Linux 3.11-rc3
[cris-mirror.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
blob59c22bf18701bf6505b13c0f16228a43694e2bb7
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38 #include <linux/pm_runtime.h>
40 #include "e1000.h"
42 enum { NETDEV_STATS, E1000_STATS };
44 struct e1000_stats {
45 char stat_string[ETH_GSTRING_LEN];
46 int type;
47 int sizeof_stat;
48 int stat_offset;
51 #define E1000_STAT(str, m) { \
52 .stat_string = str, \
53 .type = E1000_STATS, \
54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
55 .stat_offset = offsetof(struct e1000_adapter, m) }
56 #define E1000_NETDEV_STAT(str, m) { \
57 .stat_string = str, \
58 .type = NETDEV_STATS, \
59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
60 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
62 static const struct e1000_stats e1000_gstrings_stats[] = {
63 E1000_STAT("rx_packets", stats.gprc),
64 E1000_STAT("tx_packets", stats.gptc),
65 E1000_STAT("rx_bytes", stats.gorc),
66 E1000_STAT("tx_bytes", stats.gotc),
67 E1000_STAT("rx_broadcast", stats.bprc),
68 E1000_STAT("tx_broadcast", stats.bptc),
69 E1000_STAT("rx_multicast", stats.mprc),
70 E1000_STAT("tx_multicast", stats.mptc),
71 E1000_NETDEV_STAT("rx_errors", rx_errors),
72 E1000_NETDEV_STAT("tx_errors", tx_errors),
73 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
74 E1000_STAT("multicast", stats.mprc),
75 E1000_STAT("collisions", stats.colc),
76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
78 E1000_STAT("rx_crc_errors", stats.crcerrs),
79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
80 E1000_STAT("rx_no_buffer_count", stats.rnbc),
81 E1000_STAT("rx_missed_errors", stats.mpc),
82 E1000_STAT("tx_aborted_errors", stats.ecol),
83 E1000_STAT("tx_carrier_errors", stats.tncrs),
84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
86 E1000_STAT("tx_window_errors", stats.latecol),
87 E1000_STAT("tx_abort_late_coll", stats.latecol),
88 E1000_STAT("tx_deferred_ok", stats.dc),
89 E1000_STAT("tx_single_coll_ok", stats.scc),
90 E1000_STAT("tx_multi_coll_ok", stats.mcc),
91 E1000_STAT("tx_timeout_count", tx_timeout_count),
92 E1000_STAT("tx_restart_queue", restart_queue),
93 E1000_STAT("rx_long_length_errors", stats.roc),
94 E1000_STAT("rx_short_length_errors", stats.ruc),
95 E1000_STAT("rx_align_errors", stats.algnerrc),
96 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
97 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
98 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
99 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
100 E1000_STAT("tx_flow_control_xon", stats.xontxc),
101 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
102 E1000_STAT("rx_csum_offload_good", hw_csum_good),
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104 E1000_STAT("rx_header_split", rx_hdr_split),
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106 E1000_STAT("tx_smbus", stats.mgptc),
107 E1000_STAT("rx_smbus", stats.mgprc),
108 E1000_STAT("dropped_smbus", stats.mgpdc),
109 E1000_STAT("rx_dma_failed", rx_dma_failed),
110 E1000_STAT("tx_dma_failed", tx_dma_failed),
111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
112 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
113 E1000_STAT("corr_ecc_errors", corr_errors),
116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
119 "Register test (offline)", "Eeprom test (offline)",
120 "Interrupt test (offline)", "Loopback test (offline)",
121 "Link test (on/offline)"
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
126 static int e1000_get_settings(struct net_device *netdev,
127 struct ethtool_cmd *ecmd)
129 struct e1000_adapter *adapter = netdev_priv(netdev);
130 struct e1000_hw *hw = &adapter->hw;
131 u32 speed;
133 if (hw->phy.media_type == e1000_media_type_copper) {
134 ecmd->supported = (SUPPORTED_10baseT_Half |
135 SUPPORTED_10baseT_Full |
136 SUPPORTED_100baseT_Half |
137 SUPPORTED_100baseT_Full |
138 SUPPORTED_1000baseT_Full |
139 SUPPORTED_Autoneg |
140 SUPPORTED_TP);
141 if (hw->phy.type == e1000_phy_ife)
142 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
143 ecmd->advertising = ADVERTISED_TP;
145 if (hw->mac.autoneg == 1) {
146 ecmd->advertising |= ADVERTISED_Autoneg;
147 /* the e1000 autoneg seems to match ethtool nicely */
148 ecmd->advertising |= hw->phy.autoneg_advertised;
151 ecmd->port = PORT_TP;
152 ecmd->phy_address = hw->phy.addr;
153 ecmd->transceiver = XCVR_INTERNAL;
155 } else {
156 ecmd->supported = (SUPPORTED_1000baseT_Full |
157 SUPPORTED_FIBRE |
158 SUPPORTED_Autoneg);
160 ecmd->advertising = (ADVERTISED_1000baseT_Full |
161 ADVERTISED_FIBRE |
162 ADVERTISED_Autoneg);
164 ecmd->port = PORT_FIBRE;
165 ecmd->transceiver = XCVR_EXTERNAL;
168 speed = -1;
169 ecmd->duplex = -1;
171 if (netif_running(netdev)) {
172 if (netif_carrier_ok(netdev)) {
173 speed = adapter->link_speed;
174 ecmd->duplex = adapter->link_duplex - 1;
176 } else {
177 u32 status = er32(STATUS);
178 if (status & E1000_STATUS_LU) {
179 if (status & E1000_STATUS_SPEED_1000)
180 speed = SPEED_1000;
181 else if (status & E1000_STATUS_SPEED_100)
182 speed = SPEED_100;
183 else
184 speed = SPEED_10;
186 if (status & E1000_STATUS_FD)
187 ecmd->duplex = DUPLEX_FULL;
188 else
189 ecmd->duplex = DUPLEX_HALF;
193 ethtool_cmd_speed_set(ecmd, speed);
194 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
195 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
197 /* MDI-X => 2; MDI =>1; Invalid =>0 */
198 if ((hw->phy.media_type == e1000_media_type_copper) &&
199 netif_carrier_ok(netdev))
200 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
201 else
202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
204 if (hw->phy.mdix == AUTO_ALL_MODES)
205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
206 else
207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
209 return 0;
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
214 struct e1000_mac_info *mac = &adapter->hw.mac;
216 mac->autoneg = 0;
218 /* Make sure dplx is at most 1 bit and lsb of speed is not set
219 * for the switch() below to work
221 if ((spd & 1) || (dplx & ~1))
222 goto err_inval;
224 /* Fiber NICs only allow 1000 gbps Full duplex */
225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
226 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
227 goto err_inval;
230 switch (spd + dplx) {
231 case SPEED_10 + DUPLEX_HALF:
232 mac->forced_speed_duplex = ADVERTISE_10_HALF;
233 break;
234 case SPEED_10 + DUPLEX_FULL:
235 mac->forced_speed_duplex = ADVERTISE_10_FULL;
236 break;
237 case SPEED_100 + DUPLEX_HALF:
238 mac->forced_speed_duplex = ADVERTISE_100_HALF;
239 break;
240 case SPEED_100 + DUPLEX_FULL:
241 mac->forced_speed_duplex = ADVERTISE_100_FULL;
242 break;
243 case SPEED_1000 + DUPLEX_FULL:
244 mac->autoneg = 1;
245 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
246 break;
247 case SPEED_1000 + DUPLEX_HALF: /* not supported */
248 default:
249 goto err_inval;
252 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
253 adapter->hw.phy.mdix = AUTO_ALL_MODES;
255 return 0;
257 err_inval:
258 e_err("Unsupported Speed/Duplex configuration\n");
259 return -EINVAL;
262 static int e1000_set_settings(struct net_device *netdev,
263 struct ethtool_cmd *ecmd)
265 struct e1000_adapter *adapter = netdev_priv(netdev);
266 struct e1000_hw *hw = &adapter->hw;
268 /* When SoL/IDER sessions are active, autoneg/speed/duplex
269 * cannot be changed
271 if (hw->phy.ops.check_reset_block &&
272 hw->phy.ops.check_reset_block(hw)) {
273 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
274 return -EINVAL;
277 /* MDI setting is only allowed when autoneg enabled because
278 * some hardware doesn't allow MDI setting when speed or
279 * duplex is forced.
