1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
42 enum { NETDEV_STATS
, E1000_STATS
};
45 char stat_string
[ETH_GSTRING_LEN
];
51 #define E1000_STAT(str, m) { \
53 .type = E1000_STATS, \
54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55 .stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
58 .type = NETDEV_STATS, \
59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
62 static const struct e1000_stats e1000_gstrings_stats
[] = {
63 E1000_STAT("rx_packets", stats
.gprc
),
64 E1000_STAT("tx_packets", stats
.gptc
),
65 E1000_STAT("rx_bytes", stats
.gorc
),
66 E1000_STAT("tx_bytes", stats
.gotc
),
67 E1000_STAT("rx_broadcast", stats
.bprc
),
68 E1000_STAT("tx_broadcast", stats
.bptc
),
69 E1000_STAT("rx_multicast", stats
.mprc
),
70 E1000_STAT("tx_multicast", stats
.mptc
),
71 E1000_NETDEV_STAT("rx_errors", rx_errors
),
72 E1000_NETDEV_STAT("tx_errors", tx_errors
),
73 E1000_NETDEV_STAT("tx_dropped", tx_dropped
),
74 E1000_STAT("multicast", stats
.mprc
),
75 E1000_STAT("collisions", stats
.colc
),
76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors
),
77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors
),
78 E1000_STAT("rx_crc_errors", stats
.crcerrs
),
79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors
),
80 E1000_STAT("rx_no_buffer_count", stats
.rnbc
),
81 E1000_STAT("rx_missed_errors", stats
.mpc
),
82 E1000_STAT("tx_aborted_errors", stats
.ecol
),
83 E1000_STAT("tx_carrier_errors", stats
.tncrs
),
84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors
),
85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors
),
86 E1000_STAT("tx_window_errors", stats
.latecol
),
87 E1000_STAT("tx_abort_late_coll", stats
.latecol
),
88 E1000_STAT("tx_deferred_ok", stats
.dc
),
89 E1000_STAT("tx_single_coll_ok", stats
.scc
),
90 E1000_STAT("tx_multi_coll_ok", stats
.mcc
),
91 E1000_STAT("tx_timeout_count", tx_timeout_count
),
92 E1000_STAT("tx_restart_queue", restart_queue
),
93 E1000_STAT("rx_long_length_errors", stats
.roc
),
94 E1000_STAT("rx_short_length_errors", stats
.ruc
),
95 E1000_STAT("rx_align_errors", stats
.algnerrc
),
96 E1000_STAT("tx_tcp_seg_good", stats
.tsctc
),
97 E1000_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
98 E1000_STAT("rx_flow_control_xon", stats
.xonrxc
),
99 E1000_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
100 E1000_STAT("tx_flow_control_xon", stats
.xontxc
),
101 E1000_STAT("tx_flow_control_xoff", stats
.xofftxc
),
102 E1000_STAT("rx_csum_offload_good", hw_csum_good
),
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err
),
104 E1000_STAT("rx_header_split", rx_hdr_split
),
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed
),
106 E1000_STAT("tx_smbus", stats
.mgptc
),
107 E1000_STAT("rx_smbus", stats
.mgprc
),
108 E1000_STAT("dropped_smbus", stats
.mgpdc
),
109 E1000_STAT("rx_dma_failed", rx_dma_failed
),
110 E1000_STAT("tx_dma_failed", tx_dma_failed
),
111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared
),
112 E1000_STAT("uncorr_ecc_errors", uncorr_errors
),
113 E1000_STAT("corr_ecc_errors", corr_errors
),
116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
119 "Register test (offline)", "Eeprom test (offline)",
120 "Interrupt test (offline)", "Loopback test (offline)",
121 "Link test (on/offline)"
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
126 static int e1000_get_settings(struct net_device
*netdev
,
127 struct ethtool_cmd
*ecmd
)
129 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
130 struct e1000_hw
*hw
= &adapter
->hw
;
133 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
134 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
135 SUPPORTED_10baseT_Full
|
136 SUPPORTED_100baseT_Half
|
137 SUPPORTED_100baseT_Full
|
138 SUPPORTED_1000baseT_Full
|
141 if (hw
->phy
.type
== e1000_phy_ife
)
142 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
143 ecmd
->advertising
= ADVERTISED_TP
;
145 if (hw
->mac
.autoneg
== 1) {
146 ecmd
->advertising
|= ADVERTISED_Autoneg
;
147 /* the e1000 autoneg seems to match ethtool nicely */
148 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
151 ecmd
->port
= PORT_TP
;
152 ecmd
->phy_address
= hw
->phy
.addr
;
153 ecmd
->transceiver
= XCVR_INTERNAL
;
156 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
160 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
164 ecmd
->port
= PORT_FIBRE
;
165 ecmd
->transceiver
= XCVR_EXTERNAL
;
171 if (netif_running(netdev
)) {
172 if (netif_carrier_ok(netdev
)) {
173 speed
= adapter
->link_speed
;
174 ecmd
->duplex
= adapter
->link_duplex
- 1;
177 u32 status
= er32(STATUS
);
178 if (status
& E1000_STATUS_LU
) {
179 if (status
& E1000_STATUS_SPEED_1000
)
181 else if (status
& E1000_STATUS_SPEED_100
)
186 if (status
& E1000_STATUS_FD
)
187 ecmd
->duplex
= DUPLEX_FULL
;
189 ecmd
->duplex
= DUPLEX_HALF
;
193 ethtool_cmd_speed_set(ecmd
, speed
);
194 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
195 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
197 /* MDI-X => 2; MDI =>1; Invalid =>0 */
198 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
199 netif_carrier_ok(netdev
))
200 ecmd
->eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
: ETH_TP_MDI
;
202 ecmd
->eth_tp_mdix
= ETH_TP_MDI_INVALID
;
204 if (hw
->phy
.mdix
== AUTO_ALL_MODES
)
205 ecmd
->eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
207 ecmd
->eth_tp_mdix_ctrl
= hw
->phy
.mdix
;
212 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
214 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
218 /* Make sure dplx is at most 1 bit and lsb of speed is not set
219 * for the switch() below to work
221 if ((spd
& 1) || (dplx
& ~1))
224 /* Fiber NICs only allow 1000 gbps Full duplex */
225 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
226 (spd
!= SPEED_1000
) && (dplx
!= DUPLEX_FULL
)) {
230 switch (spd
+ dplx
) {
231 case SPEED_10
+ DUPLEX_HALF
:
232 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
234 case SPEED_10
+ DUPLEX_FULL
:
235 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
237 case SPEED_100
+ DUPLEX_HALF
:
238 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
240 case SPEED_100
+ DUPLEX_FULL
:
241 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
243 case SPEED_1000
+ DUPLEX_FULL
:
245 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
247 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
252 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
258 e_err("Unsupported Speed/Duplex configuration\n");
262 static int e1000_set_settings(struct net_device
*netdev
,
263 struct ethtool_cmd
*ecmd
)
265 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
266 struct e1000_hw
*hw
= &adapter
->hw
;
268 /* When SoL/IDER sessions are active, autoneg/speed/duplex
271 if (hw
->phy
.ops
.check_reset_block
&&
272 hw
->phy
.ops
.check_reset_block(hw
)) {
273 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
