Linux 3.11-rc3
[cris-mirror.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
blob895450e9bb3cfe81d22f19148b4a52d9fc14352a
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
30 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
33 #include "e1000.h"
35 /* A table for the GG82563 cable length where the range is defined
36 * with a lower bound at "index" and the upper bound at
37 * "index + 5".
39 static const u16 e1000_gg82563_cable_length_table[] = {
40 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
43 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
44 ARRAY_SIZE(e1000_gg82563_cable_length_table)
46 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
47 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
48 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
49 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
50 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
51 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
52 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
53 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
54 u16 *data);
55 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
56 u16 data);
57 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
59 /**
60 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
61 * @hw: pointer to the HW structure
62 **/
63 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
65 struct e1000_phy_info *phy = &hw->phy;
66 s32 ret_val;
68 if (hw->phy.media_type != e1000_media_type_copper) {
69 phy->type = e1000_phy_none;
70 return 0;
71 } else {
72 phy->ops.power_up = e1000_power_up_phy_copper;
73 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
76 phy->addr = 1;
77 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
78 phy->reset_delay_us = 100;
79 phy->type = e1000_phy_gg82563;
81 /* This can only be done after all function pointers are setup. */
82 ret_val = e1000e_get_phy_id(hw);
84 /* Verify phy id */
85 if (phy->id != GG82563_E_PHY_ID)
86 return -E1000_ERR_PHY;
88 return ret_val;
91 /**
92 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
93 * @hw: pointer to the HW structure
94 **/
95 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
97 struct e1000_nvm_info *nvm = &hw->nvm;
98 u32 eecd = er32(EECD);
99 u16 size;
101 nvm->opcode_bits = 8;
102 nvm->delay_usec = 1;
103 switch (nvm->override) {
104 case e1000_nvm_override_spi_large:
105 nvm->page_size = 32;
106 nvm->address_bits = 16;
107 break;
108 case e1000_nvm_override_spi_small:
109 nvm->page_size = 8;
110 nvm->address_bits = 8;
111 break;
112 default:
113 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
114 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
115 break;
118 nvm->type = e1000_nvm_eeprom_spi;
120 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
121 E1000_EECD_SIZE_EX_SHIFT);
123 /* Added to a constant, "size" becomes the left-shift value
124 * for setting word_size.
126 size += NVM_WORD_SIZE_BASE_SHIFT;
128 /* EEPROM access above 16k is unsupported */
129 if (size > 14)
130 size = 14;
131 nvm->word_size = 1 << size;
133 return 0;
137 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
138 * @hw: pointer to the HW structure
140 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
142 struct e1000_mac_info *mac = &hw->mac;
144 /* Set media type and media-dependent function pointers */
145 switch (hw->adapter->pdev->device) {
146 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
147 hw->phy.media_type = e1000_media_type_internal_serdes;
148 mac->ops.check_for_link = e1000e_check_for_serdes_link;
149 mac->ops.setup_physical_interface =
150 e1000e_setup_fiber_serdes_link;
151 break;
152 default:
153 hw->phy.media_type = e1000_media_type_copper;
154 mac->ops.check_for_link = e1000e_check_for_copper_link;
155 mac->ops.setup_physical_interface =
156 e1000_setup_copper_link_80003es2lan;
157 break;
160 /* Set mta register count */
161 mac->mta_reg_count = 128;
162 /* Set rar entry count */
163 mac->rar_entry_count = E1000_RAR_ENTRIES;
164 /* FWSM register */
165 mac->has_fwsm = true;
166 /* ARC supported; valid only if manageability features are enabled. */
167 mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
168 /* Adaptive IFS not supported */
169 mac->adaptive_ifs = false;
171 /* set lan id for port to determine which phy lock to use */
172 hw->mac.ops.set_lan_id(hw);
174 return 0;
177 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
179 struct e1000_hw *hw = &adapter->hw;
180 s32 rc;
182 rc = e1000_init_mac_params_80003es2lan(hw);
183 if (rc)
184 return rc;
186 rc = e1000_init_nvm_params_80003es2lan(hw);
187 if (rc)
188 return rc;
190 rc = e1000_init_phy_params_80003es2lan(hw);
191 if (rc)
192 return rc;
194 return 0;
198 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
199 * @hw: pointer to the HW structure
201 * A wrapper to acquire access rights to the correct PHY.
