_ring
,
729 if (ap
->tx_ring
!= NULL
&& !ACE_IS_TIGON_I(ap
)) {
730 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
731 pci_free_consistent(ap
->pdev
, size
, ap
->tx_ring
,
736 if (ap
->evt_prd
!= NULL
) {
737 pci_free_consistent(ap
->pdev
, sizeof(u32
),
738 (void *)ap
->evt_prd
, ap
->evt_prd_dma
);
741 if (ap
->rx_ret_prd
!= NULL
) {
742 pci_free_consistent(ap
->pdev
, sizeof(u32
),
743 (void *)ap
->rx_ret_prd
,
745 ap
->rx_ret_prd
= NULL
;
747 if (ap
->tx_csm
!= NULL
) {
748 pci_free_consistent(ap
->pdev
, sizeof(u32
),
749 (void *)ap
->tx_csm
, ap
->tx_csm_dma
);
755 static int ace_allocate_descriptors(struct net_device
*dev
)
757 struct ace_private
*ap
= netdev_priv(dev
);
760 size
= (sizeof(struct rx_desc
) *
761 (RX_STD_RING_ENTRIES
+
762 RX_JUMBO_RING_ENTRIES
+
763 RX_MINI_RING_ENTRIES
+
764 RX_RETURN_RING_ENTRIES
));
766 ap
->rx_std_ring
= pci_alloc_consistent(ap
->pdev
, size
,
767 &ap
->rx_ring_base_dma
);
768 if (ap
->rx_std_ring
== NULL
)
771 ap
->rx_jumbo_ring
= ap
->rx_std_ring
+ RX_STD_RING_ENTRIES
;
772 ap
->rx_mini_ring
= ap
->rx_jumbo_ring
+ RX_JUMBO_RING_ENTRIES
;
773 ap
->rx_return_ring
= ap
->rx_mini_ring
+ RX_MINI_RING_ENTRIES
;
775 size
= (sizeof(struct event
) * EVT_RING_ENTRIES
);
777 ap
->evt_ring
= pci_alloc_consistent(ap
->pdev
, size
, &ap
->evt_ring_dma
);
779 if (ap
->evt_ring
== NULL
)
783 * Only allocate a host TX ring for the Tigon II, the Tigon I
784 * has to use PCI registers for this ;-(
786 if (!ACE_IS_TIGON_I(ap
)) {
787 size
= (sizeof(struct tx_desc
) * MAX_TX_RING_ENTRIES
);
789 ap
->tx_ring
= pci_alloc_consistent(ap
->pdev
, size
,
792 if (ap
->tx_ring
== NULL
)
796 ap
->evt_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
798 if (ap
->evt_prd
== NULL
)
801 ap
->rx_ret_prd
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
802 &ap
->rx_ret_prd_dma
);
803 if (ap
->rx_ret_prd
== NULL
)
806 ap
->tx_csm
= pci_alloc_consistent(ap
->pdev
, sizeof(u32
),
808 if (ap
->tx_csm
== NULL
)
815 ace_init_cleanup(dev
);
821 * Generic cleanup handling data allocated during init. Used when the
822 * module is unloaded or if an error occurs during initialization
824 static void ace_init_cleanup(struct net_device
*dev
)
826 struct ace_private
*ap
;
828 ap
= netdev_priv(dev
);
830 ace_free_descriptors(dev
);
833 pci_free_consistent(ap
->pdev
, sizeof(struct ace_info
),
834 ap
->info
, ap
->info_dma
);
836 kfree(ap
->trace_buf
);
839 free_irq(dev
->irq
, dev
);
846 * Commands are considered to be slow.
848 static inline void ace_issue_cmd(struct ace_regs __iomem
*regs
, struct cmd
*cmd
)
852 idx
= readl(®s
->CmdPrd
);
854 writel(*(u32
*)(cmd
), ®s
->CmdRng
[idx
]);
855 idx
= (idx
+ 1) % CMD_RING_ENTRIES
;
857 writel(idx
, ®s
->CmdPrd
);
861 static int ace_init(struct net_device
*dev
)
863 struct ace_private
*ap
;
864 struct ace_regs __iomem
*regs
;
865 struct ace_info
*info
= NULL
;
866 struct pci_dev
*pdev
;
869 u32 tig_ver
, mac1
, mac2
, tmp
, pci_state
;
870 int board_idx
, ecode
= 0;
872 unsigned char cache_size
;
874 ap
= netdev_priv(dev
);
877 board_idx
= ap
->board_idx
;
880 * aman@sgi.com - its useful to do a NIC reset here to
881 * address the `Firmware not running' problem subsequent
882 * to any crashes involving the NIC
884 writel(HW_RESET
| (HW_RESET
<< 24), ®s
->HostCtrl
);
885 readl(®s
->HostCtrl
); /* PCI write posting */
889 * Don't access any other registers before this point!
893 * This will most likely need BYTE_SWAP once we switch
894 * to using __raw_writel()
896 writel((WORD_SWAP
| CLR_INT
| ((WORD_SWAP
| CLR_INT
) << 24)),
899 writel((CLR_INT
| WORD_SWAP
| ((CLR_INT
| WORD_SWAP
) << 24)),
902 readl(®s
->HostCtrl
); /* PCI write posting */
905 * Stop the NIC CPU and clear pending interrupts
907 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
908 readl(®s
->CpuCtrl
); /* PCI write posting */
909 writel(0, ®s
->Mb0Lo
);
911 tig_ver
= readl(®s
->HostCtrl
) >> 28;
914 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
917 printk(KERN_INFO
" Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
918 tig_ver
, ap
->firmware_major
, ap
->firmware_minor
,
920 writel(0, ®s
->LocalCtrl
);
922 ap
->tx_ring_entries
= TIGON_I_TX_RING_ENTRIES
;
926 printk(KERN_INFO
" Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
927 tig_ver
, ap
->firmware_major
, ap
->firmware_minor
,
929 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
, ®s
->CpuBCtrl
);
930 readl(®s
->CpuBCtrl
); /* PCI write posting */
932 * The SRAM bank size does _not_ indicate the amount
933 * of memory on the card, it controls the _bank_ size!
934 * Ie. a 1MB AceNIC will have two banks of 512KB.
936 writel(SRAM_BANK_512K
, ®s
->LocalCtrl
);
937 writel(SYNC_SRAM_TIMING
, ®s
->MiscCfg
);
939 ap
->tx_ring_entries
= MAX_TX_RING_ENTRIES
;
942 printk(KERN_WARNING
" Unsupported Tigon version detected "
949 * ModeStat _must_ be set after the SRAM settings as this change
950 * seems to corrupt the ModeStat and possible other registers.
951 * The SRAM settings survive resets and setting it to the same
952 * value a second time works as well. This is what caused the
953 * `Firmware not running' problem on the Tigon II.
956 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
| ACE_BYTE_SWAP_BD
|
957 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
959 writel(ACE_BYTE_SWAP_DMA
| ACE_WARN
| ACE_FATAL
|
960 ACE_WORD_SWAP_BD
| ACE_NO_JUMBO_FRAG
, ®s
->ModeStat
);
962 readl(®s
->ModeStat
); /* PCI write posting */
965 for(i
= 0; i
< 4; i
++) {
969 t
= read_eeprom_byte(dev
, 0x8c+i
);
977 for(i
= 4; i
< 8; i
++) {
981 t
= read_eeprom_byte(dev
, 0x8c+i
);
989 writel(mac1
, ®s
->MacAddrHi
);
990 writel(mac2
, ®s
->MacAddrLo
);
992 dev
->dev_addr
[0] = (mac1
>> 8) & 0xff;
993 dev
->dev_addr
[1] = mac1
& 0xff;
994 dev
->dev_addr
[2] = (mac2
>> 24) & 0xff;
995 dev
->dev_addr
[3] = (mac2
>> 16) & 0xff;
996 dev
->dev_addr
[4] = (mac2
>> 8) & 0xff;
997 dev
->dev_addr
[5] = mac2
& 0xff;
999 printk("MAC: %pM\n", dev
->dev_addr
);
1002 * Looks like this is necessary to deal with on all architectures,
1003 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1004 * Ie. having two NICs in the machine, one will have the cache
1005 * line set at boot time, the other will not.
1008 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, &cache_size
);
1010 if (cache_size
!= SMP_CACHE_BYTES
) {
1011 printk(KERN_INFO
" PCI cache line size set incorrectly "
1012 "(%i bytes) by BIOS/FW, ", cache_size
);
1013 if (cache_size
> SMP_CACHE_BYTES
)
1014 printk("expecting %i\n", SMP_CACHE_BYTES
);
1016 printk("correcting to %i\n", SMP_CACHE_BYTES
);
1017 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
1018 SMP_CACHE_BYTES
>> 2);
1022 pci_state
= readl(®s
->PciState
);
1023 printk(KERN_INFO
" PCI bus width: %i bits, speed: %iMHz, "
1024 "latency: %i clks\n",
1025 (pci_state
& PCI_32BIT
) ? 32 : 64,
1026 (pci_state
& PCI_66MHZ
) ? 66 : 33,
1030 * Set the max DMA transfer size. Seems that for most systems
1031 * the performance is better when no MAX parameter is
1032 * set. However for systems enabling PCI write and invalidate,
1033 * DMA writes must be set to the L1 cache line size to get
1034 * optimal performance.
1036 * The default is now to turn the PCI write and invalidate off
1037 * - that is what Alteon does for NT.