281 if (ecmd->eth_tp_mdix_ctrl) {
282 if (hw->phy.media_type != e1000_media_type_copper)
283 return -EOPNOTSUPP;
285 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
286 (ecmd->autoneg != AUTONEG_ENABLE)) {
287 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
288 return -EINVAL;
292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 usleep_range(1000, 2000);
295 if (ecmd->autoneg == AUTONEG_ENABLE) {
296 hw->mac.autoneg = 1;
297 if (hw->phy.media_type == e1000_media_type_fiber)
298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 else
301 hw->phy.autoneg_advertised = ecmd->advertising |
302 ADVERTISED_TP | ADVERTISED_Autoneg;
303 ecmd->advertising = hw->phy.autoneg_advertised;
304 if (adapter->fc_autoneg)
305 hw->fc.requested_mode = e1000_fc_default;
306 } else {
307 u32 speed = ethtool_cmd_speed(ecmd);
308 /* calling this overrides forced MDI setting */
309 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
310 clear_bit(__E1000_RESETTING, &adapter->state);
311 return -EINVAL;
315 /* MDI-X => 2; MDI => 1; Auto => 3 */
316 if (ecmd->eth_tp_mdix_ctrl) {
317 /* fix up the value for auto (3 => 0) as zero is mapped
318 * internally to auto
320 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 hw->phy.mdix = AUTO_ALL_MODES;
322 else
323 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
326 /* reset the link */
327 if (netif_running(adapter->netdev)) {
328 e1000e_down(adapter);
329 e1000e_up(adapter);
330 } else {
331 e1000e_reset(adapter);
334 clear_bit(__E1000_RESETTING, &adapter->state);
335 return 0;
338 static void e1000_get_pauseparam(struct net_device *netdev,
339 struct ethtool_pauseparam *pause)
341 struct e1000_adapter *adapter = netdev_priv(netdev);
342 struct e1000_hw *hw = &adapter->hw;
344 pause->autoneg =
345 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
347 if (hw->fc.current_mode == e1000_fc_rx_pause) {
348 pause->rx_pause = 1;
349 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
350 pause->tx_pause = 1;
351 } else if (hw->fc.current_mode == e1000_fc_full) {
352 pause->rx_pause = 1;
353 pause->tx_pause = 1;
357 static int e1000_set_pauseparam(struct net_device *netdev,
358 struct ethtool_pauseparam *pause)
360 struct e1000_adapter *adapter = netdev_priv(netdev);
361 struct e1000_hw *hw = &adapter->hw;
362 int retval = 0;
364 adapter->fc_autoneg = pause->autoneg;
366 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
367 usleep_range(1000, 2000);
369 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
370 hw->fc.requested_mode = e1000_fc_default;
371 if (netif_running(adapter->netdev)) {
372 e1000e_down(adapter);
373 e1000e_up(adapter);
374 } else {
375 e1000e_reset(adapter);
377 } else {
378 if (pause->rx_pause && pause->tx_pause)
379 hw->fc.requested_mode = e1000_fc_full;
380 else if (pause->rx_pause && !pause->tx_pause)
381 hw->fc.requested_mode = e1000_fc_rx_pause;
382 else if (!pause->rx_pause && pause->tx_pause)
383 hw->fc.requested_mode = e1000_fc_tx_pause;
384 else if (!pause->rx_pause && !pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_none;
387 hw->fc.current_mode = hw->fc.requested_mode;
389 if (hw->phy.media_type == e1000_media_type_fiber) {
390 retval = hw->mac.ops.setup_link(hw);
391 /* implicit goto out */
392 } else {
393 retval = e1000e_force_mac_fc(hw);
394 if (retval)
395 goto out;
396 e1000e_set_fc_watermarks(hw);
400 out:
401 clear_bit(__E1000_RESETTING, &adapter->state);
402 return retval;
405 static u32 e1000_get_msglevel(struct net_device *netdev)
407 struct e1000_adapter *adapter = netdev_priv(netdev);
408 return adapter->msg_enable;
411 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
413 struct e1000_adapter *adapter = netdev_priv(netdev);
414 adapter->msg_enable = data;
417 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
419 #define E1000_REGS_LEN 32 /* overestimate */
420 return E1000_REGS_LEN * sizeof(u32);
423 static void e1000_get_regs(struct net_device *netdev,
424 struct ethtool_regs *regs, void *p)
426 struct e1000_adapter *adapter = netdev_priv(netdev);
427 struct e1000_hw *hw = &adapter->hw;
428 u32 *regs_buff = p;
429 u16 phy_data;
431 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
433 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
434 adapter->pdev->device;
436 regs_buff[0] = er32(CTRL);
437 regs_buff[1] = er32(STATUS);
439 regs_buff[2] = er32(RCTL);
440 regs_buff[3] = er32(RDLEN(0));
441 regs_buff[4] = er32(RDH(0));
442 regs_buff[5] = er32(RDT(0));
443 regs_buff[6] = er32(RDTR);
445 regs_buff[7] = er32(TCTL);
446 regs_buff[8] = er32(TDLEN(0));
447 regs_buff[9] = er32(TDH(0));
448 regs_buff[10] = er32(TDT(0));
449 regs_buff[11] = er32(TIDV);
451 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
453 /* ethtool doesn't use anything past this point, so all this
454 * code is likely legacy junk for apps that may or may not exist
456 if (hw->phy.type == e1000_phy_m88) {
457 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
458 regs_buff[13] = (u32)phy_data; /* cable length */
459 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
460 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
461 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
462 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
463 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
464 regs_buff[18] = regs_buff[13]; /* cable polarity */
465 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
466 regs_buff[20] = regs_buff[17]; /* polarity correction */
467 /* phy receive errors */
468 regs_buff[22] = adapter->phy_stats.receive_errors;
469 regs_buff[23] = regs_buff[13]; /* mdix mode */
471 regs_buff[21] = 0; /* was idle_errors */
472 e1e_rphy(hw, MII_STAT1000, &phy_data);
473 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
474 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
477 static int e1000_get_eeprom_len(struct net_device *netdev)
479 struct e1000_adapter *adapter = netdev_priv(netdev);
480 return adapter->hw.nvm.word_size * 2;
483 static int e1000_get_eeprom(struct net_device *netdev,
484 struct ethtool_eeprom *eeprom, u8 *bytes)
486 struct e1000_adapter *adapter = netdev_priv(netdev);
487 struct e1000_hw *hw = &adapter->hw;
488 u16 *eeprom_buff;
489 int first_word;
490 int last_word;
491 int ret_val = 0;
492 u16 i;
494 if (eeprom->len == 0)
495 return -EINVAL;
497 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
499 first_word = eeprom->offset >> 1;
500 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
502 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
503 GFP_KERNEL);
504 if (!eeprom_buff)
505 return -ENOMEM;
507 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
508 ret_val = e1000_read_nvm(hw, first_word,
509 last_word - first_word + 1,
510 eeprom_buff);
511 } else {
512 for (i = 0; i < last_word - first_word + 1; i++) {
513 ret_val = e1000_read_nvm(hw, first_word + i, 1,
514 &eeprom_buff[i]);
515 if (ret_val)
516 break;
520 if (ret_val) {
521 /* a read error occurred, throw away the result */
522 memset(eeprom_buff, 0xff, sizeof(u16) *
523 (last_word - first_word + 1));
524 } else {
525 /* Device's eeprom is always little-endian, word addressable */
526 for (i = 0; i < last_word - first_word + 1; i++)
527 le16_to_cpus(&eeprom_buff[i]);
530 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
531 kfree(eeprom_buff);
533 return ret_val;
536 static int e1000_set_eeprom(struct net_device *netdev,
537 struct ethtool_eeprom *eeprom, u8 *bytes)
539 struct e1000_adapter *adapter = netdev_priv(netdev);
540 struct e1000_hw *hw = &adapter->hw;
541 u16 *eeprom_buff;
542 void *ptr;
543 int max_len;
544 int first_word;