203 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
205 u16 mask;
207 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
208 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
212 * e1000_release_phy_80003es2lan - Release rights to access PHY
213 * @hw: pointer to the HW structure
215 * A wrapper to release access rights to the correct PHY.
217 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
219 u16 mask;
221 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
222 e1000_release_swfw_sync_80003es2lan(hw, mask);
226 * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
227 * @hw: pointer to the HW structure
229 * Acquire the semaphore to access the Kumeran interface.
232 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
234 u16 mask;
236 mask = E1000_SWFW_CSR_SM;
238 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
242 * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
243 * @hw: pointer to the HW structure
245 * Release the semaphore used to access the Kumeran interface
247 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
249 u16 mask;
251 mask = E1000_SWFW_CSR_SM;
253 e1000_release_swfw_sync_80003es2lan(hw, mask);
257 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
258 * @hw: pointer to the HW structure
260 * Acquire the semaphore to access the EEPROM.
262 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
264 s32 ret_val;
266 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267 if (ret_val)
268 return ret_val;
270 ret_val = e1000e_acquire_nvm(hw);
272 if (ret_val)
273 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
275 return ret_val;
279 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
280 * @hw: pointer to the HW structure
282 * Release the semaphore used to access the EEPROM.
284 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
286 e1000e_release_nvm(hw);
287 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
291 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
292 * @hw: pointer to the HW structure
293 * @mask: specifies which semaphore to acquire
295 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
296 * will also specify which port we're acquiring the lock for.
298 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
300 u32 swfw_sync;
301 u32 swmask = mask;
302 u32 fwmask = mask << 16;
303 s32 i = 0;
304 s32 timeout = 50;
306 while (i < timeout) {
307 if (e1000e_get_hw_semaphore(hw))
308 return -E1000_ERR_SWFW_SYNC;
310 swfw_sync = er32(SW_FW_SYNC);
311 if (!(swfw_sync & (fwmask | swmask)))
312 break;
314 /* Firmware currently using resource (fwmask)
315 * or other software thread using resource (swmask)
317 e1000e_put_hw_semaphore(hw);
318 mdelay(5);
319 i++;
322 if (i == timeout) {
323 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
324 return -E1000_ERR_SWFW_SYNC;
327 swfw_sync |= swmask;
328 ew32(SW_FW_SYNC, swfw_sync);
330 e1000e_put_hw_semaphore(hw);
332 return 0;
336 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
337 * @hw: pointer to the HW structure
338 * @mask: specifies which semaphore to acquire
340 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
341 * will also specify which port we're releasing the lock for.
343 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
345 u32 swfw_sync;
347 while (e1000e_get_hw_semaphore(hw) != 0)
348 ; /* Empty */
350 swfw_sync = er32(SW_FW_SYNC);
351 swfw_sync &= ~mask;
352 ew32(SW_FW_SYNC, swfw_sync);
354 e1000e_put_hw_semaphore(hw);
358 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
359 * @hw: pointer to the HW structure
360 * @offset: offset of the register to read
361 * @data: pointer to the data returned from the operation
363 * Read the GG82563 PHY register.
365 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
366 u32 offset, u16 *data)
368 s32 ret_val;
369 u32 page_select;
370 u16 temp;
372 ret_val = e1000_acquire_phy_80003es2lan(hw);
373 if (ret_val)
374 return ret_val;
376 /* Select Configuration Page */
377 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
378 page_select = GG82563_PHY_PAGE_SELECT;
379 } else {
380 /* Use Alternative Page Select register to access
381 * registers 30 and 31
383 page_select = GG82563_PHY_PAGE_SELECT_ALT;
386 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
387 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
388 if (ret_val) {
389 e1000_release_phy_80003es2lan(hw);
390 return ret_val;
393 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
394 /* The "ready" bit in the MDIC register may be incorrectly set
395 * before the device has completed the "Page Select" MDI
396 * transaction. So we wait 200us after each MDI command...