1039 tmp
= READ_CMD_MEM
| WRITE_CMD_MEM
;
1040 if (ap
->version
>= 2) {
1041 tmp
|= (MEM_READ_MULTIPLE
| (pci_state
& PCI_66MHZ
));
1043 * Tuning parameters only supported for 8 cards
1045 if (board_idx
== BOARD_IDX_OVERFLOW
||
1046 dis_pci_mem_inval
[board_idx
]) {
1047 if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1048 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1049 pci_write_config_word(pdev
, PCI_COMMAND
,
1051 printk(KERN_INFO
" Disabling PCI memory "
1052 "write and invalidate\n");
1054 } else if (ap
->pci_command
& PCI_COMMAND_INVALIDATE
) {
1055 printk(KERN_INFO
" PCI memory write & invalidate "
1056 "enabled by BIOS, enabling counter measures\n");
1058 switch(SMP_CACHE_BYTES
) {
1060 tmp
|= DMA_WRITE_MAX_16
;
1063 tmp
|= DMA_WRITE_MAX_32
;
1066 tmp
|= DMA_WRITE_MAX_64
;
1069 tmp
|= DMA_WRITE_MAX_128
;
1072 printk(KERN_INFO
" Cache line size %i not "
1073 "supported, PCI write and invalidate "
1074 "disabled\n", SMP_CACHE_BYTES
);
1075 ap
->pci_command
&= ~PCI_COMMAND_INVALIDATE
;
1076 pci_write_config_word(pdev
, PCI_COMMAND
,
1084 * On this platform, we know what the best dma settings
1085 * are. We use 64-byte maximum bursts, because if we
1086 * burst larger than the cache line size (or even cross
1087 * a 64byte boundary in a single burst) the UltraSparc
1088 * PCI controller will disconnect at 64-byte multiples.
1090 * Read-multiple will be properly enabled above, and when
1091 * set will give the PCI controller proper hints about
1094 tmp
&= ~DMA_READ_WRITE_MASK
;
1095 tmp
|= DMA_READ_MAX_64
;
1096 tmp
|= DMA_WRITE_MAX_64
;
1099 tmp
&= ~DMA_READ_WRITE_MASK
;
1100 tmp
|= DMA_READ_MAX_128
;
1102 * All the docs say MUST NOT. Well, I did.
1103 * Nothing terrible happens, if we load wrong size.
1104 * Bit w&i still works better!
1106 tmp
|= DMA_WRITE_MAX_128
;
1108 writel(tmp
, ®s
->PciState
);
1112 * The Host PCI bus controller driver has to set FBB.
1113 * If all devices on that PCI bus support FBB, then the controller
1114 * can enable FBB support in the Host PCI Bus controller (or on
1115 * the PCI-PCI bridge if that applies).
1119 * I have received reports from people having problems when this
1122 if (!(ap
->pci_command
& PCI_COMMAND_FAST_BACK
)) {
1123 printk(KERN_INFO
" Enabling PCI Fast Back to Back\n");
1124 ap
->pci_command
|= PCI_COMMAND_FAST_BACK
;
1125 pci_write_config_word(pdev
, PCI_COMMAND
, ap
->pci_command
);
1130 * Configure DMA attributes.
1132 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
1133 ap
->pci_using_dac
= 1;
1134 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
1135 ap
->pci_using_dac
= 0;
1142 * Initialize the generic info block and the command+event rings
1143 * and the control blocks for the transmit and receive rings
1144 * as they need to be setup once and for all.
1146 if (!(info
= pci_alloc_consistent(ap
->pdev
, sizeof(struct ace_info
),
1154 * Get the memory for the skb rings.
1156 if (!(ap
->skb
= kmalloc(sizeof(struct ace_skb
), GFP_KERNEL
))) {
1161 ecode
= request_irq(pdev
->irq
, ace_interrupt
, IRQF_SHARED
,
1164 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1165 DRV_NAME
, pdev
->irq
);
1168 dev
->irq
= pdev
->irq
;
1171 spin_lock_init(&ap
->debug_lock
);
1172 ap
->last_tx
= ACE_TX_RING_ENTRIES(ap
) - 1;
1173 ap
->last_std_rx
= 0;
1174 ap
->last_mini_rx
= 0;
1177 memset(ap
->info
, 0, sizeof(struct ace_info
));
1178 memset(ap
->skb
, 0, sizeof(struct ace_skb
));
1180 ecode
= ace_load_firmware(dev
);
1186 tmp_ptr
= ap
->info_dma
;
1187 writel(tmp_ptr
>> 32, ®s
->InfoPtrHi
);
1188 writel(tmp_ptr
& 0xffffffff, ®s
->InfoPtrLo
);
1190 memset(ap
->evt_ring
, 0, EVT_RING_ENTRIES
* sizeof(struct event
));
1192 set_aceaddr(&info
->evt_ctrl
.rngptr
, ap
->evt_ring_dma
);
1193 info
->evt_ctrl
.flags
= 0;
1197 set_aceaddr(&info
->evt_prd_ptr
, ap
->evt_prd_dma
);
1198 writel(0, ®s
->EvtCsm
);
1200 set_aceaddr(&info
->cmd_ctrl
.rngptr
, 0x100);
1201 info
->cmd_ctrl
.flags
= 0;
1202 info
->cmd_ctrl
.max_len
= 0;
1204 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1205 writel(0, ®s
->CmdRng
[i
]);
1207 writel(0, ®s
->CmdPrd
);
1208 writel(0, ®s
->CmdCsm
);
1210 tmp_ptr
= ap
->info_dma
;
1211 tmp_ptr
+= (unsigned long) &(((struct ace_info
*)0)->s
.stats
);
1212 set_aceaddr(&info
->stats2_ptr
, (dma_addr_t
) tmp_ptr
);
1214 set_aceaddr(&info
->rx_std_ctrl
.rngptr
, ap
->rx_ring_base_dma
);
1215 info
->rx_std_ctrl
.max_len
= ACE_STD_BUFSIZE
;
1216 info
->rx_std_ctrl
.flags
=
1217 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1219 memset(ap
->rx_std_ring
, 0,
1220 RX_STD_RING_ENTRIES
* sizeof(struct rx_desc
));
1222 for (i
= 0; i
< RX_STD_RING_ENTRIES
; i
++)
1223 ap
->rx_std_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
;
1225 ap
->rx_std_skbprd
= 0;
1226 atomic_set(&ap
->cur_rx_bufs
, 0);
1228 set_aceaddr(&info
->rx_jumbo_ctrl
.rngptr
,
1229 (ap
->rx_ring_base_dma
+
1230 (sizeof(struct rx_desc
) * RX_STD_RING_ENTRIES
)));
1231 info
->rx_jumbo_ctrl
.max_len
= 0;
1232 info
->rx_jumbo_ctrl
.flags
=
1233 RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1235 memset(ap
->rx_jumbo_ring
, 0,
1236 RX_JUMBO_RING_ENTRIES
* sizeof(struct rx_desc
));
1238 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++)
1239 ap
->rx_jumbo_ring
[i
].flags
= BD_FLG_TCP_UDP_SUM
| BD_FLG_JUMBO
;
1241 ap
->rx_jumbo_skbprd
= 0;
1242 atomic_set(&ap
->cur_jumbo_bufs
, 0);
1244 memset(ap
->rx_mini_ring
, 0,
1245 RX_MINI_RING_ENTRIES
* sizeof(struct rx_desc
));
1247 if (ap
->version
>= 2) {
1248 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
,
1249 (ap
->rx_ring_base_dma
+
1250 (sizeof(struct rx_desc
) *
1251 (RX_STD_RING_ENTRIES
+
1252 RX_JUMBO_RING_ENTRIES
))));
1253 info
->rx_mini_ctrl
.max_len
= ACE_MINI_SIZE
;
1254 info
->rx_mini_ctrl
.flags
=
1255 RCB_FLG_TCP_UDP_SUM
|RCB_FLG_NO_PSEUDO_HDR
|RCB_FLG_VLAN_ASSIST
;
1257 for (i
= 0; i
< RX_MINI_RING_ENTRIES
; i
++)
1258 ap
->rx_mini_ring
[i
].flags
=
1259 BD_FLG_TCP_UDP_SUM
| BD_FLG_MINI
;
1261 set_aceaddr(&info
->rx_mini_ctrl
.rngptr
, 0);
1262 info
->rx_mini_ctrl
.flags
= RCB_FLG_RNG_DISABLE
;
1263 info
->rx_mini_ctrl
.max_len
= 0;
1266 ap
->rx_mini_skbprd
= 0;
1267 atomic_set(&ap
->cur_mini_bufs
, 0);
1269 set_aceaddr(&info
->rx_return_ctrl
.rngptr
,
1270 (ap
->rx_ring_base_dma
+
1271 (sizeof(struct rx_desc
) *
1272 (RX_STD_RING_ENTRIES
+
1273 RX_JUMBO_RING_ENTRIES
+
1274 RX_MINI_RING_ENTRIES
))));
1275 info
->rx_return_ctrl
.flags
= 0;
1276 info
->rx_return_ctrl
.max_len
= RX_RETURN_RING_ENTRIES
;
1278 memset(ap
->rx_return_ring
, 0,
1279 RX_RETURN_RING_ENTRIES
* sizeof(struct rx_desc
));
1281 set_aceaddr(&info
->rx_ret_prd_ptr
, ap
->rx_ret_prd_dma
);
1282 *(ap
->rx_ret_prd
) = 0;
1284 writel(TX_RING_BASE
, ®s
->WinBase
);
1286 if (ACE_IS_TIGON_I(ap
)) {
1287 ap
->tx_ring
= (__force
struct tx_desc
*) regs
->Window
;
1288 for (i
= 0; i
< (TIGON_I_TX_RING_ENTRIES
1289 * sizeof(struct tx_desc
)) / sizeof(u32
); i
++)
1290 writel(0, (__force
void __iomem