545 int last_word;
546 int ret_val = 0;
547 u16 i;
549 if (eeprom->len == 0)
550 return -EOPNOTSUPP;
552 if (eeprom->magic !=
553 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
554 return -EFAULT;
556 if (adapter->flags & FLAG_READ_ONLY_NVM)
557 return -EINVAL;
559 max_len = hw->nvm.word_size * 2;
561 first_word = eeprom->offset >> 1;
562 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
563 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
564 if (!eeprom_buff)
565 return -ENOMEM;
567 ptr = (void *)eeprom_buff;
569 if (eeprom->offset & 1) {
570 /* need read/modify/write of first changed EEPROM word */
571 /* only the second byte of the word is being modified */
572 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
573 ptr++;
575 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
576 /* need read/modify/write of last changed EEPROM word */
577 /* only the first byte of the word is being modified */
578 ret_val = e1000_read_nvm(hw, last_word, 1,
579 &eeprom_buff[last_word - first_word]);
581 if (ret_val)
582 goto out;
584 /* Device's eeprom is always little-endian, word addressable */
585 for (i = 0; i < last_word - first_word + 1; i++)
586 le16_to_cpus(&eeprom_buff[i]);
588 memcpy(ptr, bytes, eeprom->len);
590 for (i = 0; i < last_word - first_word + 1; i++)
591 cpu_to_le16s(&eeprom_buff[i]);
593 ret_val = e1000_write_nvm(hw, first_word,
594 last_word - first_word + 1, eeprom_buff);
596 if (ret_val)
597 goto out;
599 /* Update the checksum over the first part of the EEPROM if needed
600 * and flush shadow RAM for applicable controllers
602 if ((first_word <= NVM_CHECKSUM_REG) ||
603 (hw->mac.type == e1000_82583) ||
604 (hw->mac.type == e1000_82574) ||
605 (hw->mac.type == e1000_82573))
606 ret_val = e1000e_update_nvm_checksum(hw);
608 out:
609 kfree(eeprom_buff);
610 return ret_val;
613 static void e1000_get_drvinfo(struct net_device *netdev,
614 struct ethtool_drvinfo *drvinfo)
616 struct e1000_adapter *adapter = netdev_priv(netdev);
618 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
619 strlcpy(drvinfo->version, e1000e_driver_version,
620 sizeof(drvinfo->version));
622 /* EEPROM image version # is reported as firmware version # for
623 * PCI-E controllers
625 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
626 "%d.%d-%d",
627 (adapter->eeprom_vers & 0xF000) >> 12,
628 (adapter->eeprom_vers & 0x0FF0) >> 4,
629 (adapter->eeprom_vers & 0x000F));
631 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
632 sizeof(drvinfo->bus_info));
633 drvinfo->regdump_len = e1000_get_regs_len(netdev);
634 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
637 static void e1000_get_ringparam(struct net_device *netdev,
638 struct ethtool_ringparam *ring)
640 struct e1000_adapter *adapter = netdev_priv(netdev);
642 ring->rx_max_pending = E1000_MAX_RXD;
643 ring->tx_max_pending = E1000_MAX_TXD;
644 ring->rx_pending = adapter->rx_ring_count;
645 ring->tx_pending = adapter->tx_ring_count;
648 static int e1000_set_ringparam(struct net_device *netdev,
649 struct ethtool_ringparam *ring)
651 struct e1000_adapter *adapter = netdev_priv(netdev);
652 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
653 int err = 0, size = sizeof(struct e1000_ring);
654 bool set_tx = false, set_rx = false;
655 u16 new_rx_count, new_tx_count;
657 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
658 return -EINVAL;
660 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
661 E1000_MAX_RXD);
662 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
664 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
665 E1000_MAX_TXD);
666 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
668 if ((new_tx_count == adapter->tx_ring_count) &&
669 (new_rx_count == adapter->rx_ring_count))
670 /* nothing to do */
671 return 0;
673 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
674 usleep_range(1000, 2000);
676 if (!netif_running(adapter->netdev)) {
677 /* Set counts now and allocate resources during open() */
678 adapter->tx_ring->count = new_tx_count;
679 adapter->rx_ring->count = new_rx_count;
680 adapter->tx_ring_count = new_tx_count;
681 adapter->rx_ring_count = new_rx_count;
682 goto clear_reset;
685 set_tx = (new_tx_count != adapter->tx_ring_count);
686 set_rx = (new_rx_count != adapter->rx_ring_count);
688 /* Allocate temporary storage for ring updates */
689 if (set_tx) {
690 temp_tx = vmalloc(size);
691 if (!temp_tx) {
692 err = -ENOMEM;
693 goto free_temp;
696 if (set_rx) {
697 temp_rx = vmalloc(size);
698 if (!temp_rx) {
699 err = -ENOMEM;
700 goto free_temp;
704 e1000e_down(adapter);
706 /* We can't just free everything and then setup again, because the
707 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
708 * structs. First, attempt to allocate new resources...
710 if (set_tx) {
711 memcpy(temp_tx, adapter->tx_ring, size);
712 temp_tx->count = new_tx_count;
713 err = e1000e_setup_tx_resources(temp_tx);
714 if (err)
715 goto err_setup;
717 if (set_rx) {
718 memcpy(temp_rx, adapter->rx_ring, size);
719 temp_rx->count = new_rx_count;
720 err = e1000e_setup_rx_resources(temp_rx);
721 if (err)
722 goto err_setup_rx;
725 /* ...then free the old resources and copy back any new ring data */
726 if (set_tx) {
727 e1000e_free_tx_resources(adapter->tx_ring);
728 memcpy(adapter->tx_ring, temp_tx, size);
729 adapter->tx_ring_count = new_tx_count;
731 if (set_rx) {
732 e1000e_free_rx_resources(adapter->rx_ring);
733 memcpy(adapter->rx_ring, temp_rx, size);
734 adapter->rx_ring_count = new_rx_count;
737 err_setup_rx:
738 if (err && set_tx)
739 e1000e_free_tx_resources(temp_tx);
740 err_setup:
741 e1000e_up(adapter);
742 free_temp:
743 vfree(temp_tx);
744 vfree(temp_rx);
745 clear_reset:
746 clear_bit(__E1000_RESETTING, &adapter->state);
747 return err;
750 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
751 int reg, int offset, u32 mask, u32 write)
753 u32 pat, val;
754 static const u32 test[] = {
755 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
757 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
758 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
759 (test[pat] & write));
760 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
761 if (val != (test[pat] & write & mask)) {
762 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
763 reg + (offset << 2), val,
764 (test[pat] & write & mask));
765 *data = reg;
766 return 1;
769 return 0;
772 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
773 int reg, u32 mask, u32 write)
775 u32 val;
776 __ew32(&adapter->hw, reg, write & mask);
777 val = __er32(&adapter->hw, reg);
778 if ((write & mask) != (val & mask)) {
779 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
780 reg, (val & mask), (write & mask));
781 *data = reg;
782 return 1;
784 return 0;
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
788 do { \
789 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
790 return 1; \
791 } while (0)
792 #define REG_PATTERN_TEST(reg, mask, write) \
793 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
795 #define REG_SET_AND_CHECK(reg, mask, write) \
796 do { \
797 if (reg_set_and_check(adapter, data, reg, mask, write)) \
798 return 1; \
799 } while (0)
801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
803 struct e1000_hw *hw = &adapter->hw;
804 struct e1000_mac_info *mac = &adapter->hw.mac;
805 u32 value;
806 u32 before;
807 u32 after;
808 u32 i;
809 u32 toggle;
810 u32 mask;
811 u32 wlock_mac = 0;
813 /* The status register is Read Only, so a write should fail.
814 * Some bits that get toggled are ignored. There are several bits
815 * on newer hardware that are r/w.