398 usleep_range(200, 400);
400 /* ...and verify the command was successful. */
401 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
403 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
404 e1000_release_phy_80003es2lan(hw);
405 return -E1000_ERR_PHY;
408 usleep_range(200, 400);
410 ret_val = e1000e_read_phy_reg_mdic(hw,
411 MAX_PHY_REG_ADDRESS & offset,
412 data);
414 usleep_range(200, 400);
415 } else {
416 ret_val = e1000e_read_phy_reg_mdic(hw,
417 MAX_PHY_REG_ADDRESS & offset,
418 data);
421 e1000_release_phy_80003es2lan(hw);
423 return ret_val;
427 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
428 * @hw: pointer to the HW structure
429 * @offset: offset of the register to read
430 * @data: value to write to the register
432 * Write to the GG82563 PHY register.
434 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
435 u32 offset, u16 data)
437 s32 ret_val;
438 u32 page_select;
439 u16 temp;
441 ret_val = e1000_acquire_phy_80003es2lan(hw);
442 if (ret_val)
443 return ret_val;
445 /* Select Configuration Page */
446 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
447 page_select = GG82563_PHY_PAGE_SELECT;
448 } else {
449 /* Use Alternative Page Select register to access
450 * registers 30 and 31
452 page_select = GG82563_PHY_PAGE_SELECT_ALT;
455 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
456 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
457 if (ret_val) {
458 e1000_release_phy_80003es2lan(hw);
459 return ret_val;
462 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
463 /* The "ready" bit in the MDIC register may be incorrectly set
464 * before the device has completed the "Page Select" MDI
465 * transaction. So we wait 200us after each MDI command...
467 usleep_range(200, 400);
469 /* ...and verify the command was successful. */
470 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
472 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
473 e1000_release_phy_80003es2lan(hw);
474 return -E1000_ERR_PHY;
477 usleep_range(200, 400);
479 ret_val = e1000e_write_phy_reg_mdic(hw,
480 MAX_PHY_REG_ADDRESS &
481 offset, data);
483 usleep_range(200, 400);
484 } else {
485 ret_val = e1000e_write_phy_reg_mdic(hw,
486 MAX_PHY_REG_ADDRESS &
487 offset, data);
490 e1000_release_phy_80003es2lan(hw);
492 return ret_val;
496 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
497 * @hw: pointer to the HW structure
498 * @offset: offset of the register to read
499 * @words: number of words to write
500 * @data: buffer of data to write to the NVM
502 * Write "words" of data to the ESB2 NVM.
504 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
505 u16 words, u16 *data)
507 return e1000e_write_nvm_spi(hw, offset, words, data);
511 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
512 * @hw: pointer to the HW structure
514 * Wait a specific amount of time for manageability processes to complete.
515 * This is a function pointer entry point called by the phy module.
517 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
519 s32 timeout = PHY_CFG_TIMEOUT;
520 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
522 if (hw->bus.func == 1)
523 mask = E1000_NVM_CFG_DONE_PORT_1;
525 while (timeout) {
526 if (er32(EEMNGCTL) & mask)
527 break;
528 usleep_range(1000, 2000);
529 timeout--;
531 if (!timeout) {
532 e_dbg("MNG configuration cycle has not completed.\n");
533 return -E1000_ERR_RESET;
536 return 0;
540 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
541 * @hw: pointer to the HW structure
543 * Force the speed and duplex settings onto the PHY. This is a
544 * function pointer entry point called by the phy module.
546 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
548 s32 ret_val;
549 u16 phy_data;
550 bool link;
552 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
553 * forced whenever speed and duplex are forced.
555 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
556 if (ret_val)
557 return ret_val;
559 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
560 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
561 if (ret_val)
562 return ret_val;
564 e_dbg("GG82563 PSCR: %X\n", phy_data);
566 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
567 if (ret_val)
568 return ret_val;
570 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
572 /* Reset the phy to commit changes. */
573 phy_data |= BMCR_RESET;
575 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
576 if (ret_val)
577 return ret_val;
579 udelay(1);
581 if (hw->phy.autoneg_wait_to_complete) {
582 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
584 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
585 100000, &link);
586 if (ret_val)
587 return ret_val;
589 if (!link) {
590 /* We didn't get link.