277 /* MDI setting is only allowed when autoneg enabled because
278 * some hardware doesn't allow MDI setting when speed or
281 if (ecmd
->eth_tp_mdix_ctrl
) {
282 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
285 if ((ecmd
->eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
286 (ecmd
->autoneg
!= AUTONEG_ENABLE
)) {
287 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
292 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
293 usleep_range(1000, 2000);
295 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
297 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
298 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
299 ADVERTISED_FIBRE
| ADVERTISED_Autoneg
;
301 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
302 ADVERTISED_TP
| ADVERTISED_Autoneg
;
303 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
304 if (adapter
->fc_autoneg
)
305 hw
->fc
.requested_mode
= e1000_fc_default
;
307 u32 speed
= ethtool_cmd_speed(ecmd
);
308 /* calling this overrides forced MDI setting */
309 if (e1000_set_spd_dplx(adapter
, speed
, ecmd
->duplex
)) {
310 clear_bit(__E1000_RESETTING
, &adapter
->state
);
315 /* MDI-X => 2; MDI => 1; Auto => 3 */
316 if (ecmd
->eth_tp_mdix_ctrl
) {
317 /* fix up the value for auto (3 => 0) as zero is mapped
320 if (ecmd
->eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
321 hw
->phy
.mdix
= AUTO_ALL_MODES
;
323 hw
->phy
.mdix
= ecmd
->eth_tp_mdix_ctrl
;
327 if (netif_running(adapter
->netdev
)) {
328 e1000e_down(adapter
);
331 e1000e_reset(adapter
);
334 clear_bit(__E1000_RESETTING
, &adapter
->state
);
338 static void e1000_get_pauseparam(struct net_device
*netdev
,
339 struct ethtool_pauseparam
*pause
)
341 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
342 struct e1000_hw
*hw
= &adapter
->hw
;
345 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
347 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
349 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
351 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
357 static int e1000_set_pauseparam(struct net_device
*netdev
,
358 struct ethtool_pauseparam
*pause
)
360 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
361 struct e1000_hw
*hw
= &adapter
->hw
;
364 adapter
->fc_autoneg
= pause
->autoneg
;
366 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
367 usleep_range(1000, 2000);
369 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
370 hw
->fc
.requested_mode
= e1000_fc_default
;
371 if (netif_running(adapter
->netdev
)) {
372 e1000e_down(adapter
);
375 e1000e_reset(adapter
);
378 if (pause
->rx_pause
&& pause
->tx_pause
)
379 hw
->fc
.requested_mode
= e1000_fc_full
;
380 else if (pause
->rx_pause
&& !pause
->tx_pause
)
381 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
382 else if (!pause
->rx_pause
&& pause
->tx_pause
)
383 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
384 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
385 hw
->fc
.requested_mode
= e1000_fc_none
;
387 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
389 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
390 retval
= hw
->mac
.ops
.setup_link(hw
);
391 /* implicit goto out */
393 retval
= e1000e_force_mac_fc(hw
);
396 e1000e_set_fc_watermarks(hw
);
401 clear_bit(__E1000_RESETTING
, &adapter
->state
);
405 static u32
e1000_get_msglevel(struct net_device
*netdev
)
407 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
408 return adapter
->msg_enable
;
411 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
413 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
414 adapter
->msg_enable
= data
;
417 static int e1000_get_regs_len(struct net_device __always_unused
*netdev
)
419 #define E1000_REGS_LEN 32 /* overestimate */
420 return E1000_REGS_LEN
* sizeof(u32
);
423 static void e1000_get_regs(struct net_device
*netdev
,
424 struct ethtool_regs
*regs
, void *p
)
426 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
427 struct e1000_hw
*hw
= &adapter
->hw
;
431 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
433 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
434 adapter
->pdev
->device
;
436 regs_buff
[0] = er32(CTRL
);
437 regs_buff
[1] = er32(STATUS
);
439 regs_buff
[2] = er32(RCTL
);
440 regs_buff
[3] = er32(RDLEN(0));
441 regs_buff
[4] = er32(RDH(0));
442 regs_buff
[5] = er32(RDT(0));
443 regs_buff
[6] = er32(RDTR
);
445 regs_buff
[7] = er32(TCTL
);
446 regs_buff
[8] = er32(TDLEN(0));
447 regs_buff
[9] = er32(TDH(0));
448 regs_buff
[10] = er32(TDT(0));
449 regs_buff
[11] = er32(TIDV
);
451 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
453 /* ethtool doesn't use anything past this point, so all this
454 * code is likely legacy junk for apps that may or may not exist
456 if (hw
->phy
.type
== e1000_phy_m88
) {
457 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
458 regs_buff
[13] = (u32
)phy_data
; /* cable length */
459 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
460 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
461 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
462 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
463 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
464 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
465 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
466 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
467 /* phy receive errors */
468 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
469 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
471 regs_buff
[21] = 0; /* was idle_errors */
472 e1e_rphy(hw
, MII_STAT1000
, &phy_data
);
473 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
474 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
477 static int e1000_get_eeprom_len(struct net_device
*netdev
)
479 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
480 return adapter
->hw
.nvm
.word_size
* 2;
483 static int e1000_get_eeprom(struct net_device
*netdev
,
484 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
486 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
487 struct e1000_hw
*hw
= &adapter
->hw
;
494 if (eeprom
->len
== 0)
497 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
499 first_word
= eeprom
->offset
>> 1;
500 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
502 eeprom_buff
= kmalloc(sizeof(u16
) * (last_word
- first_word
+ 1),
507 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
508 ret_val
= e1000_read_nvm(hw
, first_word
,
509 last_word
- first_word
+ 1,
512 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
513 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
521 /* a read error occurred, throw away the result */
522 memset(eeprom_buff
, 0xff, sizeof(u16
) *
523 (last_word
- first_word
+ 1));
525 /* Device's eeprom is always little-endian, word addressable */
526 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
527 le16_to_cpus(&eeprom_buff
[i
]);