*)ap
->tx_ring
+ i
* 4);
1292 set_aceaddr(&info
->tx_ctrl
.rngptr
, TX_RING_BASE
);
1294 memset(ap
->tx_ring
, 0,
1295 MAX_TX_RING_ENTRIES
* sizeof(struct tx_desc
));
1297 set_aceaddr(&info
->tx_ctrl
.rngptr
, ap
->tx_ring_dma
);
1300 info
->tx_ctrl
.max_len
= ACE_TX_RING_ENTRIES(ap
);
1301 tmp
= RCB_FLG_TCP_UDP_SUM
| RCB_FLG_NO_PSEUDO_HDR
| RCB_FLG_VLAN_ASSIST
;
1304 * The Tigon I does not like having the TX ring in host memory ;-(
1306 if (!ACE_IS_TIGON_I(ap
))
1307 tmp
|= RCB_FLG_TX_HOST_RING
;
1308 #if TX_COAL_INTS_ONLY
1309 tmp
|= RCB_FLG_COAL_INT_ONLY
;
1311 info
->tx_ctrl
.flags
= tmp
;
1313 set_aceaddr(&info
->tx_csm_ptr
, ap
->tx_csm_dma
);
1316 * Potential item for tuning parameter
1319 writel(DMA_THRESH_16W
, ®s
->DmaReadCfg
);
1320 writel(DMA_THRESH_16W
, ®s
->DmaWriteCfg
);
1322 writel(DMA_THRESH_8W
, ®s
->DmaReadCfg
);
1323 writel(DMA_THRESH_8W
, ®s
->DmaWriteCfg
);
1326 writel(0, ®s
->MaskInt
);
1327 writel(1, ®s
->IfIdx
);
1330 * McKinley boxes do not like us fiddling with AssistState
1333 writel(1, ®s
->AssistState
);
1336 writel(DEF_STAT
, ®s
->TuneStatTicks
);
1337 writel(DEF_TRACE
, ®s
->TuneTrace
);
1339 ace_set_rxtx_parms(dev
, 0);
1341 if (board_idx
== BOARD_IDX_OVERFLOW
) {
1342 printk(KERN_WARNING
"%s: more than %i NICs detected, "
1343 "ignoring module parameters!\n",
1344 ap
->name
, ACE_MAX_MOD_PARMS
);
1345 } else if (board_idx
>= 0) {
1346 if (tx_coal_tick
[board_idx
])
1347 writel(tx_coal_tick
[board_idx
],
1348 ®s
->TuneTxCoalTicks
);
1349 if (max_tx_desc
[board_idx
])
1350 writel(max_tx_desc
[board_idx
], ®s
->TuneMaxTxDesc
);
1352 if (rx_coal_tick
[board_idx
])
1353 writel(rx_coal_tick
[board_idx
],
1354 ®s
->TuneRxCoalTicks
);
1355 if (max_rx_desc
[board_idx
])
1356 writel(max_rx_desc
[board_idx
], ®s
->TuneMaxRxDesc
);
1358 if (trace
[board_idx
])
1359 writel(trace
[board_idx
], ®s
->TuneTrace
);
1361 if ((tx_ratio
[board_idx
] > 0) && (tx_ratio
[board_idx
] < 64))
1362 writel(tx_ratio
[board_idx
], ®s
->TxBufRat
);
1366 * Default link parameters
1368 tmp
= LNK_ENABLE
| LNK_FULL_DUPLEX
| LNK_1000MB
| LNK_100MB
|
1369 LNK_10MB
| LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
| LNK_NEGOTIATE
;
1370 if(ap
->version
>= 2)
1371 tmp
|= LNK_TX_FLOW_CTL_Y
;
1374 * Override link default parameters
1376 if ((board_idx
>= 0) && link_state
[board_idx
]) {
1377 int option
= link_state
[board_idx
];
1381 if (option
& 0x01) {
1382 printk(KERN_INFO
"%s: Setting half duplex link\n",
1384 tmp
&= ~LNK_FULL_DUPLEX
;
1387 tmp
&= ~LNK_NEGOTIATE
;
1394 if ((option
& 0x70) == 0) {
1395 printk(KERN_WARNING
"%s: No media speed specified, "
1396 "forcing auto negotiation\n", ap
->name
);
1397 tmp
|= LNK_NEGOTIATE
| LNK_1000MB
|
1398 LNK_100MB
| LNK_10MB
;
1400 if ((option
& 0x100) == 0)
1401 tmp
|= LNK_NEG_FCTL
;
1403 printk(KERN_INFO
"%s: Disabling flow control "
1404 "negotiation\n", ap
->name
);
1406 tmp
|= LNK_RX_FLOW_CTL_Y
;
1407 if ((option
& 0x400) && (ap
->version
>= 2)) {
1408 printk(KERN_INFO
"%s: Enabling TX flow control\n",
1410 tmp
|= LNK_TX_FLOW_CTL_Y
;
1415 writel(tmp
, ®s
->TuneLink
);
1416 if (ap
->version
>= 2)
1417 writel(tmp
, ®s
->TuneFastLink
);
1419 writel(ap
->firmware_start
, ®s
->Pc
);
1421 writel(0, ®s
->Mb0Lo
);
1424 * Set tx_csm before we start receiving interrupts, otherwise
1425 * the interrupt handler might think it is supposed to process
1426 * tx ints before we are up and running, which may cause a null
1427 * pointer access in the int handler.
1430 ap
->tx_prd
= *(ap
->tx_csm
) = ap
->tx_ret_csm
= 0;
1433 ace_set_txprd(regs
, ap
, 0);
1434 writel(0, ®s
->RxRetCsm
);
1437 * Enable DMA engine now.
1438 * If we do this sooner, Mckinley box pukes.
1439 * I assume it's because Tigon II DMA engine wants to check
1440 * *something* even before the CPU is started.
1442 writel(1, ®s
->AssistState
); /* enable DMA */
1447 writel(readl(®s
->CpuCtrl
) & ~(CPU_HALT
|CPU_TRACE
), ®s
->CpuCtrl
);
1448 readl(®s
->CpuCtrl
);
1451 * Wait for the firmware to spin up - max 3 seconds.
1453 myjif
= jiffies
+ 3 * HZ
;
1454 while (time_before(jiffies
, myjif
) && !ap
->fw_running
)
1457 if (!ap
->fw_running
) {
1458 printk(KERN_ERR
"%s: Firmware NOT running!\n", ap
->name
);
1461 writel(readl(®s
->CpuCtrl
) | CPU_HALT
, ®s
->CpuCtrl
);
1462 readl(®s
->CpuCtrl
);
1464 /* aman@sgi.com - account for badly behaving firmware/NIC:
1465 * - have observed that the NIC may continue to generate
1466 * interrupts for some reason; attempt to stop it - halt
1467 * second CPU for Tigon II cards, and also clear Mb0
1468 * - if we're a module, we'll fail to load if this was
1469 * the only GbE card in the system => if the kernel does
1470 * see an interrupt from the NIC, code to handle it is
1471 * gone and OOps! - so free_irq also
1473 if (ap
->version
>= 2)
1474 writel(readl(®s
->CpuBCtrl
) | CPU_HALT
,
1476 writel(0, ®s
->Mb0Lo
);
1477 readl(®s
->Mb0Lo
);
1484 * We load the ring here as there seem to be no way to tell the
1485 * firmware to wipe the ring without re-initializing it.
1487 if (!test_and_set_bit(0, &ap
->std_refill_busy
))
1488 ace_load_std_rx_ring(dev
, RX_RING_SIZE
);
1490 printk(KERN_ERR
"%s: Someone is busy refilling the RX ring\n",
1492 if (ap
->version
>= 2) {
1493 if (!test_and_set_bit(0, &ap
->mini_refill_busy
))
1494 ace_load_mini_rx_ring(dev
, RX_MINI_SIZE
);
1496 printk(KERN_ERR
"%s: Someone is busy refilling "
1497 "the RX mini ring\n", ap
->name
);
1502 ace_init_cleanup(dev
);
1507 static void ace_set_rxtx_parms(struct net_device
*dev
, int jumbo
)
1509 struct ace_private
*ap
= netdev_priv(dev
);
1510 struct ace_regs __iomem
*regs
= ap
->regs
;
1511 int board_idx
= ap
->board_idx
;
1513 if (board_idx
>= 0) {
1515 if (!tx_coal_tick
[board_idx
])
1516 writel(DEF_TX_COAL
, ®s
->TuneTxCoalTicks
);
1517 if (!max_tx_desc
[board_idx
])
1518 writel(DEF_TX_MAX_DESC
, ®s
->TuneMaxTxDesc
);
1519 if (!rx_coal_tick
[board_idx
])
1520 writel(DEF_RX_COAL
, ®s
->TuneRxCoalTicks
);
1521 if (!max_rx_desc
[board_idx
])
1522 writel(DEF_RX_MAX_DESC
, ®s
->TuneMaxRxDesc
);
1523 if (!tx_ratio
[board_idx
])
1524 writel(DEF_TX_RATIO
, ®s
->TxBufRat
);
1526 if (!tx_coal_tick
[board_idx
])
1527 writel(DEF_JUMBO_TX_COAL
,
1528 ®s
->TuneTxCoalTicks
);
1529 if (!max_tx_desc
[board_idx
])
1530 writel(DEF_JUMBO_TX_MAX_DESC
,
1531 ®s
->TuneMaxTxDesc
);
1532 if (!rx_coal_tick
[board_idx
])
1533 writel(DEF_JUMBO_RX_COAL
,
1534 ®s
->TuneRxCoalTicks
);
1535 if (!max_rx_desc
[board_idx
])
1536 writel(DEF_JUMBO_RX_MAX_DESC
,
1537 ®s
->TuneMaxRxDesc
);
1538 if (!tx_ratio
[board_idx
])
1539 writel(DEF_JUMBO_TX_RATIO
, ®s
->TxBufRat
);
1545 static void ace_watchdog(struct net_device
*data
)
1547 struct net_device
*dev
= data
;
1548 struct ace_private
*ap
= netdev_priv(dev
);
1549 struct ace_regs __iomem
*regs
= ap
->regs
;
1552 * We haven't received a stats update event for more than 2.5
1553 * seconds and there is data in the transmit queue, thus we
1554 * assume the card is stuck.