591 * Reset the DSP and cross our fingers.
593 ret_val = e1000e_phy_reset_dsp(hw);
594 if (ret_val)
595 return ret_val;
598 /* Try once more */
599 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
600 100000, &link);
601 if (ret_val)
602 return ret_val;
605 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
606 if (ret_val)
607 return ret_val;
609 /* Resetting the phy means we need to verify the TX_CLK corresponds
610 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
612 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
613 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
614 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
615 else
616 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
618 /* In addition, we must re-enable CRS on Tx for both half and full
619 * duplex.
621 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
622 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
624 return ret_val;
628 * e1000_get_cable_length_80003es2lan - Set approximate cable length
629 * @hw: pointer to the HW structure
631 * Find the approximate cable length as measured by the GG82563 PHY.
632 * This is a function pointer entry point called by the phy module.
634 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
636 struct e1000_phy_info *phy = &hw->phy;
637 s32 ret_val;
638 u16 phy_data, index;
640 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
641 if (ret_val)
642 return ret_val;
644 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
646 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
647 return -E1000_ERR_PHY;
649 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
650 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
652 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
654 return 0;
658 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
659 * @hw: pointer to the HW structure
660 * @speed: pointer to speed buffer
661 * @duplex: pointer to duplex buffer
663 * Retrieve the current speed and duplex configuration.
665 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
666 u16 *duplex)
668 s32 ret_val;
670 if (hw->phy.media_type == e1000_media_type_copper) {
671 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
672 hw->phy.ops.cfg_on_link_up(hw);
673 } else {
674 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
675 speed,
676 duplex);
679 return ret_val;
683 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
684 * @hw: pointer to the HW structure
686 * Perform a global reset to the ESB2 controller.
688 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
690 u32 ctrl;
691 s32 ret_val;
692 u16 kum_reg_data;
694 /* Prevent the PCI-E bus from sticking if there is no TLP connection
695 * on the last TLP read/write transaction when MAC is reset.
697 ret_val = e1000e_disable_pcie_master(hw);
698 if (ret_val)
699 e_dbg("PCI-E Master disable polling has failed.\n");
701 e_dbg("Masking off all interrupts\n");
702 ew32(IMC, 0xffffffff);
704 ew32(RCTL, 0);
705 ew32(TCTL, E1000_TCTL_PSP);
706 e1e_flush();
708 usleep_range(10000, 20000);
710 ctrl = er32(CTRL);
712 ret_val = e1000_acquire_phy_80003es2lan(hw);
713 if (ret_val)
714 return ret_val;
716 e_dbg("Issuing a global reset to MAC\n");
717 ew32(CTRL, ctrl | E1000_CTRL_RST);
718 e1000_release_phy_80003es2lan(hw);
720 /* Disable IBIST slave mode (far-end loopback) */
721 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
722 &kum_reg_data);
723 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
724 e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
725 kum_reg_data);
727 ret_val = e1000e_get_auto_rd_done(hw);
728 if (ret_val)
729 /* We don't want to continue accessing MAC registers. */
730 return ret_val;
732 /* Clear any pending interrupt events. */
733 ew32(IMC, 0xffffffff);
734 er32(ICR);
736 return e1000_check_alt_mac_addr_generic(hw);
740 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
741 * @hw: pointer to the HW structure
743 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
745 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
747 struct e1000_mac_info *mac = &hw->mac;
748 u32 reg_data;
749 s32 ret_val;
750 u16 kum_reg_data;
751 u16 i;
753 e1000_initialize_hw_bits_80003es2lan(hw);
755 /* Initialize identification LED */
756 ret_val = mac->ops.id_led_init(hw);
757 /* An error is not fatal and we should not stop init due to this */
758 if (ret_val)
759 e_dbg("Error initializing identification LED\n");
761 /* Disabling VLAN filtering */
762 e_dbg("Initializing the IEEE VLAN\n");
763 mac->ops.clear_vfta(hw);
765 /* Setup the receive address. */
766 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
768 /* Zero out the Multicast HASH table */
769 e_dbg("Zeroing the MTA\n");
770 for (i = 0; i < mac->mta_reg_count; i++)
771 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
773 /* Setup link and flow control */
774 ret_val = mac->ops.setup_link(hw);
775 if (ret_val)
776 return ret_val;
778 /* Disable IBIST slave mode (far-end loopback) */
779 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
780 &kum_reg_data);
781 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
782 e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
783 kum_reg_data);
785 /* Set the transmit descriptor write-back policy */
786 reg_data = er32(TXDCTL(0));
787 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
788 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
789 ew32(TXDCTL(0), reg_data);
791 /* ...for both queues. */
792 reg_data = er32(TXDCTL(1));
793 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
794 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
795 ew32(TXDCTL(1), reg_data);