817 switch (mac->type) {
818 case e1000_82571:
819 case e1000_82572:
820 case e1000_80003es2lan:
821 toggle = 0x7FFFF3FF;
822 break;
823 default:
824 toggle = 0x7FFFF033;
825 break;
828 before = er32(STATUS);
829 value = (er32(STATUS) & toggle);
830 ew32(STATUS, toggle);
831 after = er32(STATUS) & toggle;
832 if (value != after) {
833 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
834 after, value);
835 *data = 1;
836 return 1;
838 /* restore previous status */
839 ew32(STATUS, before);
841 if (!(adapter->flags & FLAG_IS_ICH)) {
842 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
844 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
845 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
848 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
849 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
850 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
851 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
852 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
853 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
854 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
855 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
856 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
857 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
859 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
861 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
862 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
863 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
865 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
866 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
867 if (!(adapter->flags & FLAG_IS_ICH))
868 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
869 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
870 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
871 mask = 0x8003FFFF;
872 switch (mac->type) {
873 case e1000_ich10lan:
874 case e1000_pchlan:
875 case e1000_pch2lan:
876 case e1000_pch_lpt:
877 mask |= (1 << 18);
878 break;
879 default:
880 break;
883 if (mac->type == e1000_pch_lpt)
884 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
885 E1000_FWSM_WLOCK_MAC_SHIFT;
887 for (i = 0; i < mac->rar_entry_count; i++) {
888 if (mac->type == e1000_pch_lpt) {
889 /* Cannot test write-protected SHRAL[n] registers */
890 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
891 continue;
893 /* SHRAH[9] different than the others */
894 if (i == 10)
895 mask |= (1 << 30);
896 else
897 mask &= ~(1 << 30);
900 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
901 0xFFFFFFFF);
904 for (i = 0; i < mac->mta_reg_count; i++)
905 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
907 *data = 0;
909 return 0;
912 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
914 u16 temp;
915 u16 checksum = 0;
916 u16 i;
918 *data = 0;
919 /* Read and add up the contents of the EEPROM */
920 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
921 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
922 *data = 1;
923 return *data;
925 checksum += temp;
928 /* If Checksum is not Correct return error else test passed */
929 if ((checksum != (u16)NVM_SUM) && !(*data))
930 *data = 2;
932 return *data;
935 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
937 struct net_device *netdev = (struct net_device *)data;
938 struct e1000_adapter *adapter = netdev_priv(netdev);
939 struct e1000_hw *hw = &adapter->hw;
941 adapter->test_icr |= er32(ICR);
943 return IRQ_HANDLED;
946 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
948 struct net_device *netdev = adapter->netdev;
949 struct e1000_hw *hw = &adapter->hw;
950 u32 mask;
951 u32 shared_int = 1;
952 u32 irq = adapter->pdev->irq;
953 int i;
954 int ret_val = 0;
955 int int_mode = E1000E_INT_MODE_LEGACY;
957 *data = 0;
959 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
960 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
961 int_mode = adapter->int_mode;
962 e1000e_reset_interrupt_capability(adapter);
963 adapter->int_mode = E1000E_INT_MODE_LEGACY;
964 e1000e_set_interrupt_capability(adapter);
966 /* Hook up test interrupt handler just for this test */
967 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
968 netdev)) {
969 shared_int = 0;
970 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
971 netdev)) {
972 *data = 1;
973 ret_val = -1;
974 goto out;
976 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
978 /* Disable all the interrupts */
979 ew32(IMC, 0xFFFFFFFF);
980 e1e_flush();
981 usleep_range(10000, 20000);
983 /* Test each interrupt */
984 for (i = 0; i < 10; i++) {
985 /* Interrupt to test */
986 mask = 1 << i;
988 if (adapter->flags & FLAG_IS_ICH) {
989 switch (mask) {
990 case E1000_ICR_RXSEQ:
991 continue;
992 case 0x00000100:
993 if (adapter->hw.mac.type == e1000_ich8lan ||
994 adapter->hw.mac.type == e1000_ich9lan)
995 continue;
996 break;
997 default:
998 break;
1002 if (!shared_int) {
1003 /* Disable the interrupt to be reported in
1004 * the cause register and then force the same
1005 * interrupt and see if one gets posted. If
1006 * an interrupt was posted to the bus, the
1007 * test failed.
1009 adapter->test_icr = 0;
1010 ew32(IMC, mask);
1011 ew32(ICS, mask);
1012 e1e_flush();
1013 usleep_range(10000, 20000);
1015 if (adapter->test_icr & mask) {
1016 *data = 3;
1017 break;
1021 /* Enable the interrupt to be reported in
1022 * the cause register and then force the same
1023 * interrupt and see if one gets posted. If
1024 * an interrupt was not posted to the bus, the
1025 * test failed.
1027 adapter->test_icr = 0;
1028 ew32(IMS, mask);
1029 ew32(ICS, mask);
1030 e1e_flush();
1031 usleep_range(10000, 20000);
1033 if (!(adapter->test_icr & mask)) {
1034 *data = 4;
1035 break;
1038 if (!shared_int) {
1039 /* Disable the other interrupts to be reported in
1040 * the cause register and then force the other
1041 * interrupts and see if any get posted. If
1042 * an interrupt was posted to the bus, the
1043 * test failed.
1045 adapter->test_icr = 0;
1046 ew32(IMC, ~mask & 0x00007FFF);
1047 ew32(ICS, ~mask & 0x00007FFF);
1048 e1e_flush();
1049 usleep_range(10000, 20000);
1051 if (adapter->test_icr) {
1052 *data = 5;
1053 break;
1058 /* Disable all the interrupts */
1059 ew32(IMC, 0xFFFFFFFF);
1060 e1e_flush();
1061 usleep_range(10000, 20000);
1063 /* Unhook test interrupt handler */
1064 free_irq(irq, netdev);
1066 out:
1067 if (int_mode == E1000E_INT_MODE_MSIX) {
1068 e1000e_reset_interrupt_capability(adapter);
1069 adapter->int_mode = int_mode;
1070 e1000e_set_interrupt_capability(adapter);
1073 return ret_val;
1076 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1078 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1079 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1080 struct pci_dev *pdev = adapter->pdev;
1081 struct e1000_buffer *buffer_info;
1082 int i;
1084 if (tx_ring->desc && tx_ring->buffer_info) {
1085 for (i = 0; i < tx_ring->count; i++) {
1086 buffer_info = &tx_ring->buffer_info[i];
1088 if (buffer_info->dma)
1089 dma_unmap_single(&pdev->dev,
1090 buffer_info->dma,
1091 buffer_info->length,
1092 DMA_TO_DEVICE);
1093 if (buffer_info->skb)
1094 dev_kfree_skb(buffer_info->skb);
1098 if (rx_ring->desc && rx_ring->buffer_info) {
1099 for (i = 0; i < rx_ring->count; i++) {
1100 buffer_info = &rx_ring->buffer_info[i];
1102 if (buffer_info->dma)
1103 dma_unmap_single(&pdev->dev,
1104 buffer_info->dma,
1105 2048, DMA_FROM_DEVICE);
1106 if (buffer_info->skb)
1107 dev_kfree_skb(buffer_info->skb);
1111 if (tx_ring->desc) {
1112 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1113 tx_ring->dma);
1114 tx_ring->desc = NULL;
1116 if (rx_ring->desc) {
1117 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1118 rx_ring->dma);
1119 rx_ring->desc = NULL;
1122 kfree(tx_ring->buffer_info);
1123 tx_ring->buffer_info = NULL;
1124 kfree(rx_ring->buffer_info);
1125 rx_ring->buffer_info = NULL;
1128 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1130 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1131 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1132 struct pci_dev *pdev = adapter->pdev;