530 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
536 static int e1000_set_eeprom(struct net_device
*netdev
,
537 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
539 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
540 struct e1000_hw
*hw
= &adapter
->hw
;
549 if (eeprom
->len
== 0)
553 (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
556 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
559 max_len
= hw
->nvm
.word_size
* 2;
561 first_word
= eeprom
->offset
>> 1;
562 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
563 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
567 ptr
= (void *)eeprom_buff
;
569 if (eeprom
->offset
& 1) {
570 /* need read/modify/write of first changed EEPROM word */
571 /* only the second byte of the word is being modified */
572 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
575 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (!ret_val
))
576 /* need read/modify/write of last changed EEPROM word */
577 /* only the first byte of the word is being modified */
578 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
579 &eeprom_buff
[last_word
- first_word
]);
584 /* Device's eeprom is always little-endian, word addressable */
585 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
586 le16_to_cpus(&eeprom_buff
[i
]);
588 memcpy(ptr
, bytes
, eeprom
->len
);
590 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
591 cpu_to_le16s(&eeprom_buff
[i
]);
593 ret_val
= e1000_write_nvm(hw
, first_word
,
594 last_word
- first_word
+ 1, eeprom_buff
);
599 /* Update the checksum over the first part of the EEPROM if needed
600 * and flush shadow RAM for applicable controllers
602 if ((first_word
<= NVM_CHECKSUM_REG
) ||
603 (hw
->mac
.type
== e1000_82583
) ||
604 (hw
->mac
.type
== e1000_82574
) ||
605 (hw
->mac
.type
== e1000_82573
))
606 ret_val
= e1000e_update_nvm_checksum(hw
);
613 static void e1000_get_drvinfo(struct net_device
*netdev
,
614 struct ethtool_drvinfo
*drvinfo
)
616 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
618 strlcpy(drvinfo
->driver
, e1000e_driver_name
, sizeof(drvinfo
->driver
));
619 strlcpy(drvinfo
->version
, e1000e_driver_version
,
620 sizeof(drvinfo
->version
));
622 /* EEPROM image version # is reported as firmware version # for
625 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
627 (adapter
->eeprom_vers
& 0xF000) >> 12,
628 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
629 (adapter
->eeprom_vers
& 0x000F));
631 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
632 sizeof(drvinfo
->bus_info
));
633 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
634 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
637 static void e1000_get_ringparam(struct net_device
*netdev
,
638 struct ethtool_ringparam
*ring
)
640 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
642 ring
->rx_max_pending
= E1000_MAX_RXD
;
643 ring
->tx_max_pending
= E1000_MAX_TXD
;
644 ring
->rx_pending
= adapter
->rx_ring_count
;
645 ring
->tx_pending
= adapter
->tx_ring_count
;
648 static int e1000_set_ringparam(struct net_device
*netdev
,
649 struct ethtool_ringparam
*ring
)
651 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
652 struct e1000_ring
*temp_tx
= NULL
, *temp_rx
= NULL
;
653 int err
= 0, size
= sizeof(struct e1000_ring
);
654 bool set_tx
= false, set_rx
= false;
655 u16 new_rx_count
, new_tx_count
;
657 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
660 new_rx_count
= clamp_t(u32
, ring
->rx_pending
, E1000_MIN_RXD
,
662 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
664 new_tx_count
= clamp_t(u32
, ring
->tx_pending
, E1000_MIN_TXD
,
666 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
668 if ((new_tx_count
== adapter
->tx_ring_count
) &&
669 (new_rx_count
== adapter
->rx_ring_count
))
673 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
674 usleep_range(1000, 2000);
676 if (!netif_running(adapter
->netdev
)) {
677 /* Set counts now and allocate resources during open() */
678 adapter
->tx_ring
->count
= new_tx_count
;
679 adapter
->rx_ring
->count
= new_rx_count
;
680 adapter
->tx_ring_count
= new_tx_count
;
681 adapter
->rx_ring_count
= new_rx_count
;
685 set_tx
= (new_tx_count
!= adapter
->tx_ring_count
);
686 set_rx
= (new_rx_count
!= adapter
->rx_ring_count
);
688 /* Allocate temporary storage for ring updates */
690 temp_tx
= vmalloc(size
);
697 temp_rx
= vmalloc(size
);
704 e1000e_down(adapter
);
706 /* We can't just free everything and then setup again, because the
707 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
708 * structs. First, attempt to allocate new resources...
711 memcpy(temp_tx
, adapter
->tx_ring
, size
);
712 temp_tx
->count
= new_tx_count
;
713 err
= e1000e_setup_tx_resources(temp_tx
);
718 memcpy(temp_rx
, adapter
->rx_ring
, size
);
719 temp_rx
->count
= new_rx_count
;
720 err
= e1000e_setup_rx_resources(temp_rx
);
725 /* ...then free the old resources and copy back any new ring data */
727 e1000e_free_tx_resources(adapter
->tx_ring
);
728 memcpy(adapter
->tx_ring
, temp_tx
, size
);
729 adapter
->tx_ring_count
= new_tx_count
;
732 e1000e_free_rx_resources(adapter
->rx_ring
);
733 memcpy(adapter
->rx_ring
, temp_rx
, size
);
734 adapter
->rx_ring_count
= new_rx_count
;
739 e1000e_free_tx_resources(temp_tx
);
746 clear_bit(__E1000_RESETTING
, &adapter
->state
);
750 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
751 int reg
, int offset
, u32 mask
, u32 write
)
754 static const u32 test
[] = {
755 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
757 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
758 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
759 (test
[pat
] & write
));
760 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
761 if (val
!= (test
[pat
] & write
& mask
)) {
762 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
763 reg
+ (offset
<< 2), val
,
764 (test
[pat
] & write
& mask
));
772 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
773 int reg
, u32 mask
, u32 write
)
776 __ew32(&adapter
->hw
, reg
, write
& mask
);
777 val
= __er32(&adapter
->hw
, reg
);
778 if ((write
& mask
) != (val
& mask
)) {
779 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
780 reg
, (val
& mask
), (write
& mask
));
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
789 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
792 #define REG_PATTERN_TEST(reg, mask, write) \
793 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
795 #define REG_SET_AND_CHECK(reg, mask, write) \
797 if (reg_set_and_check(adapter, data, reg, mask, write)) \
801 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
803 struct e1000_hw
*hw
= &adapter
->hw
;
804 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
813 /* The status register is Read Only, so a write should fail.
814 * Some bits that get toggled are ignored. There are several bits
815 * on newer hardware that are r/w.