797 /* Enable retransmit on late collisions */
798 reg_data = er32(TCTL);
799 reg_data |= E1000_TCTL_RTLC;
800 ew32(TCTL, reg_data);
802 /* Configure Gigabit Carry Extend Padding */
803 reg_data = er32(TCTL_EXT);
804 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
805 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
806 ew32(TCTL_EXT, reg_data);
808 /* Configure Transmit Inter-Packet Gap */
809 reg_data = er32(TIPG);
810 reg_data &= ~E1000_TIPG_IPGT_MASK;
811 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
812 ew32(TIPG, reg_data);
814 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
815 reg_data &= ~0x00100000;
816 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
818 /* default to true to enable the MDIC W/A */
819 hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
821 ret_val =
822 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
823 E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
824 if (!ret_val) {
825 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
826 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
827 hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
830 /* Clear all of the statistics registers (clear on read). It is
831 * important that we do this after we have tried to establish link
832 * because the symbol error count will increment wildly if there
833 * is no link.
835 e1000_clear_hw_cntrs_80003es2lan(hw);
837 return ret_val;
841 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
842 * @hw: pointer to the HW structure
844 * Initializes required hardware-dependent bits needed for normal operation.
846 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
848 u32 reg;
850 /* Transmit Descriptor Control 0 */
851 reg = er32(TXDCTL(0));
852 reg |= (1 << 22);
853 ew32(TXDCTL(0), reg);
855 /* Transmit Descriptor Control 1 */
856 reg = er32(TXDCTL(1));
857 reg |= (1 << 22);
858 ew32(TXDCTL(1), reg);
860 /* Transmit Arbitration Control 0 */
861 reg = er32(TARC(0));
862 reg &= ~(0xF << 27); /* 30:27 */
863 if (hw->phy.media_type != e1000_media_type_copper)
864 reg &= ~(1 << 20);
865 ew32(TARC(0), reg);
867 /* Transmit Arbitration Control 1 */
868 reg = er32(TARC(1));
869 if (er32(TCTL) & E1000_TCTL_MULR)
870 reg &= ~(1 << 28);
871 else
872 reg |= (1 << 28);
873 ew32(TARC(1), reg);
875 /* Disable IPv6 extension header parsing because some malformed
876 * IPv6 headers can hang the Rx.
878 reg = er32(RFCTL);
879 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
880 ew32(RFCTL, reg);
884 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
885 * @hw: pointer to the HW structure
887 * Setup some GG82563 PHY registers for obtaining link
889 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
891 struct e1000_phy_info *phy = &hw->phy;
892 s32 ret_val;
893 u32 reg;
894 u16 data;
896 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
897 if (ret_val)
898 return ret_val;
900 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
901 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
902 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
904 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
905 if (ret_val)
906 return ret_val;
908 /* Options:
909 * MDI/MDI-X = 0 (default)
910 * 0 - Auto for all speeds
911 * 1 - MDI mode
912 * 2 - MDI-X mode
913 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
915 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
916 if (ret_val)
917 return ret_val;
919 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
921 switch (phy->mdix) {
922 case 1:
923 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
924 break;
925 case 2:
926 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
927 break;
928 case 0:
929 default:
930 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
931 break;
934 /* Options:
935 * disable_polarity_correction = 0 (default)
936 * Automatic Correction for Reversed Cable Polarity
937 * 0 - Disabled
938 * 1 - Enabled
940 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
941 if (phy->disable_polarity_correction)
942 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
944 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
945 if (ret_val)
946 return ret_val;
948 /* SW Reset the PHY so all changes take effect */
949 ret_val = hw->phy.ops.commit(hw);
950 if (ret_val) {
951 e_dbg("Error Resetting the PHY\n");
952 return ret_val;
955 /* Bypass Rx and Tx FIFO's */
956 reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
957 data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
958 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
959 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
960 if (ret_val)
961 return ret_val;
963 reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
964 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
965 if (ret_val)
966 return ret_val;
967 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
968 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
969 if (ret_val)
970 return ret_val;
972 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
973 if (ret_val)
974 return ret_val;
976 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
977 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
978 if (ret_val)
979 return ret_val;
981 reg = er32(CTRL_EXT);
982 reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
983 ew32(CTRL_EXT, reg);
985 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
986 if (ret_val)
987 return ret_val;
989 /* Do not init these registers when the HW is in IAMT mode, since the
990 * firmware will have already initialized them. We only initialize
991 * them if the HW is not in IAMT mode.
