1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 char e1000_driver_name
[] = "e1000";
37 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version
[] = DRV_VERSION
;
40 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
91 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
93 int e1000_up(struct e1000_adapter
*adapter
);
94 void e1000_down(struct e1000_adapter
*adapter
);
95 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
96 void e1000_reset(struct e1000_adapter
*adapter
);
97 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
98 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
99 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
100 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
101 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*txdr
);
103 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rxdr
);
105 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
106 struct e1000_tx_ring
*tx_ring
);
107 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
108 struct e1000_rx_ring
*rx_ring
);
109 void e1000_update_stats(struct e1000_adapter
*adapter
);
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
114 static void e1000_remove(struct pci_dev
*pdev
);
115 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
116 static int e1000_sw_init(struct e1000_adapter
*adapter
);
117 static int e1000_open(struct net_device
*netdev
);
118 static int e1000_close(struct net_device
*netdev
);
119 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
120 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
121 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
124 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
125 struct e1000_tx_ring
*tx_ring
);
126 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
127 struct e1000_rx_ring
*rx_ring
);
128 static void e1000_set_rx_mode(struct net_device
*netdev
);
129 static void e1000_update_phy_info_task(struct work_struct
*work
);
130 static void e1000_watchdog(struct work_struct
*work
);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
132 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
133 struct net_device
*netdev
);
134 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
135 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
136 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
137 static irqreturn_t
e1000_intr(int irq
, void *data
);
138 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
139 struct e1000_tx_ring
*tx_ring
);
140 static int e1000_clean(struct napi_struct
*napi
, int budget
);
141 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
142 struct e1000_rx_ring
*rx_ring
,
143 int *work_done
, int work_to_do
);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
145 struct e1000_rx_ring
*rx_ring
,
146 int *work_done
, int work_to_do
);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
148 struct e1000_rx_ring
*rx_ring
,
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
151 struct e1000_rx_ring
*rx_ring
,
153 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
154 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
156 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
157 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
158 static void e1000_tx_timeout(struct net_device
*dev
);
159 static void e1000_reset_task(struct work_struct
*work
);
160 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
162 struct sk_buff
*skb
);
164 static bool e1000_vlan_used(struct e1000_adapter
*adapter
);
165 static void e1000_vlan_mode(struct net_device
*netdev
,
166 netdev_features_t features
);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
169 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
170 __be16 proto
, u16 vid
);
171 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
172 __be16 proto
, u16 vid
);
173 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
176 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
177 static int e1000_resume(struct pci_dev
*pdev
);
179 static void e1000_shutdown(struct pci_dev
*pdev
);
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device
*netdev
);
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
188 module_param(copybreak
, uint
, 0644);
189 MODULE_PARM_DESC(copybreak
,
190 "Maximum size of packet that is copied to a new buffer on receive");
192 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
193 pci_channel_state_t state
);
194 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
195 static void e1000_io_resume(struct pci_dev
*pdev
);
197 static const struct pci_error_handlers e1000_err_handler
= {
198 .error_detected
= e1000_io_error_detected
,
199 .slot_reset
= e1000_io_slot_reset
,
200 .resume
= e1000_io_resume
,
203 static struct pci_driver e1000_driver
= {
204 .name
= e1000_driver_name
,
205 .id_table
= e1000_pci_tbl
,
206 .probe
= e1000_probe
,
207 .remove
= e1000_remove
,
209 /* Power Management Hooks */
210 .suspend
= e1000_suspend
,
211 .resume
= e1000_resume
,
213 .shutdown
= e1000_shutdown
,
214 .err_handler
= &e1000_err_handler
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION
);
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug
= -1;
224 module_param(debug
, int, 0);
225 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
228 * e1000_get_hw_dev - return device
229 * used by hardware layer to print debugging information
232 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
234 struct e1000_adapter
*adapter
= hw
->back
;
235 return adapter
->netdev
;
239 * e1000_init_module - Driver Registration Routine
241 * e1000_init_module is the first routine called when the driver is
242 * loaded. All it does is register with the PCI subsystem.
244 static int __init
e1000_init_module(void)
247 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
249 pr_info("%s\n", e1000_copyright
);
251 ret
= pci_register_driver(&e1000_driver
);
252 if (copybreak
!= COPYBREAK_DEFAULT
) {
254 pr_info("copybreak disabled\n");
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak
);
262 module_init(e1000_init_module
);
265 * e1000_exit_module - Driver Exit Cleanup Routine
267 * e1000_exit_module is called just before the driver is removed
270 static void __exit
e1000_exit_module(void)
272 pci_unregister_driver(&e1000_driver
);
275 module_exit(e1000_exit_module
);
277 static int e1000_request_irq(struct e1000_adapter
*adapter
)
279 struct net_device
*netdev
= adapter
->netdev
;
280 irq_handler_t handler
= e1000_intr
;
281 int irq_flags
= IRQF_SHARED
;
284 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
287 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
293 static void e1000_free_irq(struct e1000_adapter
*adapter
)
295 struct net_device
*netdev
= adapter
->netdev
;
297 free_irq(adapter
->pdev
->irq
, netdev
);
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
304 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
306 struct e1000_hw
*hw
= &adapter
->hw
;
310 synchronize_irq(adapter
->pdev
->irq
);
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
317 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
319 struct e1000_hw
*hw
= &adapter
->hw
;
321 ew32(IMS
, IMS_ENABLE_MASK
);
325 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
327 struct e1000_hw
*hw
= &adapter
->hw
;
328 struct net_device
*netdev
= adapter
->netdev
;
329 u16 vid
= hw
->mng_cookie
.vlan_id
;
330 u16 old_vid
= adapter
->mng_vlan_id
;
332 if (!e1000_vlan_used(adapter
))
335 if (!test_bit(vid
, adapter
->active_vlans
)) {
336 if (hw
->mng_cookie
.status
&
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
338 e1000_vlan_rx_add_vid(netdev
, htons(ETH_P_8021Q
), vid
);
339 adapter
->mng_vlan_id
= vid
;
341 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
343 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
345 !test_bit(old_vid
, adapter
->active_vlans
))
346 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
349 adapter
->mng_vlan_id
= vid
;
353 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
355 struct e1000_hw
*hw
= &adapter
->hw
;
357 if (adapter
->en_mng_pt
) {
358 u32 manc
= er32(MANC
);
360 /* disable hardware interception of ARP */
361 manc
&= ~(E1000_MANC_ARP_EN
);
367 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
369 struct e1000_hw
*hw
= &adapter
->hw
;
371 if (adapter
->en_mng_pt
) {
372 u32 manc
= er32(MANC
);
374 /* re-enable hardware interception of ARP */
375 manc
|= E1000_MANC_ARP_EN
;
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
385 static void e1000_configure(struct e1000_adapter
*adapter
)
387 struct net_device
*netdev
= adapter
->netdev
;
390 e1000_set_rx_mode(netdev
);
392 e1000_restore_vlan(adapter
);
393 e1000_init_manageability(adapter
);
395 e1000_configure_tx(adapter
);
396 e1000_setup_rctl(adapter
);
397 e1000_configure_rx(adapter
);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean
402 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
403 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
404 adapter
->alloc_rx_buf(adapter
, ring
,
405 E1000_DESC_UNUSED(ring
));
409 int e1000_up(struct e1000_adapter
*adapter
)
411 struct e1000_hw
*hw
= &adapter
->hw
;
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter
);
416 clear_bit(__E1000_DOWN
, &adapter
->flags
);
418 napi_enable(&adapter
->napi
);
420 e1000_irq_enable(adapter
);
422 netif_wake_queue(adapter
->netdev
);
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS
, E1000_ICS_LSC
);
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
437 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
439 struct e1000_hw
*hw
= &adapter
->hw
;
442 /* Just clear the power down bit to wake the phy back up */
443 if (hw
->media_type
== e1000_media_type_copper
) {
444 /* according to the manual, the phy will retain its
445 * settings across a power-down/up cycle
447 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
448 mii_reg
&= ~MII_CR_POWER_DOWN
;
449 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
453 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
455 struct e1000_hw
*hw
= &adapter
->hw
;
457 /* Power down the PHY so no link is implied when interface is down *
458 * The PHY cannot be powered down if any of the following is true *
461 * (c) SoL/IDER session is active
463 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
464 hw
->media_type
== e1000_media_type_copper
) {
467 switch (hw
->mac_type
) {
470 case e1000_82545_rev_3
:
473 case e1000_82546_rev_3
:
475 case e1000_82541_rev_2
:
477 case e1000_82547_rev_2
:
478 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
484 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
485 mii_reg
|= MII_CR_POWER_DOWN
;
486 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
493 static void e1000_down_and_stop(struct e1000_adapter
*adapter
)
495 set_bit(__E1000_DOWN
, &adapter
->flags
);
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING
, &adapter
->flags
))
499 cancel_work_sync(&adapter
->reset_task
);
501 cancel_delayed_work_sync(&adapter
->watchdog_task
);
502 cancel_delayed_work_sync(&adapter
->phy_info_task
);
503 cancel_delayed_work_sync(&adapter
->fifo_stall_task
);
506 void e1000_down(struct e1000_adapter
*adapter
)
508 struct e1000_hw
*hw
= &adapter
->hw
;
509 struct net_device
*netdev
= adapter
->netdev
;
513 /* disable receives in the hardware */
515 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
516 /* flush and sleep below */
518 netif_tx_disable(netdev
);
520 /* disable transmits in the hardware */
522 tctl
&= ~E1000_TCTL_EN
;
524 /* flush both disables and wait for them to finish */
528 napi_disable(&adapter
->napi
);
530 e1000_irq_disable(adapter
);
532 /* Setting DOWN must be after irq_disable to prevent
533 * a screaming interrupt. Setting DOWN also prevents
534 * tasks from rescheduling.
536 e1000_down_and_stop(adapter
);
538 adapter
->link_speed
= 0;
539 adapter
->link_duplex
= 0;
540 netif_carrier_off(netdev
);
542 e1000_reset(adapter
);
543 e1000_clean_all_tx_rings(adapter
);
544 e1000_clean_all_rx_rings(adapter
);
547 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
549 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
551 mutex_lock(&adapter
->mutex
);
554 mutex_unlock(&adapter
->mutex
);
555 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
558 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
560 /* if rtnl_lock is not held the call path is bogus */
562 WARN_ON(in_interrupt());
563 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
567 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
570 void e1000_reset(struct e1000_adapter
*adapter
)
572 struct e1000_hw
*hw
= &adapter
->hw
;
573 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
574 bool legacy_pba_adjust
= false;
577 /* Repartition Pba for greater than 9k mtu
578 * To take effect CTRL.RST is required.
581 switch (hw
->mac_type
) {
582 case e1000_82542_rev2_0
:
583 case e1000_82542_rev2_1
:
588 case e1000_82541_rev_2
:
589 legacy_pba_adjust
= true;
593 case e1000_82545_rev_3
:
596 case e1000_82546_rev_3
:
600 case e1000_82547_rev_2
:
601 legacy_pba_adjust
= true;
604 case e1000_undefined
:
609 if (legacy_pba_adjust
) {
610 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
611 pba
-= 8; /* allocate more FIFO for Tx */
613 if (hw
->mac_type
== e1000_82547
) {
614 adapter
->tx_fifo_head
= 0;
615 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
616 adapter
->tx_fifo_size
=
617 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
618 atomic_set(&adapter
->tx_fifo_stall
, 0);
620 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
621 /* adjust PBA for jumbo frames */
624 /* To maintain wire speed transmits, the Tx FIFO should be
625 * large enough to accommodate two full transmit packets,
626 * rounded up to the next 1KB and expressed in KB. Likewise,
627 * the Rx FIFO should be large enough to accommodate at least
628 * one full receive packet and is similarly rounded up and
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space
= pba
>> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
636 /* the Tx fifo also stores 16 bytes of information about the Tx
637 * but don't include ethernet FCS because hardware appends it
639 min_tx_space
= (hw
->max_frame_size
+
640 sizeof(struct e1000_tx_desc
) -
642 min_tx_space
= ALIGN(min_tx_space
, 1024);
644 /* software strips receive CRC, so leave room for it */
645 min_rx_space
= hw
->max_frame_size
;
646 min_rx_space
= ALIGN(min_rx_space
, 1024);
649 /* If current Tx allocation is less than the min Tx FIFO size,
650 * and the min Tx FIFO size is less than the current Rx FIFO
651 * allocation, take space away from current Rx allocation
653 if (tx_space
< min_tx_space
&&
654 ((min_tx_space
- tx_space
) < pba
)) {
655 pba
= pba
- (min_tx_space
- tx_space
);
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw
->mac_type
) {
659 case e1000_82545
... e1000_82546_rev_3
:
660 pba
&= ~(E1000_PBA_8K
- 1);
666 /* if short on Rx space, Rx wins and must trump Tx
667 * adjustment or use Early Receive if available
669 if (pba
< min_rx_space
)
676 /* flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
685 hwm
= min(((pba
<< 10) * 9 / 10),
686 ((pba
<< 10) - hw
->max_frame_size
));
688 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
689 hw
->fc_low_water
= hw
->fc_high_water
- 8;
690 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
692 hw
->fc
= hw
->original_fc
;
694 /* Allow time for pending master requests to run */
696 if (hw
->mac_type
>= e1000_82544
)
699 if (e1000_init_hw(hw
))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter
);
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw
->mac_type
>= e1000_82544
&&
706 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
707 u32 ctrl
= er32(CTRL
);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload
712 ctrl
&= ~E1000_CTRL_SWDPIN3
;
716 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
717 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
719 e1000_reset_adaptive(hw
);
720 e1000_phy_get_info(hw
, &adapter
->phy_info
);
722 e1000_release_manageability(adapter
);
725 /* Dump the eeprom for users having checksum issues */
726 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
728 struct net_device
*netdev
= adapter
->netdev
;
729 struct ethtool_eeprom eeprom
;
730 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
733 u16 csum_old
, csum_new
= 0;
735 eeprom
.len
= ops
->get_eeprom_len(netdev
);
738 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
742 ops
->get_eeprom(netdev
, &eeprom
, data
);
744 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
745 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
746 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
747 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
748 csum_new
= EEPROM_SUM
- csum_new
;
750 pr_err("/*********************/\n");
751 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
752 pr_err("Calculated : 0x%04x\n", csum_new
);
754 pr_err("Offset Values\n");
755 pr_err("======== ======\n");
756 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
758 pr_err("Include this output when contacting your support provider.\n");
759 pr_err("This is not a software error! Something bad happened to\n");
760 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
761 pr_err("result in further problems, possibly loss of data,\n");
762 pr_err("corruption or system hangs!\n");
763 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
764 pr_err("which is invalid and requires you to set the proper MAC\n");
765 pr_err("address manually before continuing to enable this network\n");
766 pr_err("device. Please inspect the EEPROM dump and report the\n");
767 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
768 pr_err("/*********************/\n");
774 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
775 * @pdev: PCI device information struct
777 * Return true if an adapter needs ioport resources
779 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
781 switch (pdev
->device
) {
782 case E1000_DEV_ID_82540EM
:
783 case E1000_DEV_ID_82540EM_LOM
:
784 case E1000_DEV_ID_82540EP
:
785 case E1000_DEV_ID_82540EP_LOM
:
786 case E1000_DEV_ID_82540EP_LP
:
787 case E1000_DEV_ID_82541EI
:
788 case E1000_DEV_ID_82541EI_MOBILE
:
789 case E1000_DEV_ID_82541ER
:
790 case E1000_DEV_ID_82541ER_LOM
:
791 case E1000_DEV_ID_82541GI
:
792 case E1000_DEV_ID_82541GI_LF
:
793 case E1000_DEV_ID_82541GI_MOBILE
:
794 case E1000_DEV_ID_82544EI_COPPER
:
795 case E1000_DEV_ID_82544EI_FIBER
:
796 case E1000_DEV_ID_82544GC_COPPER
:
797 case E1000_DEV_ID_82544GC_LOM
:
798 case E1000_DEV_ID_82545EM_COPPER
:
799 case E1000_DEV_ID_82545EM_FIBER
:
800 case E1000_DEV_ID_82546EB_COPPER
:
801 case E1000_DEV_ID_82546EB_FIBER
:
802 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
809 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
810 netdev_features_t features
)
812 /* Since there is no support for separate Rx/Tx vlan accel
813 * enable/disable make sure Tx flag is always in same state as Rx.
