1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* 82571EB Gigabit Ethernet Controller
30 * 82571EB Gigabit Ethernet Controller (Copper)
31 * 82571EB Gigabit Ethernet Controller (Fiber)
32 * 82571EB Dual Port Gigabit Mezzanine Adapter
33 * 82571EB Quad Port Gigabit Mezzanine Adapter
34 * 82571PT Gigabit PT Quad Port Server ExpressModule
35 * 82572EI Gigabit Ethernet Controller (Copper)
36 * 82572EI Gigabit Ethernet Controller (Fiber)
37 * 82572EI Gigabit Ethernet Controller
38 * 82573V Gigabit Ethernet Controller (Copper)
39 * 82573E Gigabit Ethernet Controller (Copper)
40 * 82573L Gigabit Ethernet Controller
41 * 82574L Gigabit Network Connection
42 * 82583V Gigabit Network Connection
47 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
48 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
49 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
50 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
51 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
52 u16 words
, u16
*data
);
53 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
54 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
55 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
56 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
57 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
58 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
59 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
60 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
61 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
62 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
63 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
64 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
67 * e1000_init_phy_params_82571 - Init PHY func ptrs.
68 * @hw: pointer to the HW structure
70 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
72 struct e1000_phy_info
*phy
= &hw
->phy
;
75 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
76 phy
->type
= e1000_phy_none
;
81 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
82 phy
->reset_delay_us
= 100;
84 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
85 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
87 switch (hw
->mac
.type
) {
90 phy
->type
= e1000_phy_igp_2
;
93 phy
->type
= e1000_phy_m88
;
97 phy
->type
= e1000_phy_bm
;
98 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
99 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
100 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
101 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
104 return -E1000_ERR_PHY
;
108 /* This can only be done after all function pointers are setup. */
109 ret_val
= e1000_get_phy_id_82571(hw
);
111 e_dbg("Error getting PHY ID\n");
116 switch (hw
->mac
.type
) {
119 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
120 ret_val
= -E1000_ERR_PHY
;
123 if (phy
->id
!= M88E1111_I_PHY_ID
)
124 ret_val
= -E1000_ERR_PHY
;
128 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
129 ret_val
= -E1000_ERR_PHY
;
132 ret_val
= -E1000_ERR_PHY
;
137 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
143 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
144 * @hw: pointer to the HW structure
146 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
148 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
149 u32 eecd
= er32(EECD
);
152 nvm
->opcode_bits
= 8;
154 switch (nvm
->override
) {
155 case e1000_nvm_override_spi_large
:
157 nvm
->address_bits
= 16;
159 case e1000_nvm_override_spi_small
:
161 nvm
->address_bits
= 8;
164 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
165 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
169 switch (hw
->mac
.type
) {
173 if (((eecd
>> 15) & 0x3) == 0x3) {
174 nvm
->type
= e1000_nvm_flash_hw
;
175 nvm
->word_size
= 2048;
176 /* Autonomous Flash update bit must be cleared due
177 * to Flash update issue.
179 eecd
&= ~E1000_EECD_AUPDEN
;
185 nvm
->type
= e1000_nvm_eeprom_spi
;
186 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
187 E1000_EECD_SIZE_EX_SHIFT
);
188 /* Added to a constant, "size" becomes the left-shift value
189 * for setting word_size.
191 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
193 /* EEPROM access above 16k is unsupported */
196 nvm
->word_size
= 1 << size
;
200 /* Function Pointers */
201 switch (hw
->mac
.type
) {
204 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
205 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
215 * e1000_init_mac_params_82571 - Init MAC func ptrs.
216 * @hw: pointer to the HW structure
218 static s32
e1000_init_mac_params_82571(struct e1000_hw
*hw
)
220 struct e1000_mac_info
*mac
= &hw
->mac
;
223 bool force_clear_smbi
= false;
225 /* Set media type and media-dependent function pointers */
226 switch (hw
->adapter
->pdev
->device
) {
227 case E1000_DEV_ID_82571EB_FIBER
:
228 case E1000_DEV_ID_82572EI_FIBER
:
229 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
230 hw
->phy
.media_type
= e1000_media_type_fiber
;
231 mac
->ops
.setup_physical_interface
=
232 e1000_setup_fiber_serdes_link_82571
;
233 mac
->ops
.check_for_link
= e1000e_check_for_fiber_link
;
234 mac
->ops
.get_link_up_info
=
235 e1000e_get_speed_and_duplex_fiber_serdes
;
237 case E1000_DEV_ID_82571EB_SERDES
:
238 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
239 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
240 case E1000_DEV_ID_82572EI_SERDES
:
241 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
242 mac
->ops
.setup_physical_interface
=
243 e1000_setup_fiber_serdes_link_82571
;
244 mac
->ops
.check_for_link
= e1000_check_for_serdes_link_82571
;
245 mac
->ops
.get_link_up_info
=
246 e1000e_get_speed_and_duplex_fiber_serdes
;
249 hw
->phy
.media_type
= e1000_media_type_copper
;
250 mac
->ops
.setup_physical_interface
=
251 e1000_setup_copper_link_82571
;
252 mac
->ops
.check_for_link
= e1000e_check_for_copper_link
;
253 mac
->ops
.get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
257 /* Set mta register count */
258 mac
->mta_reg_count
= 128;
259 /* Set rar entry count */
260 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
261 /* Adaptive IFS supported */
262 mac
->adaptive_ifs
= true;
264 /* MAC-specific function pointers */
265 switch (hw
->mac
.type
) {
267 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
268 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
269 mac
->ops
.led_on
= e1000e_led_on_generic
;
270 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
273 mac
->has_fwsm
= true;
274 /* ARC supported; valid only if manageability features are
277 mac
->arc_subsystem_valid
= !!(er32(FWSM
) &
278 E1000_FWSM_MODE_MASK
);
282 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
283 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_82574
;
284 mac
->ops
.led_on
= e1000_led_on_82574
;
287 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
288 mac
->ops
.led_on
= e1000e_led_on_generic
;
289 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
292 mac
->has_fwsm
= true;
296 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
297 * first NVM or PHY access. This should be done for single-port
298 * devices, and for one port only on dual-port devices so that
299 * for those devices we can still use the SMBI lock to synchronize
300 * inter-port accesses to the PHY & NVM.
