1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS
, E1000_STATS
};
37 char stat_string
[ETH_GSTRING_LEN
];
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats
[] = {
51 { "rx_packets", E1000_STAT(stats
.gprc
) },
52 { "tx_packets", E1000_STAT(stats
.gptc
) },
53 { "rx_bytes", E1000_STAT(stats
.gorcl
) },
54 { "tx_bytes", E1000_STAT(stats
.gotcl
) },
55 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
56 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
57 { "rx_multicast", E1000_STAT(stats
.mprc
) },
58 { "tx_multicast", E1000_STAT(stats
.mptc
) },
59 { "rx_errors", E1000_STAT(stats
.rxerrc
) },
60 { "tx_errors", E1000_STAT(stats
.txerrc
) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats
.tx_dropped
) },
62 { "multicast", E1000_STAT(stats
.mprc
) },
63 { "collisions", E1000_STAT(stats
.colc
) },
64 { "rx_length_errors", E1000_STAT(stats
.rlerrc
) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats
.rx_over_errors
) },
66 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats
.rx_frame_errors
) },
68 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
69 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
70 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
71 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats
.tx_fifo_errors
) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats
.tx_heartbeat_errors
) },
74 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
75 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
76 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
77 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
78 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
80 { "tx_restart_queue", E1000_STAT(restart_queue
) },
81 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
82 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
83 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
84 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
86 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
87 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
88 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
89 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
90 { "rx_long_byte_count", E1000_STAT(stats
.gorcl
) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
94 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
95 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
96 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device
*netdev
,
110 struct ethtool_cmd
*ecmd
)
112 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
113 struct e1000_hw
*hw
= &adapter
->hw
;
115 if (hw
->media_type
== e1000_media_type_copper
) {
117 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
118 SUPPORTED_10baseT_Full
|
119 SUPPORTED_100baseT_Half
|
120 SUPPORTED_100baseT_Full
|
121 SUPPORTED_1000baseT_Full
|
124 ecmd
->advertising
= ADVERTISED_TP
;
126 if (hw
->autoneg
== 1) {
127 ecmd
->advertising
|= ADVERTISED_Autoneg
;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd
->advertising
|= hw
->autoneg_advertised
;
132 ecmd
->port
= PORT_TP
;
133 ecmd
->phy_address
= hw
->phy_addr
;
135 if (hw
->mac_type
== e1000_82543
)
136 ecmd
->transceiver
= XCVR_EXTERNAL
;
138 ecmd
->transceiver
= XCVR_INTERNAL
;
141 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
145 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
149 ecmd
->port
= PORT_FIBRE
;
151 if (hw
->mac_type
>= e1000_82545
)
152 ecmd
->transceiver
= XCVR_INTERNAL
;
154 ecmd
->transceiver
= XCVR_EXTERNAL
;
157 if (er32(STATUS
) & E1000_STATUS_LU
) {
159 e1000_get_speed_and_duplex(hw
, &adapter
->link_speed
,
160 &adapter
->link_duplex
);
161 ethtool_cmd_speed_set(ecmd
, adapter
->link_speed
);
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF
166 if (adapter
->link_duplex
== FULL_DUPLEX
)
167 ecmd
->duplex
= DUPLEX_FULL
;
169 ecmd
->duplex
= DUPLEX_HALF
;
171 ethtool_cmd_speed_set(ecmd
, -1);
175 ecmd
->autoneg
= ((hw
->media_type
== e1000_media_type_fiber
) ||
176 hw
->autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
178 /* MDI-X => 1; MDI => 0 */
179 if ((hw
->media_type
== e1000_media_type_copper
) &&
180 netif_carrier_ok(netdev
))
181 ecmd
->eth_tp_mdix
= (!!adapter
->phy_info
.mdix_mode
?
182 ETH_TP_MDI_X
: ETH_TP_MDI
);
184 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
186 if (hw
->mdix
== AUTO_ALL_MODES
)
187 ecmd
->eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
189 ecmd
->eth_tp_mdix_ctrl
= hw
->mdix
;
193 static int e1000_set_settings(struct net_device
*netdev
,
194 struct ethtool_cmd
*ecmd
)
196 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
197 struct e1000_hw
*hw
= &adapter
->hw
;
199 /* MDI setting is only allowed when autoneg enabled because
200 * some hardware doesn't allow MDI setting when speed or
203 if (ecmd
->eth_tp_mdix_ctrl
) {
204 if (hw
->media_type
!= e1000_media_type_copper
)
207 if ((ecmd
->eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
208 (ecmd
->autoneg
!= AUTONEG_ENABLE
)) {
209 e_err(drv
, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
214 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
217 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
219 if (hw
->media_type
== e1000_media_type_fiber
)
220 hw
->autoneg_advertised
= ADVERTISED_1000baseT_Full
|
224 hw
->autoneg_advertised
= ecmd
->advertising
|
227 ecmd
->advertising
= hw
->autoneg_advertised
;
229 u32 speed
= ethtool_cmd_speed(ecmd
);
230 /* calling this overrides forced MDI setting */
231 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
232 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
237 /* MDI-X => 2; MDI => 1; Auto => 3 */
238 if (ecmd
->eth_tp_mdix_ctrl
) {
239 if (ecmd
->eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
240 hw
->mdix
= AUTO_ALL_MODES
;
242 hw
->mdix
= ecmd
->eth_tp_mdix_ctrl
;
247 if (netif_running(adapter
->netdev
)) {
251 e1000_reset(adapter
);
253 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
257 static u32
e1000_get_link(struct net_device
*netdev
)
259 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
261 /* If the link is not reported up to netdev, interrupts are disabled,
262 * and so the physical link state may have changed since we last
263 * looked. Set get_link_status to make sure that the true link
264 * state is interrogated, rather than pulling a cached and possibly
265 * stale link state from the driver.
