1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
44 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
49 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
50 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
);
51 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
52 u16 words
, u16
*data
);
53 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
54 u16 words
, u16
*data
);
55 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
57 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
);
60 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62 * @hw: pointer to hardware structure
64 * There are several phys that do not support autoneg flow control. This
65 * function check the device id to see if the associated phy supports
66 * autoneg flow control.
68 s32
ixgbe_device_supports_autoneg_fc(struct ixgbe_hw
*hw
)
71 switch (hw
->device_id
) {
72 case IXGBE_DEV_ID_X540T
:
73 case IXGBE_DEV_ID_X540T1
:
74 case IXGBE_DEV_ID_82599_T3_LOM
:
77 return IXGBE_ERR_FC_NOT_SUPPORTED
;
82 * ixgbe_setup_fc - Set up flow control
83 * @hw: pointer to hardware structure
85 * Called at init time to set up flow control.
87 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
)
90 u32 reg
= 0, reg_bp
= 0;
92 bool got_lock
= false;
95 * Validate the requested mode. Strict IEEE mode does not allow
96 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
98 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
99 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
100 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
105 * 10gig parts do not have a word in the EEPROM to determine the
106 * default flow control setting, so we explicitly set it to full.
108 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
109 hw
->fc
.requested_mode
= ixgbe_fc_full
;
112 * Set up the 1G and 10G flow control advertisement registers so the
113 * HW will be able to do fc autoneg once the cable is plugged in. If
114 * we link at 10G, the 1G advertisement is harmless and vice versa.
116 switch (hw
->phy
.media_type
) {
117 case ixgbe_media_type_fiber
:
118 case ixgbe_media_type_backplane
:
119 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
120 reg_bp
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
122 case ixgbe_media_type_copper
:
123 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
124 MDIO_MMD_AN
, ®_cu
);
131 * The possible values of fc.requested_mode are:
132 * 0: Flow control is completely disabled
133 * 1: Rx flow control is enabled (we can receive pause frames,
134 * but not send pause frames).
135 * 2: Tx flow control is enabled (we can send pause frames but
136 * we do not support receiving pause frames).
137 * 3: Both Rx and Tx flow control (symmetric) are enabled.
140 switch (hw
->fc
.requested_mode
) {
142 /* Flow control completely disabled by software override. */
143 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
144 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
145 reg_bp
&= ~(IXGBE_AUTOC_SYM_PAUSE
|
146 IXGBE_AUTOC_ASM_PAUSE
);
147 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
148 reg_cu
&= ~(IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
);
150 case ixgbe_fc_tx_pause
:
152 * Tx Flow control is enabled, and Rx Flow control is
153 * disabled by software override.
155 reg
|= IXGBE_PCS1GANA_ASM_PAUSE
;
156 reg
&= ~IXGBE_PCS1GANA_SYM_PAUSE
;
157 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
158 reg_bp
|= IXGBE_AUTOC_ASM_PAUSE
;
159 reg_bp
&= ~IXGBE_AUTOC_SYM_PAUSE
;
160 } else if (hw
->phy
.media_type
== ixgbe_media_type_copper
) {
161 reg_cu
|= IXGBE_TAF_ASM_PAUSE
;
162 reg_cu
&= ~IXGBE_TAF_SYM_PAUSE
;
165 case ixgbe_fc_rx_pause
:
167 * Rx Flow control is enabled and Tx Flow control is
168 * disabled by software override. Since there really
169 * isn't a way to advertise that we are capable of RX
170 * Pause ONLY, we will advertise that we support both
171 * symmetric and asymmetric Rx PAUSE, as such we fall
172 * through to the fc_full statement. Later, we will
173 * disable the adapter's ability to send PAUSE frames.
176 /* Flow control (both Rx and Tx) is enabled by SW override. */
177 reg
|= IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
;
178 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
)
179 reg_bp
|= IXGBE_AUTOC_SYM_PAUSE
|
180 IXGBE_AUTOC_ASM_PAUSE
;
181 else if (hw
->phy
.media_type
== ixgbe_media_type_copper
)
182 reg_cu
|= IXGBE_TAF_SYM_PAUSE
| IXGBE_TAF_ASM_PAUSE
;
185 hw_dbg(hw
, "Flow control param set incorrectly\n");
186 ret_val
= IXGBE_ERR_CONFIG
;
191 if (hw
->mac
.type
!= ixgbe_mac_X540
) {
193 * Enable auto-negotiation between the MAC & PHY;
194 * the MAC will advertise clause 37 flow control.
196 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
197 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
199 /* Disable AN timeout */
200 if (hw
->fc
.strict_ieee
)
201 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
203 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
204 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
208 * AUTOC restart handles negotiation of 1G and 10G on backplane
209 * and copper. There is no need to set the PCS1GCTL register.