1556 if (*ap
->tx_csm
!= ap
->tx_ret_csm
) {
1557 printk(KERN_WARNING
"%s: Transmitter is stuck, %08x\n",
1558 dev
->name
, (unsigned int)readl(®s
->HostCtrl
));
1559 /* This can happen due to ieee flow control. */
1561 printk(KERN_DEBUG
"%s: BUG... transmitter died. Kicking it.\n",
1564 netif_wake_queue(dev
);
1570 static void ace_tasklet(unsigned long arg
)
1572 struct net_device
*dev
= (struct net_device
*) arg
;
1573 struct ace_private
*ap
= netdev_priv(dev
);
1576 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
1577 if ((cur_size
< RX_LOW_STD_THRES
) &&
1578 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
1580 printk("refilling buffers (current %i)\n", cur_size
);
1582 ace_load_std_rx_ring(dev
, RX_RING_SIZE
- cur_size
);
1585 if (ap
->version
>= 2) {
1586 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
1587 if ((cur_size
< RX_LOW_MINI_THRES
) &&
1588 !test_and_set_bit(0, &ap
->mini_refill_busy
)) {
1590 printk("refilling mini buffers (current %i)\n",
1593 ace_load_mini_rx_ring(dev
, RX_MINI_SIZE
- cur_size
);
1597 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
1598 if (ap
->jumbo
&& (cur_size
< RX_LOW_JUMBO_THRES
) &&
1599 !test_and_set_bit(0, &ap
->jumbo_refill_busy
)) {
1601 printk("refilling jumbo buffers (current %i)\n", cur_size
);
1603 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
- cur_size
);
1605 ap
->tasklet_pending
= 0;
1610 * Copy the contents of the NIC's trace buffer to kernel memory.
1612 static void ace_dump_trace(struct ace_private
*ap
)
1616 if (!(ap
->trace_buf
= kmalloc(ACE_TRACE_SIZE
, GFP_KERNEL
)))
1623 * Load the standard rx ring.
1625 * Loading rings is safe without holding the spin lock since this is
1626 * done only before the device is enabled, thus no interrupts are
1627 * generated and by the interrupt handler/tasklet handler.
1629 static void ace_load_std_rx_ring(struct net_device
*dev
, int nr_bufs
)
1631 struct ace_private
*ap
= netdev_priv(dev
);
1632 struct ace_regs __iomem
*regs
= ap
->regs
;
1636 prefetchw(&ap
->cur_rx_bufs
);
1638 idx
= ap
->rx_std_skbprd
;
1640 for (i
= 0; i
< nr_bufs
; i
++) {
1641 struct sk_buff
*skb
;
1645 skb
= netdev_alloc_skb_ip_align(dev
, ACE_STD_BUFSIZE
);
1649 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1650 offset_in_page(skb
->data
),
1652 PCI_DMA_FROMDEVICE
);
1653 ap
->skb
->rx_std_skbuff
[idx
].skb
= skb
;
1654 dma_unmap_addr_set(&ap
->skb
->rx_std_skbuff
[idx
],
1657 rd
= &ap
->rx_std_ring
[idx
];
1658 set_aceaddr(&rd
->addr
, mapping
);
1659 rd
->size
= ACE_STD_BUFSIZE
;
1661 idx
= (idx
+ 1) % RX_STD_RING_ENTRIES
;
1667 atomic_add(i
, &ap
->cur_rx_bufs
);
1668 ap
->rx_std_skbprd
= idx
;
1670 if (ACE_IS_TIGON_I(ap
)) {
1672 cmd
.evt
= C_SET_RX_PRD_IDX
;
1674 cmd
.idx
= ap
->rx_std_skbprd
;
1675 ace_issue_cmd(regs
, &cmd
);
1677 writel(idx
, ®s
->RxStdPrd
);
1682 clear_bit(0, &ap
->std_refill_busy
);
1686 printk(KERN_INFO
"Out of memory when allocating "
1687 "standard receive buffers\n");
1692 static void ace_load_mini_rx_ring(struct net_device
*dev
, int nr_bufs
)
1694 struct ace_private
*ap
= netdev_priv(dev
);
1695 struct ace_regs __iomem
*regs
= ap
->regs
;
1698 prefetchw(&ap
->cur_mini_bufs
);
1700 idx
= ap
->rx_mini_skbprd
;
1701 for (i
= 0; i
< nr_bufs
; i
++) {
1702 struct sk_buff
*skb
;
1706 skb
= netdev_alloc_skb_ip_align(dev
, ACE_MINI_BUFSIZE
);
1710 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1711 offset_in_page(skb
->data
),
1713 PCI_DMA_FROMDEVICE
);
1714 ap
->skb
->rx_mini_skbuff
[idx
].skb
= skb
;
1715 dma_unmap_addr_set(&ap
->skb
->rx_mini_skbuff
[idx
],
1718 rd
= &ap
->rx_mini_ring
[idx
];
1719 set_aceaddr(&rd
->addr
, mapping
);
1720 rd
->size
= ACE_MINI_BUFSIZE
;
1722 idx
= (idx
+ 1) % RX_MINI_RING_ENTRIES
;
1728 atomic_add(i
, &ap
->cur_mini_bufs
);
1730 ap
->rx_mini_skbprd
= idx
;
1732 writel(idx
, ®s
->RxMiniPrd
);
1736 clear_bit(0, &ap
->mini_refill_busy
);
1739 printk(KERN_INFO
"Out of memory when allocating "
1740 "mini receive buffers\n");
1746 * Load the jumbo rx ring, this may happen at any time if the MTU
1747 * is changed to a value > 1500.
1749 static void ace_load_jumbo_rx_ring(struct net_device
*dev
, int nr_bufs
)
1751 struct ace_private
*ap
= netdev_priv(dev
);
1752 struct ace_regs __iomem
*regs
= ap
->regs
;
1755 idx
= ap
->rx_jumbo_skbprd
;
1757 for (i
= 0; i
< nr_bufs
; i
++) {
1758 struct sk_buff
*skb
;
1762 skb
= netdev_alloc_skb_ip_align(dev
, ACE_JUMBO_BUFSIZE
);
1766 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
1767 offset_in_page(skb
->data
),
1769 PCI_DMA_FROMDEVICE
);
1770 ap
->skb
->rx_jumbo_skbuff
[idx
].skb
= skb
;
1771 dma_unmap_addr_set(&ap
->skb
->rx_jumbo_skbuff
[idx
],
1774 rd
= &ap
->rx_jumbo_ring
[idx
];
1775 set_aceaddr(&rd
->addr
, mapping
);
1776 rd
->size
= ACE_JUMBO_BUFSIZE
;
1778 idx
= (idx
+ 1) % RX_JUMBO_RING_ENTRIES
;
1784 atomic_add(i
, &ap
->cur_jumbo_bufs
);
1785 ap
->rx_jumbo_skbprd
= idx
;
1787 if (ACE_IS_TIGON_I(ap
)) {
1789 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1791 cmd
.idx
= ap
->rx_jumbo_skbprd
;
1792 ace_issue_cmd(regs
, &cmd
);
1794 writel(idx
, ®s
->RxJumboPrd
);
1799 clear_bit(0, &ap
->jumbo_refill_busy
);
1802 if (net_ratelimit())
1803 printk(KERN_INFO
"Out of memory when allocating "
1804 "jumbo receive buffers\n");
1810 * All events are considered to be slow (RX/TX ints do not generate
1811 * events) and are handled here, outside the main interrupt handler,
1812 * to reduce the size of the handler.
1814 static u32
ace_handle_event(struct net_device
*dev
, u32 evtcsm
, u32 evtprd
)
1816 struct ace_private
*ap
;
1818 ap
= netdev_priv(dev
);
1820 while (evtcsm
!= evtprd
) {
1821 switch (ap
->evt_ring
[evtcsm
].evt
) {
1823 printk(KERN_INFO
"%s: Firmware up and running\n",
1828 case E_STATS_UPDATED
:
1832 u16 code
= ap
->evt_ring
[evtcsm
].code
;
1836 u32 state
= readl(&ap
->regs
->GigLnkState
);
1837 printk(KERN_WARNING
"%s: Optical link UP "
1838 "(%s Duplex, Flow Control: %s%s)\n",
1840 state
& LNK_FULL_DUPLEX
? "Full":"Half",
1841 state
& LNK_TX_FLOW_CTL_Y
? "TX " : "",
1842 state
& LNK_RX_FLOW_CTL_Y
? "RX" : "");
1846 printk(KERN_WARNING
"%s: Optical link DOWN\n",
1849 case E_C_LINK_10_100
:
1850 printk(KERN_WARNING
"%s: 10/100BaseT link "
1854 printk(KERN_ERR
"%s: Unknown optical link "
1855 "state %02x\n", ap
->name
, code
);
1860 switch(ap
->evt_ring
[evtcsm
].code
) {
1861 case E_C_ERR_INVAL_CMD
:
1862 printk(KERN_ERR
"%s: invalid command error\n",
1865 case E_C_ERR_UNIMP_CMD
:
1866 printk(KERN_ERR
"%s: unimplemented command "
1867 "error\n", ap
->name
);
1869 case E_C_ERR_BAD_CFG
:
1870 printk(KERN_ERR
"%s: bad config error\n",
1874 printk(KERN_ERR
"%s: unknown error %02x\n",
1875 ap
->name
, ap
->evt_ring
[evtcsm
].code
);
1878 case E_RESET_JUMBO_RNG
:
1881 for (i
= 0; i
< RX_JUMBO_RING_ENTRIES
; i
++) {
1882 if (ap
->skb
->rx_jumbo_skbuff
[i
].skb
) {
1883 ap
->rx_jumbo_ring
[i
].size
= 0;
1884 set_aceaddr(&ap
->rx_jumbo_ring
[i
].addr
, 0);
1885 dev_kfree_skb(ap
->skb
->rx_jumbo_skbuff
[i
].skb
);
1886 ap
->skb
->rx_jumbo_skbuff
[i
].skb
= NULL
;
1890 if (ACE_IS_TIGON_I(ap
)) {
1892 cmd
.evt
= C_SET_RX_JUMBO_PRD_IDX
;
1895 ace_issue_cmd(ap
->regs
, &cmd
);
1897 writel(0, &((ap
->regs
)->RxJumboPrd
));
1902 ap
->rx_jumbo_skbprd
= 0;
1903 printk(KERN_INFO
"%s: Jumbo ring flushed\n",
1905 clear_bit(0, &ap
->jumbo_refill_busy
);
1909 printk(KERN_ERR
"%s: Unhandled event 0x%02x\n",
1910 ap
->name
, ap
->evt_ring
[evtcsm
].evt
);
1912 evtcsm
= (evtcsm
+ 1) % EVT_RING_ENTRIES
;
1919 static void ace_rx_int(struct net_device
*dev
, u32 rxretprd
, u32 rxretcsm
)
1921 struct ace_private
*ap
= netdev_priv(dev
);
1923 int mini_count
= 0, std_count
= 0;
1927 prefetchw(&ap
->cur_rx_bufs
);
1928 prefetchw(&ap
->cur_mini_bufs
);
1930 while (idx
!= rxretprd
) {
1931 struct ring_info
*rip
;
1932 struct sk_buff
*skb
;
1933 struct rx_desc
*rxdesc
, *retdesc
;
1935 int bd_flags
, desc_type
, mapsize
;
1939 /* make sure the rx descriptor isn't read before rxretprd */
1940 if (idx
== rxretcsm
)
1943 retdesc
= &ap
->rx_return_ring
[idx
];
1944 skbidx
= retdesc
->idx
;
1945 bd_flags
= retdesc
->flags
;
1946 desc_type
= bd_flags
& (BD_FLG_JUMBO
| BD_FLG_MINI
);
1950 * Normal frames do not have any flags set
1952 * Mini and normal frames arrive frequently,
1953 * so use a local counter to avoid doing
1954 * atomic operations for each packet arriving.