993 if (!hw->mac.ops.check_mng_mode(hw)) {
994 /* Enable Electrical Idle on the PHY */
995 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
996 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
997 if (ret_val)
998 return ret_val;
1000 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1001 if (ret_val)
1002 return ret_val;
1004 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1005 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1006 if (ret_val)
1007 return ret_val;
1010 /* Workaround: Disable padding in Kumeran interface in the MAC
1011 * and in the PHY to avoid CRC errors.
1013 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1014 if (ret_val)
1015 return ret_val;
1017 data |= GG82563_ICR_DIS_PADDING;
1018 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1019 if (ret_val)
1020 return ret_val;
1022 return 0;
1026 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1027 * @hw: pointer to the HW structure
1029 * Essentially a wrapper for setting up all things "copper" related.
1030 * This is a function pointer entry point called by the mac module.
1032 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1034 u32 ctrl;
1035 s32 ret_val;
1036 u16 reg_data;
1038 ctrl = er32(CTRL);
1039 ctrl |= E1000_CTRL_SLU;
1040 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1041 ew32(CTRL, ctrl);
1043 /* Set the mac to wait the maximum time between each
1044 * iteration and increase the max iterations when
1045 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1047 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1048 0xFFFF);
1049 if (ret_val)
1050 return ret_val;
1051 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1052 &reg_data);
1053 if (ret_val)
1054 return ret_val;
1055 reg_data |= 0x3F;
1056 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1057 reg_data);
1058 if (ret_val)
1059 return ret_val;
1060 ret_val =
1061 e1000_read_kmrn_reg_80003es2lan(hw,
1062 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1063 &reg_data);
1064 if (ret_val)
1065 return ret_val;
1066 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1067 ret_val =
1068 e1000_write_kmrn_reg_80003es2lan(hw,
1069 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1070 reg_data);
1071 if (ret_val)
1072 return ret_val;
1074 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1075 if (ret_val)
1076 return ret_val;
1078 return e1000e_setup_copper_link(hw);
1082 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1083 * @hw: pointer to the HW structure
1084 * @duplex: current duplex setting
1086 * Configure the KMRN interface by applying last minute quirks for
1087 * 10/100 operation.
1089 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1091 s32 ret_val = 0;
1092 u16 speed;
1093 u16 duplex;
1095 if (hw->phy.media_type == e1000_media_type_copper) {
1096 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1097 &duplex);
1098 if (ret_val)
1099 return ret_val;
1101 if (speed == SPEED_1000)
1102 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1103 else
1104 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1107 return ret_val;
1111 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1112 * @hw: pointer to the HW structure
1113 * @duplex: current duplex setting
1115 * Configure the KMRN interface by applying last minute quirks for
1116 * 10/100 operation.
1118 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1120 s32 ret_val;
1121 u32 tipg;
1122 u32 i = 0;
1123 u16 reg_data, reg_data2;
1125 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1126 ret_val =
1127 e1000_write_kmrn_reg_80003es2lan(hw,
1128 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1129 reg_data);
1130 if (ret_val)
1131 return ret_val;
1133 /* Configure Transmit Inter-Packet Gap */
1134 tipg = er32(TIPG);
1135 tipg &= ~E1000_TIPG_IPGT_MASK;
1136 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1137 ew32(TIPG, tipg);
1139 do {
1140 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1141 if (ret_val)
1142 return ret_val;
1144 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1145 if (ret_val)
1146 return ret_val;
1147 i++;
1148 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1150 if (duplex == HALF_DUPLEX)
1151 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1152 else
1153 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1155 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1159 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1160 * @hw: pointer to the HW structure
1162 * Configure the KMRN interface by applying last minute quirks for
1163 * gigabit operation.