267 if (!netif_carrier_ok(netdev
))
268 adapter
->hw
.get_link_status
= 1;
270 return e1000_has_link(adapter
);
273 static void e1000_get_pauseparam(struct net_device
*netdev
,
274 struct ethtool_pauseparam
*pause
)
276 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
277 struct e1000_hw
*hw
= &adapter
->hw
;
280 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
282 if (hw
->fc
== E1000_FC_RX_PAUSE
)
284 else if (hw
->fc
== E1000_FC_TX_PAUSE
)
286 else if (hw
->fc
== E1000_FC_FULL
) {
292 static int e1000_set_pauseparam(struct net_device
*netdev
,
293 struct ethtool_pauseparam
*pause
)
295 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
296 struct e1000_hw
*hw
= &adapter
->hw
;
299 adapter
->fc_autoneg
= pause
->autoneg
;
301 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
304 if (pause
->rx_pause
&& pause
->tx_pause
)
305 hw
->fc
= E1000_FC_FULL
;
306 else if (pause
->rx_pause
&& !pause
->tx_pause
)
307 hw
->fc
= E1000_FC_RX_PAUSE
;
308 else if (!pause
->rx_pause
&& pause
->tx_pause
)
309 hw
->fc
= E1000_FC_TX_PAUSE
;
310 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
311 hw
->fc
= E1000_FC_NONE
;
313 hw
->original_fc
= hw
->fc
;
315 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
316 if (netif_running(adapter
->netdev
)) {
320 e1000_reset(adapter
);
322 retval
= ((hw
->media_type
== e1000_media_type_fiber
) ?
323 e1000_setup_link(hw
) : e1000_force_mac_fc(hw
));
325 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
329 static u32
e1000_get_msglevel(struct net_device
*netdev
)
331 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
332 return adapter
->msg_enable
;
335 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
338 adapter
->msg_enable
= data
;
341 static int e1000_get_regs_len(struct net_device
*netdev
)
343 #define E1000_REGS_LEN 32
344 return E1000_REGS_LEN
* sizeof(u32
);
347 static void e1000_get_regs(struct net_device
*netdev
, struct ethtool_regs
*regs
,
350 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
351 struct e1000_hw
*hw
= &adapter
->hw
;
355 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
357 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
359 regs_buff
[0] = er32(CTRL
);
360 regs_buff
[1] = er32(STATUS
);
362 regs_buff
[2] = er32(RCTL
);
363 regs_buff
[3] = er32(RDLEN
);
364 regs_buff
[4] = er32(RDH
);
365 regs_buff
[5] = er32(RDT
);
366 regs_buff
[6] = er32(RDTR
);
368 regs_buff
[7] = er32(TCTL
);
369 regs_buff
[8] = er32(TDLEN
);
370 regs_buff
[9] = er32(TDH
);
371 regs_buff
[10] = er32(TDT
);
372 regs_buff
[11] = er32(TIDV
);
374 regs_buff
[12] = hw
->phy_type
; /* PHY type (IGP=1, M88=0) */
375 if (hw
->phy_type
== e1000_phy_igp
) {
376 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
377 IGP01E1000_PHY_AGC_A
);
378 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_A
&
379 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
380 regs_buff
[13] = (u32
)phy_data
; /* cable length */
381 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
382 IGP01E1000_PHY_AGC_B
);
383 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_B
&
384 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
385 regs_buff
[14] = (u32
)phy_data
; /* cable length */
386 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
387 IGP01E1000_PHY_AGC_C
);
388 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_C
&
389 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
390 regs_buff
[15] = (u32
)phy_data
; /* cable length */
391 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
392 IGP01E1000_PHY_AGC_D
);
393 e1000_read_phy_reg(hw
, IGP01E1000_PHY_AGC_D
&
394 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
395 regs_buff
[16] = (u32
)phy_data
; /* cable length */
396 regs_buff
[17] = 0; /* extended 10bt distance (not needed) */
397 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
398 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PORT_STATUS
&
399 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
400 regs_buff
[18] = (u32
)phy_data
; /* cable polarity */
401 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
,
402 IGP01E1000_PHY_PCS_INIT_REG
);
403 e1000_read_phy_reg(hw
, IGP01E1000_PHY_PCS_INIT_REG
&
404 IGP01E1000_PHY_PAGE_SELECT
, &phy_data
);
405 regs_buff
[19] = (u32
)phy_data
; /* cable polarity */
406 regs_buff
[20] = 0; /* polarity correction enabled (always) */
407 regs_buff
[22] = 0; /* phy receive errors (unavailable) */
408 regs_buff
[23] = regs_buff
[18]; /* mdix mode */
409 e1000_write_phy_reg(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0x0);
411 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
412 regs_buff
[13] = (u32
)phy_data
; /* cable length */
413 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
415 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
417 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
418 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
419 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
420 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
421 /* phy receive errors */
422 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
423 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
425 regs_buff
[21] = adapter
->phy_stats
.idle_errors
; /* phy idle errors */
426 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
427 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
428 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
429 if (hw
->mac_type
>= e1000_82540
&&
430 hw
->media_type
== e1000_media_type_copper
) {
431 regs_buff
[26] = er32(MANC
);
435 static int e1000_get_eeprom_len(struct net_device
*netdev
)
437 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
438 struct e1000_hw
*hw
= &adapter
->hw
;
440 return hw
->eeprom
.word_size
* 2;
443 static int e1000_get_eeprom(struct net_device
*netdev
,
444 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
446 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
447 struct e1000_hw
*hw
= &adapter
->hw
;
449 int first_word
, last_word
;
453 if (eeprom
->len
== 0)
456 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
458 first_word
= eeprom
->offset
>> 1;
459 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
461 eeprom_buff
= kmalloc(sizeof(u16
) *
462 (last_word
- first_word
+ 1), GFP_KERNEL
);
466 if (hw
->eeprom
.type
== e1000_eeprom_spi
)
467 ret_val
= e1000_read_eeprom(hw
, first_word
,
468 last_word
- first_word
+ 1,
471 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
472 ret_val
= e1000_read_eeprom(hw
, first_word
+ i
, 1,
479 /* Device's eeprom is always little-endian, word addressable */
480 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