302 switch (hw
->mac
.type
) {
307 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
308 /* Only do this for the first interface on this card */
309 ew32(SWSM2
, swsm2
| E1000_SWSM2_LOCK
);
310 force_clear_smbi
= true;
312 force_clear_smbi
= false;
316 force_clear_smbi
= true;
320 if (force_clear_smbi
) {
321 /* Make sure SWSM.SMBI is clear */
323 if (swsm
& E1000_SWSM_SMBI
) {
324 /* This bit should not be set on a first interface, and
325 * indicates that the bootagent or EFI code has
326 * improperly left this bit enabled
328 e_dbg("Please update your 82571 Bootagent\n");
330 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
333 /* Initialize device specific counter of SMBI acquisition timeouts. */
334 hw
->dev_spec
.e82571
.smb_counter
= 0;
339 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
341 struct e1000_hw
*hw
= &adapter
->hw
;
342 static int global_quad_port_a
; /* global port a indication */
343 struct pci_dev
*pdev
= adapter
->pdev
;
344 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
347 rc
= e1000_init_mac_params_82571(hw
);
351 rc
= e1000_init_nvm_params_82571(hw
);
355 rc
= e1000_init_phy_params_82571(hw
);
359 /* tag quad port adapters first, it's used below */
360 switch (pdev
->device
) {
361 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
362 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
363 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
364 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
365 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
366 /* mark the first port */
367 if (global_quad_port_a
== 0)
368 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
369 /* Reset for multiple quad port adapters */
370 global_quad_port_a
++;
371 if (global_quad_port_a
== 4)
372 global_quad_port_a
= 0;
378 switch (adapter
->hw
.mac
.type
) {
380 /* these dual ports don't have WoL on port B at all */
381 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
382 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
383 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
385 adapter
->flags
&= ~FLAG_HAS_WOL
;
386 /* quad ports only support WoL on port A */
387 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
388 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
389 adapter
->flags
&= ~FLAG_HAS_WOL
;
390 /* Does not support WoL on any port */
391 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
392 adapter
->flags
&= ~FLAG_HAS_WOL
;
395 if (pdev
->device
== E1000_DEV_ID_82573L
) {
396 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
397 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
408 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409 * @hw: pointer to the HW structure
411 * Reads the PHY registers and stores the PHY ID and possibly the PHY
412 * revision in the hardware structure.
414 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
416 struct e1000_phy_info
*phy
= &hw
->phy
;
420 switch (hw
->mac
.type
) {
423 /* The 82571 firmware may still be configuring the PHY.
424 * In this case, we cannot access the PHY until the
425 * configuration is done. So we explicitly set the
428 phy
->id
= IGP01E1000_I_PHY_ID
;
431 return e1000e_get_phy_id(hw
);
435 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
439 phy
->id
= (u32
)(phy_id
<< 16);
440 usleep_range(20, 40);
441 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
445 phy
->id
|= (u32
)(phy_id
);
446 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
449 return -E1000_ERR_PHY
;
457 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458 * @hw: pointer to the HW structure
460 * Acquire the HW semaphore to access the PHY or NVM
462 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
465 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
466 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
469 /* If we have timedout 3 times on trying to acquire
470 * the inter-port SMBI semaphore, there is old code
471 * operating on the other port, and it is not
472 * releasing SMBI. Modify the number of times that
473 * we try for the semaphore to interwork with this
476 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
479 /* Get the SW semaphore */
480 while (i
< sw_timeout
) {
482 if (!(swsm
& E1000_SWSM_SMBI
))
485 usleep_range(50, 100);
489 if (i
== sw_timeout
) {
490 e_dbg("Driver can't access device - SMBI bit is set.\n");
491 hw
->dev_spec
.e82571
.smb_counter
++;
493 /* Get the FW semaphore. */
494 for (i
= 0; i
< fw_timeout
; i
++) {
496 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
498 /* Semaphore acquired if bit latched */
499 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
502 usleep_range(50, 100);
505 if (i
== fw_timeout
) {
506 /* Release semaphores */
507 e1000_put_hw_semaphore_82571(hw
);
508 e_dbg("Driver can't access the NVM\n");
509 return -E1000_ERR_NVM
;
516 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
517 * @hw: pointer to the HW structure
519 * Release hardware semaphore used to access the PHY or NVM
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
526 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
531 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
532 * @hw: pointer to the HW structure
534 * Acquire the HW semaphore during reset.
537 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
542 extcnf_ctrl
= er32(EXTCNF_CTRL
);
544 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
545 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
546 extcnf_ctrl
= er32(EXTCNF_CTRL
);
548 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
551 usleep_range(2000, 4000);
553 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
555 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
556 /* Release semaphores */
557 e1000_put_hw_semaphore_82573(hw
);
558 e_dbg("Driver can't access the PHY\n");
559 return -E1000_ERR_PHY
;
566 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
567 * @hw: pointer to the HW structure
569 * Release hardware semaphore used during reset.
572 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
576 extcnf_ctrl
= er32(EXTCNF_CTRL
);
577 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
578 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
581 static DEFINE_MUTEX(swflag_mutex
);
584 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
585 * @hw: pointer to the HW structure
587 * Acquire the HW semaphore to access the PHY or NVM.