1165 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1167 s32 ret_val;
1168 u16 reg_data, reg_data2;
1169 u32 tipg;
1170 u32 i = 0;
1172 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1173 ret_val =
1174 e1000_write_kmrn_reg_80003es2lan(hw,
1175 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1176 reg_data);
1177 if (ret_val)
1178 return ret_val;
1180 /* Configure Transmit Inter-Packet Gap */
1181 tipg = er32(TIPG);
1182 tipg &= ~E1000_TIPG_IPGT_MASK;
1183 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1184 ew32(TIPG, tipg);
1186 do {
1187 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1188 if (ret_val)
1189 return ret_val;
1191 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1192 if (ret_val)
1193 return ret_val;
1194 i++;
1195 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1197 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1199 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1203 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1204 * @hw: pointer to the HW structure
1205 * @offset: register offset to be read
1206 * @data: pointer to the read data
1208 * Acquire semaphore, then read the PHY register at offset
1209 * using the kumeran interface. The information retrieved is stored in data.
1210 * Release the semaphore before exiting.
1212 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1213 u16 *data)
1215 u32 kmrnctrlsta;
1216 s32 ret_val;
1218 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1219 if (ret_val)
1220 return ret_val;
1222 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1223 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1224 ew32(KMRNCTRLSTA, kmrnctrlsta);
1225 e1e_flush();
1227 udelay(2);
1229 kmrnctrlsta = er32(KMRNCTRLSTA);
1230 *data = (u16)kmrnctrlsta;
1232 e1000_release_mac_csr_80003es2lan(hw);
1234 return ret_val;
1238 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1239 * @hw: pointer to the HW structure
1240 * @offset: register offset to write to
1241 * @data: data to write at register offset
1243 * Acquire semaphore, then write the data to PHY register
1244 * at the offset using the kumeran interface. Release semaphore
1245 * before exiting.
1247 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1248 u16 data)
1250 u32 kmrnctrlsta;
1251 s32 ret_val;
1253 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1254 if (ret_val)
1255 return ret_val;
1257 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1258 E1000_KMRNCTRLSTA_OFFSET) | data;
1259 ew32(KMRNCTRLSTA, kmrnctrlsta);
1260 e1e_flush();
1262 udelay(2);
1264 e1000_release_mac_csr_80003es2lan(hw);
1266 return ret_val;
1270 * e1000_read_mac_addr_80003es2lan - Read device MAC address
1271 * @hw: pointer to the HW structure
1273 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1275 s32 ret_val;
1277 /* If there's an alternate MAC address place it in RAR0
1278 * so that it will override the Si installed default perm
1279 * address.
1281 ret_val = e1000_check_alt_mac_addr_generic(hw);
1282 if (ret_val)
1283 return ret_val;
1285 return e1000_read_mac_addr_generic(hw);
1289 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1290 * @hw: pointer to the HW structure
1292 * In the case of a PHY power down to save power, or to turn off link during a
1293 * driver unload, or wake on lan is not enabled, remove the link.
1295 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1297 /* If the management interface is not enabled, then power down */
1298 if (!(hw->mac.ops.check_mng_mode(hw) ||
1299 hw->phy.ops.check_reset_block(hw)))
1300 e1000_power_down_phy_copper(hw);
1304 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1305 * @hw: pointer to the HW structure
1307 * Clears the hardware counters by reading the counter registers.