481 le16_to_cpus(&eeprom_buff
[i
]);
483 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
490 static int e1000_set_eeprom(struct net_device
*netdev
,
491 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
493 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
494 struct e1000_hw
*hw
= &adapter
->hw
;
497 int max_len
, first_word
, last_word
, ret_val
= 0;
500 if (eeprom
->len
== 0)
503 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
506 max_len
= hw
->eeprom
.word_size
* 2;
508 first_word
= eeprom
->offset
>> 1;
509 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
510 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
514 ptr
= (void *)eeprom_buff
;
516 if (eeprom
->offset
& 1) {
517 /* need read/modify/write of first changed EEPROM word
518 * only the second byte of the word is being modified
520 ret_val
= e1000_read_eeprom(hw
, first_word
, 1,
524 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
525 /* need read/modify/write of last changed EEPROM word
526 * only the first byte of the word is being modified
528 ret_val
= e1000_read_eeprom(hw
, last_word
, 1,
529 &eeprom_buff
[last_word
- first_word
]);
532 /* Device's eeprom is always little-endian, word addressable */
533 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
534 le16_to_cpus(&eeprom_buff
[i
]);
536 memcpy(ptr
, bytes
, eeprom
->len
);
538 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
539 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
541 ret_val
= e1000_write_eeprom(hw
, first_word
,
542 last_word
- first_word
+ 1, eeprom_buff
);
544 /* Update the checksum over the first part of the EEPROM if needed */
545 if ((ret_val
== 0) && (first_word
<= EEPROM_CHECKSUM_REG
))
546 e1000_update_eeprom_checksum(hw
);
552 static void e1000_get_drvinfo(struct net_device
*netdev
,
553 struct ethtool_drvinfo
*drvinfo
)
555 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
557 strlcpy(drvinfo
->driver
, e1000_driver_name
,
558 sizeof(drvinfo
->driver
));
559 strlcpy(drvinfo
->version
, e1000_driver_version
,
560 sizeof(drvinfo
->version
));
562 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
563 sizeof(drvinfo
->bus_info
));
564 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
565 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
568 static void e1000_get_ringparam(struct net_device
*netdev
,
569 struct ethtool_ringparam
*ring
)
571 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
572 struct e1000_hw
*hw
= &adapter
->hw
;
573 e1000_mac_type mac_type
= hw
->mac_type
;
574 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
575 struct e1000_rx_ring
*rxdr
= adapter
->rx_ring
;
577 ring
->rx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_RXD
:
579 ring
->tx_max_pending
= (mac_type
< e1000_82544
) ? E1000_MAX_TXD
:
581 ring
->rx_pending
= rxdr
->count
;
582 ring
->tx_pending
= txdr
->count
;
585 static int e1000_set_ringparam(struct net_device
*netdev
,
586 struct ethtool_ringparam
*ring
)
588 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
589 struct e1000_hw
*hw
= &adapter
->hw
;
590 e1000_mac_type mac_type
= hw
->mac_type
;
591 struct e1000_tx_ring
*txdr
, *tx_old
;
592 struct e1000_rx_ring
*rxdr
, *rx_old
;
595 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
598 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
601 if (netif_running(adapter
->netdev
))
604 tx_old
= adapter
->tx_ring
;
605 rx_old
= adapter
->rx_ring
;
608 txdr
= kcalloc(adapter
->num_tx_queues
, sizeof(struct e1000_tx_ring
),
613 rxdr
= kcalloc(adapter
->num_rx_queues
, sizeof(struct e1000_rx_ring
),
618 adapter
->tx_ring
= txdr
;
619 adapter
->rx_ring
= rxdr
;
621 rxdr
->count
= max(ring
->rx_pending
,(u32
)E1000_MIN_RXD
);
622 rxdr
->count
= min(rxdr
->count
,(u32
)(mac_type
< e1000_82544
?
623 E1000_MAX_RXD
: E1000_MAX_82544_RXD
));
624 rxdr
->count
= ALIGN(rxdr
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
626 txdr
->count
= max(ring
->tx_pending
,(u32
)E1000_MIN_TXD
);
627 txdr
->count
= min(txdr
->count
,(u32
)(mac_type
< e1000_82544
?
628 E1000_MAX_TXD
: E1000_MAX_82544_TXD
));
629 txdr
->count
= ALIGN(txdr
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
631 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
632 txdr
[i
].count
= txdr
->count
;
633 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
634 rxdr
[i
].count
= rxdr
->count
;
636 if (netif_running(adapter
->netdev
)) {
637 /* Try to get new resources before deleting old */
638 err
= e1000_setup_all_rx_resources(adapter
);
641 err
= e1000_setup_all_tx_resources(adapter
);
645 /* save the new, restore the old in order to free it,
646 * then restore the new back again
649 adapter
->rx_ring
= rx_old
;
650 adapter
->tx_ring
= tx_old
;
651 e1000_free_all_rx_resources(adapter
);
652 e1000_free_all_tx_resources(adapter
);
655 adapter
->rx_ring
= rxdr
;
656 adapter
->tx_ring
= txdr
;
657 err
= e1000_up(adapter
);
662 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
665 e1000_free_all_rx_resources(adapter
);
667 adapter
->rx_ring
= rx_old
;
668 adapter
->tx_ring
= tx_old
;
675 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
679 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
682 struct e1000_hw
*hw
= &adapter
->hw
;
683 static const u32 test
[] =
684 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
685 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
689 for (i
= 0; i
< ARRAY_SIZE(test
); i
++) {
690 writel(write
& test
[i
], address
);
691 read
= readl(address
);
692 if (read
!= (write
& test
[i
] & mask
)) {
693 e_err(drv
, "pattern test reg %04X failed: "
694 "got 0x%08X expected 0x%08X\n",
695 reg
, read
, (write
& test
[i
] & mask
));
703 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
, int reg
,
706 struct e1000_hw
*hw
= &adapter
->hw
;
707 u8 __iomem
*address
= hw
->hw_addr
+ reg
;
710 writel(write
& mask
, address
);
711 read
= readl(address
);
712 if ((read
& mask
) != (write
& mask
)) {
713 e_err(drv
, "set/check reg %04X test failed: "
714 "got 0x%08X expected 0x%08X\n",
715 reg
, (read
& mask
), (write
& mask
));
722 #define REG_PATTERN_TEST(reg, mask, write) \
724 if (reg_pattern_test(adapter, data, \
725 (hw->mac_type >= e1000_82543) \
726 ? E1000_##reg : E1000_82542_##reg, \
731 #define REG_SET_AND_CHECK(reg, mask, write) \
733 if (reg_set_and_check(adapter, data, \
734 (hw->mac_type >= e1000_82543) \
735 ? E1000_##reg : E1000_82542_##reg, \
740 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
742 u32 value
, before
, after
;
744 struct e1000_hw
*hw
= &adapter
->hw
;
746 /* The status register is Read Only, so a write should fail.