1133 struct e1000_hw *hw = &adapter->hw;
1134 u32 rctl;
1135 int i;
1136 int ret_val;
1138 /* Setup Tx descriptor ring and Tx buffers */
1140 if (!tx_ring->count)
1141 tx_ring->count = E1000_DEFAULT_TXD;
1143 tx_ring->buffer_info = kcalloc(tx_ring->count,
1144 sizeof(struct e1000_buffer), GFP_KERNEL);
1145 if (!tx_ring->buffer_info) {
1146 ret_val = 1;
1147 goto err_nomem;
1150 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1151 tx_ring->size = ALIGN(tx_ring->size, 4096);
1152 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1153 &tx_ring->dma, GFP_KERNEL);
1154 if (!tx_ring->desc) {
1155 ret_val = 2;
1156 goto err_nomem;
1158 tx_ring->next_to_use = 0;
1159 tx_ring->next_to_clean = 0;
1161 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1162 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1163 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1164 ew32(TDH(0), 0);
1165 ew32(TDT(0), 0);
1166 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1167 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1168 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1170 for (i = 0; i < tx_ring->count; i++) {
1171 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1172 struct sk_buff *skb;
1173 unsigned int skb_size = 1024;
1175 skb = alloc_skb(skb_size, GFP_KERNEL);
1176 if (!skb) {
1177 ret_val = 3;
1178 goto err_nomem;
1180 skb_put(skb, skb_size);
1181 tx_ring->buffer_info[i].skb = skb;
1182 tx_ring->buffer_info[i].length = skb->len;
1183 tx_ring->buffer_info[i].dma =
1184 dma_map_single(&pdev->dev, skb->data, skb->len,
1185 DMA_TO_DEVICE);
1186 if (dma_mapping_error(&pdev->dev,
1187 tx_ring->buffer_info[i].dma)) {
1188 ret_val = 4;
1189 goto err_nomem;
1191 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1192 tx_desc->lower.data = cpu_to_le32(skb->len);
1193 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1194 E1000_TXD_CMD_IFCS |
1195 E1000_TXD_CMD_RS);
1196 tx_desc->upper.data = 0;
1199 /* Setup Rx descriptor ring and Rx buffers */
1201 if (!rx_ring->count)
1202 rx_ring->count = E1000_DEFAULT_RXD;
1204 rx_ring->buffer_info = kcalloc(rx_ring->count,
1205 sizeof(struct e1000_buffer), GFP_KERNEL);
1206 if (!rx_ring->buffer_info) {
1207 ret_val = 5;
1208 goto err_nomem;
1211 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1212 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1213 &rx_ring->dma, GFP_KERNEL);
1214 if (!rx_ring->desc) {
1215 ret_val = 6;
1216 goto err_nomem;
1218 rx_ring->next_to_use = 0;
1219 rx_ring->next_to_clean = 0;
1221 rctl = er32(RCTL);
1222 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1223 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1224 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1225 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1226 ew32(RDLEN(0), rx_ring->size);
1227 ew32(RDH(0), 0);
1228 ew32(RDT(0), 0);
1229 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1230 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1231 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1232 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1233 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1234 ew32(RCTL, rctl);
1236 for (i = 0; i < rx_ring->count; i++) {
1237 union e1000_rx_desc_extended *rx_desc;
1238 struct sk_buff *skb;
1240 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1241 if (!skb) {
1242 ret_val = 7;
1243 goto err_nomem;
1245 skb_reserve(skb, NET_IP_ALIGN);
1246 rx_ring->buffer_info[i].skb = skb;
1247 rx_ring->buffer_info[i].dma =
1248 dma_map_single(&pdev->dev, skb->data, 2048,
1249 DMA_FROM_DEVICE);
1250 if (dma_mapping_error(&pdev->dev,
1251 rx_ring->buffer_info[i].dma)) {
1252 ret_val = 8;
1253 goto err_nomem;
1255 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1256 rx_desc->read.buffer_addr =
1257 cpu_to_le64(rx_ring->buffer_info[i].dma);
1258 memset(skb->data, 0x00, skb->len);
1261 return 0;
1263 err_nomem:
1264 e1000_free_desc_rings(adapter);
1265 return ret_val;
1268 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1270 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1271 e1e_wphy(&adapter->hw, 29, 0x001F);
1272 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1273 e1e_wphy(&adapter->hw, 29, 0x001A);
1274 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1277 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1279 struct e1000_hw *hw = &adapter->hw;
1280 u32 ctrl_reg = 0;
1281 u16 phy_reg = 0;
1282 s32 ret_val = 0;
1284 hw->mac.autoneg = 0;
1286 if (hw->phy.type == e1000_phy_ife) {
1287 /* force 100, set loopback */
1288 e1e_wphy(hw, MII_BMCR, 0x6100);
1290 /* Now set up the MAC to the same speed/duplex as the PHY. */
1291 ctrl_reg = er32(CTRL);
1292 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1293 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1294 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1295 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1296 E1000_CTRL_FD); /* Force Duplex to FULL */
1298 ew32(CTRL, ctrl_reg);
1299 e1e_flush();
1300 usleep_range(500, 1000);
1302 return 0;
1305 /* Specific PHY configuration for loopback */
1306 switch (hw->phy.type) {
1307 case e1000_phy_m88:
1308 /* Auto-MDI/MDIX Off */
1309 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1310 /* reset to update Auto-MDI/MDIX */
1311 e1e_wphy(hw, MII_BMCR, 0x9140);
1312 /* autoneg off */
1313 e1e_wphy(hw, MII_BMCR, 0x8140);
1314 break;
1315 case e1000_phy_gg82563:
1316 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1317 break;
1318 case e1000_phy_bm:
1319 /* Set Default MAC Interface speed to 1GB */
1320 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1321 phy_reg &= ~0x0007;
1322 phy_reg |= 0x006;
1323 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1324 /* Assert SW reset for above settings to take effect */
1325 hw->phy.ops.commit(hw);
1326 usleep_range(1000, 2000);
1327 /* Force Full Duplex */
1328 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1329 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1330 /* Set Link Up (in force link) */
1331 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1332 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1333 /* Force Link */
1334 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1335 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1336 /* Set Early Link Enable */
1337 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1338 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1339 break;
1340 case e1000_phy_82577:
1341 case e1000_phy_82578:
1342 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1343 ret_val = hw->phy.ops.acquire(hw);
1344 if (ret_val) {
1345 e_err("Cannot setup 1Gbps loopback.\n");
1346 return ret_val;
1348 e1000_configure_k1_ich8lan(hw, false);
1349 hw->phy.ops.release(hw);
1350 break;
1351 case e1000_phy_82579:
1352 /* Disable PHY energy detect power down */
1353 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1354 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1355 /* Disable full chip energy detect */
1356 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1357 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1358 /* Enable loopback on the PHY */
1359 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1360 break;
1361 default:
1362 break;
1365 /* force 1000, set loopback */
1366 e1e_wphy(hw, MII_BMCR, 0x4140);
1367 msleep(250);
1369 /* Now set up the MAC to the same speed/duplex as the PHY. */
1370 ctrl_reg = er32(CTRL);
1371 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1372 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1373 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1374 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1375 E1000_CTRL_FD); /* Force Duplex to FULL */
1377 if (adapter->flags & FLAG_IS_ICH)
1378 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1380 if (hw->phy.media_type == e1000_media_type_copper &&
1381 hw->phy.type == e1000_phy_m88) {
1382 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1383 } else {
1384 /* Set the ILOS bit on the fiber Nic if half duplex link is
1385 * detected.