590 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
594 mutex_lock(&swflag_mutex
);
595 ret_val
= e1000_get_hw_semaphore_82573(hw
);
597 mutex_unlock(&swflag_mutex
);
602 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
603 * @hw: pointer to the HW structure
605 * Release hardware semaphore used to access the PHY or NVM
608 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
610 e1000_put_hw_semaphore_82573(hw
);
611 mutex_unlock(&swflag_mutex
);
615 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
616 * @hw: pointer to the HW structure
617 * @active: true to enable LPLU, false to disable
619 * Sets the LPLU D0 state according to the active flag.
620 * LPLU will not be activated unless the
621 * device autonegotiation advertisement meets standards of
622 * either 10 or 10/100 or 10/100/1000 at all duplexes.
623 * This is a function pointer entry point only called by
624 * PHY setup routines.
626 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
628 u32 data
= er32(POEMB
);
631 data
|= E1000_PHY_CTRL_D0A_LPLU
;
633 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
640 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
641 * @hw: pointer to the HW structure
642 * @active: boolean used to enable/disable lplu
644 * The low power link up (lplu) state is set to the power management level D3
645 * when active is true, else clear lplu for D3. LPLU
646 * is used during Dx states where the power conservation is most important.
647 * During driver activity, SmartSpeed should be enabled so performance is
650 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
652 u32 data
= er32(POEMB
);
655 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
656 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
657 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
658 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
659 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
667 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
668 * @hw: pointer to the HW structure
670 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
671 * Then for non-82573 hardware, set the EEPROM access request bit and wait
672 * for EEPROM access grant bit. If the access grant bit is not set, release
673 * hardware semaphore.
675 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
679 ret_val
= e1000_get_hw_semaphore_82571(hw
);
683 switch (hw
->mac
.type
) {
687 ret_val
= e1000e_acquire_nvm(hw
);
692 e1000_put_hw_semaphore_82571(hw
);
698 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
699 * @hw: pointer to the HW structure
701 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
703 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
705 e1000e_release_nvm(hw
);
706 e1000_put_hw_semaphore_82571(hw
);
710 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
711 * @hw: pointer to the HW structure
712 * @offset: offset within the EEPROM to be written to
713 * @words: number of words to write
714 * @data: 16 bit word(s) to be written to the EEPROM
716 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
718 * If e1000e_update_nvm_checksum is not called after this function, the
719 * EEPROM will most likely contain an invalid checksum.
721 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
726 switch (hw
->mac
.type
) {
730 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
734 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
737 ret_val
= -E1000_ERR_NVM
;
745 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
746 * @hw: pointer to the HW structure
748 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
749 * up to the checksum. Then calculates the EEPROM checksum and writes the
750 * value to the EEPROM.
752 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
758 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
762 /* If our nvm is an EEPROM, then we're done
763 * otherwise, commit the checksum to the flash NVM.
765 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
768 /* Check for pending operations. */
769 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
770 usleep_range(1000, 2000);
771 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
775 if (i
== E1000_FLASH_UPDATES
)
776 return -E1000_ERR_NVM
;
778 /* Reset the firmware if using STM opcode. */
779 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
780 /* The enabling of and the actual reset must be done
781 * in two write cycles.
783 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
785 ew32(HICR
, E1000_HICR_FW_RESET
);
788 /* Commit the write to flash */
789 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
792 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
793 usleep_range(1000, 2000);
794 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
798 if (i
== E1000_FLASH_UPDATES
)
799 return -E1000_ERR_NVM
;
805 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
806 * @hw: pointer to the HW structure
808 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
809 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
811 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
813 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
814 e1000_fix_nvm_checksum_82571(hw
);
816 return e1000e_validate_nvm_checksum_generic(hw
);
820 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
821 * @hw: pointer to the HW structure
822 * @offset: offset within the EEPROM to be written to
823 * @words: number of words to write
824 * @data: 16 bit word(s) to be written to the EEPROM
826 * After checking for invalid values, poll the EEPROM to ensure the previous
827 * command has completed before trying to write the next word. After write
828 * poll for completion.
830 * If e1000e_update_nvm_checksum is not called after this function, the
831 * EEPROM will most likely contain an invalid checksum.
833 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
834 u16 words
, u16
*data
)
836 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
840 /* A check for invalid values: offset too large, too many words,
841 * and not enough words.
843 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
845 e_dbg("nvm parameter(s) out of bounds\n");
846 return -E1000_ERR_NVM
;
849 for (i
= 0; i
< words
; i
++) {
850 eewr
= ((data
[i
] << E1000_NVM_RW_REG_DATA
) |
851 ((offset
+ i
) << E1000_NVM_RW_ADDR_SHIFT
) |
852 E1000_NVM_RW_REG_START
);
854 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
860 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
869 * e1000_get_cfg_done_82571 - Poll for configuration done
870 * @hw: pointer to the HW structure
872 * Reads the management control register for the config done bit to be set.
874 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
876 s32 timeout
= PHY_CFG_TIMEOUT
;
879 if (er32(EEMNGCTL
) & E1000_NVM_CFG_DONE_PORT_0
)
881 usleep_range(1000, 2000);
885 e_dbg("MNG configuration cycle has not completed.\n");
886 return -E1000_ERR_RESET
;
893 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
894 * @hw: pointer to the HW structure
895 * @active: true to enable LPLU, false to disable
897 * Sets the LPLU D0 state according to the active flag. When activating LPLU
898 * this function also disables smart speed and vice versa. LPLU will not be
899 * activated unless the device autonegotiation advertisement meets standards
900 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
901 * pointer entry point only called by PHY setup routines.