1957 rip
= &ap
->skb
->rx_std_skbuff
[skbidx
];
1958 mapsize
= ACE_STD_BUFSIZE
;
1959 rxdesc
= &ap
->rx_std_ring
[skbidx
];
1963 rip
= &ap
->skb
->rx_jumbo_skbuff
[skbidx
];
1964 mapsize
= ACE_JUMBO_BUFSIZE
;
1965 rxdesc
= &ap
->rx_jumbo_ring
[skbidx
];
1966 atomic_dec(&ap
->cur_jumbo_bufs
);
1969 rip
= &ap
->skb
->rx_mini_skbuff
[skbidx
];
1970 mapsize
= ACE_MINI_BUFSIZE
;
1971 rxdesc
= &ap
->rx_mini_ring
[skbidx
];
1975 printk(KERN_INFO
"%s: unknown frame type (0x%02x) "
1976 "returned by NIC\n", dev
->name
,
1983 pci_unmap_page(ap
->pdev
,
1984 dma_unmap_addr(rip
, mapping
),
1986 PCI_DMA_FROMDEVICE
);
1987 skb_put(skb
, retdesc
->size
);
1992 csum
= retdesc
->tcp_udp_csum
;
1994 skb
->protocol
= eth_type_trans(skb
, dev
);
1997 * Instead of forcing the poor tigon mips cpu to calculate
1998 * pseudo hdr checksum, we do this ourselves.
2000 if (bd_flags
& BD_FLG_TCP_UDP_SUM
) {
2001 skb
->csum
= htons(csum
);
2002 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2004 skb_checksum_none_assert(skb
);
2008 if ((bd_flags
& BD_FLG_VLAN_TAG
))
2009 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), retdesc
->vlan
);
2012 dev
->stats
.rx_packets
++;
2013 dev
->stats
.rx_bytes
+= retdesc
->size
;
2015 idx
= (idx
+ 1) % RX_RETURN_RING_ENTRIES
;
2018 atomic_sub(std_count
, &ap
->cur_rx_bufs
);
2019 if (!ACE_IS_TIGON_I(ap
))
2020 atomic_sub(mini_count
, &ap
->cur_mini_bufs
);
2024 * According to the documentation RxRetCsm is obsolete with
2025 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2027 if (ACE_IS_TIGON_I(ap
)) {
2028 writel(idx
, &ap
->regs
->RxRetCsm
);
2039 static inline void ace_tx_int(struct net_device
*dev
,
2042 struct ace_private
*ap
= netdev_priv(dev
);
2045 struct sk_buff
*skb
;
2046 struct tx_ring_info
*info
;
2048 info
= ap
->skb
->tx_skbuff
+ idx
;
2051 if (dma_unmap_len(info
, maplen
)) {
2052 pci_unmap_page(ap
->pdev
, dma_unmap_addr(info
, mapping
),
2053 dma_unmap_len(info
, maplen
),
2055 dma_unmap_len_set(info
, maplen
, 0);
2059 dev
->stats
.tx_packets
++;
2060 dev
->stats
.tx_bytes
+= skb
->len
;
2061 dev_kfree_skb_irq(skb
);
2065 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2066 } while (idx
!= txcsm
);
2068 if (netif_queue_stopped(dev
))
2069 netif_wake_queue(dev
);
2072 ap
->tx_ret_csm
= txcsm
;
2074 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2076 * We could try to make it before. In this case we would get
2077 * the following race condition: hard_start_xmit on other cpu
2078 * enters after we advanced tx_ret_csm and fills space,
2079 * which we have just freed, so that we make illegal device wakeup.
2080 * There is no good way to workaround this (at entry
2081 * to ace_start_xmit detects this condition and prevents
2082 * ring corruption, but it is not a good workaround.)
2084 * When tx_ret_csm is advanced after, we wake up device _only_
2085 * if we really have some space in ring (though the core doing
2086 * hard_start_xmit can see full ring for some period and has to
2087 * synchronize.) Superb.
2088 * BUT! We get another subtle race condition. hard_start_xmit
2089 * may think that ring is full between wakeup and advancing
2090 * tx_ret_csm and will stop device instantly! It is not so bad.
2091 * We are guaranteed that there is something in ring, so that
2092 * the next irq will resume transmission. To speedup this we could
2093 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2094 * (see ace_start_xmit).
2096 * Well, this dilemma exists in all lock-free devices.
2097 * We, following scheme used in drivers by Donald Becker,
2098 * select the least dangerous.
2104 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
2106 struct net_device
*dev
= (struct net_device
*)dev_id
;
2107 struct ace_private
*ap
= netdev_priv(dev
);
2108 struct ace_regs __iomem
*regs
= ap
->regs
;
2110 u32 txcsm
, rxretcsm
, rxretprd
;
2114 * In case of PCI shared interrupts or spurious interrupts,
2115 * we want to make sure it is actually our interrupt before
2116 * spending any time in here.
2118 if (!(readl(®s
->HostCtrl
) & IN_INT
))
2122 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2123 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2124 * writel(0, ®s->Mb0Lo).
2126 * "IRQ avoidance" recommended in docs applies to IRQs served
2127 * threads and it is wrong even for that case.
2129 writel(0, ®s
->Mb0Lo
);
2130 readl(®s
->Mb0Lo
);
2133 * There is no conflict between transmit handling in
2134 * start_xmit and receive processing, thus there is no reason
2135 * to take a spin lock for RX handling. Wait until we start
2136 * working on the other stuff - hey we don't need a spin lock
2139 rxretprd
= *ap
->rx_ret_prd
;
2140 rxretcsm
= ap
->cur_rx
;
2142 if (rxretprd
!= rxretcsm
)
2143 ace_rx_int(dev
, rxretprd
, rxretcsm
);
2145 txcsm
= *ap
->tx_csm
;
2146 idx
= ap
->tx_ret_csm
;
2150 * If each skb takes only one descriptor this check degenerates
2151 * to identity, because new space has just been opened.
2152 * But if skbs are fragmented we must check that this index
2153 * update releases enough of space, otherwise we just
2154 * wait for device to make more work.
2156 if (!tx_ring_full(ap
, txcsm
, ap
->tx_prd
))
2157 ace_tx_int(dev
, txcsm
, idx
);
2160 evtcsm
= readl(®s
->EvtCsm
);
2161 evtprd
= *ap
->evt_prd
;
2163 if (evtcsm
!= evtprd
) {
2164 evtcsm
= ace_handle_event(dev
, evtcsm
, evtprd
);
2165 writel(evtcsm
, ®s
->EvtCsm
);
2169 * This has to go last in the interrupt handler and run with
2170 * the spin lock released ... what lock?
2172 if (netif_running(dev
)) {
2174 int run_tasklet
= 0;
2176 cur_size
= atomic_read(&ap
->cur_rx_bufs
);
2177 if (cur_size
< RX_LOW_STD_THRES
) {
2178 if ((cur_size
< RX_PANIC_STD_THRES
) &&
2179 !test_and_set_bit(0, &ap
->std_refill_busy
)) {
2181 printk("low on std buffers %i\n", cur_size
);
2183 ace_load_std_rx_ring(dev
,
2184 RX_RING_SIZE
- cur_size
);
2189 if (!ACE_IS_TIGON_I(ap
)) {
2190 cur_size
= atomic_read(&ap
->cur_mini_bufs
);
2191 if (cur_size
< RX_LOW_MINI_THRES
) {
2192 if ((cur_size
< RX_PANIC_MINI_THRES
) &&
2193 !test_and_set_bit(0,
2194 &ap
->mini_refill_busy
)) {
2196 printk("low on mini buffers %i\n",
2199 ace_load_mini_rx_ring(dev
,
2200 RX_MINI_SIZE
- cur_size
);
2207 cur_size
= atomic_read(&ap
->cur_jumbo_bufs
);
2208 if (cur_size
< RX_LOW_JUMBO_THRES
) {
2209 if ((cur_size
< RX_PANIC_JUMBO_THRES
) &&
2210 !test_and_set_bit(0,
2211 &ap
->jumbo_refill_busy
)){
2213 printk("low on jumbo buffers %i\n",
2216 ace_load_jumbo_rx_ring(dev
,
2217 RX_JUMBO_SIZE
- cur_size
);
2222 if (run_tasklet
&& !ap
->tasklet_pending
) {
2223 ap
->tasklet_pending
= 1;
2224 tasklet_schedule(&ap
->ace_tasklet
);
2231 static int ace_open(struct net_device
*dev
)
2233 struct ace_private
*ap
= netdev_priv(dev
);
2234 struct ace_regs __iomem
*regs
= ap
->regs
;
2237 if (!(ap
->fw_running
)) {
2238 printk(KERN_WARNING
"%s: Firmware not running!\n", dev
->name
);
2242 writel(dev
->mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2244 cmd
.evt
= C_CLEAR_STATS
;
2247 ace_issue_cmd(regs
, &cmd
);
2249 cmd
.evt
= C_HOST_STATE
;
2250 cmd
.code
= C_C_STACK_UP
;
2252 ace_issue_cmd(regs
, &cmd
);
2255 !test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2256 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
);
2258 if (dev
->flags
& IFF_PROMISC
) {
2259 cmd
.evt
= C_SET_PROMISC_MODE
;
2260 cmd
.code
= C_C_PROMISC_ENABLE
;
2262 ace_issue_cmd(regs
, &cmd
);
2270 cmd
.evt
= C_LNK_NEGOTIATION
;
2273 ace_issue_cmd(regs
, &cmd
);
2276 netif_start_queue(dev
);
2279 * Setup the bottom half rx ring refill handler
2281 tasklet_init(&ap
->ace_tasklet
, ace_tasklet
, (unsigned long)dev
);
2286 static int ace_close(struct net_device
*dev
)
2288 struct ace_private
*ap
= netdev_priv(dev
);
2289 struct ace_regs __iomem
*regs
= ap
->regs
;
2291 unsigned long flags
;
2295 * Without (or before) releasing irq and stopping hardware, this
2296 * is an absolute non-sense, by the way. It will be reset instantly
2299 netif_stop_queue(dev
);
2303 cmd
.evt
= C_SET_PROMISC_MODE
;
2304 cmd
.code
= C_C_PROMISC_DISABLE
;
2306 ace_issue_cmd(regs
, &cmd
);
2310 cmd
.evt
= C_HOST_STATE
;
2311 cmd
.code
= C_C_STACK_DOWN
;
2313 ace_issue_cmd(regs
, &cmd
);
2315 tasklet_kill(&ap
->ace_tasklet
);
2318 * Make sure one CPU is not processing packets while
2319 * buffers are being released by another.