212 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
213 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
214 * LESM is on, likewise reset_pipeline requries the lock as
215 * it also writes AUTOC.
217 if ((hw
->mac
.type
== ixgbe_mac_82599EB
) &&
218 ixgbe_verify_lesm_fw_enabled_82599(hw
)) {
219 ret_val
= hw
->mac
.ops
.acquire_swfw_sync(hw
,
220 IXGBE_GSSR_MAC_CSR_SM
);
227 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg_bp
);
229 if (hw
->mac
.type
== ixgbe_mac_82599EB
)
230 ixgbe_reset_pipeline_82599(hw
);
233 hw
->mac
.ops
.release_swfw_sync(hw
,
234 IXGBE_GSSR_MAC_CSR_SM
);
236 } else if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) &&
237 (ixgbe_device_supports_autoneg_fc(hw
) == 0)) {
238 hw
->phy
.ops
.write_reg(hw
, MDIO_AN_ADVERTISE
,
239 MDIO_MMD_AN
, reg_cu
);
242 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
248 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
249 * @hw: pointer to hardware structure
251 * Starts the hardware by filling the bus info structure and media type, clears
252 * all on chip counters, initializes receive address registers, multicast
253 * table, VLAN filter table, calls routine to set up link and flow control
254 * settings, and leaves transmit and receive units disabled and uninitialized
256 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
260 /* Set the media type */
261 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
263 /* Identify the PHY */
264 hw
->phy
.ops
.identify(hw
);
266 /* Clear the VLAN filter table */
267 hw
->mac
.ops
.clear_vfta(hw
);
269 /* Clear statistics registers */
270 hw
->mac
.ops
.clear_hw_cntrs(hw
);
272 /* Set No Snoop Disable */
273 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
274 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
275 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
276 IXGBE_WRITE_FLUSH(hw
);
278 /* Setup flow control */
281 /* Clear adapter stopped flag */
282 hw
->adapter_stopped
= false;
288 * ixgbe_start_hw_gen2 - Init sequence for common device family
289 * @hw: pointer to hw structure
291 * Performs the init sequence common to the second generation
293 * Devices in the second generation:
297 s32
ixgbe_start_hw_gen2(struct ixgbe_hw
*hw
)
302 /* Clear the rate limiters */
303 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
304 IXGBE_WRITE_REG(hw
, IXGBE_RTTDQSEL
, i
);
305 IXGBE_WRITE_REG(hw
, IXGBE_RTTBCNRC
, 0);
307 IXGBE_WRITE_FLUSH(hw
);
309 /* Disable relaxed ordering */
310 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++) {
311 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
));
312 regval
&= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN
;
313 IXGBE_WRITE_REG(hw
, IXGBE_DCA_TXCTRL_82599(i
), regval
);
316 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
317 regval
= IXGBE_READ_REG(hw
, IXGBE_DCA_RXCTRL(i
));
318 regval
&= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN
|
319 IXGBE_DCA_RXCTRL_HEAD_WRO_EN
);
320 IXGBE_WRITE_REG(hw
, IXGBE_DCA_RXCTRL(i
), regval
);
327 * ixgbe_init_hw_generic - Generic hardware initialization
328 * @hw: pointer to hardware structure
330 * Initialize the hardware by resetting the hardware, filling the bus info
331 * structure and media type, clears all on chip counters, initializes receive
332 * address registers, multicast table, VLAN filter table, calls routine to set
333 * up link and flow control settings, and leaves transmit and receive units
334 * disabled and uninitialized
336 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
340 /* Reset the hardware */
341 status
= hw
->mac
.ops
.reset_hw(hw
);
345 status
= hw
->mac
.ops
.start_hw(hw
);
352 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
353 * @hw: pointer to hardware structure
355 * Clears all hardware statistics counters by reading them from the hardware
356 * Statistics counters are clear on read.