815 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
816 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
818 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
823 static int e1000_set_features(struct net_device
*netdev
,
824 netdev_features_t features
)
826 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
827 netdev_features_t changed
= features
^ netdev
->features
;
829 if (changed
& NETIF_F_HW_VLAN_CTAG_RX
)
830 e1000_vlan_mode(netdev
, features
);
832 if (!(changed
& (NETIF_F_RXCSUM
| NETIF_F_RXALL
)))
835 netdev
->features
= features
;
836 adapter
->rx_csum
= !!(features
& NETIF_F_RXCSUM
);
838 if (netif_running(netdev
))
839 e1000_reinit_locked(adapter
);
841 e1000_reset(adapter
);
846 static const struct net_device_ops e1000_netdev_ops
= {
847 .ndo_open
= e1000_open
,
848 .ndo_stop
= e1000_close
,
849 .ndo_start_xmit
= e1000_xmit_frame
,
850 .ndo_get_stats
= e1000_get_stats
,
851 .ndo_set_rx_mode
= e1000_set_rx_mode
,
852 .ndo_set_mac_address
= e1000_set_mac
,
853 .ndo_tx_timeout
= e1000_tx_timeout
,
854 .ndo_change_mtu
= e1000_change_mtu
,
855 .ndo_do_ioctl
= e1000_ioctl
,
856 .ndo_validate_addr
= eth_validate_addr
,
857 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
858 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 .ndo_poll_controller
= e1000_netpoll
,
862 .ndo_fix_features
= e1000_fix_features
,
863 .ndo_set_features
= e1000_set_features
,
867 * e1000_init_hw_struct - initialize members of hw struct
868 * @adapter: board private struct
869 * @hw: structure used by e1000_hw.c
871 * Factors out initialization of the e1000_hw struct to its own function
872 * that can be called very early at init (just after struct allocation).
873 * Fields are initialized based on PCI device information and
874 * OS network device settings (MTU size).
875 * Returns negative error codes if MAC type setup fails.
877 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
880 struct pci_dev
*pdev
= adapter
->pdev
;
882 /* PCI config space info */
883 hw
->vendor_id
= pdev
->vendor
;
884 hw
->device_id
= pdev
->device
;
885 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
886 hw
->subsystem_id
= pdev
->subsystem_device
;
887 hw
->revision_id
= pdev
->revision
;
889 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
891 hw
->max_frame_size
= adapter
->netdev
->mtu
+
892 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
893 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
895 /* identify the MAC */
896 if (e1000_set_mac_type(hw
)) {
897 e_err(probe
, "Unknown MAC Type\n");
901 switch (hw
->mac_type
) {
906 case e1000_82541_rev_2
:
907 case e1000_82547_rev_2
:
908 hw
->phy_init_script
= 1;
912 e1000_set_media_type(hw
);
913 e1000_get_bus_info(hw
);
915 hw
->wait_autoneg_complete
= false;
916 hw
->tbi_compatibility_en
= true;
917 hw
->adaptive_ifs
= true;
921 if (hw
->media_type
== e1000_media_type_copper
) {
922 hw
->mdix
= AUTO_ALL_MODES
;
923 hw
->disable_polarity_correction
= false;
924 hw
->master_slave
= E1000_MASTER_SLAVE
;
931 * e1000_probe - Device Initialization Routine
932 * @pdev: PCI device information struct
933 * @ent: entry in e1000_pci_tbl
935 * Returns 0 on success, negative on failure
937 * e1000_probe initializes an adapter identified by a pci_dev structure.
938 * The OS initialization, configuring of the adapter private structure,
939 * and a hardware reset occur.
941 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
943 struct net_device
*netdev
;
944 struct e1000_adapter
*adapter
;
947 static int cards_found
= 0;
948 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
949 int i
, err
, pci_using_dac
;
952 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
953 int bars
, need_ioport
;
955 /* do not allocate ioport bars when not needed */
956 need_ioport
= e1000_is_need_ioport(pdev
);
958 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
959 err
= pci_enable_device(pdev
);
961 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
962 err
= pci_enable_device_mem(pdev
);
967 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
971 pci_set_master(pdev
);
972 err
= pci_save_state(pdev
);
974 goto err_alloc_etherdev
;
977 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
979 goto err_alloc_etherdev
;
981 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
983 pci_set_drvdata(pdev
, netdev
);
984 adapter
= netdev_priv(netdev
);
985 adapter
->netdev
= netdev
;
986 adapter
->pdev
= pdev
;
987 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
988 adapter
->bars
= bars
;
989 adapter
->need_ioport
= need_ioport
;
995 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
999 if (adapter
->need_ioport
) {
1000 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
1001 if (pci_resource_len(pdev
, i
) == 0)
1003 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1004 hw
->io_base
= pci_resource_start(pdev
, i
);
1010 /* make ready for any if (hw->...) below */
1011 err
= e1000_init_hw_struct(adapter
, hw
);
1015 /* there is a workaround being applied below that limits
1016 * 64-bit DMA addresses to 64-bit hardware. There are some
1017 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1020 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
1021 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
1022 /* according to DMA-API-HOWTO, coherent calls will always
1023 * succeed if the set call did
1025 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1028 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1030 pr_err("No usable DMA config, aborting\n");
1033 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1036 netdev
->netdev_ops
= &e1000_netdev_ops
;
1037 e1000_set_ethtool_ops(netdev
);
1038 netdev
->watchdog_timeo
= 5 * HZ
;
1039 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1041 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1043 adapter
->bd_number
= cards_found
;
1045 /* setup the private structure */
1047 err
= e1000_sw_init(adapter
);
1052 if (hw
->mac_type
== e1000_ce4100
) {
1053 hw
->ce4100_gbe_mdio_base_virt
=
1054 ioremap(pci_resource_start(pdev
, BAR_1
),
1055 pci_resource_len(pdev
, BAR_1
));
1057 if (!hw
->ce4100_gbe_mdio_base_virt
)
1058 goto err_mdio_ioremap
;
1061 if (hw
->mac_type
>= e1000_82543
) {
1062 netdev
->hw_features
= NETIF_F_SG
|
1064 NETIF_F_HW_VLAN_CTAG_RX
;
1065 netdev
->features
= NETIF_F_HW_VLAN_CTAG_TX
|
1066 NETIF_F_HW_VLAN_CTAG_FILTER
;
1069 if ((hw
->mac_type
>= e1000_82544
) &&
1070 (hw
->mac_type
!= e1000_82547
))
1071 netdev
->hw_features
|= NETIF_F_TSO
;
1073 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
1075 netdev
->features
|= netdev
->hw_features
;
1076 netdev
->hw_features
|= (NETIF_F_RXCSUM
|
1080 if (pci_using_dac
) {
1081 netdev
->features
|= NETIF_F_HIGHDMA
;
1082 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1085 netdev
->vlan_features
|= (NETIF_F_TSO
|
1089 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
1091 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1093 /* initialize eeprom parameters */
1094 if (e1000_init_eeprom_params(hw
)) {
1095 e_err(probe
, "EEPROM initialization failed\n");
1099 /* before reading the EEPROM, reset the controller to
1100 * put the device in a known good starting state
1105 /* make sure the EEPROM is good */
1106 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1107 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1108 e1000_dump_eeprom(adapter
);
1109 /* set MAC address to all zeroes to invalidate and temporary
1110 * disable this device for the user. This blocks regular
1111 * traffic while still permitting ethtool ioctls from reaching
1112 * the hardware as well as allowing the user to run the
1113 * interface after manually setting a hw addr using
1116 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1118 /* copy the MAC address out of the EEPROM */
1119 if (e1000_read_mac_addr(hw
))
1120 e_err(probe
, "EEPROM Read Error\n");
1122 /* don't block initalization here due to bad MAC address */
1123 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1125 if (!is_valid_ether_addr(netdev
->dev_addr
))
1126 e_err(probe
, "Invalid MAC Address\n");
1129 INIT_DELAYED_WORK(&adapter
->watchdog_task
, e1000_watchdog
);
1130 INIT_DELAYED_WORK(&adapter
->fifo_stall_task
,
1131 e1000_82547_tx_fifo_stall_task
);
1132 INIT_DELAYED_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1133 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1135 e1000_check_options(adapter
);
1137 /* Initial Wake on LAN setting
1138 * If APM wake is enabled in the EEPROM,
1139 * enable the ACPI Magic Packet filter
1142 switch (hw
->mac_type
) {
1143 case e1000_82542_rev2_0
:
1144 case e1000_82542_rev2_1
:
1148 e1000_read_eeprom(hw
,
1149 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1150 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1153 case e1000_82546_rev_3
:
1154 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1155 e1000_read_eeprom(hw
,
1156 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1161 e1000_read_eeprom(hw
,
1162 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1165 if (eeprom_data
& eeprom_apme_mask
)
1166 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1168 /* now that we have the eeprom settings, apply the special cases
1169 * where the eeprom may be wrong or the board simply won't support
1170 * wake on lan on a particular port
1172 switch (pdev
->device
) {
1173 case E1000_DEV_ID_82546GB_PCIE
:
1174 adapter
->eeprom_wol
= 0;
1176 case E1000_DEV_ID_82546EB_FIBER
:
1177 case E1000_DEV_ID_82546GB_FIBER
:
1178 /* Wake events only supported on port A for dual fiber
1179 * regardless of eeprom setting
1181 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1182 adapter
->eeprom_wol
= 0;
1184 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1185 /* if quad port adapter, disable WoL on all but port A */
1186 if (global_quad_port_a
!= 0)
1187 adapter
->eeprom_wol
= 0;
1189 adapter
->quad_port_a
= true;
1190 /* Reset for multiple quad port adapters */
1191 if (++global_quad_port_a
== 4)
1192 global_quad_port_a
= 0;
1196 /* initialize the wol settings based on the eeprom settings */
1197 adapter
->wol
= adapter
->eeprom_wol
;
1198 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1200 /* Auto detect PHY address */
1201 if (hw
->mac_type
== e1000_ce4100
) {
1202 for (i
= 0; i
< 32; i
++) {
1204 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1205 if (tmp
== 0 || tmp
== 0xFF) {
1214 /* reset the hardware with the new settings */
1215 e1000_reset(adapter
);
1217 strcpy(netdev
->name
, "eth%d");
1218 err
= register_netdev(netdev
);
1222 e1000_vlan_filter_on_off(adapter
, false);
1224 /* print bus type/speed/width info */
1225 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1227 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1228 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1229 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1230 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1231 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1234 /* carrier off reporting is important to ethtool even BEFORE open */
1235 netif_carrier_off(netdev
);
1237 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1244 e1000_phy_hw_reset(hw
);
1246 if (hw
->flash_address
)
1247 iounmap(hw
->flash_address
);
1248 kfree(adapter
->tx_ring
);
1249 kfree(adapter
->rx_ring
);
1253 iounmap(hw
->ce4100_gbe_mdio_base_virt
);
1254 iounmap(hw
->hw_addr
);
1256 free_netdev(netdev
);
1258 pci_release_selected_regions(pdev
, bars
);
1260 pci_disable_device(pdev
);
1265 * e1000_remove - Device Removal Routine
1266 * @pdev: PCI device information struct
1268 * e1000_remove is called by the PCI subsystem to alert the driver
1269 * that it should release a PCI device. The could be caused by a
1270 * Hot-Plug event, or because the driver is going to be removed from
1273 static void e1000_remove(struct pci_dev
*pdev
)
1275 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1276 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1277 struct e1000_hw
*hw
= &adapter
->hw
;
1279 e1000_down_and_stop(adapter
);
1280 e1000_release_manageability(adapter
);
1282 unregister_netdev(netdev
);
1284 e1000_phy_hw_reset(hw
);
1286 kfree(adapter
->tx_ring
);
1287 kfree(adapter
->rx_ring
);
1289 if (hw
->mac_type
== e1000_ce4100
)
1290 iounmap(hw
->ce4100_gbe_mdio_base_virt
);
1291 iounmap(hw
->hw_addr
);
1292 if (hw
->flash_address
)
1293 iounmap(hw
->flash_address
);
1294 pci_release_selected_regions(pdev
, adapter
->bars
);
1296 free_netdev(netdev
);
1298 pci_disable_device(pdev
);
1302 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1303 * @adapter: board private structure to initialize
1305 * e1000_sw_init initializes the Adapter private data structure.
1306 * e1000_init_hw_struct MUST be called before this function
1308 static int e1000_sw_init(struct e1000_adapter
*adapter
)
1310 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1312 adapter
->num_tx_queues
= 1;
1313 adapter
->num_rx_queues
= 1;
1315 if (e1000_alloc_queues(adapter
)) {
1316 e_err(probe
, "Unable to allocate memory for queues\n");
1320 /* Explicitly disable IRQ since the NIC can be in any state. */
1321 e1000_irq_disable(adapter
);
1323 spin_lock_init(&adapter
->stats_lock
);
1324 mutex_init(&adapter
->mutex
);
1326 set_bit(__E1000_DOWN
, &adapter
->flags
);
1332 * e1000_alloc_queues - Allocate memory for all rings
1333 * @adapter: board private structure to initialize
1335 * We allocate one ring per queue at run-time since we don't know the
1336 * number of queues at compile-time.
1338 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
1340 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1341 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1342 if (!adapter
->tx_ring
)
1345 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1346 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1347 if (!adapter
->rx_ring
) {
1348 kfree(adapter
->tx_ring
);
1352 return E1000_SUCCESS
;
1356 * e1000_open - Called when a network interface is made active
1357 * @netdev: network interface device structure
1359 * Returns 0 on success, negative value on failure
1361 * The open entry point is called when a network interface is made
1362 * active by the system (IFF_UP). At this point all resources needed
1363 * for transmit and receive operations are allocated, the interrupt
1364 * handler is registered with the OS, the watchdog task is started,
1365 * and the stack is notified that the interface is ready.