2322 local_irq_save(flags
);
2325 for (i
= 0; i
< ACE_TX_RING_ENTRIES(ap
); i
++) {
2326 struct sk_buff
*skb
;
2327 struct tx_ring_info
*info
;
2329 info
= ap
->skb
->tx_skbuff
+ i
;
2332 if (dma_unmap_len(info
, maplen
)) {
2333 if (ACE_IS_TIGON_I(ap
)) {
2334 /* NB: TIGON_1 is special, tx_ring is in io space */
2335 struct tx_desc __iomem
*tx
;
2336 tx
= (__force
struct tx_desc __iomem
*) &ap
->tx_ring
[i
];
2337 writel(0, &tx
->addr
.addrhi
);
2338 writel(0, &tx
->addr
.addrlo
);
2339 writel(0, &tx
->flagsize
);
2341 memset(ap
->tx_ring
+ i
, 0,
2342 sizeof(struct tx_desc
));
2343 pci_unmap_page(ap
->pdev
, dma_unmap_addr(info
, mapping
),
2344 dma_unmap_len(info
, maplen
),
2346 dma_unmap_len_set(info
, maplen
, 0);
2355 cmd
.evt
= C_RESET_JUMBO_RNG
;
2358 ace_issue_cmd(regs
, &cmd
);
2361 ace_unmask_irq(dev
);
2362 local_irq_restore(flags
);
2368 static inline dma_addr_t
2369 ace_map_tx_skb(struct ace_private
*ap
, struct sk_buff
*skb
,
2370 struct sk_buff
*tail
, u32 idx
)
2373 struct tx_ring_info
*info
;
2375 mapping
= pci_map_page(ap
->pdev
, virt_to_page(skb
->data
),
2376 offset_in_page(skb
->data
),
2377 skb
->len
, PCI_DMA_TODEVICE
);
2379 info
= ap
->skb
->tx_skbuff
+ idx
;
2381 dma_unmap_addr_set(info
, mapping
, mapping
);
2382 dma_unmap_len_set(info
, maplen
, skb
->len
);
2388 ace_load_tx_bd(struct ace_private
*ap
, struct tx_desc
*desc
, u64 addr
,
2389 u32 flagsize
, u32 vlan_tag
)
2391 #if !USE_TX_COAL_NOW
2392 flagsize
&= ~BD_FLG_COAL_NOW
;
2395 if (ACE_IS_TIGON_I(ap
)) {
2396 struct tx_desc __iomem
*io
= (__force
struct tx_desc __iomem
*) desc
;
2397 writel(addr
>> 32, &io
->addr
.addrhi
);
2398 writel(addr
& 0xffffffff, &io
->addr
.addrlo
);
2399 writel(flagsize
, &io
->flagsize
);
2400 writel(vlan_tag
, &io
->vlanres
);
2402 desc
->addr
.addrhi
= addr
>> 32;
2403 desc
->addr
.addrlo
= addr
;
2404 desc
->flagsize
= flagsize
;
2405 desc
->vlanres
= vlan_tag
;
2410 static netdev_tx_t
ace_start_xmit(struct sk_buff
*skb
,
2411 struct net_device
*dev
)
2413 struct ace_private
*ap
= netdev_priv(dev
);
2414 struct ace_regs __iomem
*regs
= ap
->regs
;
2415 struct tx_desc
*desc
;
2417 unsigned long maxjiff
= jiffies
+ 3*HZ
;
2422 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2425 if (!skb_shinfo(skb
)->nr_frags
) {
2429 mapping
= ace_map_tx_skb(ap
, skb
, skb
, idx
);
2430 flagsize
= (skb
->len
<< 16) | (BD_FLG_END
);
2431 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2432 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2433 if (vlan_tx_tag_present(skb
)) {
2434 flagsize
|= BD_FLG_VLAN_TAG
;
2435 vlan_tag
= vlan_tx_tag_get(skb
);
2437 desc
= ap
->tx_ring
+ idx
;
2438 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2440 /* Look at ace_tx_int for explanations. */
2441 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2442 flagsize
|= BD_FLG_COAL_NOW
;
2444 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2450 mapping
= ace_map_tx_skb(ap
, skb
, NULL
, idx
);
2451 flagsize
= (skb_headlen(skb
) << 16);
2452 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2453 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2454 if (vlan_tx_tag_present(skb
)) {
2455 flagsize
|= BD_FLG_VLAN_TAG
;
2456 vlan_tag
= vlan_tx_tag_get(skb
);
2459 ace_load_tx_bd(ap
, ap
->tx_ring
+ idx
, mapping
, flagsize
, vlan_tag
);
2461 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2463 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2464 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2465 struct tx_ring_info
*info
;
2467 len
+= skb_frag_size(frag
);
2468 info
= ap
->skb
->tx_skbuff
+ idx
;
2469 desc
= ap
->tx_ring
+ idx
;
2471 mapping
= skb_frag_dma_map(&ap
->pdev
->dev
, frag
, 0,
2472 skb_frag_size(frag
),
2475 flagsize
= skb_frag_size(frag
) << 16;
2476 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2477 flagsize
|= BD_FLG_TCP_UDP_SUM
;
2478 idx
= (idx
+ 1) % ACE_TX_RING_ENTRIES(ap
);
2480 if (i
== skb_shinfo(skb
)->nr_frags
- 1) {
2481 flagsize
|= BD_FLG_END
;
2482 if (tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2483 flagsize
|= BD_FLG_COAL_NOW
;
2486 * Only the last fragment frees
2493 dma_unmap_addr_set(info
, mapping
, mapping
);
2494 dma_unmap_len_set(info
, maplen
, skb_frag_size(frag
));
2495 ace_load_tx_bd(ap
, desc
, mapping
, flagsize
, vlan_tag
);
2501 ace_set_txprd(regs
, ap
, idx
);
2503 if (flagsize
& BD_FLG_COAL_NOW
) {
2504 netif_stop_queue(dev
);
2507 * A TX-descriptor producer (an IRQ) might have gotten
2508 * between, making the ring free again. Since xmit is
2509 * serialized, this is the only situation we have to
2512 if (!tx_ring_full(ap
, ap
->tx_ret_csm
, idx
))
2513 netif_wake_queue(dev
);
2516 return NETDEV_TX_OK
;
2520 * This race condition is unavoidable with lock-free drivers.
2521 * We wake up the queue _before_ tx_prd is advanced, so that we can
2522 * enter hard_start_xmit too early, while tx ring still looks closed.
2523 * This happens ~1-4 times per 100000 packets, so that we can allow
2524 * to loop syncing to other CPU. Probably, we need an additional
2525 * wmb() in ace_tx_intr as well.
2527 * Note that this race is relieved by reserving one more entry
2528 * in tx ring than it is necessary (see original non-SG driver).
2529 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2530 * is already overkill.
2532 * Alternative is to return with 1 not throttling queue. In this
2533 * case loop becomes longer, no more useful effects.