820 case e1000_80003es2lan
:
828 before
= er32(STATUS
);
829 value
= (er32(STATUS
) & toggle
);
830 ew32(STATUS
, toggle
);
831 after
= er32(STATUS
) & toggle
;
832 if (value
!= after
) {
833 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
838 /* restore previous status */
839 ew32(STATUS
, before
);
841 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
842 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
844 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
845 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
848 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
849 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
850 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
851 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
852 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
853 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
854 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
855 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
856 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
859 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
861 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
862 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
863 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
865 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
866 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
867 if (!(adapter
->flags
& FLAG_IS_ICH
))
868 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
869 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
870 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
883 if (mac
->type
== e1000_pch_lpt
)
884 wlock_mac
= (er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
) >>
885 E1000_FWSM_WLOCK_MAC_SHIFT
;
887 for (i
= 0; i
< mac
->rar_entry_count
; i
++) {
888 if (mac
->type
== e1000_pch_lpt
) {
889 /* Cannot test write-protected SHRAL[n] registers */
890 if ((wlock_mac
== 1) || (wlock_mac
&& (i
> wlock_mac
)))
893 /* SHRAH[9] different than the others */
900 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1), mask
,
904 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
905 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
912 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
919 /* Read and add up the contents of the EEPROM */
920 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
921 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
928 /* If Checksum is not Correct return error else test passed */
929 if ((checksum
!= (u16
)NVM_SUM
) && !(*data
))
935 static irqreturn_t
e1000_test_intr(int __always_unused irq
, void *data
)
937 struct net_device
*netdev
= (struct net_device
*)data
;
938 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
939 struct e1000_hw
*hw
= &adapter
->hw
;
941 adapter
->test_icr
|= er32(ICR
);
946 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
948 struct net_device
*netdev
= adapter
->netdev
;
949 struct e1000_hw
*hw
= &adapter
->hw
;
952 u32 irq
= adapter
->pdev
->irq
;
955 int int_mode
= E1000E_INT_MODE_LEGACY
;
959 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
960 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
961 int_mode
= adapter
->int_mode
;
962 e1000e_reset_interrupt_capability(adapter
);
963 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
964 e1000e_set_interrupt_capability(adapter
);
966 /* Hook up test interrupt handler just for this test */
967 if (!request_irq(irq
, e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
970 } else if (request_irq(irq
, e1000_test_intr
, IRQF_SHARED
, netdev
->name
,
976 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
978 /* Disable all the interrupts */
979 ew32(IMC
, 0xFFFFFFFF);
981 usleep_range(10000, 20000);
983 /* Test each interrupt */
984 for (i
= 0; i
< 10; i
++) {
985 /* Interrupt to test */
988 if (adapter
->flags
& FLAG_IS_ICH
) {
990 case E1000_ICR_RXSEQ
:
993 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
994 adapter
->hw
.mac
.type
== e1000_ich9lan
)
1003 /* Disable the interrupt to be reported in
1004 * the cause register and then force the same
1005 * interrupt and see if one gets posted. If
1006 * an interrupt was posted to the bus, the
1009 adapter
->test_icr
= 0;
1013 usleep_range(10000, 20000);
1015 if (adapter
->test_icr
& mask
) {
1021 /* Enable the interrupt to be reported in
1022 * the cause register and then force the same
1023 * interrupt and see if one gets posted. If
1024 * an interrupt was not posted to the bus, the
1027 adapter
->test_icr
= 0;
1031 usleep_range(10000, 20000);
1033 if (!(adapter
->test_icr
& mask
)) {
1039 /* Disable the other interrupts to be reported in
1040 * the cause register and then force the other
1041 * interrupts and see if any get posted. If
1042 * an interrupt was posted to the bus, the
1045 adapter
->test_icr
= 0;
1046 ew32(IMC
, ~mask
& 0x00007FFF);
1047 ew32(ICS
, ~mask
& 0x00007FFF);
1049 usleep_range(10000, 20000);
1051 if (adapter
->test_icr
) {
1058 /* Disable all the interrupts */
1059 ew32(IMC
, 0xFFFFFFFF);
1061 usleep_range(10000, 20000);
1063 /* Unhook test interrupt handler */
1064 free_irq(irq
, netdev
);
1067 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1068 e1000e_reset_interrupt_capability(adapter
);
1069 adapter
->int_mode
= int_mode
;
1070 e1000e_set_interrupt_capability(adapter
);
1076 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1078 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1079 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1080 struct pci_dev
*pdev
= adapter
->pdev
;
1081 struct e1000_buffer
*buffer_info
;
1084 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1085 for (i
= 0; i
< tx_ring
->count
; i
++) {
1086 buffer_info
= &tx_ring
->buffer_info
[i
];
1088 if (buffer_info
->dma
)
1089 dma_unmap_single(&pdev
->dev
,
1091 buffer_info
->length
,
1093 if (buffer_info
->skb
)
1094 dev_kfree_skb(buffer_info
->skb
);
1098 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1099 for (i
= 0; i
< rx_ring
->count
; i
++) {
1100 buffer_info
= &rx_ring
->buffer_info
[i
];
1102 if (buffer_info
->dma
)
1103 dma_unmap_single(&pdev
->dev
,
1105 2048, DMA_FROM_DEVICE
);
1106 if (buffer_info
->skb
)
1107 dev_kfree_skb(buffer_info
->skb
);
1111 if (tx_ring
->desc
) {
1112 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1114 tx_ring
->desc
= NULL
;
1116 if (rx_ring
->desc
) {
1117 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1119 rx_ring
->desc
= NULL
;
1122 kfree(tx_ring
->buffer_info
);
1123 tx_ring
->buffer_info
= NULL
;
1124 kfree(rx_ring
->buffer_info
);
1125 rx_ring
->buffer_info
= NULL
;
1128 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1130 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1131 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1132 struct pci_dev
*pdev
= adapter
->pdev
;
1133 struct e1000_hw
*hw
= &adapter
->hw
;
1138 /* Setup Tx descriptor ring and Tx buffers */
1140 if (!tx_ring
->count
)
1141 tx_ring
->count
= E1000_DEFAULT_TXD
;