1367 static int e1000_open(struct net_device
*netdev
)
1369 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1370 struct e1000_hw
*hw
= &adapter
->hw
;
1373 /* disallow open during test */
1374 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1377 netif_carrier_off(netdev
);
1379 /* allocate transmit descriptors */
1380 err
= e1000_setup_all_tx_resources(adapter
);
1384 /* allocate receive descriptors */
1385 err
= e1000_setup_all_rx_resources(adapter
);
1389 e1000_power_up_phy(adapter
);
1391 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1392 if ((hw
->mng_cookie
.status
&
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1394 e1000_update_mng_vlan(adapter
);
1397 /* before we allocate an interrupt, we must be ready to handle it.
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1399 * as soon as we call pci_request_irq, so we have to setup our
1400 * clean_rx handler before we do so.
1402 e1000_configure(adapter
);
1404 err
= e1000_request_irq(adapter
);
1408 /* From here on the code is the same as e1000_up() */
1409 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1411 napi_enable(&adapter
->napi
);
1413 e1000_irq_enable(adapter
);
1415 netif_start_queue(netdev
);
1417 /* fire a link status change interrupt to start the watchdog */
1418 ew32(ICS
, E1000_ICS_LSC
);
1420 return E1000_SUCCESS
;
1423 e1000_power_down_phy(adapter
);
1424 e1000_free_all_rx_resources(adapter
);
1426 e1000_free_all_tx_resources(adapter
);
1428 e1000_reset(adapter
);
1434 * e1000_close - Disables a network interface
1435 * @netdev: network interface device structure
1437 * Returns 0, this is not allowed to fail
1439 * The close entry point is called when an interface is de-activated
1440 * by the OS. The hardware is still under the drivers control, but
1441 * needs to be disabled. A global MAC reset is issued to stop the
1442 * hardware, and all transmit and receive resources are freed.
1444 static int e1000_close(struct net_device
*netdev
)
1446 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1447 struct e1000_hw
*hw
= &adapter
->hw
;
1449 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1450 e1000_down(adapter
);
1451 e1000_power_down_phy(adapter
);
1452 e1000_free_irq(adapter
);
1454 e1000_free_all_tx_resources(adapter
);
1455 e1000_free_all_rx_resources(adapter
);
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1460 if ((hw
->mng_cookie
.status
&
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1462 !test_bit(adapter
->mng_vlan_id
, adapter
->active_vlans
)) {
1463 e1000_vlan_rx_kill_vid(netdev
, htons(ETH_P_8021Q
),
1464 adapter
->mng_vlan_id
);
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1476 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1479 struct e1000_hw
*hw
= &adapter
->hw
;
1480 unsigned long begin
= (unsigned long)start
;
1481 unsigned long end
= begin
+ len
;
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1486 if (hw
->mac_type
== e1000_82545
||
1487 hw
->mac_type
== e1000_ce4100
||
1488 hw
->mac_type
== e1000_82546
) {
1489 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1500 * Return 0 on success, negative on failure
1502 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1503 struct e1000_tx_ring
*txdr
)
1505 struct pci_dev
*pdev
= adapter
->pdev
;
1508 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1509 txdr
->buffer_info
= vzalloc(size
);
1510 if (!txdr
->buffer_info
)
1513 /* round up to nearest 4K */
1515 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1516 txdr
->size
= ALIGN(txdr
->size
, 4096);
1518 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1522 vfree(txdr
->buffer_info
);
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1528 void *olddesc
= txdr
->desc
;
1529 dma_addr_t olddma
= txdr
->dma
;
1530 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1531 txdr
->size
, txdr
->desc
);
1532 /* Try again, without freeing the previous */
1533 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1534 &txdr
->dma
, GFP_KERNEL
);
1535 /* Failed allocation, critical failure */
1537 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1539 goto setup_tx_desc_die
;
1542 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1544 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1546 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1548 e_err(probe
, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr
->buffer_info
);
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1558 memset(txdr
->desc
, 0, txdr
->size
);
1560 txdr
->next_to_use
= 0;
1561 txdr
->next_to_clean
= 0;
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1571 * Return 0 on success, negative on failure
1573 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1577 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1578 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1580 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1581 for (i
-- ; i
>= 0; i
--)
1582 e1000_free_tx_resources(adapter
,
1583 &adapter
->tx_ring
[i
]);
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1595 * Configure the Tx unit of the MAC after a reset.
1597 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1600 struct e1000_hw
*hw
= &adapter
->hw
;
1601 u32 tdlen
, tctl
, tipg
;
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1606 switch (adapter
->num_tx_queues
) {
1609 tdba
= adapter
->tx_ring
[0].dma
;
1610 tdlen
= adapter
->tx_ring
[0].count
*
1611 sizeof(struct e1000_tx_desc
);
1613 ew32(TDBAH
, (tdba
>> 32));
1614 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1617 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ?
1618 E1000_TDH
: E1000_82542_TDH
);
1619 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ?
1620 E1000_TDT
: E1000_82542_TDT
);
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw
->media_type
== e1000_media_type_fiber
||
1626 hw
->media_type
== e1000_media_type_internal_serdes
))
1627 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1629 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1631 switch (hw
->mac_type
) {
1632 case e1000_82542_rev2_0
:
1633 case e1000_82542_rev2_1
:
1634 tipg
= DEFAULT_82542_TIPG_IPGT
;
1635 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1636 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1639 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1640 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1643 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1644 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1647 /* Set the Tx Interrupt Delay register */
1649 ew32(TIDV
, adapter
->tx_int_delay
);
1650 if (hw
->mac_type
>= e1000_82540
)
1651 ew32(TADV
, adapter
->tx_abs_int_delay
);
1653 /* Program the Transmit Control Register */
1656 tctl
&= ~E1000_TCTL_CT
;
1657 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1658 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1660 e1000_config_collision_dist(hw
);
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter
->tx_int_delay
)
1667 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1669 if (hw
->mac_type
< e1000_82543
)
1670 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1672 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1677 if (hw
->mac_type
== e1000_82544
&&
1678 hw
->bus_type
== e1000_bus_type_pcix
)
1679 adapter
->pcix_82544
= true;
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1690 * Returns 0 on success, negative on failure
1692 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1693 struct e1000_rx_ring
*rxdr
)
1695 struct pci_dev
*pdev
= adapter
->pdev
;
1698 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1699 rxdr
->buffer_info
= vzalloc(size
);
1700 if (!rxdr
->buffer_info
)
1703 desc_len
= sizeof(struct e1000_rx_desc
);
1705 /* Round up to nearest 4K */
1707 rxdr
->size
= rxdr
->count
* desc_len
;
1708 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1710 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1714 vfree(rxdr
->buffer_info
);
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1720 void *olddesc
= rxdr
->desc
;
1721 dma_addr_t olddma
= rxdr
->dma
;
1722 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr
->size
, rxdr
->desc
);
1724 /* Try again, without freeing the previous */
1725 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1726 &rxdr
->dma
, GFP_KERNEL
);
1727 /* Failed allocation, critical failure */
1729 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1731 goto setup_rx_desc_die
;
1734 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1736 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1738 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1740 e_err(probe
, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die
;
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1749 memset(rxdr
->desc
, 0, rxdr
->size
);
1751 rxdr
->next_to_clean
= 0;
1752 rxdr
->next_to_use
= 0;
1753 rxdr
->rx_skb_top
= NULL
;
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1763 * Return 0 on success, negative on failure
1765 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1769 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1770 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1772 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1773 for (i
-- ; i
>= 0; i
--)
1774 e1000_free_rx_resources(adapter
,
1775 &adapter
->rx_ring
[i
]);
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1787 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1789 struct e1000_hw
*hw
= &adapter
->hw
;
1794 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1796 rctl
|= E1000_RCTL_BAM
| E1000_RCTL_LBM_NO
|
1797 E1000_RCTL_RDMTS_HALF
|
1798 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1800 if (hw
->tbi_compatibility_on
== 1)
1801 rctl
|= E1000_RCTL_SBP
;
1803 rctl
&= ~E1000_RCTL_SBP
;
1805 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1806 rctl
&= ~E1000_RCTL_LPE
;
1808 rctl
|= E1000_RCTL_LPE
;
1810 /* Setup buffer sizes */
1811 rctl
&= ~E1000_RCTL_SZ_4096
;
1812 rctl
|= E1000_RCTL_BSEX
;
1813 switch (adapter
->rx_buffer_len
) {
1814 case E1000_RXBUFFER_2048
:
1816 rctl
|= E1000_RCTL_SZ_2048
;
1817 rctl
&= ~E1000_RCTL_BSEX
;
1819 case E1000_RXBUFFER_4096
:
1820 rctl
|= E1000_RCTL_SZ_4096
;
1822 case E1000_RXBUFFER_8192
:
1823 rctl
|= E1000_RCTL_SZ_8192
;
1825 case E1000_RXBUFFER_16384
:
1826 rctl
|= E1000_RCTL_SZ_16384
;
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1835 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
1836 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
1839 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
1840 E1000_RCTL_DPF
| /* Allow filtered pause */
1841 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1854 * Configure the Rx unit of the MAC after a reset.
1856 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1859 struct e1000_hw
*hw
= &adapter
->hw
;
1860 u32 rdlen
, rctl
, rxcsum
;
1862 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1863 rdlen
= adapter
->rx_ring
[0].count
*
1864 sizeof(struct e1000_rx_desc
);
1865 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1866 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1868 rdlen
= adapter
->rx_ring
[0].count
*
1869 sizeof(struct e1000_rx_desc
);
1870 adapter
->clean_rx
= e1000_clean_rx_irq
;
1871 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1874 /* disable receives while setting up the descriptors */
1876 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR
, adapter
->rx_int_delay
);
1881 if (hw
->mac_type
>= e1000_82540
) {
1882 ew32(RADV
, adapter
->rx_abs_int_delay
);
1883 if (adapter
->itr_setting
!= 0)
1884 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1890 switch (adapter
->num_rx_queues
) {
1893 rdba
= adapter
->rx_ring
[0].dma
;
1895 ew32(RDBAH
, (rdba
>> 32));
1896 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1899 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ?
1900 E1000_RDH
: E1000_82542_RDH
);
1901 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ?
1902 E1000_RDT
: E1000_82542_RDT
);
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw
->mac_type
>= e1000_82543
) {
1908 rxcsum
= er32(RXCSUM
);
1909 if (adapter
->rx_csum
)
1910 rxcsum
|= E1000_RXCSUM_TUOFL
;
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1914 ew32(RXCSUM
, rxcsum
);
1917 /* Enable Receives */
1918 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1926 * Free all transmit software resources
1928 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1929 struct e1000_tx_ring
*tx_ring
)
1931 struct pci_dev
*pdev
= adapter
->pdev
;
1933 e1000_clean_tx_ring(adapter
, tx_ring
);
1935 vfree(tx_ring
->buffer_info
);
1936 tx_ring
->buffer_info
= NULL
;
1938 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1941 tx_ring
->desc
= NULL
;
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1948 * Free all transmit software resources
1950 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1954 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1955 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1958 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1959 struct e1000_buffer
*buffer_info
)
1961 if (buffer_info
->dma
) {
1962 if (buffer_info
->mapped_as_page
)
1963 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1964 buffer_info
->length
, DMA_TO_DEVICE
);
1966 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1967 buffer_info
->length
,
1969 buffer_info
->dma
= 0;
1971 if (buffer_info
->skb
) {
1972 dev_kfree_skb_any(buffer_info
->skb
);
1973 buffer_info
->skb
= NULL
;
1975 buffer_info
->time_stamp
= 0;
1976 /* buffer_info must be completely set up in the transmit path */
1980 * e1000_clean_tx_ring - Free Tx Buffers
1981 * @adapter: board private structure
1982 * @tx_ring: ring to be cleaned
1984 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1985 struct e1000_tx_ring
*tx_ring
)
1987 struct e1000_hw
*hw
= &adapter
->hw
;
1988 struct e1000_buffer
*buffer_info
;
1992 /* Free all the Tx ring sk_buffs */
1994 for (i
= 0; i
< tx_ring
->count
; i
++) {
1995 buffer_info
= &tx_ring
->buffer_info
[i
];
1996 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1999 netdev_reset_queue(adapter
->netdev
);
2000 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2001 memset(tx_ring
->buffer_info
, 0, size
);
2003 /* Zero out the descriptor ring */
2005 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2007 tx_ring
->next_to_use
= 0;
2008 tx_ring
->next_to_clean
= 0;
2009 tx_ring
->last_tx_tso
= false;
2011 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2012 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017 * @adapter: board private structure
2019 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2023 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2024 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2032 * Free all receive software resources
2034 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2035 struct e1000_rx_ring
*rx_ring
)
2037 struct pci_dev
*pdev
= adapter
->pdev
;
2039 e1000_clean_rx_ring(adapter
, rx_ring
);
2041 vfree(rx_ring
->buffer_info
);
2042 rx_ring
->buffer_info
= NULL
;
2044 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2047 rx_ring
->desc
= NULL
;
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052 * @adapter: board private structure
2054 * Free all receive software resources
2056 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2060 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2061 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2065 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2066 * @adapter: board private structure
2067 * @rx_ring: ring to free buffers from
2069 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2070 struct e1000_rx_ring
*rx_ring
)
2072 struct e1000_hw
*hw
= &adapter
->hw
;
2073 struct e1000_buffer
*buffer_info
;
2074 struct pci_dev
*pdev
= adapter
->pdev
;
2078 /* Free all the Rx ring sk_buffs */
2079 for (i
= 0; i
< rx_ring
->count
; i
++) {
2080 buffer_info
= &rx_ring
->buffer_info
[i
];
2081 if (buffer_info
->dma
&&
2082 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2083 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2084 buffer_info
->length
,
2086 } else if (buffer_info
->dma
&&
2087 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2088 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2089 buffer_info
->length
,
2093 buffer_info
->dma
= 0;
2094 if (buffer_info
->page
) {
2095 put_page(buffer_info
->page
);
2096 buffer_info
->page
= NULL
;
2098 if (buffer_info
->skb
) {
2099 dev_kfree_skb(buffer_info
->skb
);
2100 buffer_info
->skb
= NULL
;
2104 /* there also may be some cached data from a chained receive */
2105 if (rx_ring
->rx_skb_top
) {
2106 dev_kfree_skb(rx_ring
->rx_skb_top
);
2107 rx_ring
->rx_skb_top
= NULL
;
2110 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2111 memset(rx_ring
->buffer_info
, 0, size
);
2113 /* Zero out the descriptor ring */
2114 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2116 rx_ring
->next_to_clean
= 0;
2117 rx_ring
->next_to_use
= 0;
2119 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2120 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2124 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2125 * @adapter: board private structure
2127 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2131 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2132 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2135 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2136 * and memory write and invalidate disabled for certain operations
2138 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2140 struct e1000_hw
*hw
= &adapter
->hw
;
2141 struct net_device
*netdev
= adapter
->netdev
;
2144 e1000_pci_clear_mwi(hw
);
2147 rctl
|= E1000_RCTL_RST
;
2149 E1000_WRITE_FLUSH();
2152 if (netif_running(netdev
))
2153 e1000_clean_all_rx_rings(adapter
);
2156 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2158 struct e1000_hw
*hw
= &adapter
->hw
;
2159 struct net_device
*netdev
= adapter
->netdev
;
2163 rctl
&= ~E1000_RCTL_RST
;
2165 E1000_WRITE_FLUSH();
2168 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2169 e1000_pci_set_mwi(hw
);
2171 if (netif_running(netdev
)) {
2172 /* No need to loop, because 82542 supports only 1 queue */
2173 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2174 e1000_configure_rx(adapter
);
2175 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2180 * e1000_set_mac - Change the Ethernet Address of the NIC
2181 * @netdev: network interface device structure
2182 * @p: pointer to an address structure
2184 * Returns 0 on success, negative on failure
2186 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2188 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2189 struct e1000_hw
*hw
= &adapter
->hw
;
2190 struct sockaddr
*addr
= p
;
2192 if (!is_valid_ether_addr(addr
->sa_data
))
2193 return -EADDRNOTAVAIL
;
2195 /* 82542 2.0 needs to be in reset to write receive address registers */
2197 if (hw
->mac_type
== e1000_82542_rev2_0
)
2198 e1000_enter_82542_rst(adapter
);
2200 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2201 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2203 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2205 if (hw
->mac_type
== e1000_82542_rev2_0
)
2206 e1000_leave_82542_rst(adapter
);
2212 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2213 * @netdev: network interface device structure
2215 * The set_rx_mode entry point is called whenever the unicast or multicast
2216 * address lists or the network interface flags are updated. This routine is
2217 * responsible for configuring the hardware for proper unicast, multicast,
2218 * promiscuous mode, and all-multi behavior.