747 * Some bits that get toggled are ignored.
750 /* there are several bits on newer hardware that are r/w */
753 before
= er32(STATUS
);
754 value
= (er32(STATUS
) & toggle
);
755 ew32(STATUS
, toggle
);
756 after
= er32(STATUS
) & toggle
;
757 if (value
!= after
) {
758 e_err(drv
, "failed STATUS register test got: "
759 "0x%08X expected: 0x%08X\n", after
, value
);
763 /* restore previous status */
764 ew32(STATUS
, before
);
766 REG_PATTERN_TEST(FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(FCAH
, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(FCT
, 0x0000FFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(VET
, 0x0000FFFF, 0xFFFFFFFF);
771 REG_PATTERN_TEST(RDTR
, 0x0000FFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
773 REG_PATTERN_TEST(RDLEN
, 0x000FFF80, 0x000FFFFF);
774 REG_PATTERN_TEST(RDH
, 0x0000FFFF, 0x0000FFFF);
775 REG_PATTERN_TEST(RDT
, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(FCRTH
, 0x0000FFF8, 0x0000FFF8);
777 REG_PATTERN_TEST(FCTTV
, 0x0000FFFF, 0x0000FFFF);
778 REG_PATTERN_TEST(TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
779 REG_PATTERN_TEST(TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(TDLEN
, 0x000FFF80, 0x000FFFFF);
782 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x00000000);
785 REG_SET_AND_CHECK(RCTL
, before
, 0x003FFFFB);
786 REG_SET_AND_CHECK(TCTL
, 0xFFFFFFFF, 0x00000000);
788 if (hw
->mac_type
>= e1000_82543
) {
789 REG_SET_AND_CHECK(RCTL
, before
, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
791 REG_PATTERN_TEST(TXCW
, 0xC000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(TIDV
, 0x0000FFFF, 0x0000FFFF);
794 value
= E1000_RAR_ENTRIES
;
795 for (i
= 0; i
< value
; i
++) {
796 REG_PATTERN_TEST(RA
+ (((i
<< 1) + 1) << 2), 0x8003FFFF,
800 REG_SET_AND_CHECK(RCTL
, 0xFFFFFFFF, 0x01FFFFFF);
801 REG_PATTERN_TEST(RDBAL
, 0xFFFFF000, 0xFFFFFFFF);
802 REG_PATTERN_TEST(TXCW
, 0x0000FFFF, 0x0000FFFF);
803 REG_PATTERN_TEST(TDBAL
, 0xFFFFF000, 0xFFFFFFFF);
806 value
= E1000_MC_TBL_SIZE
;
807 for (i
= 0; i
< value
; i
++)
808 REG_PATTERN_TEST(MTA
+ (i
<< 2), 0xFFFFFFFF, 0xFFFFFFFF);
814 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
816 struct e1000_hw
*hw
= &adapter
->hw
;
822 /* Read and add up the contents of the EEPROM */
823 for (i
= 0; i
< (EEPROM_CHECKSUM_REG
+ 1); i
++) {
824 if ((e1000_read_eeprom(hw
, i
, 1, &temp
)) < 0) {
831 /* If Checksum is not Correct return error else test passed */
832 if ((checksum
!= (u16
)EEPROM_SUM
) && !(*data
))
838 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
840 struct net_device
*netdev
= (struct net_device
*)data
;
841 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
842 struct e1000_hw
*hw
= &adapter
->hw
;
844 adapter
->test_icr
|= er32(ICR
);
849 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
851 struct net_device
*netdev
= adapter
->netdev
;
853 bool shared_int
= true;
854 u32 irq
= adapter
->pdev
->irq
;
855 struct e1000_hw
*hw
= &adapter
->hw
;
859 /* NOTE: we don't test MSI interrupts here, yet
860 * Hook up test interrupt handler just for this test
862 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
865 else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
,
866 netdev
->name
, netdev
)) {
870 e_info(hw
, "testing %s interrupt\n", (shared_int
?
871 "shared" : "unshared"));
873 /* Disable all the interrupts */
874 ew32(IMC
, 0xFFFFFFFF);
878 /* Test each interrupt */
879 for (; i
< 10; i
++) {
881 /* Interrupt to test */
885 /* Disable the interrupt to be reported in
886 * the cause register and then force the same
887 * interrupt and see if one gets posted. If
888 * an interrupt was posted to the bus, the
891 adapter
->test_icr
= 0;
897 if (adapter
->test_icr
& mask
) {
903 /* Enable the interrupt to be reported in
904 * the cause register and then force the same
905 * interrupt and see if one gets posted. If
906 * an interrupt was not posted to the bus, the
909 adapter
->test_icr
= 0;
915 if (!(adapter
->test_icr
& mask
)) {
921 /* Disable the other interrupts to be reported in
922 * the cause register and then force the other
923 * interrupts and see if any get posted. If
924 * an interrupt was posted to the bus, the
927 adapter
->test_icr
= 0;
928 ew32(IMC
, ~mask
& 0x00007FFF);
929 ew32(ICS
, ~mask
& 0x00007FFF);
933 if (adapter
->test_icr
) {
940 /* Disable all the interrupts */
941 ew32(IMC
, 0xFFFFFFFF);
945 /* Unhook test interrupt handler */
946 free_irq(irq
, netdev
);
951 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
953 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
954 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
955 struct pci_dev
*pdev
= adapter
->pdev
;
958 if (txdr
->desc
&& txdr
->buffer_info
) {
959 for (i
= 0; i