1143 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1144 sizeof(struct e1000_buffer
), GFP_KERNEL
);
1145 if (!tx_ring
->buffer_info
) {
1150 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1151 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1152 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1153 &tx_ring
->dma
, GFP_KERNEL
);
1154 if (!tx_ring
->desc
) {
1158 tx_ring
->next_to_use
= 0;
1159 tx_ring
->next_to_clean
= 0;
1161 ew32(TDBAL(0), ((u64
)tx_ring
->dma
& 0x00000000FFFFFFFF));
1162 ew32(TDBAH(0), ((u64
)tx_ring
->dma
>> 32));
1163 ew32(TDLEN(0), tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1166 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1167 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1168 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1170 for (i
= 0; i
< tx_ring
->count
; i
++) {
1171 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1172 struct sk_buff
*skb
;
1173 unsigned int skb_size
= 1024;
1175 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1180 skb_put(skb
, skb_size
);
1181 tx_ring
->buffer_info
[i
].skb
= skb
;
1182 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1183 tx_ring
->buffer_info
[i
].dma
=
1184 dma_map_single(&pdev
->dev
, skb
->data
, skb
->len
,
1186 if (dma_mapping_error(&pdev
->dev
,
1187 tx_ring
->buffer_info
[i
].dma
)) {
1191 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1192 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1193 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1194 E1000_TXD_CMD_IFCS
|
1196 tx_desc
->upper
.data
= 0;
1199 /* Setup Rx descriptor ring and Rx buffers */
1201 if (!rx_ring
->count
)
1202 rx_ring
->count
= E1000_DEFAULT_RXD
;
1204 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1205 sizeof(struct e1000_buffer
), GFP_KERNEL
);
1206 if (!rx_ring
->buffer_info
) {
1211 rx_ring
->size
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
1212 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1213 &rx_ring
->dma
, GFP_KERNEL
);
1214 if (!rx_ring
->desc
) {
1218 rx_ring
->next_to_use
= 0;
1219 rx_ring
->next_to_clean
= 0;
1222 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
1223 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1224 ew32(RDBAL(0), ((u64
)rx_ring
->dma
& 0xFFFFFFFF));
1225 ew32(RDBAH(0), ((u64
)rx_ring
->dma
>> 32));
1226 ew32(RDLEN(0), rx_ring
->size
);
1229 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1230 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1231 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1232 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1233 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1236 for (i
= 0; i
< rx_ring
->count
; i
++) {
1237 union e1000_rx_desc_extended
*rx_desc
;
1238 struct sk_buff
*skb
;
1240 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1245 skb_reserve(skb
, NET_IP_ALIGN
);
1246 rx_ring
->buffer_info
[i
].skb
= skb
;
1247 rx_ring
->buffer_info
[i
].dma
=
1248 dma_map_single(&pdev
->dev
, skb
->data
, 2048,
1250 if (dma_mapping_error(&pdev
->dev
,
1251 rx_ring
->buffer_info
[i
].dma
)) {
1255 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1256 rx_desc
->read
.buffer_addr
=
1257 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1258 memset(skb
->data
, 0x00, skb
->len
);
1264 e1000_free_desc_rings(adapter
);
1268 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1270 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1271 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1272 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1273 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1274 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1277 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1279 struct e1000_hw
*hw
= &adapter
->hw
;
1284 hw
->mac
.autoneg
= 0;
1286 if (hw
->phy
.type
== e1000_phy_ife
) {
1287 /* force 100, set loopback */
1288 e1e_wphy(hw
, MII_BMCR
, 0x6100);
1290 /* Now set up the MAC to the same speed/duplex as the PHY. */
1291 ctrl_reg
= er32(CTRL
);
1292 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1293 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1294 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1295 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1296 E1000_CTRL_FD
); /* Force Duplex to FULL */
1298 ew32(CTRL
, ctrl_reg
);
1300 usleep_range(500, 1000);
1305 /* Specific PHY configuration for loopback */
1306 switch (hw
->phy
.type
) {
1308 /* Auto-MDI/MDIX Off */
1309 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1310 /* reset to update Auto-MDI/MDIX */
1311 e1e_wphy(hw
, MII_BMCR
, 0x9140);
1313 e1e_wphy(hw
, MII_BMCR
, 0x8140);
1315 case e1000_phy_gg82563
:
1316 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1319 /* Set Default MAC Interface speed to 1GB */
1320 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1323 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1324 /* Assert SW reset for above settings to take effect */
1325 hw
->phy
.ops
.commit(hw
);
1326 usleep_range(1000, 2000);
1327 /* Force Full Duplex */
1328 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1329 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1330 /* Set Link Up (in force link) */
1331 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1332 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1334 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1335 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1336 /* Set Early Link Enable */
1337 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1338 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1340 case e1000_phy_82577
:
1341 case e1000_phy_82578
:
1342 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1343 ret_val
= hw
->phy
.ops
.acquire(hw
);
1345 e_err("Cannot setup 1Gbps loopback.\n");
1348 e1000_configure_k1_ich8lan(hw
, false);
1349 hw
->phy
.ops
.release(hw
);
1351 case e1000_phy_82579
:
1352 /* Disable PHY energy detect power down */
1353 e1e_rphy(hw
, PHY_REG(0, 21), &phy_reg
);
1354 e1e_wphy(hw
, PHY_REG(0, 21), phy_reg
& ~(1 << 3));
1355 /* Disable full chip energy detect */
1356 e1e_rphy(hw
, PHY_REG(776, 18), &phy_reg
);
1357 e1e_wphy(hw
, PHY_REG(776, 18), phy_reg
| 1);
1358 /* Enable loopback on the PHY */
1359 e1e_wphy(hw
, I82577_PHY_LBK_CTRL
, 0x8001);
1365 /* force 1000, set loopback */
1366 e1e_wphy(hw
, MII_BMCR
, 0x4140);
1369 /* Now set up the MAC to the same speed/duplex as the PHY. */
1370 ctrl_reg
= er32(CTRL
);
1371 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1372 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1373 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1374 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1375 E1000_CTRL_FD
); /* Force Duplex to FULL */
1377 if (adapter
->flags
& FLAG_IS_ICH
)
1378 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1380 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1381 hw
->phy
.type
== e1000_phy_m88
) {
1382 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1384 /* Set the ILOS bit on the fiber Nic if half duplex link is