2220 static void e1000_set_rx_mode(struct net_device
*netdev
)
2222 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2223 struct e1000_hw
*hw
= &adapter
->hw
;
2224 struct netdev_hw_addr
*ha
;
2225 bool use_uc
= false;
2228 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2229 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2230 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2235 /* Check for Promiscuous and All Multicast modes */
2239 if (netdev
->flags
& IFF_PROMISC
) {
2240 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2241 rctl
&= ~E1000_RCTL_VFE
;
2243 if (netdev
->flags
& IFF_ALLMULTI
)
2244 rctl
|= E1000_RCTL_MPE
;
2246 rctl
&= ~E1000_RCTL_MPE
;
2247 /* Enable VLAN filter if there is a VLAN */
2248 if (e1000_vlan_used(adapter
))
2249 rctl
|= E1000_RCTL_VFE
;
2252 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2253 rctl
|= E1000_RCTL_UPE
;
2254 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2255 rctl
&= ~E1000_RCTL_UPE
;
2261 /* 82542 2.0 needs to be in reset to write receive address registers */
2263 if (hw
->mac_type
== e1000_82542_rev2_0
)
2264 e1000_enter_82542_rst(adapter
);
2266 /* load the first 14 addresses into the exact filters 1-14. Unicast
2267 * addresses take precedence to avoid disabling unicast filtering
2270 * RAR 0 is used for the station MAC address
2271 * if there are not 14 addresses, go ahead and clear the filters
2275 netdev_for_each_uc_addr(ha
, netdev
) {
2276 if (i
== rar_entries
)
2278 e1000_rar_set(hw
, ha
->addr
, i
++);
2281 netdev_for_each_mc_addr(ha
, netdev
) {
2282 if (i
== rar_entries
) {
2283 /* load any remaining addresses into the hash table */
2284 u32 hash_reg
, hash_bit
, mta
;
2285 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2286 hash_reg
= (hash_value
>> 5) & 0x7F;
2287 hash_bit
= hash_value
& 0x1F;
2288 mta
= (1 << hash_bit
);
2289 mcarray
[hash_reg
] |= mta
;
2291 e1000_rar_set(hw
, ha
->addr
, i
++);
2295 for (; i
< rar_entries
; i
++) {
2296 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2297 E1000_WRITE_FLUSH();
2298 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2299 E1000_WRITE_FLUSH();
2302 /* write the hash table completely, write from bottom to avoid
2303 * both stupid write combining chipsets, and flushing each write
2305 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2306 /* If we are on an 82544 has an errata where writing odd
2307 * offsets overwrites the previous even offset, but writing
2308 * backwards over the range solves the issue by always
2309 * writing the odd offset first
2311 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2313 E1000_WRITE_FLUSH();
2315 if (hw
->mac_type
== e1000_82542_rev2_0
)
2316 e1000_leave_82542_rst(adapter
);
2322 * e1000_update_phy_info_task - get phy info
2323 * @work: work struct contained inside adapter struct
2325 * Need to wait a few seconds after link up to get diagnostic information from
2328 static void e1000_update_phy_info_task(struct work_struct
*work
)
2330 struct e1000_adapter
*adapter
= container_of(work
,
2331 struct e1000_adapter
,
2332 phy_info_task
.work
);
2333 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2335 mutex_lock(&adapter
->mutex
);
2336 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2337 mutex_unlock(&adapter
->mutex
);
2341 * e1000_82547_tx_fifo_stall_task - task to complete work
2342 * @work: work struct contained inside adapter struct
2344 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2346 struct e1000_adapter
*adapter
= container_of(work
,
2347 struct e1000_adapter
,
2348 fifo_stall_task
.work
);
2349 struct e1000_hw
*hw
= &adapter
->hw
;
2350 struct net_device
*netdev
= adapter
->netdev
;
2353 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2355 mutex_lock(&adapter
->mutex
);
2356 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2357 if ((er32(TDT
) == er32(TDH
)) &&
2358 (er32(TDFT
) == er32(TDFH
)) &&
2359 (er32(TDFTS
) == er32(TDFHS
))) {
2361 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2362 ew32(TDFT
, adapter
->tx_head_addr
);
2363 ew32(TDFH
, adapter
->tx_head_addr
);
2364 ew32(TDFTS
, adapter
->tx_head_addr
);
2365 ew32(TDFHS
, adapter
->tx_head_addr
);
2367 E1000_WRITE_FLUSH();
2369 adapter
->tx_fifo_head
= 0;
2370 atomic_set(&adapter
->tx_fifo_stall
, 0);
2371 netif_wake_queue(netdev
);
2372 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2373 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
2376 mutex_unlock(&adapter
->mutex
);
2379 bool e1000_has_link(struct e1000_adapter
*adapter
)
2381 struct e1000_hw
*hw
= &adapter
->hw
;
2382 bool link_active
= false;
2384 /* get_link_status is set on LSC (link status) interrupt or rx
2385 * sequence error interrupt (except on intel ce4100).
2386 * get_link_status will stay false until the
2387 * e1000_check_for_link establishes link for copper adapters
2390 switch (hw
->media_type
) {
2391 case e1000_media_type_copper
:
2392 if (hw
->mac_type
== e1000_ce4100
)
2393 hw
->get_link_status
= 1;
2394 if (hw
->get_link_status
) {
2395 e1000_check_for_link(hw
);
2396 link_active
= !hw
->get_link_status
;
2401 case e1000_media_type_fiber
:
2402 e1000_check_for_link(hw
);
2403 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2405 case e1000_media_type_internal_serdes
:
2406 e1000_check_for_link(hw
);
2407 link_active
= hw
->serdes_has_link
;
2417 * e1000_watchdog - work function
2418 * @work: work struct contained inside adapter struct
2420 static void e1000_watchdog(struct work_struct
*work
)
2422 struct e1000_adapter
*adapter
= container_of(work
,
2423 struct e1000_adapter
,
2424 watchdog_task
.work
);
2425 struct e1000_hw
*hw
= &adapter
->hw
;
2426 struct net_device
*netdev
= adapter
->netdev
;
2427 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2430 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2433 mutex_lock(&adapter
->mutex
);
2434 link
= e1000_has_link(adapter
);
2435 if ((netif_carrier_ok(netdev
)) && link
)
2439 if (!netif_carrier_ok(netdev
)) {
2442 /* update snapshot of PHY registers on LSC */
2443 e1000_get_speed_and_duplex(hw
,
2444 &adapter
->link_speed
,
2445 &adapter
->link_duplex
);
2448 pr_info("%s NIC Link is Up %d Mbps %s, "
2449 "Flow Control: %s\n",
2451 adapter
->link_speed
,
2452 adapter
->link_duplex
== FULL_DUPLEX
?
2453 "Full Duplex" : "Half Duplex",
2454 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2455 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2456 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2457 E1000_CTRL_TFCE
) ? "TX" : "None")));
2459 /* adjust timeout factor according to speed/duplex */
2460 adapter
->tx_timeout_factor
= 1;
2461 switch (adapter
->link_speed
) {
2464 adapter
->tx_timeout_factor
= 16;
2468 /* maybe add some timeout factor ? */
2472 /* enable transmits in the hardware */
2474 tctl
|= E1000_TCTL_EN
;
2477 netif_carrier_on(netdev
);
2478 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2479 schedule_delayed_work(&adapter
->phy_info_task
,
2481 adapter
->smartspeed
= 0;
2484 if (netif_carrier_ok(netdev
)) {
2485 adapter
->link_speed
= 0;
2486 adapter
->link_duplex
= 0;
2487 pr_info("%s NIC Link is Down\n",
2489 netif_carrier_off(netdev
);
2491 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2492 schedule_delayed_work(&adapter
->phy_info_task
,
2496 e1000_smartspeed(adapter
);
2500 e1000_update_stats(adapter
);
2502 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2503 adapter
->tpt_old
= adapter
->stats
.tpt
;
2504 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2505 adapter
->colc_old
= adapter
->stats
.colc
;
2507 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2508 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2509 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2510 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2512 e1000_update_adaptive(hw
);
2514 if (!netif_carrier_ok(netdev
)) {
2515 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2516 /* We've lost link, so the controller stops DMA,
2517 * but we've got queued Tx work that's never going
2518 * to get done, so reset controller to flush Tx.
2519 * (Do the reset outside of interrupt context).
2521 adapter
->tx_timeout_count
++;
2522 schedule_work(&adapter
->reset_task
);
2523 /* exit immediately since reset is imminent */
2528 /* Simple mode for Interrupt Throttle Rate (ITR) */
2529 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2530 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2531 * Total asymmetrical Tx or Rx gets ITR=8000;
2532 * everyone else is between 2000-8000.
2534 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2535 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2536 adapter
->gotcl
- adapter
->gorcl
:
2537 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2538 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2540 ew32(ITR
, 1000000000 / (itr
* 256));
2543 /* Cause software interrupt to ensure rx ring is cleaned */
2544 ew32(ICS
, E1000_ICS_RXDMT0
);
2546 /* Force detection of hung controller every watchdog period */
2547 adapter
->detect_tx_hung
= true;
2549 /* Reschedule the task */
2550 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2551 schedule_delayed_work(&adapter
->watchdog_task
, 2 * HZ
);
2554 mutex_unlock(&adapter
->mutex
);
2557 enum latency_range
{
2561 latency_invalid
= 255
2565 * e1000_update_itr - update the dynamic ITR value based on statistics
2566 * @adapter: pointer to adapter
2567 * @itr_setting: current adapter->itr
2568 * @packets: the number of packets during this measurement interval
2569 * @bytes: the number of bytes during this measurement interval
2571 * Stores a new ITR value based on packets and byte
2572 * counts during the last interrupt. The advantage of per interrupt
2573 * computation is faster updates and more accurate ITR for the current
2574 * traffic pattern. Constants in this function were computed
2575 * based on theoretical maximum wire speed and thresholds were set based
2576 * on testing data as well as attempting to minimize response time
2577 * while increasing bulk throughput.
2578 * this functionality is controlled by the InterruptThrottleRate module
2579 * parameter (see e1000_param.c)
2581 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2582 u16 itr_setting
, int packets
, int bytes
)
2584 unsigned int retval
= itr_setting
;
2585 struct e1000_hw
*hw
= &adapter
->hw
;
2587 if (unlikely(hw
->mac_type
< e1000_82540
))
2588 goto update_itr_done
;
2591 goto update_itr_done
;
2593 switch (itr_setting
) {
2594 case lowest_latency
:
2595 /* jumbo frames get bulk treatment*/
2596 if (bytes
/packets
> 8000)
2597 retval
= bulk_latency
;
2598 else if ((packets
< 5) && (bytes
> 512))
2599 retval
= low_latency
;
2601 case low_latency
: /* 50 usec aka 20000 ints/s */
2602 if (bytes
> 10000) {
2603 /* jumbo frames need bulk latency setting */
2604 if (bytes
/packets
> 8000)
2605 retval
= bulk_latency
;
2606 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2607 retval
= bulk_latency
;
2608 else if ((packets
> 35))
2609 retval
= lowest_latency
;
2610 } else if (bytes
/packets
> 2000)
2611 retval
= bulk_latency
;
2612 else if (packets
<= 2 && bytes
< 512)
2613 retval
= lowest_latency
;
2615 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2616 if (bytes
> 25000) {
2618 retval
= low_latency
;
2619 } else if (bytes
< 6000) {
2620 retval
= low_latency
;
2629 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2631 struct e1000_hw
*hw
= &adapter
->hw
;
2633 u32 new_itr
= adapter
->itr
;
2635 if (unlikely(hw
->mac_type
< e1000_82540
))
2638 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2639 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2645 adapter
->tx_itr
= e1000_update_itr(adapter
, adapter
->tx_itr
,
2646 adapter
->total_tx_packets
,
2647 adapter
->total_tx_bytes
);
2648 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2649 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2650 adapter
->tx_itr
= low_latency
;
2652 adapter
->rx_itr
= e1000_update_itr(adapter
, adapter
->rx_itr
,
2653 adapter
->total_rx_packets
,
2654 adapter
->total_rx_bytes
);
2655 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2656 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2657 adapter
->rx_itr
= low_latency
;
2659 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2661 switch (current_itr
) {
2662 /* counts and packets in update_itr are dependent on these numbers */
2663 case lowest_latency
:
2667 new_itr
= 20000; /* aka hwitr = ~200 */
2677 if (new_itr
!= adapter
->itr
) {
2678 /* this attempts to bias the interrupt rate towards Bulk
2679 * by adding intermediate steps when interrupt rate is
2682 new_itr
= new_itr
> adapter
->itr
?