903 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
905 struct e1000_phy_info
*phy
= &hw
->phy
;
909 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
914 data
|= IGP02E1000_PM_D0_LPLU
;
915 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
919 /* When LPLU is enabled, we should disable SmartSpeed */
920 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
923 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
924 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
928 data
&= ~IGP02E1000_PM_D0_LPLU
;
929 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
930 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
931 * during Dx states where the power conservation is most
932 * important. During driver activity we should enable
933 * SmartSpeed, so performance is maintained.
935 if (phy
->smart_speed
== e1000_smart_speed_on
) {
936 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
941 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
942 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
946 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
947 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
952 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
953 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
964 * e1000_reset_hw_82571 - Reset hardware
965 * @hw: pointer to the HW structure
967 * This resets the hardware into a known state.
969 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
971 u32 ctrl
, ctrl_ext
, eecd
, tctl
;
974 /* Prevent the PCI-E bus from sticking if there is no TLP connection
975 * on the last TLP read/write transaction when MAC is reset.
977 ret_val
= e1000e_disable_pcie_master(hw
);
979 e_dbg("PCI-E Master disable polling has failed.\n");
981 e_dbg("Masking off all interrupts\n");
982 ew32(IMC
, 0xffffffff);
986 tctl
&= ~E1000_TCTL_EN
;
990 usleep_range(10000, 20000);
992 /* Must acquire the MDIO ownership before MAC reset.
993 * Ownership defaults to firmware after a reset.
995 switch (hw
->mac
.type
) {
997 ret_val
= e1000_get_hw_semaphore_82573(hw
);
1001 ret_val
= e1000_get_hw_semaphore_82574(hw
);
1009 e_dbg("Issuing a global reset to MAC\n");
1010 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
1012 /* Must release MDIO ownership and mutex after MAC reset. */
1013 switch (hw
->mac
.type
) {
1016 /* Release mutex only if the hw semaphore is acquired */
1018 e1000_put_hw_semaphore_82574(hw
);
1024 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1025 usleep_range(10, 20);
1026 ctrl_ext
= er32(CTRL_EXT
);
1027 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1028 ew32(CTRL_EXT
, ctrl_ext
);
1032 ret_val
= e1000e_get_auto_rd_done(hw
);
1034 /* We don't want to continue accessing MAC registers. */
1037 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1038 * Need to wait for Phy configuration completion before accessing
1042 switch (hw
->mac
.type
) {
1045 /* REQ and GNT bits need to be cleared when using AUTO_RD
1046 * to access the EEPROM.
1049 eecd
&= ~(E1000_EECD_REQ
| E1000_EECD_GNT
);
1061 /* Clear any pending interrupt events. */
1062 ew32(IMC
, 0xffffffff);
1065 if (hw
->mac
.type
== e1000_82571
) {
1066 /* Install any alternate MAC address into RAR0 */
1067 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1071 e1000e_set_laa_state_82571(hw
, true);
1074 /* Reinitialize the 82571 serdes link state machine */
1075 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1076 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1082 * e1000_init_hw_82571 - Initialize hardware
1083 * @hw: pointer to the HW structure
1085 * This inits the hardware readying it for operation.
1087 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1089 struct e1000_mac_info
*mac
= &hw
->mac
;
1092 u16 i
, rar_count
= mac
->rar_entry_count
;
1094 e1000_initialize_hw_bits_82571(hw
);
1096 /* Initialize identification LED */
1097 ret_val
= mac
->ops
.id_led_init(hw
);
1098 /* An error is not fatal and we should not stop init due to this */
1100 e_dbg("Error initializing identification LED\n");
1102 /* Disabling VLAN filtering */
1103 e_dbg("Initializing the IEEE VLAN\n");
1104 mac
->ops
.clear_vfta(hw
);
1106 /* Setup the receive address.
1107 * If, however, a locally administered address was assigned to the
1108 * 82571, we must reserve a RAR for it to work around an issue where
1109 * resetting one port will reload the MAC on the other port.
1111 if (e1000e_get_laa_state_82571(hw
))
1113 e1000e_init_rx_addrs(hw
, rar_count
);
1115 /* Zero out the Multicast HASH table */
1116 e_dbg("Zeroing the MTA\n");
1117 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1118 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1120 /* Setup link and flow control */
1121 ret_val
= mac
->ops
.setup_link(hw
);
1123 /* Set the transmit descriptor write-back policy */
1124 reg_data
= er32(TXDCTL(0));
1125 reg_data
= ((reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1126 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
);
1127 ew32(TXDCTL(0), reg_data
);
1129 /* ...for both queues. */
1130 switch (mac
->type
) {
1132 e1000e_enable_tx_pkt_filtering(hw
);
1136 reg_data
= er32(GCR
);
1137 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1138 ew32(GCR
, reg_data
);
1141 reg_data
= er32(TXDCTL(1));
1142 reg_data
= ((reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1143 E1000_TXDCTL_FULL_TX_DESC_WB
|
1144 E1000_TXDCTL_COUNT_DESC
);
1145 ew32(TXDCTL(1), reg_data
);
1149 /* Clear all of the statistics registers (clear on read). It is
1150 * important that we do this after we have tried to establish link
1151 * because the symbol error count will increment wildly if there
1154 e1000_clear_hw_cntrs_82571(hw
);
1160 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1161 * @hw: pointer to the HW structure
1163 * Initializes required hardware-dependent bits needed for normal operation.