1387 if ((er32(STATUS
) & E1000_STATUS_FD
) == 0)
1388 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1391 ew32(CTRL
, ctrl_reg
);
1393 /* Disable the receiver on the PHY so when a cable is plugged in, the
1394 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1396 if (hw
->phy
.type
== e1000_phy_m88
)
1397 e1000_phy_disable_receiver(adapter
);
1399 usleep_range(500, 1000);
1404 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1406 struct e1000_hw
*hw
= &adapter
->hw
;
1407 u32 ctrl
= er32(CTRL
);
1410 /* special requirements for 82571/82572 fiber adapters */
1412 /* jump through hoops to make sure link is up because serdes
1413 * link is hardwired up
1415 ctrl
|= E1000_CTRL_SLU
;
1418 /* disable autoneg */
1423 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1426 /* set invert loss of signal */
1428 ctrl
|= E1000_CTRL_ILOS
;
1432 /* special write to serdes control register to enable SerDes analog
1435 ew32(SCTL
, E1000_SCTL_ENABLE_SERDES_LOOPBACK
);
1437 usleep_range(10000, 20000);
1442 /* only call this for fiber/serdes connections to es2lan */
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1445 struct e1000_hw
*hw
= &adapter
->hw
;
1446 u32 ctrlext
= er32(CTRL_EXT
);
1447 u32 ctrl
= er32(CTRL
);
1449 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1450 * on mac_type 80003es2lan)
1452 adapter
->tx_fifo_head
= ctrlext
;
1454 /* clear the serdes mode bits, putting the device into mac loopback */
1455 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1456 ew32(CTRL_EXT
, ctrlext
);
1458 /* force speed to 1000/FD, link up */
1459 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1460 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1461 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1464 /* set mac loopback */
1466 ctrl
|= E1000_RCTL_LBM_MAC
;
1469 /* set testing mode parameters (no need to reset later) */
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1473 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1478 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1480 struct e1000_hw
*hw
= &adapter
->hw
;
1483 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1484 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1485 switch (hw
->mac
.type
) {
1486 case e1000_80003es2lan
:
1487 return e1000_set_es2lan_mac_loopback(adapter
);
1491 return e1000_set_82571_fiber_loopback(adapter
);
1495 rctl
|= E1000_RCTL_LBM_TCVR
;
1499 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1500 return e1000_integrated_phy_loopback(adapter
);
1506 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1508 struct e1000_hw
*hw
= &adapter
->hw
;
1513 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1516 switch (hw
->mac
.type
) {
1517 case e1000_80003es2lan
:
1518 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1519 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1520 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1521 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1522 adapter
->tx_fifo_head
= 0;
1527 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1528 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1529 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1531 usleep_range(10000, 20000);
1536 hw
->mac
.autoneg
= 1;
1537 if (hw
->phy
.type
== e1000_phy_gg82563
)
1538 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1539 e1e_rphy(hw
, MII_BMCR
, &phy_reg
);
1540 if (phy_reg
& BMCR_LOOPBACK
) {
1541 phy_reg
&= ~BMCR_LOOPBACK
;
1542 e1e_wphy(hw
, MII_BMCR
, phy_reg
);
1543 if (hw
->phy
.ops
.commit
)
1544 hw
->phy
.ops
.commit(hw
);
1550 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1551 unsigned int frame_size
)
1553 memset(skb
->data
, 0xFF, frame_size
);
1555 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1556 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1557 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1560 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1561 unsigned int frame_size
)
1564 if (*(skb
->data
+ 3) == 0xFF)
1565 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1566 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1571 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1573 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1574 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1575 struct pci_dev
*pdev
= adapter
->pdev
;
1576 struct e1000_hw
*hw
= &adapter
->hw
;
1577 struct e1000_buffer
*buffer_info
;
1584 ew32(RDT(0), rx_ring
->count
- 1);
1586 /* Calculate the loop count based on the largest descriptor ring
1587 * The idea is to wrap the largest ring a number of times using 64
1588 * send/receive pairs during each loop
1591 if (rx_ring
->count
<= tx_ring
->count
)
1592 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1594 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1598 /* loop count loop */
1599 for (j
= 0; j
<= lc
; j
++) {
1600 /* send the packets */
1601 for (i
= 0; i
< 64; i
++) {
1602 buffer_info
= &tx_ring
->buffer_info
[k
];
1604 e1000_create_lbtest_frame(buffer_info
->skb
, 1024);
1605 dma_sync_single_for_device(&pdev
->dev
,
1607 buffer_info
->length
,
1610 if (k
== tx_ring
->count
)
1616 time
= jiffies
; /* set the start time for the receive */
1618 /* receive the sent packets */
1620 buffer_info
= &rx_ring
->buffer_info
[l
];
1622 dma_sync_single_for_cpu(&pdev
->dev
,
1623 buffer_info
->dma
, 2048,
1626 ret_val
= e1000_check_lbtest_frame(buffer_info
->skb
,
1631 if (l
== rx_ring
->count
)
1633 /* time + 20 msecs (200 msecs on 2.4) is more than
1634 * enough time to complete the receives, if it's
1635 * exceeded, break and error off
1637 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1638 if (good_cnt
!= 64) {
1639 ret_val
= 13; /* ret_val is the same as mis-compare */
1642 if (jiffies
>= (time
+ 20)) {
1643 ret_val
= 14; /* error code for time out error */
1650 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1652 struct e1000_hw
*hw
= &adapter
->hw
;
1654 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1655 if (hw
->phy
.ops
.check_reset_block
&&
1656 hw
->phy
.ops
.check_reset_block(hw
)) {
1657 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1662 *data
= e1000_setup_desc_rings(adapter
);
1666 *data
= e1000_setup_loopback_test(adapter
);
1670 *data
= e1000_run_loopback_test(adapter
);
1671 e1000_loopback_cleanup(adapter
);
1674 e1000_free_desc_rings(adapter
);
1679 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1681 struct e1000_hw
*hw
= &adapter
->hw
;
1684 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1686 hw
->mac
.serdes_has_link
= false;
1688 /* On some blade server designs, link establishment
1689 * could take as long as 2-3 minutes
1692 hw
->mac
.ops
.check_for_link(hw
);
1693 if (hw
->mac
.serdes_has_link
)
1696 } while (i
++ < 3750);
1700 hw
->mac
.ops
.check_for_link(hw
);
1701 if (hw
->mac
.autoneg
)
1702 /* On some Phy/switch combinations, link establishment
1703 * can take a few seconds more than expected.