2683 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2685 adapter
->itr
= new_itr
;
2686 ew32(ITR
, 1000000000 / (new_itr
* 256));
2690 #define E1000_TX_FLAGS_CSUM 0x00000001
2691 #define E1000_TX_FLAGS_VLAN 0x00000002
2692 #define E1000_TX_FLAGS_TSO 0x00000004
2693 #define E1000_TX_FLAGS_IPV4 0x00000008
2694 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2695 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2696 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2698 static int e1000_tso(struct e1000_adapter
*adapter
,
2699 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2701 struct e1000_context_desc
*context_desc
;
2702 struct e1000_buffer
*buffer_info
;
2705 u16 ipcse
= 0, tucse
, mss
;
2706 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2709 if (skb_is_gso(skb
)) {
2710 if (skb_header_cloned(skb
)) {
2711 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2716 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2717 mss
= skb_shinfo(skb
)->gso_size
;
2718 if (skb
->protocol
== htons(ETH_P_IP
)) {
2719 struct iphdr
*iph
= ip_hdr(skb
);
2722 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2726 cmd_length
= E1000_TXD_CMD_IP
;
2727 ipcse
= skb_transport_offset(skb
) - 1;
2728 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2729 ipv6_hdr(skb
)->payload_len
= 0;
2730 tcp_hdr(skb
)->check
=
2731 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2732 &ipv6_hdr(skb
)->daddr
,
2736 ipcss
= skb_network_offset(skb
);
2737 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2738 tucss
= skb_transport_offset(skb
);
2739 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2742 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2743 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2745 i
= tx_ring
->next_to_use
;
2746 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2747 buffer_info
= &tx_ring
->buffer_info
[i
];
2749 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2750 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2751 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2752 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2753 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2754 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2755 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2756 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2757 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2759 buffer_info
->time_stamp
= jiffies
;
2760 buffer_info
->next_to_watch
= i
;
2762 if (++i
== tx_ring
->count
) i
= 0;
2763 tx_ring
->next_to_use
= i
;
2770 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2771 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2773 struct e1000_context_desc
*context_desc
;
2774 struct e1000_buffer
*buffer_info
;
2777 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2779 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2782 switch (skb
->protocol
) {
2783 case cpu_to_be16(ETH_P_IP
):
2784 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2785 cmd_len
|= E1000_TXD_CMD_TCP
;
2787 case cpu_to_be16(ETH_P_IPV6
):
2788 /* XXX not handling all IPV6 headers */
2789 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2790 cmd_len
|= E1000_TXD_CMD_TCP
;
2793 if (unlikely(net_ratelimit()))
2794 e_warn(drv
, "checksum_partial proto=%x!\n",
2799 css
= skb_checksum_start_offset(skb
);
2801 i
= tx_ring
->next_to_use
;
2802 buffer_info
= &tx_ring
->buffer_info
[i
];
2803 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2805 context_desc
->lower_setup
.ip_config
= 0;
2806 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2807 context_desc
->upper_setup
.tcp_fields
.tucso
=
2808 css
+ skb
->csum_offset
;
2809 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2810 context_desc
->tcp_seg_setup
.data
= 0;
2811 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2813 buffer_info
->time_stamp
= jiffies
;
2814 buffer_info
->next_to_watch
= i
;
2816 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2817 tx_ring
->next_to_use
= i
;
2822 #define E1000_MAX_TXD_PWR 12
2823 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2825 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2826 struct e1000_tx_ring
*tx_ring
,
2827 struct sk_buff
*skb
, unsigned int first
,
2828 unsigned int max_per_txd
, unsigned int nr_frags
,
2831 struct e1000_hw
*hw
= &adapter
->hw
;
2832 struct pci_dev
*pdev
= adapter
->pdev
;
2833 struct e1000_buffer
*buffer_info
;
2834 unsigned int len
= skb_headlen(skb
);
2835 unsigned int offset
= 0, size
, count
= 0, i
;
2836 unsigned int f
, bytecount
, segs
;
2838 i
= tx_ring
->next_to_use
;
2841 buffer_info
= &tx_ring
->buffer_info
[i
];
2842 size
= min(len
, max_per_txd
);
2843 /* Workaround for Controller erratum --
2844 * descriptor for non-tso packet in a linear SKB that follows a
2845 * tso gets written back prematurely before the data is fully
2846 * DMA'd to the controller
2848 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2850 tx_ring
->last_tx_tso
= false;
2854 /* Workaround for premature desc write-backs
2855 * in TSO mode. Append 4-byte sentinel desc
2857 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2859 /* work-around for errata 10 and it applies
2860 * to all controllers in PCI-X mode
2861 * The fix is to make sure that the first descriptor of a
2862 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2864 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2865 (size
> 2015) && count
== 0))
2868 /* Workaround for potential 82544 hang in PCI-X. Avoid
2869 * terminating buffers within evenly-aligned dwords.
2871 if (unlikely(adapter
->pcix_82544
&&
2872 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2876 buffer_info
->length
= size
;
2877 /* set time_stamp *before* dma to help avoid a possible race */
2878 buffer_info
->time_stamp
= jiffies
;
2879 buffer_info
->mapped_as_page
= false;
2880 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2882 size
, DMA_TO_DEVICE
);
2883 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2885 buffer_info
->next_to_watch
= i
;
2892 if (unlikely(i
== tx_ring
->count
))
2897 for (f
= 0; f
< nr_frags
; f
++) {
2898 const struct skb_frag_struct
*frag
;
2900 frag
= &skb_shinfo(skb
)->frags
[f
];
2901 len
= skb_frag_size(frag
);
2905 unsigned long bufend
;
2907 if (unlikely(i
== tx_ring
->count
))
2910 buffer_info
= &tx_ring
->buffer_info
[i
];
2911 size
= min(len
, max_per_txd
);
2912 /* Workaround for premature desc write-backs
2913 * in TSO mode. Append 4-byte sentinel desc
2915 if (unlikely(mss
&& f
== (nr_frags
-1) &&
2916 size
== len
&& size
> 8))
2918 /* Workaround for potential 82544 hang in PCI-X.
2919 * Avoid terminating buffers within evenly-aligned
2922 bufend
= (unsigned long)
2923 page_to_phys(skb_frag_page(frag
));
2924 bufend
+= offset
+ size
- 1;
2925 if (unlikely(adapter
->pcix_82544
&&
2930 buffer_info
->length
= size
;
2931 buffer_info
->time_stamp
= jiffies
;
2932 buffer_info
->mapped_as_page
= true;
2933 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
2934 offset
, size
, DMA_TO_DEVICE
);
2935 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2937 buffer_info
->next_to_watch
= i
;
2945 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
2946 /* multiply data chunks by size of headers */
2947 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
2949 tx_ring
->buffer_info
[i
].skb
= skb
;
2950 tx_ring
->buffer_info
[i
].segs
= segs
;
2951 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
2952 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2957 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2958 buffer_info
->dma
= 0;
2964 i
+= tx_ring
->count
;
2966 buffer_info
= &tx_ring
->buffer_info
[i
];
2967 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2973 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2974 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2977 struct e1000_hw
*hw
= &adapter
->hw
;
2978 struct e1000_tx_desc
*tx_desc
= NULL
;
2979 struct e1000_buffer
*buffer_info
;
2980 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2983 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2984 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2986 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2988 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2989 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2992 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2993 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2994 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2997 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2998 txd_lower
|= E1000_TXD_CMD_VLE
;
2999 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3002 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
3003 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
3005 i
= tx_ring
->next_to_use
;
3008 buffer_info
= &tx_ring
->buffer_info
[i
];
3009 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3010 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3011 tx_desc
->lower
.data
=
3012 cpu_to_le32(txd_lower
| buffer_info
->length
);
3013 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3014 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3017 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3019 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3020 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
3021 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
3023 /* Force memory writes to complete before letting h/w
3024 * know there are new descriptors to fetch. (Only
3025 * applicable for weak-ordered memory model archs,
3030 tx_ring
->next_to_use
= i
;
3031 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3032 /* we need this if more than one processor can write to our tail
3033 * at a time, it synchronizes IO on IA64/Altix systems
3038 /* 82547 workaround to avoid controller hang in half-duplex environment.
3039 * The workaround is to avoid queuing a large packet that would span
3040 * the internal Tx FIFO ring boundary by notifying the stack to resend
3041 * the packet at a later time. This gives the Tx FIFO an opportunity to
3042 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3043 * to the beginning of the Tx FIFO.
3046 #define E1000_FIFO_HDR 0x10
3047 #define E1000_82547_PAD_LEN 0x3E0
3049 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3050 struct sk_buff
*skb
)
3052 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3053 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3055 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3057 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3058 goto no_fifo_stall_required
;
3060 if (atomic_read(&adapter
->tx_fifo_stall
))
3063 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3064 atomic_set(&adapter
->tx_fifo_stall
, 1);
3068 no_fifo_stall_required
:
3069 adapter
->tx_fifo_head
+= skb_fifo_len
;
3070 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3071 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3075 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3077 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3078 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3080 netif_stop_queue(netdev
);
3081 /* Herbert's original patch had:
3082 * smp_mb__after_netif_stop_queue();
3083 * but since that doesn't exist yet, just open code it.
3087 /* We need to check again in a case another CPU has just
3088 * made room available.
3090 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3094 netif_start_queue(netdev
);
3095 ++adapter
->restart_queue
;
3099 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3100 struct e1000_tx_ring
*tx_ring
, int size
)
3102 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3104 return __e1000_maybe_stop_tx(netdev
, size
);
3107 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3108 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3109 struct net_device
*netdev
)
3111 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3112 struct e1000_hw
*hw
= &adapter
->hw
;
3113 struct e1000_tx_ring
*tx_ring
;
3114 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3115 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3116 unsigned int tx_flags
= 0;
3117 unsigned int len
= skb_headlen(skb
);
3118 unsigned int nr_frags
;
3124 /* This goes back to the question of how to logically map a Tx queue
3125 * to a flow. Right now, performance is impacted slightly negatively
3126 * if using multiple Tx queues. If the stack breaks away from a
3127 * single qdisc implementation, we can look at this again.
3129 tx_ring
= adapter
->tx_ring
;
3131 if (unlikely(skb
->len
<= 0)) {
3132 dev_kfree_skb_any(skb
);
3133 return NETDEV_TX_OK
;
3136 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3137 * packets may get corrupted during padding by HW.
3138 * To WA this issue, pad all small packets manually.
3140 if (skb
->len
< ETH_ZLEN
) {
3141 if (skb_pad(skb
, ETH_ZLEN
- skb
->len
))
3142 return NETDEV_TX_OK
;
3143 skb
->len
= ETH_ZLEN
;
3144 skb_set_tail_pointer(skb
, ETH_ZLEN
);
3147 mss
= skb_shinfo(skb
)->gso_size
;
3148 /* The controller does a simple calculation to
3149 * make sure there is enough room in the FIFO before
3150 * initiating the DMA for each buffer. The calc is:
3151 * 4 = ceil(buffer len/mss). To make sure we don't
3152 * overrun the FIFO, adjust the max buffer len if mss
3157 max_per_txd
= min(mss
<< 2, max_per_txd
);
3158 max_txd_pwr
= fls(max_per_txd
) - 1;
3160 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3161 if (skb
->data_len
&& hdr_len
== len
) {
3162 switch (hw
->mac_type
) {
3163 unsigned int pull_size
;
3165 /* Make sure we have room to chop off 4 bytes,
3166 * and that the end alignment will work out to
3167 * this hardware's requirements
3168 * NOTE: this is a TSO only workaround
3169 * if end byte alignment not correct move us
3170 * into the next dword
3172 if ((unsigned long)(skb_tail_pointer(skb
) - 1)
3176 pull_size
= min((unsigned int)4, skb
->data_len
);
3177 if (!__pskb_pull_tail(skb
, pull_size
)) {
3178 e_err(drv
, "__pskb_pull_tail "
3180 dev_kfree_skb_any(skb
);
3181 return NETDEV_TX_OK
;
3183 len
= skb_headlen(skb
);
3192 /* reserve a descriptor for the offload context */
3193 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3197 /* Controller Erratum workaround */
3198 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3201 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3203 if (adapter
->pcix_82544
)
3206 /* work-around for errata 10 and it applies to all controllers
3207 * in PCI-X mode, so add one more descriptor to the count
3209 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3213 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3214 for (f
= 0; f
< nr_frags
; f
++)
3215 count
+= TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
3217 if (adapter
->pcix_82544
)
3220 /* need: count + 2 desc gap to keep tail from touching
3221 * head, otherwise try next time
3223 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3224 return NETDEV_TX_BUSY
;
3226 if (unlikely((hw
->mac_type
== e1000_82547
) &&
3227 (e1000_82547_fifo_workaround(adapter
, skb
)))) {
3228 netif_stop_queue(netdev
);
3229 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3230 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
3231 return NETDEV_TX_BUSY
;
3234 if (vlan_tx_tag_present(skb
)) {
3235 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3236 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3239 first
= tx_ring
->next_to_use
;
3241 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3243 dev_kfree_skb_any(skb
);
3244 return NETDEV_TX_OK
;
3248 if (likely(hw
->mac_type
!= e1000_82544
))
3249 tx_ring
->last_tx_tso
= true;
3250 tx_flags
|= E1000_TX_FLAGS_TSO
;
3251 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3252 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3254 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3255 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3257 if (unlikely(skb
->no_fcs
))
3258 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
3260 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3264 netdev_sent_queue(netdev
, skb
->len
);
3265 skb_tx_timestamp(skb
);
3267 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3268 /* Make sure there is space in the ring for the next send. */
3269 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3272 dev_kfree_skb_any(skb
);
3273 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3274 tx_ring
->next_to_use
= first
;
3277 return NETDEV_TX_OK
;
3280 #define NUM_REGS 38 /* 1 based count */
3281 static void e1000_regdump(struct e1000_adapter
*adapter
)
3283 struct e1000_hw
*hw
= &adapter
->hw
;
3285 u32
*regs_buff
= regs
;
3288 static const char * const reg_name
[] = {
3290 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3291 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3292 "TIDV", "TXDCTL", "TADV", "TARC0",
3293 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3295 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3296 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3297 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3300 regs_buff
[0] = er32(CTRL
);
3301 regs_buff
[1] = er32(STATUS
);
3303 regs_buff
[2] = er32(RCTL
);
3304 regs_buff
[3] = er32(RDLEN
);
3305 regs_buff
[4] = er32(RDH
);
3306 regs_buff
[5] = er32(RDT
);
3307 regs_buff
[6] = er32(RDTR
);
3309 regs_buff
[7] = er32(TCTL
);
3310 regs_buff
[8] = er32(TDBAL
);
3311 regs_buff
[9] = er32(TDBAH
);
3312 regs_buff
[10] = er32(TDLEN
);
3313 regs_buff
[11] = er32(TDH
);
3314 regs_buff
[12] = er32(TDT
);
3315 regs_buff
[13] = er32(TIDV
);
3316 regs_buff
[14] = er32(TXDCTL
);
3317 regs_buff
[15] = er32(TADV
);
3318 regs_buff
[16] = er32(TARC0
);
3320 regs_buff
[17] = er32(TDBAL1
);
3321 regs_buff
[18] = er32(TDBAH1
);
3322 regs_buff
[19] = er32(TDLEN1
);
3323 regs_buff
[20] = er32(TDH1
);
3324 regs_buff
[21] = er32(TDT1
);
3325 regs_buff