2535 if (time_before(jiffies
, maxjiff
)) {
2541 /* The ring is stuck full. */
2542 printk(KERN_WARNING
"%s: Transmit ring stuck full\n", dev
->name
);
2543 return NETDEV_TX_BUSY
;
2547 static int ace_change_mtu(struct net_device
*dev
, int new_mtu
)
2549 struct ace_private
*ap
= netdev_priv(dev
);
2550 struct ace_regs __iomem
*regs
= ap
->regs
;
2552 if (new_mtu
> ACE_JUMBO_MTU
)
2555 writel(new_mtu
+ ETH_HLEN
+ 4, ®s
->IfMtu
);
2558 if (new_mtu
> ACE_STD_MTU
) {
2560 printk(KERN_INFO
"%s: Enabling Jumbo frame "
2561 "support\n", dev
->name
);
2563 if (!test_and_set_bit(0, &ap
->jumbo_refill_busy
))
2564 ace_load_jumbo_rx_ring(dev
, RX_JUMBO_SIZE
);
2565 ace_set_rxtx_parms(dev
, 1);
2568 while (test_and_set_bit(0, &ap
->jumbo_refill_busy
));
2569 ace_sync_irq(dev
->irq
);
2570 ace_set_rxtx_parms(dev
, 0);
2574 cmd
.evt
= C_RESET_JUMBO_RNG
;
2577 ace_issue_cmd(regs
, &cmd
);
2584 static int ace_get_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2586 struct ace_private
*ap
= netdev_priv(dev
);
2587 struct ace_regs __iomem
*regs
= ap
->regs
;
2590 memset(ecmd
, 0, sizeof(struct ethtool_cmd
));
2592 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2593 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2594 SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
|
2595 SUPPORTED_Autoneg
| SUPPORTED_FIBRE
);
2597 ecmd
->port
= PORT_FIBRE
;
2598 ecmd
->transceiver
= XCVR_INTERNAL
;
2600 link
= readl(®s
->GigLnkState
);
2601 if (link
& LNK_1000MB
)
2602 ethtool_cmd_speed_set(ecmd
, SPEED_1000
);
2604 link
= readl(®s
->FastLnkState
);
2605 if (link
& LNK_100MB
)
2606 ethtool_cmd_speed_set(ecmd
, SPEED_100
);
2607 else if (link
& LNK_10MB
)
2608 ethtool_cmd_speed_set(ecmd
, SPEED_10
);
2610 ethtool_cmd_speed_set(ecmd
, 0);
2612 if (link
& LNK_FULL_DUPLEX
)
2613 ecmd
->duplex
= DUPLEX_FULL
;
2615 ecmd
->duplex
= DUPLEX_HALF
;
2617 if (link
& LNK_NEGOTIATE
)
2618 ecmd
->autoneg
= AUTONEG_ENABLE
;
2620 ecmd
->autoneg
= AUTONEG_DISABLE
;
2624 * Current struct ethtool_cmd is insufficient
2626 ecmd
->trace
= readl(®s
->TuneTrace
);
2628 ecmd
->txcoal
= readl(®s
->TuneTxCoalTicks
);
2629 ecmd
->rxcoal
= readl(®s
->TuneRxCoalTicks
);
2631 ecmd
->maxtxpkt
= readl(®s
->TuneMaxTxDesc
);
2632 ecmd
->maxrxpkt
= readl(®s
->TuneMaxRxDesc
);
2637 static int ace_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
2639 struct ace_private
*ap
= netdev_priv(dev
);
2640 struct ace_regs __iomem
*regs
= ap
->regs
;
2643 link
= readl(®s
->GigLnkState
);
2644 if (link
& LNK_1000MB
)
2647 link
= readl(®s
->FastLnkState
);
2648 if (link
& LNK_100MB
)
2650 else if (link
& LNK_10MB
)
2656 link
= LNK_ENABLE
| LNK_1000MB
| LNK_100MB
| LNK_10MB
|
2657 LNK_RX_FLOW_CTL_Y
| LNK_NEG_FCTL
;
2658 if (!ACE_IS_TIGON_I(ap
))
2659 link
|= LNK_TX_FLOW_CTL_Y
;
2660 if (ecmd
->autoneg
== AUTONEG_ENABLE
)
2661 link
|= LNK_NEGOTIATE
;
2662 if (ethtool_cmd_speed(ecmd
) != speed
) {
2663 link
&= ~(LNK_1000MB
| LNK_100MB
| LNK_10MB
);
2664 switch (ethtool_cmd_speed(ecmd
)) {
2677 if (ecmd
->duplex
== DUPLEX_FULL
)
2678 link
|= LNK_FULL_DUPLEX
;
2680 if (link
!= ap
->link
) {
2682 printk(KERN_INFO
"%s: Renegotiating link state\n",
2686 writel(link
, ®s
->TuneLink
);
2687 if (!ACE_IS_TIGON_I(ap
))
2688 writel(link
, ®s
->TuneFastLink
);
2691 cmd
.evt
= C_LNK_NEGOTIATION
;
2694 ace_issue_cmd(regs
, &cmd
);
2699 static void ace_get_drvinfo(struct net_device
*dev
,
2700 struct ethtool_drvinfo
*info
)
2702 struct ace_private
*ap
= netdev_priv(dev
);
2704 strlcpy(info
->driver
, "acenic", sizeof(info
->driver
));
2705 snprintf(info
->version
, sizeof(info
->version
), "%i.%i.%i",
2706 ap
->firmware_major
, ap
->firmware_minor
,
2710 strlcpy(info
->bus_info
, pci_name(ap
->pdev
),
2711 sizeof(info
->bus_info
));
2716 * Set the hardware MAC address.
2718 static int ace_set_mac_addr(struct net_device
*dev
, void *p
)
2720 struct ace_private
*ap
= netdev_priv(dev
);
2721 struct ace_regs __iomem
*regs
= ap
->regs
;
2722 struct sockaddr
*addr
=p
;
2726 if(netif_running(dev
))
2729 memcpy(dev
->dev_addr
, addr
->sa_data
,dev
->addr_len
);
2731 da
= (u8
*)dev
->dev_addr
;
2733 writel(da
[0] << 8 | da
[1], ®s
->MacAddrHi
);
2734 writel((da
[2] << 24) | (da
[3] << 16) | (da
[4] << 8) | da
[5],
2737 cmd
.evt
= C_SET_MAC_ADDR
;
2740 ace_issue_cmd(regs
, &cmd
);
2746 static void ace_set_multicast_list(struct net_device
*dev
)
2748 struct ace_private
*ap
= netdev_priv(dev
);
2749 struct ace_regs __iomem
*regs
= ap
->regs
;
2752 if ((dev
->flags
& IFF_ALLMULTI
) && !(ap
->mcast_all
)) {
2753 cmd
.evt
= C_SET_MULTICAST_MODE
;
2754 cmd
.code
= C_C_MCAST_ENABLE
;
2756 ace_issue_cmd(regs
, &cmd
);
2758 } else if (ap
->mcast_all
) {
2759 cmd
.evt
= C_SET_MULTICAST_MODE
;
2760 cmd
.code
= C_C_MCAST_DISABLE
;
2762 ace_issue_cmd(regs
, &cmd
);
2766 if ((dev
->flags
& IFF_PROMISC
) && !(ap
->promisc
)) {
2767 cmd
.evt
= C_SET_PROMISC_MODE
;
2768 cmd
.code
= C_C_PROMISC_ENABLE
;
2770 ace_issue_cmd(regs
, &cmd
);
2772 }else if (!(dev
->flags
& IFF_PROMISC
) && (ap
->promisc
)) {
2773 cmd
.evt
= C_SET_PROMISC_MODE
;
2774 cmd
.code
= C_C_PROMISC_DISABLE
;
2776 ace_issue_cmd(regs
, &cmd
);
2781 * For the time being multicast relies on the upper layers
2782 * filtering it properly. The Firmware does not allow one to
2783 * set the entire multicast list at a time and keeping track of
2784 * it here is going to be messy.
2786 if (!netdev_mc_empty(dev
) && !ap
->mcast_all
) {
2787 cmd
.evt
= C_SET_MULTICAST_MODE
;
2788 cmd
.code
= C_C_MCAST_ENABLE
;
2790 ace_issue_cmd(regs
, &cmd
);
2791 }else if (!ap
->mcast_all
) {
2792 cmd
.evt
= C_SET_MULTICAST_MODE
;
2793 cmd
.code
= C_C_MCAST_DISABLE
;
2795 ace_issue_cmd(regs
, &cmd
);
2800 static struct net_device_stats
*ace_get_stats(struct net_device
*dev
)
2802 struct ace_private
*ap
= netdev_priv(dev
);
2803 struct ace_mac_stats __iomem
*mac_stats
=
2804 (struct ace_mac_stats __iomem
*)ap
->regs
->Stats
;
2806 dev
->stats
.rx_missed_errors
= readl(&mac_stats
->drop_space
);
2807 dev
->stats
.multicast
= readl(&mac_stats
->kept_mc
);
2808 dev
->stats
.collisions
= readl(&mac_stats
->coll
);
2814 static void ace_copy(struct ace_regs __iomem
*regs
, const __be32
*src
,
2817 void __iomem
*tdest
;
2824 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2825 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2826 tdest
= (void __iomem
*) ®s
->Window
+
2827 (dest
& (ACE_WINDOW_SIZE
- 1));
2828 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2829 for (i
= 0; i
< (tsize
/ 4); i
++) {
2830 /* Firmware is big-endian */
2831 writel(be32_to_cpup(src
), tdest
);
2841 static void ace_clear(struct ace_regs __iomem
*regs
, u32 dest
, int size
)
2843 void __iomem
*tdest
;
2850 tsize
= min_t(u32
, ((~dest
& (ACE_WINDOW_SIZE
- 1)) + 1),
2851 min_t(u32
, size
, ACE_WINDOW_SIZE
));
2852 tdest
= (void __iomem
*) ®s
->Window
+
2853 (dest
& (ACE_WINDOW_SIZE
- 1));
2854 writel(dest
& ~(ACE_WINDOW_SIZE
- 1), ®s
->WinBase
);
2856 for (i
= 0; i
< (tsize
/ 4); i
++) {
2857 writel(0, tdest
+ i
*4);
2867 * Download the firmware into the SRAM on the NIC
2869 * This operation requires the NIC to be halted and is performed with
2870 * interrupts disabled and with the spinlock hold.