1165 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1169 /* Transmit Descriptor Control 0 */
1170 reg
= er32(TXDCTL(0));
1172 ew32(TXDCTL(0), reg
);
1174 /* Transmit Descriptor Control 1 */
1175 reg
= er32(TXDCTL(1));
1177 ew32(TXDCTL(1), reg
);
1179 /* Transmit Arbitration Control 0 */
1180 reg
= er32(TARC(0));
1181 reg
&= ~(0xF << 27); /* 30:27 */
1182 switch (hw
->mac
.type
) {
1185 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1196 /* Transmit Arbitration Control 1 */
1197 reg
= er32(TARC(1));
1198 switch (hw
->mac
.type
) {
1201 reg
&= ~((1 << 29) | (1 << 30));
1202 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1203 if (er32(TCTL
) & E1000_TCTL_MULR
)
1213 /* Device Control */
1214 switch (hw
->mac
.type
) {
1226 /* Extended Device Control */
1227 switch (hw
->mac
.type
) {
1231 reg
= er32(CTRL_EXT
);
1234 ew32(CTRL_EXT
, reg
);
1240 if (hw
->mac
.type
== e1000_82571
) {
1241 reg
= er32(PBA_ECC
);
1242 reg
|= E1000_PBA_ECC_CORR_EN
;
1246 /* Workaround for hardware errata.
1247 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1249 if ((hw
->mac
.type
== e1000_82571
) || (hw
->mac
.type
== e1000_82572
)) {
1250 reg
= er32(CTRL_EXT
);
1251 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1252 ew32(CTRL_EXT
, reg
);
1255 /* Disable IPv6 extension header parsing because some malformed
1256 * IPv6 headers can hang the Rx.
1258 if (hw
->mac
.type
<= e1000_82573
) {
1260 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1264 /* PCI-Ex Control Registers */
1265 switch (hw
->mac
.type
) {
1272 /* Workaround for hardware errata.
1273 * apply workaround for hardware errata documented in errata
1274 * docs Fixes issue where some error prone or unreliable PCIe
1275 * completions are occurring, particularly with ASPM enabled.
1276 * Without fix, issue can cause Tx timeouts.
1288 * e1000_clear_vfta_82571 - Clear VLAN filter table
1289 * @hw: pointer to the HW structure
1291 * Clears the register array which contains the VLAN filter table by
1292 * setting all the values to 0.
1294 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1298 u32 vfta_offset
= 0;
1299 u32 vfta_bit_in_reg
= 0;
1301 switch (hw
->mac
.type
) {
1305 if (hw
->mng_cookie
.vlan_id
!= 0) {
1306 /* The VFTA is a 4096b bit-field, each identifying
1307 * a single VLAN ID. The following operations
1308 * determine which 32b entry (i.e. offset) into the
1309 * array we want to set the VLAN ID (i.e. bit) of
1310 * the manageability unit.
1312 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1313 E1000_VFTA_ENTRY_SHIFT
) &
1314 E1000_VFTA_ENTRY_MASK
;
1316 1 << (hw
->mng_cookie
.vlan_id
&
1317 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1323 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1324 /* If the offset we want to clear is the same offset of the
1325 * manageability VLAN ID, then clear all bits except that of
1326 * the manageability unit.
1328 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1329 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1335 * e1000_check_mng_mode_82574 - Check manageability is enabled
1336 * @hw: pointer to the HW structure
1338 * Reads the NVM Initialization Control Word 2 and returns true
1339 * (>0) if any manageability is enabled, else false (0).
1341 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1345 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1346 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1350 * e1000_led_on_82574 - Turn LED on
1351 * @hw: pointer to the HW structure
1355 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1360 ctrl
= hw
->mac
.ledctl_mode2
;
1361 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1362 /* If no link, then turn LED on by setting the invert bit
1363 * for each LED that's "on" (0x0E) in ledctl_mode2.
1365 for (i
= 0; i
< 4; i
++)
1366 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1367 E1000_LEDCTL_MODE_LED_ON
)
1368 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1376 * e1000_check_phy_82574 - check 82574 phy hung state
1377 * @hw: pointer to the HW structure
1379 * Returns whether phy is hung or not
1381 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1383 u16 status_1kbt
= 0;
1384 u16 receive_errors
= 0;
1387 /* Read PHY Receive Error counter first, if its is max - all F's then
1388 * read the Base1000T status register If both are max then PHY is hung.
1390 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1393 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1394 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1397 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1398 E1000_IDLE_ERROR_COUNT_MASK
)
1406 * e1000_setup_link_82571 - Setup flow control and link settings
1407 * @hw: pointer to the HW structure
1409 * Determines which flow control settings to use, then configures flow
1410 * control. Calls the appropriate media-specific link configuration
1411 * function. Assuming the adapter has a valid link partner, a valid link
1412 * should be established. Assumes the hardware has previously been reset
1413 * and the transmitter and receiver are not enabled.
1415 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1417 /* 82573 does not have a word in the NVM to determine
1418 * the default flow control setting, so we explicitly
1421 switch (hw
->mac
.type
) {
1425 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1426 hw
->fc
.requested_mode
= e1000_fc_full
;
1432 return e1000e_setup_link_generic(hw
);
1436 * e1000_setup_copper_link_82571 - Configure copper link settings
1437 * @hw: pointer to the HW structure
1439 * Configures the link for auto-neg or forced speed and duplex. Then we check
1440 * for link, once link is established calls to configure collision distance
1441 * and flow control are called.
1443 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1449 ctrl
|= E1000_CTRL_SLU
;
1450 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1453 switch (hw
->phy
.type
) {
1456 ret_val
= e1000e_copper_link_setup_m88(hw
);
1458 case e1000_phy_igp_2
:
1459 ret_val
= e1000e_copper_link_setup_igp(hw
);
1462 return -E1000_ERR_PHY
;
1469 return e1000e_setup_copper_link(hw
);
1473 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1474 * @hw: pointer to the HW structure
1476 * Configures collision distance and flow control for fiber and serdes links.
1477 * Upon successful setup, poll for link.