1705 msleep_interruptible(5000);
1707 if (!(er32(STATUS
) & E1000_STATUS_LU
))
1713 static int e1000e_get_sset_count(struct net_device __always_unused
*netdev
,
1718 return E1000_TEST_LEN
;
1720 return E1000_STATS_LEN
;
1726 static void e1000_diag_test(struct net_device
*netdev
,
1727 struct ethtool_test
*eth_test
, u64
*data
)
1729 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1730 u16 autoneg_advertised
;
1731 u8 forced_speed_duplex
;
1733 bool if_running
= netif_running(netdev
);
1735 set_bit(__E1000_TESTING
, &adapter
->state
);
1738 /* Get control of and reset hardware */
1739 if (adapter
->flags
& FLAG_HAS_AMT
)
1740 e1000e_get_hw_control(adapter
);
1742 e1000e_power_up_phy(adapter
);
1744 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1745 e1000e_reset(adapter
);
1746 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1749 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1752 /* save speed, duplex, autoneg settings */
1753 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1754 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1755 autoneg
= adapter
->hw
.mac
.autoneg
;
1757 e_info("offline testing starting\n");
1760 /* indicate we're in test mode */
1763 if (e1000_reg_test(adapter
, &data
[0]))
1764 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1766 e1000e_reset(adapter
);
1767 if (e1000_eeprom_test(adapter
, &data
[1]))
1768 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1770 e1000e_reset(adapter
);
1771 if (e1000_intr_test(adapter
, &data
[2]))
1772 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1774 e1000e_reset(adapter
);
1775 if (e1000_loopback_test(adapter
, &data
[3]))
1776 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1778 /* force this routine to wait until autoneg complete/timeout */
1779 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1780 e1000e_reset(adapter
);
1781 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1783 if (e1000_link_test(adapter
, &data
[4]))
1784 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1786 /* restore speed, duplex, autoneg settings */
1787 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1788 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1789 adapter
->hw
.mac
.autoneg
= autoneg
;
1790 e1000e_reset(adapter
);
1792 clear_bit(__E1000_TESTING
, &adapter
->state
);
1798 e_info("online testing starting\n");
1800 /* register, eeprom, intr and loopback tests not run online */
1806 if (e1000_link_test(adapter
, &data
[4]))
1807 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1809 clear_bit(__E1000_TESTING
, &adapter
->state
);
1813 e1000e_reset(adapter
);
1815 if (adapter
->flags
& FLAG_HAS_AMT
)
1816 e1000e_release_hw_control(adapter
);
1819 msleep_interruptible(4 * 1000);
1822 static void e1000_get_wol(struct net_device
*netdev
,
1823 struct ethtool_wolinfo
*wol
)
1825 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1830 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1831 !device_can_wakeup(&adapter
->pdev
->dev
))
1834 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1835 WAKE_BCAST
| WAKE_MAGIC
| WAKE_PHY
;
1837 /* apply any specific unsupported masks here */
1838 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1839 wol
->supported
&= ~WAKE_UCAST
;
1841 if (adapter
->wol
& E1000_WUFC_EX
)
1842 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1845 if (adapter
->wol
& E1000_WUFC_EX
)
1846 wol
->wolopts
|= WAKE_UCAST
;
1847 if (adapter
->wol
& E1000_WUFC_MC
)
1848 wol
->wolopts
|= WAKE_MCAST
;
1849 if (adapter
->wol
& E1000_WUFC_BC
)
1850 wol
->wolopts
|= WAKE_BCAST
;
1851 if (adapter
->wol
& E1000_WUFC_MAG
)
1852 wol
->wolopts
|= WAKE_MAGIC
;
1853 if (adapter
->wol
& E1000_WUFC_LNKC
)
1854 wol
->wolopts
|= WAKE_PHY
;
1857 static int e1000_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1859 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1861 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1862 !device_can_wakeup(&adapter
->pdev
->dev
) ||
1863 (wol
->wolopts
& ~(WAKE_UCAST
| WAKE_MCAST
| WAKE_BCAST
|
1864 WAKE_MAGIC
| WAKE_PHY
)))
1867 /* these settings will always override what we currently have */
1870 if (wol
->wolopts
& WAKE_UCAST
)
1871 adapter
->wol
|= E1000_WUFC_EX
;
1872 if (wol
->wolopts
& WAKE_MCAST
)
1873 adapter
->wol
|= E1000_WUFC_MC
;
1874 if (wol
->wolopts
& WAKE_BCAST
)
1875 adapter
->wol
|= E1000_WUFC_BC
;
1876 if (wol
->wolopts
& WAKE_MAGIC
)
1877 adapter
->wol
|= E1000_WUFC_MAG
;
1878 if (wol
->wolopts
& WAKE_PHY
)
1879 adapter
->wol
|= E1000_WUFC_LNKC
;
1881 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1886 static int e1000_set_phys_id(struct net_device
*netdev
,
1887 enum ethtool_phys_id_state state
)
1889 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1890 struct e1000_hw
*hw
= &adapter
->hw
;
1893 case ETHTOOL_ID_ACTIVE
:
1894 if (!hw
->mac
.ops
.blink_led
)
1895 return 2; /* cycle on/off twice per second */
1897 hw
->mac
.ops
.blink_led(hw
);
1900 case ETHTOOL_ID_INACTIVE
:
1901 if (hw
->phy
.type
== e1000_phy_ife
)
1902 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1903 hw
->mac
.ops
.led_off(hw
);
1904 hw
->mac
.ops
.cleanup_led(hw
);
1908 hw
->mac
.ops
.led_on(hw
);
1911 case ETHTOOL_ID_OFF
:
1912 hw
->mac
.ops
.led_off(hw
);
1918 static int e1000_get_coalesce(struct net_device
*netdev
,
1919 struct ethtool_coalesce
*ec
)
1921 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1923 if (adapter
->itr_setting
<= 4)
1924 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1926 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1931 static int e1000_set_coalesce(struct net_device
*netdev
,
1932 struct ethtool_coalesce
*ec
)
1934 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1936 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1937 ((ec
->rx_coalesce_usecs
> 4) &&
1938 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1939 (ec
->rx_coalesce_usecs
== 2))
1942 if (ec
->rx_coalesce_usecs
== 4) {
1943 adapter
->itr_setting
= 4;
1944 adapter
->itr
= adapter
->itr_setting
;
1945 } else if (ec
->rx_coalesce_usecs
<= 3) {
1946 adapter
->itr
= 20000;
1947 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1949 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1950 adapter
->itr_setting
= adapter
->itr
& ~3;
1953 if (adapter
->itr_setting
!= 0)
1954 e1000e_write_itr(adapter
, adapter
->itr
);
1956 e1000e_write_itr(adapter
, 0);
1961 static int e1000_nway_reset(struct net_device
*netdev
)
1963 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1965 if (!netif_running(netdev
))
1968 if (!adapter
->hw
.mac
.autoneg
)
1971 e1000e_reinit_locked(adapter
);
1976 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1977 struct ethtool_stats __always_unused
*stats
,
1980 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1981 struct rtnl_link_stats64 net_stats
;
1985 e1000e_get_stats64(netdev
, &net_stats
);
1986 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1987 switch (e1000_gstrings_stats
[i
].type
) {
1989 p
= (char *)&net_stats
+
1990 e1000_gstrings_stats
[i
].stat_offset
;
1993 p
= (char *)adapter
+
1994 e1000_gstrings_stats
[i
].stat_offset
;
2001 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
2002 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2006 static void e1000_get_strings(struct net_device __always_unused
*netdev
,
2007 u32 stringset
, u8
*data
)
2012 switch (stringset
) {
2014 memcpy(data
, e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
2017 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
2018 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
2020 p
+= ETH_GSTRING_LEN
;
2026 static int e1000_get_rxnfc(struct net_device
*netdev
,
2027 struct ethtool_rxnfc
*info
,
2028 u32 __always_unused
*rule_locs
)
2032 switch (info
->cmd
) {
2033 case ETHTOOL_GRXFH
: {
2034 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2035 struct e1000_hw
*hw
= &adapter
->hw
;
2036 u32 mrqc
= er32(MRQC
);
2038 if (!(mrqc
& E1000_MRQC_RSS_FIELD_MASK
))
2041 switch (info
->flow_type
) {
2043 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4_TCP
)
2044 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2048 case AH_ESP_V4_FLOW
:
2050 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV4
)
2051 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2054 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6_TCP
)
2055 info
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2059 case AH_ESP_V6_FLOW
:
2061 if (mrqc
& E1000_MRQC_RSS_FIELD_IPV6
)
2062 info
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2074 static int e1000e_get_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
2076 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2077 struct e1000_hw
*hw
= &adapter
->hw
;
2078 u16 cap_addr
, lpa_addr
, pcs_stat_addr
, phy_data
;
2081 if (!(adapter
->flags2
& FLAG2_HAS_EEE
))
2084 switch (hw
->phy
.type
) {
2085 case e1000_phy_82579
:
2086 cap_addr
= I82579_EEE_CAPABILITY
;
2087 lpa_addr
= I82579_EEE_LP_ABILITY
;
2088 pcs_stat_addr
= I82579_EEE_PCS_STATUS
;
2090 case e1000_phy_i217
:
2091 cap_addr
= I217_EEE_CAPABILITY
;
2092 lpa_addr
= I217_EEE_LP_ABILITY
;
2093 pcs_stat_addr
= I217_EEE_PCS_STATUS
;
2099 ret_val
= hw
->phy
.ops
.acquire(hw
);
2103 /* EEE Capability */
2104 ret_val
= e1000_read_emi_reg_locked(hw
, cap_addr
, &phy_data
);
2107 edata
->supported
= mmd_eee_cap_to_ethtool_sup_t(phy_data
);
2109 /* EEE Advertised */
2110 edata
->advertised
= mmd_eee_adv_to_ethtool_adv_t(adapter
->eee_advert
);
2112 /* EEE Link Partner Advertised */
2113 ret_val
= e1000_read_emi_reg_locked(hw
, lpa_addr
, &phy_data
);
2116 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
2118 /* EEE PCS Status */
2119 ret_val
= e1000_read_emi_reg_locked(hw
, pcs_stat_addr
, &phy_data
);
2120 if (hw
->phy
.type
== e1000_phy_82579
)
2124 hw
->phy
.ops
.release(hw
);
2128 /* Result of the EEE auto negotiation - there is no register that
2129 * has the status of the EEE negotiation so do a best-guess based
2130 * on whether Tx or Rx LPI indications have been received.