2872 static int ace_load_firmware(struct net_device
*dev
)
2874 const struct firmware
*fw
;
2875 const char *fw_name
= "acenic/tg2.bin";
2876 struct ace_private
*ap
= netdev_priv(dev
);
2877 struct ace_regs __iomem
*regs
= ap
->regs
;
2878 const __be32
*fw_data
;
2882 if (!(readl(®s
->CpuCtrl
) & CPU_HALTED
)) {
2883 printk(KERN_ERR
"%s: trying to download firmware while the "
2884 "CPU is running!\n", ap
->name
);
2888 if (ACE_IS_TIGON_I(ap
))
2889 fw_name
= "acenic/tg1.bin";
2891 ret
= request_firmware(&fw
, fw_name
, &ap
->pdev
->dev
);
2893 printk(KERN_ERR
"%s: Failed to load firmware \"%s\"\n",
2898 fw_data
= (void *)fw
->data
;
2900 /* Firmware blob starts with version numbers, followed by
2901 load and start address. Remainder is the blob to be loaded
2902 contiguously from load address. We don't bother to represent
2903 the BSS/SBSS sections any more, since we were clearing the
2904 whole thing anyway. */
2905 ap
->firmware_major
= fw
->data
[0];
2906 ap
->firmware_minor
= fw
->data
[1];
2907 ap
->firmware_fix
= fw
->data
[2];
2909 ap
->firmware_start
= be32_to_cpu(fw_data
[1]);
2910 if (ap
->firmware_start
< 0x4000 || ap
->firmware_start
>= 0x80000) {
2911 printk(KERN_ERR
"%s: bogus load address %08x in \"%s\"\n",
2912 ap
->name
, ap
->firmware_start
, fw_name
);
2917 load_addr
= be32_to_cpu(fw_data
[2]);
2918 if (load_addr
< 0x4000 || load_addr
>= 0x80000) {
2919 printk(KERN_ERR
"%s: bogus load address %08x in \"%s\"\n",
2920 ap
->name
, load_addr
, fw_name
);
2926 * Do not try to clear more than 512KiB or we end up seeing
2927 * funny things on NICs with only 512KiB SRAM
2929 ace_clear(regs
, 0x2000, 0x80000-0x2000);
2930 ace_copy(regs
, &fw_data
[3], load_addr
, fw
->size
-12);
2932 release_firmware(fw
);
2938 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2940 * Accessing the EEPROM is `interesting' to say the least - don't read
2941 * this code right after dinner.
2943 * This is all about black magic and bit-banging the device .... I
2944 * wonder in what hospital they have put the guy who designed the i2c
2947 * Oh yes, this is only the beginning!
2949 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2950 * code i2c readout code by beta testing all my hacks.
2952 static void eeprom_start(struct ace_regs __iomem
*regs
)
2956 readl(®s
->LocalCtrl
);
2957 udelay(ACE_SHORT_DELAY
);
2958 local
= readl(®s
->LocalCtrl
);
2959 local
|= EEPROM_DATA_OUT
| EEPROM_WRITE_ENABLE
;
2960 writel(local
, ®s
->LocalCtrl
);
2961 readl(®s
->LocalCtrl
);
2963 udelay(ACE_SHORT_DELAY
);
2964 local
|= EEPROM_CLK_OUT
;
2965 writel(local
, ®s
->LocalCtrl
);
2966 readl(®s
->LocalCtrl
);
2968 udelay(ACE_SHORT_DELAY
);
2969 local
&= ~EEPROM_DATA_OUT
;
2970 writel(local
, ®s
->LocalCtrl
);
2971 readl(®s
->LocalCtrl
);
2973 udelay(ACE_SHORT_DELAY
);
2974 local
&= ~EEPROM_CLK_OUT
;
2975 writel(local
, ®s
->LocalCtrl
);
2976 readl(®s
->LocalCtrl
);
2981 static void eeprom_prep(struct ace_regs __iomem
*regs
, u8 magic
)
2986 udelay(ACE_SHORT_DELAY
);
2987 local
= readl(®s
->LocalCtrl
);
2988 local
&= ~EEPROM_DATA_OUT
;
2989 local
|= EEPROM_WRITE_ENABLE
;
2990 writel(local
, ®s
->LocalCtrl
);
2991 readl(®s
->LocalCtrl
);
2994 for (i
= 0; i
< 8; i
++, magic
<<= 1) {
2995 udelay(ACE_SHORT_DELAY
);
2997 local
|= EEPROM_DATA_OUT
;
2999 local
&= ~EEPROM_DATA_OUT
;
3000 writel(local
, ®s
->LocalCtrl
);
3001 readl(®s
->LocalCtrl
);
3004 udelay(ACE_SHORT_DELAY
);
3005 local
|= EEPROM_CLK_OUT
;
3006 writel(local
, ®s
->LocalCtrl
);
3007 readl(®s
->LocalCtrl
);
3009 udelay(ACE_SHORT_DELAY
);
3010 local
&= ~(EEPROM_CLK_OUT
| EEPROM_DATA_OUT
);
3011 writel(local
, ®s
->LocalCtrl
);
3012 readl(®s
->LocalCtrl
);
3018 static int eeprom_check_ack(struct ace_regs __iomem
*regs
)
3023 local
= readl(®s
->LocalCtrl
);
3024 local
&= ~EEPROM_WRITE_ENABLE
;
3025 writel(local
, ®s
->LocalCtrl
);
3026 readl(®s
->LocalCtrl
);
3028 udelay(ACE_LONG_DELAY
);
3029 local
|= EEPROM_CLK_OUT
;
3030 writel(local
, ®s
->LocalCtrl
);
3031 readl(®s
->LocalCtrl
);
3033 udelay(ACE_SHORT_DELAY
);
3034 /* sample data in middle of high clk */
3035 state
= (readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0;
3036 udelay(ACE_SHORT_DELAY
);
3038 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3039 readl(®s
->LocalCtrl
);
3046 static void eeprom_stop(struct ace_regs __iomem
*regs
)
3050 udelay(ACE_SHORT_DELAY
);
3051 local
= readl(®s
->LocalCtrl
);
3052 local
|= EEPROM_WRITE_ENABLE
;
3053 writel(local
, ®s
->LocalCtrl
);
3054 readl(®s
->LocalCtrl
);
3056 udelay(ACE_SHORT_DELAY
);
3057 local
&= ~EEPROM_DATA_OUT
;
3058 writel(local
, ®s
->LocalCtrl
);
3059 readl(®s
->LocalCtrl
);
3061 udelay(ACE_SHORT_DELAY
);
3062 local
|= EEPROM_CLK_OUT
;
3063 writel(local
, ®s
->LocalCtrl
);
3064 readl(®s
->LocalCtrl
);
3066 udelay(ACE_SHORT_DELAY
);
3067 local
|= EEPROM_DATA_OUT
;
3068 writel(local
, ®s
->LocalCtrl
);
3069 readl(®s
->LocalCtrl
);
3071 udelay(ACE_LONG_DELAY
);
3072 local
&= ~EEPROM_CLK_OUT
;
3073 writel(local
, ®s
->LocalCtrl
);
3079 * Read a whole byte from the EEPROM.
3081 static int read_eeprom_byte(struct net_device
*dev
, unsigned long offset
)
3083 struct ace_private
*ap
= netdev_priv(dev
);
3084 struct ace_regs __iomem
*regs
= ap
->regs
;
3085 unsigned long flags
;
3091 * Don't take interrupts on this CPU will bit banging
3092 * the %#%#@$ I2C device
3094 local_irq_save(flags
);
3098 eeprom_prep(regs
, EEPROM_WRITE_SELECT
);
3099 if (eeprom_check_ack(regs
)) {
3100 local_irq_restore(flags
);
3101 printk(KERN_ERR
"%s: Unable to sync eeprom\n", ap
->name
);
3103 goto eeprom_read_error
;
3106 eeprom_prep(regs
, (offset
>> 8) & 0xff);
3107 if (eeprom_check_ack(regs
)) {
3108 local_irq_restore(flags
);
3109 printk(KERN_ERR
"%s: Unable to set address byte 0\n",
3112 goto eeprom_read_error
;
3115 eeprom_prep(regs
, offset
& 0xff);
3116 if (eeprom_check_ack(regs
)) {
3117 local_irq_restore(flags
);
3118 printk(KERN_ERR
"%s: Unable to set address byte 1\n",
3121 goto eeprom_read_error
;
3125 eeprom_prep(regs
, EEPROM_READ_SELECT
);
3126 if (eeprom_check_ack(regs
)) {
3127 local_irq_restore(flags
);
3128 printk(KERN_ERR
"%s: Unable to set READ_SELECT\n",
3131 goto eeprom_read_error
;
3134 for (i
= 0; i
< 8; i
++) {
3135 local
= readl(®s
->LocalCtrl
);
3136 local
&= ~EEPROM_WRITE_ENABLE
;
3137 writel(local
, ®s
->LocalCtrl
);
3138 readl(®s
->LocalCtrl
);
3139 udelay(ACE_LONG_DELAY
);
3141 local
|= EEPROM_CLK_OUT
;
3142 writel(local
, ®s
->LocalCtrl
);
3143 readl(®s
->LocalCtrl
);
3145 udelay(ACE_SHORT_DELAY
);
3146 /* sample data mid high clk */
3147 result
= (result
<< 1) |
3148 ((readl(®s
->LocalCtrl
) & EEPROM_DATA_IN
) != 0);
3149 udelay(ACE_SHORT_DELAY
);
3151 local
= readl(®s
->LocalCtrl
);
3152 local
&= ~EEPROM_CLK_OUT
;
3153 writel(local
, ®s
->LocalCtrl
);
3154 readl(®s
->LocalCtrl
);
3155 udelay(ACE_SHORT_DELAY
);
3158 local
|= EEPROM_WRITE_ENABLE
;
3159 writel(local
, ®s
->LocalCtrl
);
3160 readl(®s
->LocalCtrl
);
3162 udelay(ACE_SHORT_DELAY
);
3166 local
|= EEPROM_DATA_OUT
;
3167 writel(local
, ®s
->LocalCtrl
);
3168 readl(®s
->LocalCtrl
);
3170 udelay(ACE_SHORT_DELAY
);
3171 writel(readl(®s
->LocalCtrl
) | EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3172 readl(®s
->LocalCtrl
);
3173 udelay(ACE_LONG_DELAY
);
3174 writel(readl(®s
->LocalCtrl
) & ~EEPROM_CLK_OUT
, ®s
->LocalCtrl
);
3175 readl(®s
->LocalCtrl
);
3177 udelay(ACE_SHORT_DELAY
);
3180 local_irq_restore(flags
);
3185 printk(KERN_ERR
"%s: Unable to read eeprom byte 0x%02lx\n",
3190 module_pci_driver(acenic_pci_driver
);