1387 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1388 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1391 ew32(CTRL, ctrl_reg);
1393 /* Disable the receiver on the PHY so when a cable is plugged in, the
1394 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1396 if (hw->phy.type == e1000_phy_m88)
1397 e1000_phy_disable_receiver(adapter);
1399 usleep_range(500, 1000);
1401 return 0;
1404 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1406 struct e1000_hw *hw = &adapter->hw;
1407 u32 ctrl = er32(CTRL);
1408 int link;
1410 /* special requirements for 82571/82572 fiber adapters */
1412 /* jump through hoops to make sure link is up because serdes
1413 * link is hardwired up
1415 ctrl |= E1000_CTRL_SLU;
1416 ew32(CTRL, ctrl);
1418 /* disable autoneg */
1419 ctrl = er32(TXCW);
1420 ctrl &= ~(1 << 31);
1421 ew32(TXCW, ctrl);
1423 link = (er32(STATUS) & E1000_STATUS_LU);
1425 if (!link) {
1426 /* set invert loss of signal */
1427 ctrl = er32(CTRL);
1428 ctrl |= E1000_CTRL_ILOS;
1429 ew32(CTRL, ctrl);
1432 /* special write to serdes control register to enable SerDes analog
1433 * loopback
1435 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1436 e1e_flush();
1437 usleep_range(10000, 20000);
1439 return 0;
1442 /* only call this for fiber/serdes connections to es2lan */
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1445 struct e1000_hw *hw = &adapter->hw;
1446 u32 ctrlext = er32(CTRL_EXT);
1447 u32 ctrl = er32(CTRL);
1449 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1450 * on mac_type 80003es2lan)
1452 adapter->tx_fifo_head = ctrlext;
1454 /* clear the serdes mode bits, putting the device into mac loopback */
1455 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1456 ew32(CTRL_EXT, ctrlext);
1458 /* force speed to 1000/FD, link up */
1459 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1460 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1461 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1462 ew32(CTRL, ctrl);
1464 /* set mac loopback */
1465 ctrl = er32(RCTL);
1466 ctrl |= E1000_RCTL_LBM_MAC;
1467 ew32(RCTL, ctrl);
1469 /* set testing mode parameters (no need to reset later) */
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1472 ew32(KMRNCTRLSTA,
1473 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1475 return 0;
1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1480 struct e1000_hw *hw = &adapter->hw;
1481 u32 rctl;
1483 if (hw->phy.media_type == e1000_media_type_fiber ||
1484 hw->phy.media_type == e1000_media_type_internal_serdes) {
1485 switch (hw->mac.type) {
1486 case e1000_80003es2lan:
1487 return e1000_set_es2lan_mac_loopback(adapter);
1488 break;
1489 case e1000_82571:
1490 case e1000_82572:
1491 return e1000_set_82571_fiber_loopback(adapter);
1492 break;
1493 default:
1494 rctl = er32(RCTL);
1495 rctl |= E1000_RCTL_LBM_TCVR;
1496 ew32(RCTL, rctl);
1497 return 0;
1499 } else if (hw->phy.media_type == e1000_media_type_copper) {
1500 return e1000_integrated_phy_loopback(adapter);
1503 return 7;
1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1508 struct e1000_hw *hw = &adapter->hw;
1509 u32 rctl;
1510 u16 phy_reg;
1512 rctl = er32(RCTL);
1513 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1514 ew32(RCTL, rctl);
1516 switch (hw->mac.type) {
1517 case e1000_80003es2lan:
1518 if (hw->phy.media_type == e1000_media_type_fiber ||
1519 hw->phy.media_type == e1000_media_type_internal_serdes) {
1520 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1521 ew32(CTRL_EXT, adapter->tx_fifo_head);
1522 adapter->tx_fifo_head = 0;
1524 /* fall through */
1525 case e1000_82571:
1526 case e1000_82572:
1527 if (hw->phy.media_type == e1000_media_type_fiber ||
1528 hw->phy.media_type == e1000_media_type_internal_serdes) {
1529 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1530 e1e_flush();
1531 usleep_range(10000, 20000);
1532 break;
1534 /* Fall Through */
1535 default:
1536 hw->mac.autoneg = 1;
1537 if (hw->phy.type == e1000_phy_gg82563)
1538 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1539 e1e_rphy(hw, MII_BMCR, &phy_reg);
1540 if (phy_reg & BMCR_LOOPBACK) {
1541 phy_reg &= ~BMCR_LOOPBACK;
1542 e1e_wphy(hw, MII_BMCR, phy_reg);
1543 if (hw->phy.ops.commit)
1544 hw->phy.ops.commit(hw);
1546 break;
1550 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1551 unsigned int frame_size)
1553 memset(skb->data, 0xFF, frame_size);
1554 frame_size &= ~1;
1555 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1556 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1557 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1560 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1561 unsigned int frame_size)
1563 frame_size &= ~1;
1564 if (*(skb->data + 3) == 0xFF)
1565 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1566 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1567 return 0;
1568 return 13;
1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1573 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1574 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1575 struct pci_dev *pdev = adapter->pdev;
1576 struct e1000_hw *hw = &adapter->hw;
1577 struct e1000_buffer *buffer_info;
1578 int i, j, k, l;
1579 int lc;
1580 int good_cnt;
1581 int ret_val = 0;
1582 unsigned long time;
1584 ew32(RDT(0), rx_ring->count - 1);
1586 /* Calculate the loop count based on the largest descriptor ring
1587 * The idea is to wrap the largest ring a number of times using 64
1588 * send/receive pairs during each loop
1591 if (rx_ring->count <= tx_ring->count)
1592 lc = ((tx_ring->count / 64) * 2) + 1;
1593 else
1594 lc = ((rx_ring->count / 64) * 2) + 1;
1596 k = 0;
1597 l = 0;
1598 /* loop count loop */
1599 for (j = 0; j <= lc; j++) {
1600 /* send the packets */
1601 for (i = 0; i < 64; i++) {
1602 buffer_info = &tx_ring->buffer_info[k];
1604 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1605 dma_sync_single_for_device(&pdev->dev,
1606 buffer_info->dma,
1607 buffer_info->length,
1608 DMA_TO_DEVICE);
1609 k++;
1610 if (k == tx_ring->count)
1611 k = 0;
1613 ew32(TDT(0), k);
1614 e1e_flush();
1615 msleep(200);
1616 time = jiffies; /* set the start time for the receive */
1617 good_cnt = 0;
1618 /* receive the sent packets */
1619 do {
1620 buffer_info = &rx_ring->buffer_info[l];
1622 dma_sync_single_for_cpu(&pdev->dev,
1623 buffer_info->dma, 2048,
1624 DMA_FROM_DEVICE);
1626 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1627 1024);
1628 if (!ret_val)
1629 good_cnt++;
1630 l++;
1631 if (l == rx_ring->count)
1632 l = 0;
1633 /* time + 20 msecs (200 msecs on 2.4) is more than
1634 * enough time to complete the receives, if it's
1635 * exceeded, break and error off
1637 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1638 if (good_cnt != 64) {
1639 ret_val = 13; /* ret_val is the same as mis-compare */
1640 break;
1642 if (jiffies >= (time + 20)) {
1643 ret_val = 14; /* error code for time out error */
1644 break;
1647 return ret_val;
1650 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1652 struct e1000_hw *hw = &adapter->hw;
1654 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1655 if (hw->phy.ops.check_reset_block &&
1656 hw->phy.ops.check_reset_block(hw)) {
1657 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1658 *data = 0;
1659 goto out;
1662 *data = e1000_setup_desc_rings(adapter);
1663 if (*data)
1664 goto out;
1666 *data = e1000_setup_loopback_test(adapter);
1667 if (*data)
1668 goto err_loopback;
1670 *data = e1000_run_loopback_test(adapter);
1671 e1000_loopback_cleanup(adapter);
1673 err_loopback:
1674 e1000_free_desc_rings(adapter);
1675 out:
1676 return *data;
1679 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1681 struct e1000_hw *hw = &adapter->hw;
1683 *data = 0;
1684 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1685 int i = 0;
1686 hw->mac.serdes_has_link = false;
1688 /* On some blade server designs, link establishment
1689 * could take as long as 2-3 minutes
1691 do {
1692 hw->mac.ops.check_for_link(hw);
1693 if (hw->mac.serdes_has_link)
1694 return *data;
1695 msleep(20);
1696 } while (i++ < 3750);
1698 *data = 1;
1699 } else {
1700 hw->mac.ops.check_for_link(hw);
1701 if (hw->mac.autoneg)
1702 /* On some Phy/switch combinations, link establishment
1703 * can take a few seconds more than expected.