[22] = er32(TXDCTL1
);
3326 regs_buff
[23] = er32(TARC1
);
3327 regs_buff
[24] = er32(CTRL_EXT
);
3328 regs_buff
[25] = er32(ERT
);
3329 regs_buff
[26] = er32(RDBAL0
);
3330 regs_buff
[27] = er32(RDBAH0
);
3331 regs_buff
[28] = er32(TDFH
);
3332 regs_buff
[29] = er32(TDFT
);
3333 regs_buff
[30] = er32(TDFHS
);
3334 regs_buff
[31] = er32(TDFTS
);
3335 regs_buff
[32] = er32(TDFPC
);
3336 regs_buff
[33] = er32(RDFH
);
3337 regs_buff
[34] = er32(RDFT
);
3338 regs_buff
[35] = er32(RDFHS
);
3339 regs_buff
[36] = er32(RDFTS
);
3340 regs_buff
[37] = er32(RDFPC
);
3342 pr_info("Register dump\n");
3343 for (i
= 0; i
< NUM_REGS
; i
++)
3344 pr_info("%-15s %08x\n", reg_name
[i
], regs_buff
[i
]);
3348 * e1000_dump: Print registers, tx ring and rx ring
3350 static void e1000_dump(struct e1000_adapter
*adapter
)
3352 /* this code doesn't handle multiple rings */
3353 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3354 struct e1000_rx_ring
*rx_ring
= adapter
->rx_ring
;
3357 if (!netif_msg_hw(adapter
))
3360 /* Print Registers */
3361 e1000_regdump(adapter
);
3364 pr_info("TX Desc ring0 dump\n");
3366 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3368 * Legacy Transmit Descriptor
3369 * +--------------------------------------------------------------+
3370 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3371 * +--------------------------------------------------------------+
3372 * 8 | Special | CSS | Status | CMD | CSO | Length |
3373 * +--------------------------------------------------------------+
3374 * 63 48 47 36 35 32 31 24 23 16 15 0
3376 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3377 * 63 48 47 40 39 32 31 16 15 8 7 0
3378 * +----------------------------------------------------------------+
3379 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3380 * +----------------------------------------------------------------+
3381 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3382 * +----------------------------------------------------------------+
3383 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3385 * Extended Data Descriptor (DTYP=0x1)
3386 * +----------------------------------------------------------------+
3387 * 0 | Buffer Address [63:0] |
3388 * +----------------------------------------------------------------+
3389 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3390 * +----------------------------------------------------------------+
3391 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3393 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3394 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3396 if (!netif_msg_tx_done(adapter
))
3397 goto rx_ring_summary
;
3399 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
3400 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3401 struct e1000_buffer
*buffer_info
= &tx_ring
->buffer_info
[i
];
3402 struct my_u
{ __le64 a
; __le64 b
; };
3403 struct my_u
*u
= (struct my_u
*)tx_desc
;
3406 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
3408 else if (i
== tx_ring
->next_to_use
)
3410 else if (i
== tx_ring
->next_to_clean
)
3415 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3416 ((le64_to_cpu(u
->b
) & (1<<20)) ? 'd' : 'c'), i
,
3417 le64_to_cpu(u
->a
), le64_to_cpu(u
->b
),
3418 (u64
)buffer_info
->dma
, buffer_info
->length
,
3419 buffer_info
->next_to_watch
,
3420 (u64
)buffer_info
->time_stamp
, buffer_info
->skb
, type
);
3425 pr_info("\nRX Desc ring dump\n");
3427 /* Legacy Receive Descriptor Format
3429 * +-----------------------------------------------------+
3430 * | Buffer Address [63:0] |
3431 * +-----------------------------------------------------+
3432 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3433 * +-----------------------------------------------------+
3434 * 63 48 47 40 39 32 31 16 15 0
3436 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3438 if (!netif_msg_rx_status(adapter
))
3441 for (i
= 0; rx_ring
->desc
&& (i
< rx_ring
->count
); i
++) {
3442 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3443 struct e1000_buffer
*buffer_info
= &rx_ring
->buffer_info
[i
];
3444 struct my_u
{ __le64 a
; __le64 b
; };
3445 struct my_u
*u
= (struct my_u
*)rx_desc
;
3448 if (i
== rx_ring
->next_to_use
)
3450 else if (i
== rx_ring
->next_to_clean
)
3455 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3456 i
, le64_to_cpu(u
->a
), le64_to_cpu(u
->b
),
3457 (u64
)buffer_info
->dma
, buffer_info
->skb
, type
);
3460 /* dump the descriptor caches */
3462 pr_info("Rx descriptor cache in 64bit format\n");
3463 for (i
= 0x6000; i
<= 0x63FF ; i
+= 0x10) {
3464 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3466 readl(adapter
->hw
.hw_addr
+ i
+4),
3467 readl(adapter
->hw
.hw_addr
+ i
),
3468 readl(adapter
->hw
.hw_addr
+ i
+12),
3469 readl(adapter
->hw
.hw_addr
+ i
+8));
3472 pr_info("Tx descriptor cache in 64bit format\n");
3473 for (i
= 0x7000; i
<= 0x73FF ; i
+= 0x10) {
3474 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3476 readl(adapter
->hw
.hw_addr
+ i
+4),
3477 readl(adapter
->hw
.hw_addr
+ i
),
3478 readl(adapter
->hw
.hw_addr
+ i
+12),
3479 readl(adapter
->hw
.hw_addr
+ i
+8));
3486 * e1000_tx_timeout - Respond to a Tx Hang
3487 * @netdev: network interface device structure
3489 static void e1000_tx_timeout(struct net_device
*netdev
)
3491 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3493 /* Do the reset outside of interrupt context */
3494 adapter
->tx_timeout_count
++;
3495 schedule_work(&adapter
->reset_task
);
3498 static void e1000_reset_task(struct work_struct
*work
)
3500 struct e1000_adapter
*adapter
=
3501 container_of(work
, struct e1000_adapter
, reset_task
);
3503 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
3505 e_err(drv
, "Reset adapter\n");
3506 e1000_reinit_safe(adapter
);
3510 * e1000_get_stats - Get System Network Statistics
3511 * @netdev: network interface device structure
3513 * Returns the address of the device statistics structure.
3514 * The statistics are actually updated from the watchdog.
3516 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3518 /* only return the current stats */
3519 return &netdev
->stats
;
3523 * e1000_change_mtu - Change the Maximum Transfer Unit
3524 * @netdev: network interface device structure
3525 * @new_mtu: new value for maximum frame size
3527 * Returns 0 on success, negative on failure
3529 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3531 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3532 struct e1000_hw
*hw
= &adapter
->hw
;
3533 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3535 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3536 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3537 e_err(probe
, "Invalid MTU setting\n");
3541 /* Adapter-specific max frame size limits. */
3542 switch (hw
->mac_type
) {
3543 case e1000_undefined
... e1000_82542_rev2_1
:
3544 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3545 e_err(probe
, "Jumbo Frames not supported.\n");
3550 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3554 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3556 /* e1000_down has a dependency on max_frame_size */
3557 hw
->max_frame_size
= max_frame
;
3558 if (netif_running(netdev
))
3559 e1000_down(adapter
);
3561 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3562 * means we reserve 2 more, this pushes us to allocate from the next
3564 * i.e. RXBUFFER_2048 --> size-4096 slab
3565 * however with the new *_jumbo_rx* routines, jumbo receives will use
3569 if (max_frame
<= E1000_RXBUFFER_2048
)
3570 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3572 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3573 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3574 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3575 adapter
->rx_buffer_len
= PAGE_SIZE
;
3578 /* adjust allocation if LPE protects us, and we aren't using SBP */
3579 if (!hw
->tbi_compatibility_on
&&
3580 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3581 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3582 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3584 pr_info("%s changing MTU from %d to %d\n",
3585 netdev
->name
, netdev
->mtu
, new_mtu
);
3586 netdev
->mtu
= new_mtu
;
3588 if (netif_running(netdev
))
3591 e1000_reset(adapter
);
3593 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3599 * e1000_update_stats - Update the board statistics counters
3600 * @adapter: board private structure
3602 void e1000_update_stats(struct e1000_adapter
*adapter
)
3604 struct net_device
*netdev
= adapter
->netdev
;
3605 struct e1000_hw
*hw
= &adapter
->hw
;
3606 struct pci_dev
*pdev
= adapter
->pdev
;
3607 unsigned long flags
;
3610 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3612 /* Prevent stats update while adapter is being reset, or if the pci
3613 * connection is down.
3615 if (adapter
->link_speed
== 0)
3617 if (pci_channel_offline(pdev
))
3620 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3622 /* these counters are modified from e1000_tbi_adjust_stats,
3623 * called from the interrupt context, so they must only
3624 * be written while holding adapter->stats_lock
3627 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3628 adapter
->stats
.gprc
+= er32(GPRC
);
3629 adapter
->stats
.gorcl
+= er32(GORCL
);
3630 adapter
->stats
.gorch
+= er32(GORCH
);
3631 adapter
->stats
.bprc
+= er32(BPRC
);
3632 adapter
->stats
.mprc
+= er32(MPRC
);
3633 adapter
->stats
.roc
+= er32(ROC
);
3635 adapter
->stats
.prc64
+= er32(PRC64
);
3636 adapter
->stats
.prc127
+= er32(PRC127
);
3637 adapter
->stats
.prc255
+= er32(PRC255
);
3638 adapter
->stats
.prc511
+= er32(PRC511
);
3639 adapter
->stats
.prc1023
+= er32(PRC1023
);
3640 adapter
->stats
.prc1522
+= er32(PRC1522
);
3642 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3643 adapter
->stats
.mpc
+= er32(MPC
);
3644 adapter
->stats
.scc
+= er32(SCC
);
3645 adapter
->stats
.ecol
+= er32(ECOL
);
3646 adapter
->stats
.mcc
+= er32(MCC
);
3647 adapter
->stats
.latecol
+= er32(LATECOL
);
3648 adapter
->stats
.dc
+= er32(DC
);
3649 adapter
->stats
.sec
+= er32(SEC
);
3650 adapter
->stats
.rlec
+= er32(RLEC
);
3651 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3652 adapter
->stats
.xontxc
+= er32(XONTXC
);
3653 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3654 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3655 adapter
->stats
.fcruc
+= er32(FCRUC
);
3656 adapter
->stats
.gptc
+= er32(GPTC
);
3657 adapter
->stats
.gotcl
+= er32(GOTCL
);
3658 adapter
->stats
.gotch
+= er32(GOTCH
);
3659 adapter
->stats
.rnbc
+= er32(RNBC
);
3660 adapter
->stats
.ruc
+= er32(RUC
);
3661 adapter
->stats
.rfc
+= er32(RFC
);
3662 adapter
->stats
.rjc
+= er32(RJC
);
3663 adapter
->stats
.torl
+= er32(TORL
);
3664 adapter
->stats
.torh
+= er32(TORH
);
3665 adapter
->stats
.totl
+= er32(TOTL
);
3666 adapter
->stats
.toth
+= er32(TOTH
);
3667 adapter
->stats
.tpr
+= er32(TPR
);
3669 adapter
->stats
.ptc64
+= er32(PTC64
);
3670 adapter
->stats
.ptc127
+= er32(PTC127
);
3671 adapter
->stats
.ptc255
+= er32(PTC255
);
3672 adapter
->stats
.ptc511
+= er32(PTC511
);
3673 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3674 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3676 adapter
->stats
.mptc
+= er32(MPTC
);
3677 adapter
->stats
.bptc
+= er32(BPTC
);
3679 /* used for adaptive IFS */
3681 hw
->tx_packet_delta
= er32(TPT
);
3682 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3683 hw
->collision_delta
= er32(COLC
);
3684 adapter
->stats
.colc
+= hw
->collision_delta
;
3686 if (hw
->mac_type
>= e1000_82543
) {
3687 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3688 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3689 adapter
->stats
.tncrs
+= er32(TNCRS
);
3690 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3691 adapter
->stats
.tsctc
+= er32(TSCTC
);
3692 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3695 /* Fill out the OS statistics structure */
3696 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3697 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3701 /* RLEC on some newer hardware can be incorrect so build
3702 * our own version based on RUC and ROC
3704 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3705 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3706 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3707 adapter
->stats
.cexterr
;
3708 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3709 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3710 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3711 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3712 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3715 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3716 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3717 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3718 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3719 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3720 if (hw
->bad_tx_carr_stats_fd
&&
3721 adapter
->link_duplex
== FULL_DUPLEX
) {
3722 netdev
->stats
.tx_carrier_errors
= 0;
3723 adapter
->stats
.tncrs
= 0;
3726 /* Tx Dropped needs to be maintained elsewhere */
3729 if (hw
->media_type
== e1000_media_type_copper
) {
3730 if ((adapter
->link_speed
== SPEED_1000
) &&
3731 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3732 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3733 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3736 if ((hw
->mac_type
<= e1000_82546
) &&
3737 (hw
->phy_type
== e1000_phy_m88
) &&
3738 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3739 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3742 /* Management Stats */
3743 if (hw
->has_smbus
) {
3744 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3745 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3746 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3749 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3753 * e1000_intr - Interrupt Handler
3754 * @irq: interrupt number
3755 * @data: pointer to a network interface device structure
3757 static irqreturn_t
e1000_intr(int irq
, void *data
)
3759 struct net_device
*netdev
= data
;
3760 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3761 struct e1000_hw
*hw
= &adapter
->hw
;
3762 u32 icr
= er32(ICR
);
3764 if (unlikely((!icr
)))
3765 return IRQ_NONE
; /* Not our interrupt */
3767 /* we might have caused the interrupt, but the above
3768 * read cleared it, and just in case the driver is
3769 * down there is nothing to do so return handled
3771 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3774 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3775 hw
->get_link_status
= 1;
3776 /* guard against interrupt when we're going down */
3777 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3778 schedule_delayed_work(&adapter
->watchdog_task
, 1);
3781 /* disable interrupts, without the synchronize_irq bit */
3783 E1000_WRITE_FLUSH();
3785 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3786 adapter
->total_tx_bytes
= 0;
3787 adapter
->total_tx_packets
= 0;
3788 adapter
->total_rx_bytes
= 0;
3789 adapter
->total_rx_packets
= 0;
3790 __napi_schedule(&adapter
->napi
);
3792 /* this really should not happen! if it does it is basically a
3793 * bug, but not a hard error, so enable ints and continue
3795 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3796 e1000_irq_enable(adapter
);
3803 * e1000_clean - NAPI Rx polling callback
3804 * @adapter: board private structure
3806 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3808 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
3810 int tx_clean_complete
= 0, work_done
= 0;
3812 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3814 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3816 if (!tx_clean_complete
)
3819 /* If budget not fully consumed, exit the polling mode */
3820 if (work_done
< budget
) {
3821 if (likely(adapter
->itr_setting
& 3))
3822 e1000_set_itr(adapter
);
3823 napi_complete(napi
);
3824 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3825 e1000_irq_enable(adapter
);
3832 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3833 * @adapter: board private structure
3835 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3836 struct e1000_tx_ring
*tx_ring
)
3838 struct e1000_hw
*hw
= &adapter
->hw
;
3839 struct net_device
*netdev
= adapter
->netdev
;
3840 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3841 struct e1000_buffer
*buffer_info
;
3842 unsigned int i
, eop
;
3843 unsigned int count
= 0;
3844 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3845 unsigned int bytes_compl
= 0, pkts_compl
= 0;
3847 i
= tx_ring
->next_to_clean
;
3848 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3849 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3851 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3852 (count
< tx_ring
->count
)) {
3853 bool cleaned
= false;
3854 rmb(); /* read buffer_info after eop_desc */
3855 for ( ; !cleaned
; count
++) {
3856 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3857 buffer_info
= &tx_ring
->buffer_info
[i
];
3858 cleaned
= (i
== eop
);
3861 total_tx_packets
+= buffer_info
->segs
;
3862 total_tx_bytes
+= buffer_info
->bytecount
;
3863 if (buffer_info
->skb
) {
3864 bytes_compl
+= buffer_info
->skb
->len
;
3869 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3870 tx_desc
->upper
.data
= 0;
3872 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3875 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3876 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3879 tx_ring
->next_to_clean
= i
;
3881 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
3883 #define TX_WAKE_THRESHOLD 32
3884 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3885 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3886 /* Make sure that anybody stopping the queue after this
3887 * sees the new next_to_clean.