< txdr
->count
; i
++) {
960 if (txdr
->buffer_info
[i
].dma
)
961 dma_unmap_single(&pdev
->dev
,
962 txdr
->buffer_info
[i
].dma
,
963 txdr
->buffer_info
[i
].length
,
965 if (txdr
->buffer_info
[i
].skb
)
966 dev_kfree_skb(txdr
->buffer_info
[i
].skb
);
970 if (rxdr
->desc
&& rxdr
->buffer_info
) {
971 for (i
= 0; i
< rxdr
->count
; i
++) {
972 if (rxdr
->buffer_info
[i
].dma
)
973 dma_unmap_single(&pdev
->dev
,
974 rxdr
->buffer_info
[i
].dma
,
975 rxdr
->buffer_info
[i
].length
,
977 if (rxdr
->buffer_info
[i
].skb
)
978 dev_kfree_skb(rxdr
->buffer_info
[i
].skb
);
983 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
988 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
993 kfree(txdr
->buffer_info
);
994 txdr
->buffer_info
= NULL
;
995 kfree(rxdr
->buffer_info
);
996 rxdr
->buffer_info
= NULL
;
999 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1001 struct e1000_hw
*hw
= &adapter
->hw
;
1002 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1003 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1004 struct pci_dev
*pdev
= adapter
->pdev
;
1008 /* Setup Tx descriptor ring and Tx buffers */
1011 txdr
->count
= E1000_DEFAULT_TXD
;
1013 txdr
->buffer_info
= kcalloc(txdr
->count
, sizeof(struct e1000_buffer
),
1015 if (!txdr
->buffer_info
) {
1020 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1021 txdr
->size
= ALIGN(txdr
->size
, 4096);
1022 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1023 GFP_KERNEL
| __GFP_ZERO
);
1028 txdr
->next_to_use
= txdr
->next_to_clean
= 0;
1030 ew32(TDBAL
, ((u64
)txdr
->dma
& 0x00000000FFFFFFFF));
1031 ew32(TDBAH
, ((u64
)txdr
->dma
>> 32));
1032 ew32(TDLEN
, txdr
->count
* sizeof(struct e1000_tx_desc
));
1035 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
|
1036 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1037 E1000_FDX_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1039 for (i
= 0; i
< txdr
->count
; i
++) {
1040 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*txdr
, i
);
1041 struct sk_buff
*skb
;
1042 unsigned int size
= 1024;
1044 skb
= alloc_skb(size
, GFP_KERNEL
);
1050 txdr
->buffer_info
[i
].skb
= skb
;
1051 txdr
->buffer_info
[i
].length
= skb
->len
;
1052 txdr
->buffer_info
[i
].dma
=
1053 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1055 if (dma_mapping_error(&pdev
->dev
, txdr
->buffer_info
[i
].dma
)) {
1059 tx_desc
->buffer_addr
= cpu_to_le64(txdr
->buffer_info
[i
].dma
);
1060 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1061 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1062 E1000_TXD_CMD_IFCS
|
1064 tx_desc
->upper
.data
= 0;
1067 /* Setup Rx descriptor ring and Rx buffers */
1070 rxdr
->count
= E1000_DEFAULT_RXD
;
1072 rxdr
->buffer_info
= kcalloc(rxdr
->count
, sizeof(struct e1000_buffer
),
1074 if (!rxdr
->buffer_info
) {
1079 rxdr
->size
= rxdr
->count
* sizeof(struct e1000_rx_desc
);
1080 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1081 GFP_KERNEL
| __GFP_ZERO
);
1086 rxdr
->next_to_use
= rxdr
->next_to_clean
= 0;
1089 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1090 ew32(RDBAL
, ((u64
)rxdr
->dma
& 0xFFFFFFFF));
1091 ew32(RDBAH
, ((u64
)rxdr
->dma
>> 32));
1092 ew32(RDLEN
, rxdr
->size
);
1095 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1096 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1097 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1100 for (i
= 0; i
< rxdr
->count
; i
++) {
1101 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rxdr
, i
);
1102 struct sk_buff
*skb
;
1104 skb
= alloc_skb(E1000_RXBUFFER_2048
+ NET_IP_ALIGN
, GFP_KERNEL
);
1109 skb_reserve(skb
, NET_IP_ALIGN
);
1110 rxdr
->buffer_info
[i
].skb
= skb
;
1111 rxdr
->buffer_info
[i
].length
= E1000_RXBUFFER_2048
;
1112 rxdr
->buffer_info
[i
].dma
=
1113 dma_map_single(&pdev
->dev
, skb
->data
,
1114 E1000_RXBUFFER_2048
, DMA_FROM_DEVICE
);
1115 if (dma_mapping_error(&pdev
->dev
, rxdr
->buffer_info
[i
].dma
)) {
1119 rx_desc
->buffer_addr
= cpu_to_le64(rxdr
->buffer_info
[i
].dma
);
1120 memset(skb
->data
, 0x00, skb
->len
);
1126 e1000_free_desc_rings(adapter
);
1130 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1132 struct e1000_hw
*hw
= &adapter
->hw
;
1134 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1135 e1000_write_phy_reg(hw
, 29, 0x001F);
1136 e1000_write_phy_reg(hw
, 30, 0x8FFC);
1137 e1000_write_phy_reg(hw
, 29, 0x001A);
1138 e1000_write_phy_reg(hw
, 30, 0x8FF0);
1141 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter
*adapter
)
1143 struct e1000_hw
*hw
= &adapter
->hw
;
1146 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1147 * Extended PHY Specific Control Register to 25MHz clock. This
1148 * value defaults back to a 2.5MHz clock when the PHY is reset.