1705 msleep_interruptible(5000);
1707 if (!(er32(STATUS) & E1000_STATUS_LU))
1708 *data = 1;
1710 return *data;
1713 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1714 int sset)
1716 switch (sset) {
1717 case ETH_SS_TEST:
1718 return E1000_TEST_LEN;
1719 case ETH_SS_STATS:
1720 return E1000_STATS_LEN;
1721 default:
1722 return -EOPNOTSUPP;
1726 static void e1000_diag_test(struct net_device *netdev,
1727 struct ethtool_test *eth_test, u64 *data)
1729 struct e1000_adapter *adapter = netdev_priv(netdev);
1730 u16 autoneg_advertised;
1731 u8 forced_speed_duplex;
1732 u8 autoneg;
1733 bool if_running = netif_running(netdev);
1735 set_bit(__E1000_TESTING, &adapter->state);
1737 if (!if_running) {
1738 /* Get control of and reset hardware */
1739 if (adapter->flags & FLAG_HAS_AMT)
1740 e1000e_get_hw_control(adapter);
1742 e1000e_power_up_phy(adapter);
1744 adapter->hw.phy.autoneg_wait_to_complete = 1;
1745 e1000e_reset(adapter);
1746 adapter->hw.phy.autoneg_wait_to_complete = 0;
1749 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1750 /* Offline tests */
1752 /* save speed, duplex, autoneg settings */
1753 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1754 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1755 autoneg = adapter->hw.mac.autoneg;
1757 e_info("offline testing starting\n");
1759 if (if_running)
1760 /* indicate we're in test mode */
1761 dev_close(netdev);
1763 if (e1000_reg_test(adapter, &data[0]))
1764 eth_test->flags |= ETH_TEST_FL_FAILED;
1766 e1000e_reset(adapter);
1767 if (e1000_eeprom_test(adapter, &data[1]))
1768 eth_test->flags |= ETH_TEST_FL_FAILED;
1770 e1000e_reset(adapter);
1771 if (e1000_intr_test(adapter, &data[2]))
1772 eth_test->flags |= ETH_TEST_FL_FAILED;
1774 e1000e_reset(adapter);
1775 if (e1000_loopback_test(adapter, &data[3]))
1776 eth_test->flags |= ETH_TEST_FL_FAILED;
1778 /* force this routine to wait until autoneg complete/timeout */
1779 adapter->hw.phy.autoneg_wait_to_complete = 1;
1780 e1000e_reset(adapter);
1781 adapter->hw.phy.autoneg_wait_to_complete = 0;
1783 if (e1000_link_test(adapter, &data[4]))
1784 eth_test->flags |= ETH_TEST_FL_FAILED;
1786 /* restore speed, duplex, autoneg settings */
1787 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1788 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1789 adapter->hw.mac.autoneg = autoneg;
1790 e1000e_reset(adapter);
1792 clear_bit(__E1000_TESTING, &adapter->state);
1793 if (if_running)
1794 dev_open(netdev);
1795 } else {
1796 /* Online tests */
1798 e_info("online testing starting\n");
1800 /* register, eeprom, intr and loopback tests not run online */
1801 data[0] = 0;
1802 data[1] = 0;
1803 data[2] = 0;
1804 data[3] = 0;
1806 if (e1000_link_test(adapter, &data[4]))
1807 eth_test->flags |= ETH_TEST_FL_FAILED;
1809 clear_bit(__E1000_TESTING, &adapter->state);
1812 if (!if_running) {
1813 e1000e_reset(adapter);
1815 if (adapter->flags & FLAG_HAS_AMT)
1816 e1000e_release_hw_control(adapter);
1819 msleep_interruptible(4 * 1000);
1822 static void e1000_get_wol(struct net_device *netdev,
1823 struct ethtool_wolinfo *wol)
1825 struct e1000_adapter *adapter = netdev_priv(netdev);
1827 wol->supported = 0;
1828 wol->wolopts = 0;
1830 if (!(adapter->flags & FLAG_HAS_WOL) ||
1831 !device_can_wakeup(&adapter->pdev->dev))
1832 return;
1834 wol->supported = WAKE_UCAST | WAKE_MCAST |
1835 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1837 /* apply any specific unsupported masks here */
1838 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1839 wol->supported &= ~WAKE_UCAST;
1841 if (adapter->wol & E1000_WUFC_EX)
1842 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1845 if (adapter->wol & E1000_WUFC_EX)
1846 wol->wolopts |= WAKE_UCAST;
1847 if (adapter->wol & E1000_WUFC_MC)
1848 wol->wolopts |= WAKE_MCAST;
1849 if (adapter->wol & E1000_WUFC_BC)
1850 wol->wolopts |= WAKE_BCAST;
1851 if (adapter->wol & E1000_WUFC_MAG)
1852 wol->wolopts |= WAKE_MAGIC;
1853 if (adapter->wol & E1000_WUFC_LNKC)
1854 wol->wolopts |= WAKE_PHY;
1857 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1859 struct e1000_adapter *adapter = netdev_priv(netdev);
1861 if (!(adapter->flags & FLAG_HAS_WOL) ||
1862 !device_can_wakeup(&adapter->pdev->dev) ||
1863 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1864 WAKE_MAGIC | WAKE_PHY)))
1865 return -EOPNOTSUPP;
1867 /* these settings will always override what we currently have */
1868 adapter->wol = 0;
1870 if (wol->wolopts & WAKE_UCAST)
1871 adapter->wol |= E1000_WUFC_EX;
1872 if (wol->wolopts & WAKE_MCAST)
1873 adapter->wol |= E1000_WUFC_MC;
1874 if (wol->wolopts & WAKE_BCAST)
1875 adapter->wol |= E1000_WUFC_BC;
1876 if (wol->wolopts & WAKE_MAGIC)
1877 adapter->wol |= E1000_WUFC_MAG;
1878 if (wol->wolopts & WAKE_PHY)
1879 adapter->wol |= E1000_WUFC_LNKC;
1881 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1883 return 0;
1886 static int e1000_set_phys_id(struct net_device *netdev,
1887 enum ethtool_phys_id_state state)
1889 struct e1000_adapter *adapter = netdev_priv(netdev);
1890 struct e1000_hw *hw = &adapter->hw;
1892 switch (state) {
1893 case ETHTOOL_ID_ACTIVE:
1894 if (!hw->mac.ops.blink_led)
1895 return 2; /* cycle on/off twice per second */
1897 hw->mac.ops.blink_led(hw);
1898 break;
1900 case ETHTOOL_ID_INACTIVE:
1901 if (hw->phy.type == e1000_phy_ife)
1902 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1903 hw->mac.ops.led_off(hw);
1904 hw->mac.ops.cleanup_led(hw);
1905 break;
1907 case ETHTOOL_ID_ON:
1908 hw->mac.ops.led_on(hw);
1909 break;
1911 case ETHTOOL_ID_OFF:
1912 hw->mac.ops.led_off(hw);
1913 break;
1915 return 0;
1918 static int e1000_get_coalesce(struct net_device *netdev,
1919 struct ethtool_coalesce *ec)
1921 struct e1000_adapter *adapter = netdev_priv(netdev);
1923 if (adapter->itr_setting <= 4)
1924 ec->rx_coalesce_usecs = adapter->itr_setting;
1925 else
1926 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1928 return 0;
1931 static int e1000_set_coalesce(struct net_device *netdev,
1932 struct ethtool_coalesce *ec)
1934 struct e1000_adapter *adapter = netdev_priv(netdev);
1936 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1937 ((ec->rx_coalesce_usecs > 4) &&
1938 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1939 (ec->rx_coalesce_usecs == 2))
1940 return -EINVAL;
1942 if (ec->rx_coalesce_usecs == 4) {
1943 adapter->itr_setting = 4;
1944 adapter->itr = adapter->itr_setting;
1945 } else if (ec->rx_coalesce_usecs <= 3) {
1946 adapter->itr = 20000;
1947 adapter->itr_setting = ec->rx_coalesce_usecs;
1948 } else {
1949 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1950 adapter->itr_setting = adapter->itr & ~3;
1953 if (adapter->itr_setting != 0)
1954 e1000e_write_itr(adapter, adapter->itr);
1955 else
1956 e1000e_write_itr(adapter, 0);
1958 return 0;
1961 static int e1000_nway_reset(struct net_device *netdev)
1963 struct e1000_adapter *adapter = netdev_priv(netdev);
1965 if (!netif_running(netdev))
1966 return -EAGAIN;
1968 if (!adapter->hw.mac.autoneg)
1969 return -EINVAL;
1971 e1000e_reinit_locked(adapter);
1973 return 0;
1976 static void e1000_get_ethtool_stats(struct net_device *netdev,
1977 struct ethtool_stats __always_unused *stats,
1978 u64 *data)
1980 struct e1000_adapter *adapter = netdev_priv(netdev);
1981 struct rtnl_link_stats64 net_stats;
1982 int i;
1983 char *p = NULL;
1985 e1000e_get_stats64(netdev, &net_stats);
1986 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1987 switch (e1000_gstrings_stats[i].type) {
1988 case NETDEV_STATS:
1989 p = (char *)&net_stats +
1990 e1000_gstrings_stats[i].stat_offset;
1991 break;
1992 case E1000_STATS:
1993 p = (char *)adapter +