1479 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1481 switch (hw
->mac
.type
) {
1484 /* If SerDes loopback mode is entered, there is no form
1485 * of reset to take the adapter out of that mode. So we
1486 * have to explicitly take the adapter out of loopback
1487 * mode. This prevents drivers from twiddling their thumbs
1488 * if another tool failed to take it out of loopback mode.
1490 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1496 return e1000e_setup_fiber_serdes_link(hw
);
1500 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1501 * @hw: pointer to the HW structure
1503 * Reports the link state as up or down.
1505 * If autonegotiation is supported by the link partner, the link state is
1506 * determined by the result of autonegotiation. This is the most likely case.
1507 * If autonegotiation is not supported by the link partner, and the link
1508 * has a valid signal, force the link up.
1510 * The link state is represented internally here by 4 states:
1513 * 2) autoneg_progress
1514 * 3) autoneg_complete (the link successfully autonegotiated)
1515 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1518 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1520 struct e1000_mac_info
*mac
= &hw
->mac
;
1529 status
= er32(STATUS
);
1531 /* SYNCH bit and IV bit are sticky */
1532 usleep_range(10, 20);
1535 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1536 /* Receiver is synchronized with no invalid bits. */
1537 switch (mac
->serdes_link_state
) {
1538 case e1000_serdes_link_autoneg_complete
:
1539 if (!(status
& E1000_STATUS_LU
)) {
1540 /* We have lost link, retry autoneg before
1541 * reporting link failure
1543 mac
->serdes_link_state
=
1544 e1000_serdes_link_autoneg_progress
;
1545 mac
->serdes_has_link
= false;
1546 e_dbg("AN_UP -> AN_PROG\n");
1548 mac
->serdes_has_link
= true;
1552 case e1000_serdes_link_forced_up
:
1553 /* If we are receiving /C/ ordered sets, re-enable
1554 * auto-negotiation in the TXCW register and disable
1555 * forced link in the Device Control register in an
1556 * attempt to auto-negotiate with our link partner.
1558 if (rxcw
& E1000_RXCW_C
) {
1559 /* Enable autoneg, and unforce link up */
1560 ew32(TXCW
, mac
->txcw
);
1561 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1562 mac
->serdes_link_state
=
1563 e1000_serdes_link_autoneg_progress
;
1564 mac
->serdes_has_link
= false;
1565 e_dbg("FORCED_UP -> AN_PROG\n");
1567 mac
->serdes_has_link
= true;
1571 case e1000_serdes_link_autoneg_progress
:
1572 if (rxcw
& E1000_RXCW_C
) {
1573 /* We received /C/ ordered sets, meaning the
1574 * link partner has autonegotiated, and we can
1575 * trust the Link Up (LU) status bit.
1577 if (status
& E1000_STATUS_LU
) {
1578 mac
->serdes_link_state
=
1579 e1000_serdes_link_autoneg_complete
;
1580 e_dbg("AN_PROG -> AN_UP\n");
1581 mac
->serdes_has_link
= true;
1583 /* Autoneg completed, but failed. */
1584 mac
->serdes_link_state
=
1585 e1000_serdes_link_down
;
1586 e_dbg("AN_PROG -> DOWN\n");
1589 /* The link partner did not autoneg.
1590 * Force link up and full duplex, and change
1593 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1594 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1597 /* Configure Flow Control after link up. */
1598 ret_val
= e1000e_config_fc_after_link_up(hw
);
1600 e_dbg("Error config flow control\n");
1603 mac
->serdes_link_state
=
1604 e1000_serdes_link_forced_up
;
1605 mac
->serdes_has_link
= true;
1606 e_dbg("AN_PROG -> FORCED_UP\n");
1610 case e1000_serdes_link_down
:
1612 /* The link was down but the receiver has now gained
1613 * valid sync, so lets see if we can bring the link
1616 ew32(TXCW
, mac
->txcw
);
1617 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1618 mac
->serdes_link_state
=
1619 e1000_serdes_link_autoneg_progress
;
1620 mac
->serdes_has_link
= false;
1621 e_dbg("DOWN -> AN_PROG\n");
1625 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1626 mac
->serdes_has_link
= false;
1627 mac
->serdes_link_state
= e1000_serdes_link_down
;
1628 e_dbg("ANYSTATE -> DOWN\n");
1630 /* Check several times, if SYNCH bit and CONFIG
1631 * bit both are consistently 1 then simply ignore
1632 * the IV bit and restart Autoneg
1634 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1635 usleep_range(10, 20);
1637 if ((rxcw
& E1000_RXCW_SYNCH
) &&
1638 (rxcw
& E1000_RXCW_C
))
1641 if (rxcw
& E1000_RXCW_IV
) {
1642 mac
->serdes_has_link
= false;
1643 mac
->serdes_link_state
=
1644 e1000_serdes_link_down
;
1645 e_dbg("ANYSTATE -> DOWN\n");
1650 if (i
== AN_RETRY_COUNT
) {
1652 txcw
|= E1000_TXCW_ANE
;
1654 mac
->serdes_link_state
=
1655 e1000_serdes_link_autoneg_progress
;
1656 mac
->serdes_has_link
= false;
1657 e_dbg("ANYSTATE -> AN_PROG\n");
1666 * e1000_valid_led_default_82571 - Verify a valid default LED config
1667 * @hw: pointer to the HW structure
1668 * @data: pointer to the NVM (EEPROM)
1670 * Read the EEPROM for the current default LED configuration. If the
1671 * LED configuration is not valid, set to a valid LED configuration.
1673 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1677 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1679 e_dbg("NVM Read Error\n");
1683 switch (hw
->mac
.type
) {
1687 if (*data
== ID_LED_RESERVED_F746
)
1688 *data
= ID_LED_DEFAULT_82573
;
1691 if (*data
== ID_LED_RESERVED_0000
||
1692 *data
== ID_LED_RESERVED_FFFF
)
1693 *data
= ID_LED_DEFAULT
;
1701 * e1000e_get_laa_state_82571 - Get locally administered address state
1702 * @hw: pointer to the HW structure
1704 * Retrieve and return the current locally administered address state.