1150 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1151 phy_reg
|= M88E1000_EPSCR_TX_CLK_25
;
1152 e1000_write_phy_reg(hw
,
1153 M88E1000_EXT_PHY_SPEC_CTRL
, phy_reg
);
1155 /* In addition, because of the s/w reset above, we need to enable
1156 * CRS on TX. This must be set for both full and half duplex
1159 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1160 phy_reg
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1161 e1000_write_phy_reg(hw
,
1162 M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1165 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter
*adapter
)
1167 struct e1000_hw
*hw
= &adapter
->hw
;
1171 /* Setup the Device Control Register for PHY loopback test. */
1173 ctrl_reg
= er32(CTRL
);
1174 ctrl_reg
|= (E1000_CTRL_ILOS
| /* Invert Loss-Of-Signal */
1175 E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1176 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1177 E1000_CTRL_SPD_1000
| /* Force Speed to 1000 */
1178 E1000_CTRL_FD
); /* Force Duplex to FULL */
1180 ew32(CTRL
, ctrl_reg
);
1182 /* Read the PHY Specific Control Register (0x10) */
1183 e1000_read_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_reg
);
1185 /* Clear Auto-Crossover bits in PHY Specific Control Register
1188 phy_reg
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1189 e1000_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_reg
);
1191 /* Perform software reset on the PHY */
1192 e1000_phy_reset(hw
);
1194 /* Have to setup TX_CLK and TX_CRS after software reset */
1195 e1000_phy_reset_clk_and_crs(adapter
);
1197 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8100);
1199 /* Wait for reset to complete. */
1202 /* Have to setup TX_CLK and TX_CRS after software reset */
1203 e1000_phy_reset_clk_and_crs(adapter
);
1205 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1206 e1000_phy_disable_receiver(adapter
);
1208 /* Set the loopback bit in the PHY control register. */
1209 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1210 phy_reg
|= MII_CR_LOOPBACK
;
1211 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1213 /* Setup TX_CLK and TX_CRS one more time. */
1214 e1000_phy_reset_clk_and_crs(adapter
);
1216 /* Check Phy Configuration */
1217 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1218 if (phy_reg
!= 0x4100)
1221 e1000_read_phy_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_reg
);
1222 if (phy_reg
!= 0x0070)
1225 e1000_read_phy_reg(hw
, 29, &phy_reg
);
1226 if (phy_reg
!= 0x001A)
1232 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1234 struct e1000_hw
*hw
= &adapter
->hw
;
1238 hw
->autoneg
= false;
1240 if (hw
->phy_type
== e1000_phy_m88
) {
1241 /* Auto-MDI/MDIX Off */
1242 e1000_write_phy_reg(hw
,
1243 M88E1000_PHY_SPEC_CTRL
, 0x0808);
1244 /* reset to update Auto-MDI/MDIX */
1245 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x9140);
1247 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x8140);
1250 ctrl_reg
= er32(CTRL
);
1252 /* force 1000, set loopback */
1253 e1000_write_phy_reg(hw
, PHY_CTRL
, 0x4140);
1255 /* Now set up the MAC to the same speed/duplex as the PHY. */
1256 ctrl_reg
= er32(CTRL
);
1257 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1258 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1259 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1260 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1261 E1000_CTRL_FD
); /* Force Duplex to FULL */
1263 if (hw
->media_type
== e1000_media_type_copper
&&
1264 hw
->phy_type
== e1000_phy_m88
)
1265 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1267 /* Set the ILOS bit on the fiber Nic is half
1268 * duplex link is detected.
1270 stat_reg
= er32(STATUS
);
1271 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1272 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1275 ew32(CTRL
, ctrl_reg
);
1277 /* Disable the receiver on the PHY so when a cable is plugged in, the
1278 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1280 if (hw
->phy_type
== e1000_phy_m88
)
1281 e1000_phy_disable_receiver(adapter
);
1288 static int e1000_set_phy_loopback(struct e1000_adapter
*adapter
)
1290 struct e1000_hw
*hw
= &adapter
->hw
;
1294 switch (hw
->mac_type
) {
1296 if (hw
->media_type
== e1000_media_type_copper
) {
1297 /* Attempt to setup Loopback mode on Non-integrated PHY.
1298 * Some PHY registers get corrupted at random, so
1299 * attempt this 10 times.
1301 while (e1000_nonintegrated_phy_loopback(adapter
) &&
1311 case e1000_82545_rev_3
:
1313 case e1000_82546_rev_3
:
1315 case e1000_82541_rev_2
:
1317 case e1000_82547_rev_2
:
1318 return e1000_integrated_phy_loopback(adapter
);
1321 /* Default PHY loopback work is to read the MII
1322 * control register and assert bit 14 (loopback mode).
1324 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1325 phy_reg
|= MII_CR_LOOPBACK
;
1326 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1334 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1336 struct e1000_hw
*hw
= &adapter
->hw
;
1339 if (hw
->media_type
== e1000_media_type_fiber
||
1340 hw
->media_type
== e1000_media_type_internal_serdes
) {
1341 switch (hw
->mac_type
) {
1344 case e1000_82545_rev_3
:
1345 case e1000_82546_rev_3
:
1346 return e1000_set_phy_loopback(adapter
);
1350 rctl
|= E1000_RCTL_LBM_TCVR
;
1354 } else if (hw
->media_type
== e1000_media_type_copper
)
1355 return e1000_set_phy_loopback(adapter
);
1360 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1362 struct e1000_hw
*hw
= &adapter
->hw
;
1367 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1370 switch (hw
->mac_type
) {
1373 case e1000_82545_rev_3
:
1374 case e1000_82546_rev_3
:
1377 e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_reg
);
1378 if (phy_reg
& MII_CR_LOOPBACK
) {
1379 phy_reg
&= ~MII_CR_LOOPBACK
;
1380 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_reg
);
1381 e1000_phy_reset(hw
);
1387 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1388 unsigned int frame_size
)
1390 memset(skb
->data
, 0xFF, frame_size
);
1392 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1393 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1394 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1397 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1398 unsigned int frame_size