3891 if (netif_queue_stopped(netdev
) &&
3892 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3893 netif_wake_queue(netdev
);
3894 ++adapter
->restart_queue
;
3898 if (adapter
->detect_tx_hung
) {
3899 /* Detect a transmit hang in hardware, this serializes the
3900 * check with the clearing of time_stamp and movement of i
3902 adapter
->detect_tx_hung
= false;
3903 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3904 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3905 (adapter
->tx_timeout_factor
* HZ
)) &&
3906 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3908 /* detected Tx unit hang */
3909 e_err(drv
, "Detected Tx Unit Hang\n"
3913 " next_to_use <%x>\n"
3914 " next_to_clean <%x>\n"
3915 "buffer_info[next_to_clean]\n"
3916 " time_stamp <%lx>\n"
3917 " next_to_watch <%x>\n"
3919 " next_to_watch.status <%x>\n",
3920 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3921 sizeof(struct e1000_tx_ring
)),
3922 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3923 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3924 tx_ring
->next_to_use
,
3925 tx_ring
->next_to_clean
,
3926 tx_ring
->buffer_info
[eop
].time_stamp
,
3929 eop_desc
->upper
.fields
.status
);
3930 e1000_dump(adapter
);
3931 netif_stop_queue(netdev
);
3934 adapter
->total_tx_bytes
+= total_tx_bytes
;
3935 adapter
->total_tx_packets
+= total_tx_packets
;
3936 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3937 netdev
->stats
.tx_packets
+= total_tx_packets
;
3938 return count
< tx_ring
->count
;
3942 * e1000_rx_checksum - Receive Checksum Offload for 82543
3943 * @adapter: board private structure
3944 * @status_err: receive descriptor status and error fields
3945 * @csum: receive descriptor csum field
3946 * @sk_buff: socket buffer with received data
3948 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3949 u32 csum
, struct sk_buff
*skb
)
3951 struct e1000_hw
*hw
= &adapter
->hw
;
3952 u16 status
= (u16
)status_err
;
3953 u8 errors
= (u8
)(status_err
>> 24);
3955 skb_checksum_none_assert(skb
);
3957 /* 82543 or newer only */
3958 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3959 /* Ignore Checksum bit is set */
3960 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3961 /* TCP/UDP checksum error bit is set */
3962 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3963 /* let the stack verify checksum errors */
3964 adapter
->hw_csum_err
++;
3967 /* TCP/UDP Checksum has not been calculated */
3968 if (!(status
& E1000_RXD_STAT_TCPCS
))
3971 /* It must be a TCP or UDP packet with a valid checksum */
3972 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3973 /* TCP checksum is good */
3974 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3976 adapter
->hw_csum_good
++;
3980 * e1000_consume_page - helper function
3982 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3987 skb
->data_len
+= length
;
3988 skb
->truesize
+= PAGE_SIZE
;
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3998 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3999 __le16 vlan
, struct sk_buff
*skb
)
4001 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
4003 if (status
& E1000_RXD_STAT_VP
) {
4004 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
4006 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
4008 napi_gro_receive(&adapter
->napi
, skb
);
4012 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4013 * @adapter: board private structure
4014 * @rx_ring: ring to clean
4015 * @work_done: amount of napi work completed this call
4016 * @work_to_do: max amount of work allowed for this call to do
4018 * the return value indicates whether actual cleaning was done, there
4019 * is no guarantee that everything was cleaned
4021 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
4022 struct e1000_rx_ring
*rx_ring
,
4023 int *work_done
, int work_to_do
)
4025 struct e1000_hw
*hw
= &adapter
->hw
;
4026 struct net_device
*netdev
= adapter
->netdev
;
4027 struct pci_dev
*pdev
= adapter
->pdev
;
4028 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4029 struct e1000_buffer
*buffer_info
, *next_buffer
;
4030 unsigned long irq_flags
;
4033 int cleaned_count
= 0;
4034 bool cleaned
= false;
4035 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4037 i
= rx_ring
->next_to_clean
;
4038 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4039 buffer_info
= &rx_ring
->buffer_info
[i
];
4041 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4042 struct sk_buff
*skb
;
4045 if (*work_done
>= work_to_do
)
4048 rmb(); /* read descriptor and rx_buffer_info after status DD */
4050 status
= rx_desc
->status
;
4051 skb
= buffer_info
->skb
;
4052 buffer_info
->skb
= NULL
;
4054 if (++i
== rx_ring
->count
) i
= 0;
4055 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4058 next_buffer
= &rx_ring
->buffer_info
[i
];
4062 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
4063 buffer_info
->length
, DMA_FROM_DEVICE
);
4064 buffer_info
->dma
= 0;
4066 length
= le16_to_cpu(rx_desc
->length
);
4068 /* errors is only valid for DD + EOP descriptors */
4069 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
4070 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
4074 mapped
= page_address(buffer_info
->page
);
4075 last_byte
= *(mapped
+ length
- 1);
4076 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4078 spin_lock_irqsave(&adapter
->stats_lock
,
4080 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4082 spin_unlock_irqrestore(&adapter
->stats_lock
,
4086 if (netdev
->features
& NETIF_F_RXALL
)
4088 /* recycle both page and skb */
4089 buffer_info
->skb
= skb
;
4090 /* an error means any chain goes out the window
4093 if (rx_ring
->rx_skb_top
)
4094 dev_kfree_skb(rx_ring
->rx_skb_top
);
4095 rx_ring
->rx_skb_top
= NULL
;
4100 #define rxtop rx_ring->rx_skb_top
4102 if (!(status
& E1000_RXD_STAT_EOP
)) {
4103 /* this descriptor is only the beginning (or middle) */
4105 /* this is the beginning of a chain */
4107 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
4110 /* this is the middle of a chain */
4111 skb_fill_page_desc(rxtop
,
4112 skb_shinfo(rxtop
)->nr_frags
,
4113 buffer_info
->page
, 0, length
);
4114 /* re-use the skb, only consumed the page */
4115 buffer_info
->skb
= skb
;
4117 e1000_consume_page(buffer_info
, rxtop
, length
);
4121 /* end of the chain */
4122 skb_fill_page_desc(rxtop
,
4123 skb_shinfo(rxtop
)->nr_frags
,
4124 buffer_info
->page
, 0, length
);
4125 /* re-use the current skb, we only consumed the
4128 buffer_info
->skb
= skb
;
4131 e1000_consume_page(buffer_info
, skb
, length
);
4133 /* no chain, got EOP, this buf is the packet
4134 * copybreak to save the put_page/alloc_page
4136 if (length
<= copybreak
&&
4137 skb_tailroom(skb
) >= length
) {
4139 vaddr
= kmap_atomic(buffer_info
->page
);
4140 memcpy(skb_tail_pointer(skb
), vaddr
,
4142 kunmap_atomic(vaddr
);
4143 /* re-use the page, so don't erase
4146 skb_put(skb
, length
);
4148 skb_fill_page_desc(skb
, 0,
4149 buffer_info
->page
, 0,
4151 e1000_consume_page(buffer_info
, skb
,
4157 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4158 e1000_rx_checksum(adapter
,
4160 ((u32
)(rx_desc
->errors
) << 24),
4161 le16_to_cpu(rx_desc
->csum
), skb
);
4163 total_rx_bytes
+= (skb
->len
- 4); /* don't count FCS */
4164 if (likely(!(netdev
->features
& NETIF_F_RXFCS
)))
4165 pskb_trim(skb
, skb
->len
- 4);
4168 /* eth type trans needs skb->data to point to something */
4169 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
4170 e_err(drv
, "pskb_may_pull failed.\n");
4175 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4178 rx_desc
->status
= 0;
4180 /* return some buffers to hardware, one at a time is too slow */
4181 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4182 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4186 /* use prefetched values */
4188 buffer_info
= next_buffer
;
4190 rx_ring
->next_to_clean
= i
;
4192 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4194 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4196 adapter
->total_rx_packets
+= total_rx_packets
;
4197 adapter
->total_rx_bytes
+= total_rx_bytes
;
4198 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4199 netdev
->stats
.rx_packets
+= total_rx_packets
;
4203 /* this should improve performance for small packets with large amounts
4204 * of reassembly being done in the stack
4206 static void e1000_check_copybreak(struct net_device
*netdev
,
4207 struct e1000_buffer
*buffer_info
,
4208 u32 length
, struct sk_buff
**skb
)
4210 struct sk_buff
*new_skb
;
4212 if (length
> copybreak
)
4215 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
4219 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
4220 (*skb
)->data
- NET_IP_ALIGN
,
4221 length
+ NET_IP_ALIGN
);
4222 /* save the skb in buffer_info as good */
4223 buffer_info
->skb
= *skb
;
4228 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4229 * @adapter: board private structure
4230 * @rx_ring: ring to clean
4231 * @work_done: amount of napi work completed this call
4232 * @work_to_do: max amount of work allowed for this call to do
4234 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4235 struct e1000_rx_ring
*rx_ring
,
4236 int *work_done
, int work_to_do
)
4238 struct e1000_hw
*hw
= &adapter
->hw
;
4239 struct net_device
*netdev
= adapter
->netdev
;
4240 struct pci_dev
*pdev
= adapter
->pdev
;
4241 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4242 struct e1000_buffer
*buffer_info
, *next_buffer
;
4243 unsigned long flags
;
4246 int cleaned_count
= 0;
4247 bool cleaned
= false;
4248 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4250 i
= rx_ring
->next_to_clean
;
4251 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4252 buffer_info
= &rx_ring
->buffer_info
[i
];
4254 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4255 struct sk_buff
*skb
;
4258 if (*work_done
>= work_to_do
)
4261 rmb(); /* read descriptor and rx_buffer_info after status DD */
4263 status
= rx_desc
->status
;
4264 skb
= buffer_info
->skb
;
4265 buffer_info
->skb
= NULL
;
4267 prefetch(skb
->data
- NET_IP_ALIGN
);
4269 if (++i
== rx_ring
->count
) i
= 0;
4270 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4273 next_buffer
= &rx_ring
->buffer_info
[i
];
4277 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4278 buffer_info
->length
, DMA_FROM_DEVICE
);
4279 buffer_info
->dma
= 0;
4281 length
= le16_to_cpu(rx_desc
->length
);
4282 /* !EOP means multiple descriptors were used to store a single
4283 * packet, if thats the case we need to toss it. In fact, we
4284 * to toss every packet with the EOP bit clear and the next
4285 * frame that _does_ have the EOP bit set, as it is by
4286 * definition only a frame fragment
4288 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
4289 adapter
->discarding
= true;
4291 if (adapter
->discarding
) {
4292 /* All receives must fit into a single buffer */
4293 e_dbg("Receive packet consumed multiple buffers\n");
4295 buffer_info
->skb
= skb
;
4296 if (status
& E1000_RXD_STAT_EOP
)
4297 adapter
->discarding
= false;
4301 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4302 u8 last_byte
= *(skb
->data
+ length
- 1);
4303 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4305 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4306 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4308 spin_unlock_irqrestore(&adapter
->stats_lock
,
4312 if (netdev
->features
& NETIF_F_RXALL
)
4315 buffer_info
->skb
= skb
;
4321 total_rx_bytes
+= (length
- 4); /* don't count FCS */
4324 if (likely(!(netdev
->features
& NETIF_F_RXFCS
)))
4325 /* adjust length to remove Ethernet CRC, this must be
4326 * done after the TBI_ACCEPT workaround above
4330 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
4332 skb_put(skb
, length
);
4334 /* Receive Checksum Offload */
4335 e1000_rx_checksum(adapter
,
4337 ((u32
)(rx_desc
->errors
) << 24),
4338 le16_to_cpu(rx_desc
->csum
), skb
);
4340 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4343 rx_desc
->status
= 0;
4345 /* return some buffers to hardware, one at a time is too slow */
4346 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4347 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4351 /* use prefetched values */
4353 buffer_info
= next_buffer
;
4355 rx_ring
->next_to_clean
= i
;
4357 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4359 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4361 adapter
->total_rx_packets
+= total_rx_packets
;
4362 adapter
->total_rx_bytes
+= total_rx_bytes
;
4363 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4364 netdev
->stats
.rx_packets
+= total_rx_packets
;
4369 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4370 * @adapter: address of board private structure
4371 * @rx_ring: pointer to receive ring structure
4372 * @cleaned_count: number of buffers to allocate this pass
4375 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4376 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4378 struct net_device
*netdev
= adapter
->netdev
;
4379 struct pci_dev
*pdev
= adapter
->pdev
;
4380 struct e1000_rx_desc
*rx_desc
;
4381 struct e1000_buffer
*buffer_info
;
4382 struct sk_buff
*skb
;
4384 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4386 i
= rx_ring
->next_to_use
;
4387 buffer_info
= &rx_ring
->buffer_info
[i
];
4389 while (cleaned_count
--) {
4390 skb
= buffer_info
->skb
;
4396 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4397 if (unlikely(!skb
)) {
4398 /* Better luck next round */
4399 adapter
->alloc_rx_buff_failed
++;
4403 buffer_info
->skb
= skb
;
4404 buffer_info
->length
= adapter
->rx_buffer_len
;
4406 /* allocate a new page if necessary */
4407 if (!buffer_info
->page
) {
4408 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4409 if (unlikely(!buffer_info
->page
)) {
4410 adapter
->alloc_rx_buff_failed
++;
4415 if (!buffer_info
->dma
) {
4416 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4417 buffer_info
->page
, 0,
4418 buffer_info
->length
,
4420 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4421 put_page(buffer_info
->page
);
4423 buffer_info
->page
= NULL
;
4424 buffer_info
->skb
= NULL
;
4425 buffer_info
->dma
= 0;
4426 adapter
->alloc_rx_buff_failed
++;
4427 break; /* while !buffer_info->skb */
4431 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4432 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4434 if (unlikely(++i
== rx_ring
->count
))
4436 buffer_info
= &rx_ring
->buffer_info
[i
];
4439 if (likely(rx_ring
->next_to_use
!= i
)) {
4440 rx_ring
->next_to_use
= i
;
4441 if (unlikely(i
-- == 0))
4442 i
= (rx_ring
->count
- 1);
4444 /* Force memory writes to complete before letting h/w
4445 * know there are new descriptors to fetch. (Only
4446 * applicable for weak-ordered memory model archs,
4450 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4455 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4456 * @adapter: address of board private structure
4458 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4459 struct e1000_rx_ring
*rx_ring
,
4462 struct e1000_hw
*hw
= &adapter
->hw
;
4463 struct net_device
*netdev
= adapter
->netdev
;
4464 struct pci_dev
*pdev
= adapter
->pdev
;
4465 struct e1000_rx_desc
*rx_desc
;
4466 struct e1000_buffer
*buffer_info
;
4467 struct sk_buff
*skb
;
4469 unsigned int bufsz
= adapter
->rx_buffer_len
;
4471 i
= rx_ring
->next_to_use
;
4472 buffer_info
= &rx_ring
->buffer_info
[i
];
4474 while (cleaned_count
--) {
4475 skb
= buffer_info
->skb
;
4481 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4482 if (unlikely(!skb
)) {
4483 /* Better luck next round */
4484 adapter
->alloc_rx_buff_failed
++;
4488 /* Fix for errata 23, can't cross 64kB boundary */
4489 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4490 struct sk_buff
*oldskb
= skb
;
4491 e_err(rx_err
, "skb align check failed: %u bytes at "
4492 "%p\n", bufsz
, skb
->data
);
4493 /* Try again, without freeing the previous */
4494 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4495 /* Failed allocation, critical failure */
4497 dev_kfree_skb(oldskb
);
4498 adapter