1706 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1708 if (hw
->mac
.type
!= e1000_82571
)
1711 return hw
->dev_spec
.e82571
.laa_is_present
;
1715 * e1000e_set_laa_state_82571 - Set locally administered address state
1716 * @hw: pointer to the HW structure
1717 * @state: enable/disable locally administered address
1719 * Enable/Disable the current locally administered address state.
1721 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1723 if (hw
->mac
.type
!= e1000_82571
)
1726 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1728 /* If workaround is activated... */
1730 /* Hold a copy of the LAA in RAR[14] This is done so that
1731 * between the time RAR[0] gets clobbered and the time it
1732 * gets fixed, the actual LAA is in one of the RARs and no
1733 * incoming packets directed to this port are dropped.
1734 * Eventually the LAA will be in RAR[0] and RAR[14].
1736 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
,
1737 hw
->mac
.rar_entry_count
- 1);
1741 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1742 * @hw: pointer to the HW structure
1744 * Verifies that the EEPROM has completed the update. After updating the
1745 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1746 * the checksum fix is not implemented, we need to set the bit and update
1747 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1748 * we need to return bad checksum.
1750 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1752 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1756 if (nvm
->type
!= e1000_nvm_flash_hw
)
1759 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1760 * 10h-12h. Checksum may need to be fixed.
1762 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1766 if (!(data
& 0x10)) {
1767 /* Read 0x23 and check bit 15. This bit is a 1
1768 * when the checksum has already been fixed. If
1769 * the checksum is still wrong and this bit is a
1770 * 1, we need to return bad checksum. Otherwise,
1771 * we need to set this bit to a 1 and update the
1774 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1778 if (!(data
& 0x8000)) {
1780 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1783 ret_val
= e1000e_update_nvm_checksum(hw
);
1793 * e1000_read_mac_addr_82571 - Read device MAC address
1794 * @hw: pointer to the HW structure
1796 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1798 if (hw
->mac
.type
== e1000_82571
) {
1801 /* If there's an alternate MAC address place it in RAR0
1802 * so that it will override the Si installed default perm
1805 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1810 return e1000_read_mac_addr_generic(hw
);
1814 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1815 * @hw: pointer to the HW structure
1817 * In the case of a PHY power down to save power, or to turn off link during a
1818 * driver unload, or wake on lan is not enabled, remove the link.
1820 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1822 struct e1000_phy_info
*phy
= &hw
->phy
;
1823 struct e1000_mac_info
*mac
= &hw
->mac
;
1825 if (!phy
->ops
.check_reset_block
)
1828 /* If the management interface is not enabled, then power down */
1829 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1830 e1000_power_down_phy_copper(hw
);
1834 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1835 * @hw: pointer to the HW structure
1837 * Clears the hardware counters by reading the counter registers.
1839 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1841 e1000e_clear_hw_cntrs_base(hw
);
1879 static const struct e1000_mac_operations e82571_mac_ops
= {
1880 /* .check_mng_mode: mac type dependent */
1881 /* .check_for_link: media type dependent */
1882 .id_led_init
= e1000e_id_led_init_generic
,
1883 .cleanup_led
= e1000e_cleanup_led_generic
,
1884 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1885 .get_bus_info
= e1000e_get_bus_info_pcie
,
1886 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1887 /* .get_link_up_info: media type dependent */
1888 /* .led_on: mac type dependent */
1889 .led_off
= e1000e_led_off_generic
,
1890 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1891 .write_vfta
= e1000_write_vfta_generic
,
1892 .clear_vfta
= e1000_clear_vfta_82571
,
1893 .reset_hw
= e1000_reset_hw_82571
,
1894 .init_hw
= e1000_init_hw_82571
,
1895 .setup_link
= e1000_setup_link_82571
,
1896 /* .setup_physical_interface: media type dependent */
1897 .setup_led
= e1000e_setup_led_generic
,
1898 .config_collision_dist
= e1000e_config_collision_dist_generic
,
1899 .read_mac_addr
= e1000_read_mac_addr_82571
,
1900 .rar_set
= e1000e_rar_set_generic
,
1903 static const struct e1000_phy_operations e82_phy_ops_igp
= {
1904 .acquire
= e1000_get_hw_semaphore_82571
,
1905 .check_polarity
= e1000_check_polarity_igp
,
1906 .check_reset_block
= e1000e_check_reset_block_generic
,
1908 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1909 .get_cfg_done
= e1000_get_cfg_done_82571
,
1910 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1911 .get_info