)
1401 if (*(skb
->data
+ 3) == 0xFF) {
1402 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1403 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF)) {
1410 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1412 struct e1000_hw
*hw
= &adapter
->hw
;
1413 struct e1000_tx_ring
*txdr
= &adapter
->test_tx_ring
;
1414 struct e1000_rx_ring
*rxdr
= &adapter
->test_rx_ring
;
1415 struct pci_dev
*pdev
= adapter
->pdev
;
1416 int i
, j
, k
, l
, lc
, good_cnt
, ret_val
=0;
1419 ew32(RDT
, rxdr
->count
- 1);
1421 /* Calculate the loop count based on the largest descriptor ring
1422 * The idea is to wrap the largest ring a number of times using 64
1423 * send/receive pairs during each loop
1426 if (rxdr
->count
<= txdr
->count
)
1427 lc
= ((txdr
->count
/ 64) * 2) + 1;
1429 lc
= ((rxdr
->count
/ 64) * 2) + 1;
1432 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1433 for (i
= 0; i
< 64; i
++) { /* send the packets */
1434 e1000_create_lbtest_frame(txdr
->buffer_info
[i
].skb
,
1436 dma_sync_single_for_device(&pdev
->dev
,
1437 txdr
->buffer_info
[k
].dma
,
1438 txdr
->buffer_info
[k
].length
,
1440 if (unlikely(++k
== txdr
->count
)) k
= 0;
1443 E1000_WRITE_FLUSH();
1445 time
= jiffies
; /* set the start time for the receive */
1447 do { /* receive the sent packets */
1448 dma_sync_single_for_cpu(&pdev
->dev
,
1449 rxdr
->buffer_info
[l
].dma
,
1450 rxdr
->buffer_info
[l
].length
,
1453 ret_val
= e1000_check_lbtest_frame(
1454 rxdr
->buffer_info
[l
].skb
,
1458 if (unlikely(++l
== rxdr
->count
)) l
= 0;
1459 /* time + 20 msecs (200 msecs on 2.4) is more than
1460 * enough time to complete the receives, if it's
1461 * exceeded, break and error off
1463 } while (good_cnt
< 64 && jiffies
< (time
+ 20));
1464 if (good_cnt
!= 64) {
1465 ret_val
= 13; /* ret_val is the same as mis-compare */
1468 if (jiffies
>= (time
+ 2)) {
1469 ret_val
= 14; /* error code for time out error */
1472 } /* end loop count loop */
1476 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1478 *data
= e1000_setup_desc_rings(adapter
);
1481 *data
= e1000_setup_loopback_test(adapter
);
1484 *data
= e1000_run_loopback_test(adapter
);
1485 e1000_loopback_cleanup(adapter
);
1488 e1000_free_desc_rings(adapter
);
1493 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1495 struct e1000_hw
*hw
= &adapter
->hw
;
1497 if (hw
->media_type
== e1000_media_type_internal_serdes
) {
1499 hw
->serdes_has_link
= false;
1501 /* On some blade server designs, link establishment
1502 * could take as long as 2-3 minutes
1505 e1000_check_for_link(hw
);
1506 if (hw
->serdes_has_link
)
1509 } while (i
++ < 3750);
1513 e1000_check_for_link(hw
);
1514 if (hw
->autoneg
) /* if auto_neg is set wait for it */
1517 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
1524 static int e1000_get_sset_count(struct net_device
*netdev
, int sset
)
1528 return E1000_TEST_LEN
;
1530 return E1000_STATS_LEN
;
1536 static void e1000_diag_test(struct net_device
*netdev
,
1537 struct ethtool_test
*eth_test
, u64
*data
)
1539 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1540 struct e1000_hw
*hw
= &adapter
->hw
;
1541 bool if_running
= netif_running(netdev
);
1543 set_bit(__E1000_TESTING
, &adapter
->flags
);
1544 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1547 /* save speed, duplex, autoneg settings */
1548 u16 autoneg_advertised
= hw
->autoneg_advertised
;
1549 u8 forced_speed_duplex
= hw
->forced_speed_duplex
;
1550 u8 autoneg
= hw
->autoneg
;
1552 e_info(hw
, "offline testing starting\n");
1554 /* Link test performed before hardware reset so autoneg doesn't
1555 * interfere with test result
1557 if (e1000_link_test(adapter
, &data
[4]))
1558 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1561 /* indicate we're in test mode */
1564 e1000_reset(adapter
);
1566 if (e1000_reg_test(adapter
, &data
[0]))
1567 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1569 e1000_reset(adapter
);
1570 if (e1000_eeprom_test(adapter
, &data
[1]))
1571 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1573 e1000_reset(adapter
);
1574 if (e1000_intr_test(adapter
, &data
[2]))
1575 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1577 e1000_reset(adapter
);
1578 /* make sure the phy is powered up */
1579 e1000_power_up_phy(adapter
);
1580 if (e1000_loopback_test(adapter
, &data
[3]))
1581 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1583 /* restore speed, duplex, autoneg settings */
1584 hw
->autoneg_advertised
= autoneg_advertised
;
1585 hw
->forced_speed_duplex
= forced_speed_duplex
;
1586 hw
->autoneg
= autoneg
;
1588 e1000_reset(adapter
);
1589 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1593 e_info(hw
, "online testing starting\n");
1595 if (e1000_link_test(adapter
, &data
[4]))
1596 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1598 /* Online tests aren't run; pass by default */
1604 clear_bit(__E1000_TESTING
, &adapter
->flags
);
1606 msleep_interruptible(4 * 1000);
1609 static int e1000_wol_exclusion(struct e1000_adapter
*adapter
,
1610 struct ethtool_wolinfo
*wol
)
1612 struct e1000_hw
*hw
= &adapter
->hw
;
1613 int retval
= 1; /* fail by default */
1615 switch (hw
->device_id
) {
1616 case E1000_DEV_ID_82542
:
1617 case E1000_DEV_ID_82543GC_FIBER
:
1618 case E1000_DEV_ID_82543GC_COPPER
:
1619 case E1000_DEV_ID_82544EI_FIBER
:
1620 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
1621 case E1000_DEV_ID_82545EM_FIBER
:
1622 case E1000_DEV_ID_82545EM_COPPER
:
1623 case E1000_DEV_ID_82546GB_QUAD_COPPER
:
1624 case E1000_DEV_ID_82546GB_PCIE
:
1625 /* these don't support WoL at all */
1628 case E1000_DEV_ID_82546EB_FIBER
:
1629 case E1000_DEV_ID_82546GB_FIBER
:
1630 /* Wake events not supported on port B */
1631 if (er32(STATUS
) & E1000_STATUS_FUNC_1
) {
1635 /* return success for non excluded adapter ports */
1638 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1639 /* quad port adapters only support WoL on port A */
1640 if (!adapter
->quad_port_a
) {
1644 /* return success for non excluded adapter ports */
1648 /* dual port cards only support WoL on port A from now on
1649 * unless it was enabled in the eeprom for port B
1650 * so exclude FUNC_1 ports from having WoL enabled
1652 if (er32(STATUS