2132 if (phy_data
& (E1000_EEE_TX_LPI_RCVD
| E1000_EEE_RX_LPI_RCVD
))
2133 edata
->eee_active
= true;
2135 edata
->eee_enabled
= !hw
->dev_spec
.ich8lan
.eee_disable
;
2136 edata
->tx_lpi_enabled
= true;
2137 edata
->tx_lpi_timer
= er32(LPIC
) >> E1000_LPIC_LPIET_SHIFT
;
2142 static int e1000e_set_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
2144 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2145 struct e1000_hw
*hw
= &adapter
->hw
;
2146 struct ethtool_eee eee_curr
;
2149 ret_val
= e1000e_get_eee(netdev
, &eee_curr
);
2153 if (eee_curr
.tx_lpi_enabled
!= edata
->tx_lpi_enabled
) {
2154 e_err("Setting EEE tx-lpi is not supported\n");
2158 if (eee_curr
.tx_lpi_timer
!= edata
->tx_lpi_timer
) {
2159 e_err("Setting EEE Tx LPI timer is not supported\n");
2163 if (edata
->advertised
& ~(ADVERTISE_100_FULL
| ADVERTISE_1000_FULL
)) {
2164 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2168 adapter
->eee_advert
= ethtool_adv_to_mmd_eee_adv_t(edata
->advertised
);
2170 hw
->dev_spec
.ich8lan
.eee_disable
= !edata
->eee_enabled
;
2172 /* reset the link */
2173 if (netif_running(netdev
))
2174 e1000e_reinit_locked(adapter
);
2176 e1000e_reset(adapter
);
2181 static int e1000e_get_ts_info(struct net_device
*netdev
,
2182 struct ethtool_ts_info
*info
)
2184 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2186 ethtool_op_get_ts_info(netdev
, info
);
2188 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
2191 info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
2192 SOF_TIMESTAMPING_RX_HARDWARE
|
2193 SOF_TIMESTAMPING_RAW_HARDWARE
);
2195 info
->tx_types
= (1 << HWTSTAMP_TX_OFF
) | (1 << HWTSTAMP_TX_ON
);
2197 info
->rx_filters
= ((1 << HWTSTAMP_FILTER_NONE
) |
2198 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC
) |
2199 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
) |
2200 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC
) |
2201 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
) |
2202 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC
) |
2203 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
) |
2204 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT
) |
2205 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC
) |
2206 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
) |
2207 (1 << HWTSTAMP_FILTER_ALL
));
2209 if (adapter
->ptp_clock
)
2210 info
->phc_index
= ptp_clock_index(adapter
->ptp_clock
);
2215 static int e1000e_ethtool_begin(struct net_device
*netdev
)
2217 return pm_runtime_get_sync(netdev
->dev
.parent
);
2220 static void e1000e_ethtool_complete(struct net_device
*netdev
)
2222 pm_runtime_put_sync(netdev
->dev
.parent
);
2225 static const struct ethtool_ops e1000_ethtool_ops
= {
2226 .begin
= e1000e_ethtool_begin
,
2227 .complete
= e1000e_ethtool_complete
,
2228 .get_settings
= e1000_get_settings
,
2229 .set_settings
= e1000_set_settings
,
2230 .get_drvinfo
= e1000_get_drvinfo
,
2231 .get_regs_len
= e1000_get_regs_len
,
2232 .get_regs
= e1000_get_regs
,
2233 .get_wol
= e1000_get_wol
,
2234 .set_wol
= e1000_set_wol
,
2235 .get_msglevel
= e1000_get_msglevel
,
2236 .set_msglevel
= e1000_set_msglevel
,
2237 .nway_reset
= e1000_nway_reset
,
2238 .get_link
= ethtool_op_get_link
,
2239 .get_eeprom_len
= e1000_get_eeprom_len
,
2240 .get_eeprom
= e1000_get_eeprom
,
2241 .set_eeprom
= e1000_set_eeprom
,
2242 .get_ringparam
= e1000_get_ringparam
,
2243 .set_ringparam
= e1000_set_ringparam
,
2244 .get_pauseparam
= e1000_get_pauseparam
,
2245 .set_pauseparam
= e1000_set_pauseparam
,
2246 .self_test
= e1000_diag_test
,
2247 .get_strings
= e1000_get_strings
,
2248 .set_phys_id
= e1000_set_phys_id
,
2249 .get_ethtool_stats
= e1000_get_ethtool_stats
,
2250 .get_sset_count
= e1000e_get_sset_count
,
2251 .get_coalesce
= e1000_get_coalesce
,
2252 .set_coalesce
= e1000_set_coalesce
,
2253 .get_rxnfc
= e1000_get_rxnfc
,
2254 .get_ts_info
= e1000e_get_ts_info
,
2255 .get_eee
= e1000e_get_eee
,
2256 .set_eee
= e1000e_set_eee
,
2259 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
2261 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);