= e1000e_get_phy_info_igp
,
1912 .read_reg
= e1000e_read_phy_reg_igp
,
1913 .release
= e1000_put_hw_semaphore_82571
,
1914 .reset
= e1000e_phy_hw_reset_generic
,
1915 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1916 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1917 .write_reg
= e1000e_write_phy_reg_igp
,
1918 .cfg_on_link_up
= NULL
,
1921 static const struct e1000_phy_operations e82_phy_ops_m88
= {
1922 .acquire
= e1000_get_hw_semaphore_82571
,
1923 .check_polarity
= e1000_check_polarity_m88
,
1924 .check_reset_block
= e1000e_check_reset_block_generic
,
1925 .commit
= e1000e_phy_sw_reset
,
1926 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1927 .get_cfg_done
= e1000e_get_cfg_done_generic
,
1928 .get_cable_length
= e1000e_get_cable_length_m88
,
1929 .get_info
= e1000e_get_phy_info_m88
,
1930 .read_reg
= e1000e_read_phy_reg_m88
,
1931 .release
= e1000_put_hw_semaphore_82571
,
1932 .reset
= e1000e_phy_hw_reset_generic
,
1933 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1934 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1935 .write_reg
= e1000e_write_phy_reg_m88
,
1936 .cfg_on_link_up
= NULL
,
1939 static const struct e1000_phy_operations e82_phy_ops_bm
= {
1940 .acquire
= e1000_get_hw_semaphore_82571
,
1941 .check_polarity
= e1000_check_polarity_m88
,
1942 .check_reset_block
= e1000e_check_reset_block_generic
,
1943 .commit
= e1000e_phy_sw_reset
,
1944 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1945 .get_cfg_done
= e1000e_get_cfg_done_generic
,
1946 .get_cable_length
= e1000e_get_cable_length_m88
,
1947 .get_info
= e1000e_get_phy_info_m88
,
1948 .read_reg
= e1000e_read_phy_reg_bm2
,
1949 .release
= e1000_put_hw_semaphore_82571
,
1950 .reset
= e1000e_phy_hw_reset_generic
,
1951 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1952 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1953 .write_reg
= e1000e_write_phy_reg_bm2
,
1954 .cfg_on_link_up
= NULL
,
1957 static const struct e1000_nvm_operations e82571_nvm_ops
= {
1958 .acquire
= e1000_acquire_nvm_82571
,
1959 .read
= e1000e_read_nvm_eerd
,
1960 .release
= e1000_release_nvm_82571
,
1961 .reload
= e1000e_reload_nvm_generic
,
1962 .update
= e1000_update_nvm_checksum_82571
,
1963 .valid_led_default
= e1000_valid_led_default_82571
,
1964 .validate
= e1000_validate_nvm_checksum_82571
,
1965 .write
= e1000_write_nvm_82571
,
1968 const struct e1000_info e1000_82571_info
= {
1970 .flags
= FLAG_HAS_HW_VLAN_FILTER
1971 | FLAG_HAS_JUMBO_FRAMES
1973 | FLAG_APME_IN_CTRL3
1974 | FLAG_HAS_CTRLEXT_ON_LOAD
1975 | FLAG_HAS_SMART_POWER_DOWN
1976 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1977 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1978 | FLAG_APME_CHECK_PORT_B
,
1979 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
1982 .max_hw_frame_size
= DEFAULT_JUMBO
,
1983 .get_variants
= e1000_get_variants_82571
,
1984 .mac_ops
= &e82571_mac_ops
,
1985 .phy_ops
= &e82_phy_ops_igp
,
1986 .nvm_ops
= &e82571_nvm_ops
,
1989 const struct e1000_info e1000_82572_info
= {
1991 .flags
= FLAG_HAS_HW_VLAN_FILTER
1992 | FLAG_HAS_JUMBO_FRAMES
1994 | FLAG_APME_IN_CTRL3
1995 | FLAG_HAS_CTRLEXT_ON_LOAD
1996 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1997 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2000 .max_hw_frame_size
= DEFAULT_JUMBO
,
2001 .get_variants
= e1000_get_variants_82571
,
2002 .mac_ops
= &e82571_mac_ops
,
2003 .phy_ops
= &e82_phy_ops_igp
,
2004 .nvm_ops
= &e82571_nvm_ops
,
2007 const struct e1000_info e1000_82573_info
= {
2009 .flags
= FLAG_HAS_HW_VLAN_FILTER
2011 | FLAG_APME_IN_CTRL3
2012 | FLAG_HAS_SMART_POWER_DOWN
2014 | FLAG_HAS_SWSM_ON_LOAD
,
2015 .flags2
= FLAG2_DISABLE_ASPM_L1
2016 | FLAG2_DISABLE_ASPM_L0S
,
2018 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2019 .get_variants
= e1000_get_variants_82571
,
2020 .mac_ops
= &e82571_mac_ops
,
2021 .phy_ops
= &e82_phy_ops_m88
,
2022 .nvm_ops
= &e82571_nvm_ops
,
2025 const struct e1000_info e1000_82574_info
= {
2027 .flags
= FLAG_HAS_HW_VLAN_FILTER
2029 | FLAG_HAS_JUMBO_FRAMES
2031 | FLAG_HAS_HW_TIMESTAMP
2032 | FLAG_APME_IN_CTRL3
2033 | FLAG_HAS_SMART_POWER_DOWN
2035 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2036 .flags2
= FLAG2_CHECK_PHY_HANG
2037 | FLAG2_DISABLE_ASPM_L0S
2038 | FLAG2_DISABLE_ASPM_L1
2039 | FLAG2_NO_DISABLE_RX
2042 .max_hw_frame_size
= DEFAULT_JUMBO
,
2043 .get_variants
= e1000_get_variants_82571
,
2044 .mac_ops
= &e82571_mac_ops
,
2045 .phy_ops
= &e82_phy_ops_bm
,
2046 .nvm_ops
= &e82571_nvm_ops
,
2049 const struct e1000_info e1000_82583_info
= {
2051 .flags
= FLAG_HAS_HW_VLAN_FILTER
2053 | FLAG_HAS_HW_TIMESTAMP
2054 | FLAG_APME_IN_CTRL3
2055 | FLAG_HAS_SMART_POWER_DOWN
2057 | FLAG_HAS_JUMBO_FRAMES
2058 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2059 .flags2
= FLAG2_DISABLE_ASPM_L0S
2060 | FLAG2_NO_DISABLE_RX
,
2062 .max_hw_frame_size
= DEFAULT_JUMBO
,
2063 .get_variants
= e1000_get_variants_82571
,
2064 .mac_ops
= &e82571_mac_ops
,
2065 .phy_ops
= &e82_phy_ops_bm
,
2066 .nvm_ops
= &e82571_nvm_ops
,