1309 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1311 e1000e_clear_hw_cntrs_base(hw);
1313 er32(PRC64);
1314 er32(PRC127);
1315 er32(PRC255);
1316 er32(PRC511);
1317 er32(PRC1023);
1318 er32(PRC1522);
1319 er32(PTC64);
1320 er32(PTC127);
1321 er32(PTC255);
1322 er32(PTC511);
1323 er32(PTC1023);
1324 er32(PTC1522);
1326 er32(ALGNERRC);
1327 er32(RXERRC);
1328 er32(TNCRS);
1329 er32(CEXTERR);
1330 er32(TSCTC);
1331 er32(TSCTFC);
1333 er32(MGTPRC);
1334 er32(MGTPDC);
1335 er32(MGTPTC);
1337 er32(IAC);
1338 er32(ICRXOC);
1340 er32(ICRXPTC);
1341 er32(ICRXATC);
1342 er32(ICTXPTC);
1343 er32(ICTXATC);
1344 er32(ICTXQEC);
1345 er32(ICTXQMTC);
1346 er32(ICRXDMTC);
1349 static const struct e1000_mac_operations es2_mac_ops = {
1350 .read_mac_addr = e1000_read_mac_addr_80003es2lan,
1351 .id_led_init = e1000e_id_led_init_generic,
1352 .blink_led = e1000e_blink_led_generic,
1353 .check_mng_mode = e1000e_check_mng_mode_generic,
1354 /* check_for_link dependent on media type */
1355 .cleanup_led = e1000e_cleanup_led_generic,
1356 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1357 .get_bus_info = e1000e_get_bus_info_pcie,
1358 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1359 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1360 .led_on = e1000e_led_on_generic,
1361 .led_off = e1000e_led_off_generic,
1362 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1363 .write_vfta = e1000_write_vfta_generic,
1364 .clear_vfta = e1000_clear_vfta_generic,
1365 .reset_hw = e1000_reset_hw_80003es2lan,
1366 .init_hw = e1000_init_hw_80003es2lan,
1367 .setup_link = e1000e_setup_link_generic,
1368 /* setup_physical_interface dependent on media type */
1369 .setup_led = e1000e_setup_led_generic,
1370 .config_collision_dist = e1000e_config_collision_dist_generic,
1371 .rar_set = e1000e_rar_set_generic,
1374 static const struct e1000_phy_operations es2_phy_ops = {
1375 .acquire = e1000_acquire_phy_80003es2lan,
1376 .check_polarity = e1000_check_polarity_m88,
1377 .check_reset_block = e1000e_check_reset_block_generic,
1378 .commit = e1000e_phy_sw_reset,
1379 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1380 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1381 .get_cable_length = e1000_get_cable_length_80003es2lan,
1382 .get_info = e1000e_get_phy_info_m88,
1383 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1384 .release = e1000_release_phy_80003es2lan,
1385 .reset = e1000e_phy_hw_reset_generic,
1386 .set_d0_lplu_state = NULL,
1387 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1388 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1389 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1392 static const struct e1000_nvm_operations es2_nvm_ops = {
1393 .acquire = e1000_acquire_nvm_80003es2lan,
1394 .read = e1000e_read_nvm_eerd,
1395 .release = e1000_release_nvm_80003es2lan,
1396 .reload = e1000e_reload_nvm_generic,
1397 .update = e1000e_update_nvm_checksum_generic,
1398 .valid_led_default = e1000e_valid_led_default,
1399 .validate = e1000e_validate_nvm_checksum_generic,
1400 .write = e1000_write_nvm_80003es2lan,
1403 const struct e1000_info e1000_es2_info = {
1404 .mac = e1000_80003es2lan,
1405 .flags = FLAG_HAS_HW_VLAN_FILTER
1406 | FLAG_HAS_JUMBO_FRAMES
1407 | FLAG_HAS_WOL
1408 | FLAG_APME_IN_CTRL3
1409 | FLAG_HAS_CTRLEXT_ON_LOAD
1410 | FLAG_RX_NEEDS_RESTART /* errata */
1411 | FLAG_TARC_SET_BIT_ZERO /* errata */
1412 | FLAG_APME_CHECK_PORT_B
1413 | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1414 .flags2 = FLAG2_DMA_BURST,
1415 .pba = 38,
1416 .max_hw_frame_size = DEFAULT_JUMBO,
1417 .get_variants = e1000_get_variants_80003es2lan,
1418 .mac_ops = &es2_mac_ops,
1419 .phy_ops = &es2_phy_ops,
1420 .nvm_ops = &es2_nvm_ops,