) & E1000_STATUS_FUNC_1
&&
1653 !adapter
->eeprom_wol
) {
1664 static void e1000_get_wol(struct net_device
*netdev
,
1665 struct ethtool_wolinfo
*wol
)
1667 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1668 struct e1000_hw
*hw
= &adapter
->hw
;
1670 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1671 WAKE_BCAST
| WAKE_MAGIC
;
1674 /* this function will set ->supported = 0 and return 1 if wol is not
1675 * supported by this hardware
1677 if (e1000_wol_exclusion(adapter
, wol
) ||
1678 !device_can_wakeup(&adapter
->pdev
->dev
))
1681 /* apply any specific unsupported masks here */
1682 switch (hw
->device_id
) {
1683 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1684 /* KSP3 does not support UCAST wake-ups */
1685 wol
->supported
&= ~WAKE_UCAST
;
1687 if (adapter
->wol
& E1000_WUFC_EX
)
1688 e_err(drv
, "Interface does not support directed "
1689 "(unicast) frame wake-up packets\n");
1695 if (adapter
->wol
& E1000_WUFC_EX
)
1696 wol
->wolopts
|= WAKE_UCAST
;
1697 if (adapter
->wol
& E1000_WUFC_MC
)
1698 wol
->wolopts
|= WAKE_MCAST
;
1699 if (adapter
->wol
& E1000_WUFC_BC
)
1700 wol
->wolopts
|= WAKE_BCAST
;
1701 if (adapter
->wol
& E1000_WUFC_MAG
)
1702 wol
->wolopts
|= WAKE_MAGIC
;
1705 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1707 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1708 struct e1000_hw
*hw
= &adapter
->hw
;
1710 if (wol
->wolopts
& (WAKE_PHY
| WAKE_ARP
| WAKE_MAGICSECURE
))
1713 if (e1000_wol_exclusion(adapter
, wol
) ||
1714 !device_can_wakeup(&adapter
->pdev
->dev
))
1715 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1717 switch (hw
->device_id
) {
1718 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1719 if (wol
->wolopts
& WAKE_UCAST
) {
1720 e_err(drv
, "Interface does not support directed "
1721 "(unicast) frame wake-up packets\n");
1729 /* these settings will always override what we currently have */
1732 if (wol
->wolopts
& WAKE_UCAST
)
1733 adapter
->wol
|= E1000_WUFC_EX
;
1734 if (wol
->wolopts
& WAKE_MCAST
)
1735 adapter
->wol
|= E1000_WUFC_MC
;
1736 if (wol
->wolopts
& WAKE_BCAST
)
1737 adapter
->wol
|= E1000_WUFC_BC
;
1738 if (wol
->wolopts
& WAKE_MAGIC
)
1739 adapter
->wol
|= E1000_WUFC_MAG
;
1741 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1746 static int e1000_set_phys_id(struct net_device
*netdev
,
1747 enum ethtool_phys_id_state state
)
1749 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1750 struct e1000_hw
*hw
= &adapter
->hw
;
1753 case ETHTOOL_ID_ACTIVE
:
1754 e1000_setup_led(hw
);
1761 case ETHTOOL_ID_OFF
:
1765 case ETHTOOL_ID_INACTIVE
:
1766 e1000_cleanup_led(hw
);
1772 static int e1000_get_coalesce(struct net_device
*netdev
,
1773 struct ethtool_coalesce
*ec
)
1775 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1777 if (adapter
->hw
.mac_type
< e1000_82545
)
1780 if (adapter
->itr_setting
<= 4)
1781 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1783 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1788 static int e1000_set_coalesce(struct net_device
*netdev
,
1789 struct ethtool_coalesce
*ec
)
1791 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1792 struct e1000_hw
*hw
= &adapter
->hw
;
1794 if (hw
->mac_type
< e1000_82545
)
1797 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1798 ((ec
->rx_coalesce_usecs
> 4) &&
1799 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1800 (ec
->rx_coalesce_usecs
== 2))
1803 if (ec
->rx_coalesce_usecs
== 4) {
1804 adapter
->itr
= adapter
->itr_setting
= 4;
1805 } else if (ec
->rx_coalesce_usecs
<= 3) {
1806 adapter
->itr
= 20000;
1807 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1809 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1810 adapter
->itr_setting
= adapter
->itr
& ~3;
1813 if (adapter
->itr_setting
!= 0)
1814 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1821 static int e1000_nway_reset(struct net_device
*netdev
)
1823 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1824 if (netif_running(netdev
))
1825 e1000_reinit_locked(adapter
);
1829 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1830 struct ethtool_stats
*stats
, u64
*data
)
1832 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1836 e1000_update_stats(adapter
);
1837 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1838 switch (e1000_gstrings_stats
[i
].type
) {
1840 p
= (char *) netdev
+
1841 e1000_gstrings_stats
[i
].stat_offset
;
1844 p
= (char *) adapter
+
1845 e1000_gstrings_stats
[i
].stat_offset
;
1849 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1850 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1852 /* BUG_ON(i != E1000_STATS_LEN); */
1855 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1861 switch (stringset
) {
1863 memcpy(data
, *e1000_gstrings_test
,
1864 sizeof(e1000_gstrings_test
));
1867 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1868 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1870 p
+= ETH_GSTRING_LEN
;
1872 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1877 static const struct ethtool_ops e1000_ethtool_ops
= {
1878 .get_settings
= e1000_get_settings
,
1879 .set_settings
= e1000_set_settings
,
1880 .get_drvinfo
= e1000_get_drvinfo
,
1881 .get_regs_len
= e1000_get_regs_len
,
1882 .get_regs
= e1000_get_regs
,
1883 .get_wol
= e1000_get_wol
,
1884 .set_wol
= e1000_set_wol
,
1885 .get_msglevel
= e1000_get_msglevel
,
1886 .set_msglevel
= e1000_set_msglevel
,
1887 .nway_reset
= e1000_nway_reset
,
1888 .get_link
= e1000_get_link
,
1889 .get_eeprom_len
= e1000_get_eeprom_len
,
1890 .get_eeprom
= e1000_get_eeprom
,
1891 .set_eeprom
= e1000_set_eeprom
,
1892 .get_ringparam
= e1000_get_ringparam
,
1893 .set_ringparam
= e1000_set_ringparam
,
1894 .get_pauseparam
= e1000_get_pauseparam
,
1895 .set_pauseparam
= e1000_set_pauseparam
,
1896 .self_test
= e1000_diag_test
,
1897 .get_strings
= e1000_get_strings
,
1898 .set_phys_id
= e1000_set_phys_id
,
1899 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1900 .get_sset_count
= e1000_get_sset_count
,
1901 .get_coalesce
= e1000_get_coalesce
,
1902 .set_coalesce
= e1000_set_coalesce
,
1903 .get_ts_info
= ethtool_op_get_ts_info
,
1906 void e1000_set_ethtool_ops(struct net_device
*netdev
)
1908 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);