->alloc_rx_buff_failed
++;
4502 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4505 dev_kfree_skb(oldskb
);
4506 adapter
->alloc_rx_buff_failed
++;
4507 break; /* while !buffer_info->skb */
4510 /* Use new allocation */
4511 dev_kfree_skb(oldskb
);
4513 buffer_info
->skb
= skb
;
4514 buffer_info
->length
= adapter
->rx_buffer_len
;
4516 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4518 buffer_info
->length
,
4520 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4522 buffer_info
->skb
= NULL
;
4523 buffer_info
->dma
= 0;
4524 adapter
->alloc_rx_buff_failed
++;
4525 break; /* while !buffer_info->skb */
4528 /* XXX if it was allocated cleanly it will never map to a
4532 /* Fix for errata 23, can't cross 64kB boundary */
4533 if (!e1000_check_64k_bound(adapter
,
4534 (void *)(unsigned long)buffer_info
->dma
,
4535 adapter
->rx_buffer_len
)) {
4536 e_err(rx_err
, "dma align check failed: %u bytes at "
4537 "%p\n", adapter
->rx_buffer_len
,
4538 (void *)(unsigned long)buffer_info
->dma
);
4540 buffer_info
->skb
= NULL
;
4542 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4543 adapter
->rx_buffer_len
,
4545 buffer_info
->dma
= 0;
4547 adapter
->alloc_rx_buff_failed
++;
4548 break; /* while !buffer_info->skb */
4550 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4551 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4553 if (unlikely(++i
== rx_ring
->count
))
4555 buffer_info
= &rx_ring
->buffer_info
[i
];
4558 if (likely(rx_ring
->next_to_use
!= i
)) {
4559 rx_ring
->next_to_use
= i
;
4560 if (unlikely(i
-- == 0))
4561 i
= (rx_ring
->count
- 1);
4563 /* Force memory writes to complete before letting h/w
4564 * know there are new descriptors to fetch. (Only
4565 * applicable for weak-ordered memory model archs,
4569 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4574 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4577 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4579 struct e1000_hw
*hw
= &adapter
->hw
;
4583 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4584 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4587 if (adapter
->smartspeed
== 0) {
4588 /* If Master/Slave config fault is asserted twice,
4589 * we assume back-to-back
4591 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4592 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4593 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4594 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4595 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4596 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4597 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4598 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4600 adapter
->smartspeed
++;
4601 if (!e1000_phy_setup_autoneg(hw
) &&
4602 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4604 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4605 MII_CR_RESTART_AUTO_NEG
);
4606 e1000_write_phy_reg(hw
, PHY_CTRL
,
4611 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4612 /* If still no link, perhaps using 2/3 pair cable */
4613 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4614 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4615 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4616 if (!e1000_phy_setup_autoneg(hw
) &&
4617 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4618 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4619 MII_CR_RESTART_AUTO_NEG
);
4620 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4623 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4624 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4625 adapter
->smartspeed
= 0;
4634 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4640 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4652 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4655 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4656 struct e1000_hw
*hw
= &adapter
->hw
;
4657 struct mii_ioctl_data
*data
= if_mii(ifr
);
4660 unsigned long flags
;
4662 if (hw
->media_type
!= e1000_media_type_copper
)
4667 data
->phy_id
= hw
->phy_addr
;
4670 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4671 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4673 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4676 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4679 if (data
->reg_num
& ~(0x1F))
4681 mii_reg
= data
->val_in
;
4682 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4683 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4685 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4688 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4689 if (hw
->media_type
== e1000_media_type_copper
) {
4690 switch (data
->reg_num
) {
4692 if (mii_reg
& MII_CR_POWER_DOWN
)
4694 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4696 hw
->autoneg_advertised
= 0x2F;
4701 else if (mii_reg
& 0x2000)
4705 retval
= e1000_set_spd_dplx(
4713 if (netif_running(adapter
->netdev
))
4714 e1000_reinit_locked(adapter
);
4716 e1000_reset(adapter
);
4718 case M88E1000_PHY_SPEC_CTRL
:
4719 case M88E1000_EXT_PHY_SPEC_CTRL
:
4720 if (e1000_phy_reset(hw
))
4725 switch (data
->reg_num
) {
4727 if (mii_reg
& MII_CR_POWER_DOWN
)
4729 if (netif_running(adapter
->netdev
))
4730 e1000_reinit_locked(adapter
);
4732 e1000_reset(adapter
);
4740 return E1000_SUCCESS
;
4743 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4745 struct e1000_adapter
*adapter
= hw
->back
;
4746 int ret_val
= pci_set_mwi(adapter
->pdev
);
4749 e_err(probe
, "Error in setting MWI\n");
4752 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4754 struct e1000_adapter
*adapter
= hw
->back
;
4756 pci_clear_mwi(adapter
->pdev
);
4759 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4761 struct e1000_adapter
*adapter
= hw
->back
;
4762 return pcix_get_mmrbc(adapter
->pdev
);
4765 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4767 struct e1000_adapter
*adapter
= hw
->back
;
4768 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4771 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4776 static bool e1000_vlan_used(struct e1000_adapter
*adapter
)
4780 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4785 static void __e1000_vlan_mode(struct e1000_adapter
*adapter
,
4786 netdev_features_t features
)
4788 struct e1000_hw
*hw
= &adapter
->hw
;
4792 if (features
& NETIF_F_HW_VLAN_CTAG_RX
) {
4793 /* enable VLAN tag insert/strip */
4794 ctrl
|= E1000_CTRL_VME
;
4796 /* disable VLAN tag insert/strip */
4797 ctrl
&= ~E1000_CTRL_VME
;
4801 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
4804 struct e1000_hw
*hw
= &adapter
->hw
;
4807 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4808 e1000_irq_disable(adapter
);
4810 __e1000_vlan_mode(adapter
, adapter
->netdev
->features
);
4812 /* enable VLAN receive filtering */
4814 rctl
&= ~E1000_RCTL_CFIEN
;
4815 if (!(adapter
->netdev
->flags
& IFF_PROMISC
))
4816 rctl
|= E1000_RCTL_VFE
;
4818 e1000_update_mng_vlan(adapter
);
4820 /* disable VLAN receive filtering */
4822 rctl
&= ~E1000_RCTL_VFE
;
4826 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4827 e1000_irq_enable(adapter
);
4830 static void e1000_vlan_mode(struct net_device
*netdev
,
4831 netdev_features_t features
)
4833 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4835 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4836 e1000_irq_disable(adapter
);
4838 __e1000_vlan_mode(adapter
, features
);
4840 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4841 e1000_irq_enable(adapter
);
4844 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
,
4845 __be16 proto
, u16 vid
)
4847 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4848 struct e1000_hw
*hw
= &adapter
->hw
;
4851 if ((hw
->mng_cookie
.status
&
4852 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4853 (vid
== adapter
->mng_vlan_id
))
4856 if (!e1000_vlan_used(adapter
))
4857 e1000_vlan_filter_on_off(adapter
, true);
4859 /* add VID to filter table */
4860 index
= (vid
>> 5) & 0x7F;
4861 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4862 vfta
|= (1 << (vid
& 0x1F));
4863 e1000_write_vfta(hw
, index
, vfta
);
4865 set_bit(vid
, adapter
->active_vlans
);
4870 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
,
4871 __be16 proto
, u16 vid
)
4873 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4874 struct e1000_hw
*hw
= &adapter
->hw
;
4877 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4878 e1000_irq_disable(adapter
);
4879 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4880 e1000_irq_enable(adapter
);
4882 /* remove VID from filter table */
4883 index
= (vid
>> 5) & 0x7F;
4884 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4885 vfta
&= ~(1 << (vid
& 0x1F));
4886 e1000_write_vfta(hw
, index
, vfta
);
4888 clear_bit(vid
, adapter
->active_vlans
);
4890 if (!e1000_vlan_used(adapter
))
4891 e1000_vlan_filter_on_off(adapter
, false);
4896 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4900 if (!e1000_vlan_used(adapter
))
4903 e1000_vlan_filter_on_off(adapter
, true);
4904 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4905 e1000_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
4908 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
4910 struct e1000_hw
*hw
= &adapter
->hw
;
4914 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4915 * for the switch() below to work
4917 if ((spd
& 1) || (dplx
& ~1))
4920 /* Fiber NICs only allow 1000 gbps Full duplex */
4921 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4922 spd
!= SPEED_1000
&&
4923 dplx
!= DUPLEX_FULL
)
4926 switch (spd
+ dplx
) {
4927 case SPEED_10
+ DUPLEX_HALF
:
4928 hw
->forced_speed_duplex
= e1000_10_half
;
4930 case SPEED_10
+ DUPLEX_FULL
:
4931 hw
->forced_speed_duplex
= e1000_10_full
;
4933 case SPEED_100
+ DUPLEX_HALF
:
4934 hw
->forced_speed_duplex
= e1000_100_half
;
4936 case SPEED_100
+ DUPLEX_FULL
:
4937 hw
->forced_speed_duplex
= e1000_100_full
;
4939 case SPEED_1000
+ DUPLEX_FULL
:
4941 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4943 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4948 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4949 hw
->mdix
= AUTO_ALL_MODES
;
4954 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4958 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4960 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4961 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4962 struct e1000_hw
*hw
= &adapter
->hw
;
4963 u32 ctrl
, ctrl_ext
, rctl
, status
;
4964 u32 wufc
= adapter
->wol
;
4969 netif_device_detach(netdev
);
4971 if (netif_running(netdev
)) {
4972 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4973 e1000_down(adapter
);
4977 retval
= pci_save_state(pdev
);
4982 status
= er32(STATUS
);
4983 if (status
& E1000_STATUS_LU
)
4984 wufc
&= ~E1000_WUFC_LNKC
;
4987 e1000_setup_rctl(adapter
);
4988 e1000_set_rx_mode(netdev
);
4992 /* turn on all-multi mode if wake on multicast is enabled */
4993 if (wufc
& E1000_WUFC_MC
)
4994 rctl
|= E1000_RCTL_MPE
;
4996 /* enable receives in the hardware */
4997 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4999 if (hw
->mac_type
>= e1000_82540
) {
5001 /* advertise wake from D3Cold */
5002 #define E1000_CTRL_ADVD3WUC 0x00100000
5003 /* phy power management enable */
5004 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5005 ctrl
|= E1000_CTRL_ADVD3WUC
|
5006 E1000_CTRL_EN_PHY_PWR_MGMT
;
5010 if (hw
->media_type
== e1000_media_type_fiber
||
5011 hw
->media_type
== e1000_media_type_internal_serdes
) {
5012 /* keep the laser running in D3 */
5013 ctrl_ext
= er32(CTRL_EXT
);
5014 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5015 ew32(CTRL_EXT
, ctrl_ext
);
5018 ew32(WUC
, E1000_WUC_PME_EN
);
5025 e1000_release_manageability(adapter
);
5027 *enable_wake
= !!wufc
;
5029 /* make sure adapter isn't asleep if manageability is enabled */
5030 if (adapter
->en_mng_pt
)
5031 *enable_wake
= true;
5033 if (netif_running(netdev
))
5034 e1000_free_irq(adapter
);
5036 pci_disable_device(pdev
);
5042 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5047 retval
= __e1000_shutdown(pdev
, &wake
);
5052 pci_prepare_to_sleep(pdev
);
5054 pci_wake_from_d3(pdev
, false);
5055 pci_set_power_state(pdev
, PCI_D3hot
);
5061 static int e1000_resume(struct pci_dev
*pdev
)
5063 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5064 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5065 struct e1000_hw
*hw
= &adapter
->hw
;
5068 pci_set_power_state(pdev
, PCI_D0
);
5069 pci_restore_state(pdev
);
5070 pci_save_state(pdev
);
5072 if (adapter
->need_ioport
)
5073 err
= pci_enable_device(pdev
);
5075 err
= pci_enable_device_mem(pdev
);
5077 pr_err("Cannot enable PCI device from suspend\n");
5080 pci_set_master(pdev
);
5082 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5083 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5085 if (netif_running(netdev
)) {
5086 err
= e1000_request_irq(adapter
);
5091 e1000_power_up_phy(adapter
);
5092 e1000_reset(adapter
);
5095 e1000_init_manageability(adapter
);
5097 if (netif_running(netdev
))
5100 netif_device_attach(netdev
);
5106 static void e1000_shutdown(struct pci_dev
*pdev
)
5110 __e1000_shutdown(pdev
, &wake
);
5112 if (system_state
== SYSTEM_POWER_OFF
) {
5113 pci_wake_from_d3(pdev
, wake
);
5114 pci_set_power_state(pdev
, PCI_D3hot
);
5118 #ifdef CONFIG_NET_POLL_CONTROLLER
5119 /* Polling 'interrupt' - used by things like netconsole to send skbs
5120 * without having to re-enable interrupts. It's not called while
5121 * the interrupt routine is executing.
5123 static void e1000_netpoll(struct net_device
*netdev
)
5125 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5127 disable_irq(adapter
->pdev
->irq
);
5128 e1000_intr(adapter
->pdev
->irq
, netdev
);
5129 enable_irq(adapter
->pdev
->irq
);
5134 * e1000_io_error_detected - called when PCI error is detected
5135 * @pdev: Pointer to PCI device
5136 * @state: The current pci connection state
5138 * This function is called after a PCI bus error affecting
5139 * this device has been detected.
5141 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5142 pci_channel_state_t state
)
5144 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5145 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5147 netif_device_detach(netdev
);
5149 if (state
== pci_channel_io_perm_failure
)
5150 return PCI_ERS_RESULT_DISCONNECT
;
5152 if (netif_running(netdev
))
5153 e1000_down(adapter
);
5154 pci_disable_device(pdev
);
5156 /* Request a slot slot reset. */
5157 return PCI_ERS_RESULT_NEED_RESET
;
5161 * e1000_io_slot_reset - called after the pci bus has been reset.
5162 * @pdev: Pointer to PCI device
5164 * Restart the card from scratch, as if from a cold-boot. Implementation
5165 * resembles the first-half of the e1000_resume routine.
5167 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5169 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5170 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5171 struct e1000_hw
*hw
= &adapter
->hw
;
5174 if (adapter
->need_ioport
)
5175 err
= pci_enable_device(pdev
);
5177 err
= pci_enable_device_mem(pdev
);
5179 pr_err("Cannot re-enable PCI device after reset.\n");
5180 return PCI_ERS_RESULT_DISCONNECT
;
5182 pci_set_master(pdev
);
5184 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5185 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5187 e1000_reset(adapter
);
5190 return PCI_ERS_RESULT_RECOVERED
;
5194 * e1000_io_resume - called when traffic can start flowing again.
5195 * @pdev: Pointer to PCI device
5197 * This callback is called when the error recovery driver tells us that
5198 * its OK to resume normal operation. Implementation resembles the
5199 * second-half of the e1000_resume routine.
5201 static void e1000_io_resume(struct pci_dev
*pdev
)
5203 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5204 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5206 e1000_init_manageability(adapter
);
5208 if (netif_running(netdev
)) {
5209 if (e1000_up(adapter
)) {
5210 pr_info("can't bring device back up after reset\n");
5215 netif_device_attach(netdev
);