1994 e1000_gstrings_stats[i].stat_offset;
1995 break;
1996 default:
1997 data[i] = 0;
1998 continue;
2001 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2002 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2006 static void e1000_get_strings(struct net_device __always_unused *netdev,
2007 u32 stringset, u8 *data)
2009 u8 *p = data;
2010 int i;
2012 switch (stringset) {
2013 case ETH_SS_TEST:
2014 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2015 break;
2016 case ETH_SS_STATS:
2017 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2018 memcpy(p, e1000_gstrings_stats[i].stat_string,
2019 ETH_GSTRING_LEN);
2020 p += ETH_GSTRING_LEN;
2022 break;
2026 static int e1000_get_rxnfc(struct net_device *netdev,
2027 struct ethtool_rxnfc *info,
2028 u32 __always_unused *rule_locs)
2030 info->data = 0;
2032 switch (info->cmd) {
2033 case ETHTOOL_GRXFH: {
2034 struct e1000_adapter *adapter = netdev_priv(netdev);
2035 struct e1000_hw *hw = &adapter->hw;
2036 u32 mrqc = er32(MRQC);
2038 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2039 return 0;
2041 switch (info->flow_type) {
2042 case TCP_V4_FLOW:
2043 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2044 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2045 /* fall through */
2046 case UDP_V4_FLOW:
2047 case SCTP_V4_FLOW:
2048 case AH_ESP_V4_FLOW:
2049 case IPV4_FLOW:
2050 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2051 info->data |= RXH_IP_SRC | RXH_IP_DST;
2052 break;
2053 case TCP_V6_FLOW:
2054 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2055 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2056 /* fall through */
2057 case UDP_V6_FLOW:
2058 case SCTP_V6_FLOW:
2059 case AH_ESP_V6_FLOW:
2060 case IPV6_FLOW:
2061 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2062 info->data |= RXH_IP_SRC | RXH_IP_DST;
2063 break;
2064 default:
2065 break;
2067 return 0;
2069 default:
2070 return -EOPNOTSUPP;
2074 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2076 struct e1000_adapter *adapter = netdev_priv(netdev);
2077 struct e1000_hw *hw = &adapter->hw;
2078 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2079 u32 ret_val;
2081 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2082 return -EOPNOTSUPP;
2084 switch (hw->phy.type) {
2085 case e1000_phy_82579:
2086 cap_addr = I82579_EEE_CAPABILITY;
2087 lpa_addr = I82579_EEE_LP_ABILITY;
2088 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2089 break;
2090 case e1000_phy_i217:
2091 cap_addr = I217_EEE_CAPABILITY;
2092 lpa_addr = I217_EEE_LP_ABILITY;
2093 pcs_stat_addr = I217_EEE_PCS_STATUS;
2094 break;
2095 default:
2096 return -EOPNOTSUPP;
2099 ret_val = hw->phy.ops.acquire(hw);
2100 if (ret_val)
2101 return -EBUSY;
2103 /* EEE Capability */
2104 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2105 if (ret_val)
2106 goto release;
2107 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2109 /* EEE Advertised */
2110 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2112 /* EEE Link Partner Advertised */
2113 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2114 if (ret_val)
2115 goto release;
2116 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2118 /* EEE PCS Status */
2119 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2120 if (hw->phy.type == e1000_phy_82579)
2121 phy_data <<= 8;
2123 release:
2124 hw->phy.ops.release(hw);
2125 if (ret_val)
2126 return -ENODATA;
2128 /* Result of the EEE auto negotiation - there is no register that
2129 * has the status of the EEE negotiation so do a best-guess based
2130 * on whether Tx or Rx LPI indications have been received.
2132 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2133 edata->eee_active = true;
2135 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2136 edata->tx_lpi_enabled = true;
2137 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2139 return 0;
2142 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2144 struct e1000_adapter *adapter = netdev_priv(netdev);
2145 struct e1000_hw *hw = &adapter->hw;
2146 struct ethtool_eee eee_curr;
2147 s32 ret_val;
2149 ret_val = e1000e_get_eee(netdev, &eee_curr);
2150 if (ret_val)
2151 return ret_val;
2153 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2154 e_err("Setting EEE tx-lpi is not supported\n");
2155 return -EINVAL;
2158 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2159 e_err("Setting EEE Tx LPI timer is not supported\n");
2160 return -EINVAL;
2163 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2164 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2165 return -EINVAL;
2168 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2170 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2172 /* reset the link */
2173 if (netif_running(netdev))
2174 e1000e_reinit_locked(adapter);
2175 else
2176 e1000e_reset(adapter);
2178 return 0;
2181 static int e1000e_get_ts_info(struct net_device *netdev,
2182 struct ethtool_ts_info *info)
2184 struct e1000_adapter *adapter = netdev_priv(netdev);
2186 ethtool_op_get_ts_info(netdev, info);
2188 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2189 return 0;
2191 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2192 SOF_TIMESTAMPING_RX_HARDWARE |
2193 SOF_TIMESTAMPING_RAW_HARDWARE);
2195 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2197 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2198 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2199 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2200 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2201 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2202 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2203 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2204 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2205 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2206 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2207 (1 << HWTSTAMP_FILTER_ALL));
2209 if (adapter->ptp_clock)
2210 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2212 return 0;
2215 static int e1000e_ethtool_begin(struct net_device *netdev)
2217 return pm_runtime_get_sync(netdev->dev.parent);
2220 static void e1000e_ethtool_complete(struct net_device *netdev)
2222 pm_runtime_put_sync(netdev->dev.parent);
2225 static const struct ethtool_ops e1000_ethtool_ops = {
2226 .begin = e1000e_ethtool_begin,
2227 .complete = e1000e_ethtool_complete,
2228 .get_settings = e1000_get_settings,
2229 .set_settings = e1000_set_settings,
2230 .get_drvinfo = e1000_get_drvinfo,
2231 .get_regs_len = e1000_get_regs_len,
2232 .get_regs = e1000_get_regs,
2233 .get_wol = e1000_get_wol,
2234 .set_wol = e1000_set_wol,
2235 .get_msglevel = e1000_get_msglevel,
2236 .set_msglevel = e1000_set_msglevel,
2237 .nway_reset = e1000_nway_reset,
2238 .get_link = ethtool_op_get_link,
2239 .get_eeprom_len = e1000_get_eeprom_len,
2240 .get_eeprom = e1000_get_eeprom,
2241 .set_eeprom = e1000_set_eeprom,
2242 .get_ringparam = e1000_get_ringparam,
2243 .set_ringparam = e1000_set_ringparam,
2244 .get_pauseparam = e1000_get_pauseparam,
2245 .set_pauseparam = e1000_set_pauseparam,
2246 .self_test = e1000_diag_test,
2247 .get_strings = e1000_get_strings,
2248 .set_phys_id = e1000_set_phys_id,
2249 .get_ethtool_stats = e1000_get_ethtool_stats,
2250 .get_sset_count = e1000e_get_sset_count,
2251 .get_coalesce = e1000_get_coalesce,
2252 .set_coalesce = e1000_set_coalesce,
2253 .get_rxnfc = e1000_get_rxnfc,
2254 .get_ts_info = e1000e_get_ts_info,
2255 .get_eee = e1000e_get_eee,
2256 .set_eee = e1000e_set_eee,
2259 void e1000e_set_ethtool_ops(struct net_device *netdev)
2261 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);