358 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
362 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
363 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
364 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
365 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
366 for (i
= 0; i
< 8; i
++)
367 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
369 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
370 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
371 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
372 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
373 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
374 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
375 IXGBE_READ_REG(hw
, IXGBE_LXONRXCNT
);
376 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXCNT
);
378 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
379 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
382 for (i
= 0; i
< 8; i
++) {
383 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
384 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
385 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
386 IXGBE_READ_REG(hw
, IXGBE_PXONRXCNT(i
));
387 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXCNT(i
));
389 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
390 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
393 if (hw
->mac
.type
>= ixgbe_mac_82599EB
)
394 for (i
= 0; i
< 8; i
++)
395 IXGBE_READ_REG(hw
, IXGBE_PXON2OFFCNT(i
));
396 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
397 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
398 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
399 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
400 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
401 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
402 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
403 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
404 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
405 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
406 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
407 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
408 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
409 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
410 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
411 for (i
= 0; i
< 8; i
++)
412 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
413 IXGBE_READ_REG(hw
, IXGBE_RUC
);
414 IXGBE_READ_REG(hw
, IXGBE_RFC
);
415 IXGBE_READ_REG(hw
, IXGBE_ROC
);
416 IXGBE_READ_REG(hw
, IXGBE_RJC
);
417 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
418 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
419 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
420 IXGBE_READ_REG(hw
, IXGBE_TORL
);
421 IXGBE_READ_REG(hw
, IXGBE_TORH
);
422 IXGBE_READ_REG(hw
, IXGBE_TPR
);
423 IXGBE_READ_REG(hw
, IXGBE_TPT
);
424 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
425 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
426 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
427 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
428 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
429 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
430 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
431 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
432 for (i
= 0; i
< 16; i
++) {
433 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
434 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
435 if (hw
->mac
.type
>= ixgbe_mac_82599EB
) {
436 IXGBE_READ_REG(hw
, IXGBE_QBRC_L(i
));
437 IXGBE_READ_REG(hw
, IXGBE_QBRC_H(i
));
438 IXGBE_READ_REG(hw
, IXGBE_QBTC_L(i
));
439 IXGBE_READ_REG(hw
, IXGBE_QBTC_H(i
));
440 IXGBE_READ_REG(hw
, IXGBE_QPRDC(i
));
442 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
443 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
447 if (hw
->mac
.type
== ixgbe_mac_X540
) {
449 hw
->phy
.ops
.identify(hw
);
450 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECL
, MDIO_MMD_PCS
, &i
);
451 hw
->phy
.ops
.read_reg(hw
, IXGBE_PCRC8ECH
, MDIO_MMD_PCS
, &i
);
452 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECL
, MDIO_MMD_PCS
, &i
);
453 hw
->phy
.ops
.read_reg(hw
, IXGBE_LDPCECH
, MDIO_MMD_PCS
, &i
);
460 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
461 * @hw: pointer to hardware structure
462 * @pba_num: stores the part number string from the EEPROM
463 * @pba_num_size: part number string buffer length
465 * Reads the part number string from the EEPROM.
467 s32
ixgbe_read_pba_string_generic(struct ixgbe_hw
*hw
, u8
*pba_num
,
476 if (pba_num
== NULL
) {
477 hw_dbg(hw
, "PBA string buffer was null\n");
478 return IXGBE_ERR_INVALID_ARGUMENT
;
481 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
483 hw_dbg(hw
, "NVM Read Error\n");
487 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &pba_ptr
);
489 hw_dbg(hw
, "NVM Read Error\n");
494 * if data is not ptr guard the PBA must be in legacy format which
495 * means pba_ptr is actually our second data word for the PBA number
496 * and we can decode it into an ascii string
498 if (data
!= IXGBE_PBANUM_PTR_GUARD
) {
499 hw_dbg(hw
, "NVM PBA number is not stored as string\n");
501 /* we will need 11 characters to store the PBA */
502 if (pba_num_size
< 11) {
503 hw_dbg(hw
, "PBA string buffer too small\n");
504 return IXGBE_ERR_NO_SPACE
;
507 /* extract hex string from data and pba_ptr */
508 pba_num
[0] = (data
>> 12) & 0xF;
509 pba_num
[1] = (data
>> 8) & 0xF;
510 pba_num
[2] = (data
>> 4) & 0xF;
511 pba_num
[3] = data
& 0xF;
512 pba_num
[4] = (pba_ptr
>> 12) & 0xF;
513 pba_num
[5] = (pba_ptr
>> 8) & 0xF;
516 pba_num
[8] = (pba_ptr
>> 4) & 0xF;
517 pba_num
[9] = pba_ptr
& 0xF;
519 /* put a null character on the end of our string */
522 /* switch all the data but the '-' to hex char */
523 for (offset
= 0; offset
< 10; offset
++) {
524 if (pba_num
[offset
] < 0xA)
525 pba_num
[offset
] += '0';
526 else if (pba_num
[offset
] < 0x10)
527 pba_num
[offset
] += 'A' - 0xA;
533 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
, &length
);
535 hw_dbg(hw
, "NVM Read Error\n");
539 if (length
== 0xFFFF || length
== 0) {
540 hw_dbg(hw
, "NVM PBA number section invalid length\n");
541 return IXGBE_ERR_PBA_SECTION
;
544 /* check if pba_num buffer is big enough */
545 if (pba_num_size
< (((u32
)length
* 2) - 1)) {
546 hw_dbg(hw
, "PBA string buffer too small\n");
547 return IXGBE_ERR_NO_SPACE
;
550 /* trim pba length from start of string */
554 for (offset
= 0; offset
< length
; offset
++) {
555 ret_val
= hw
->eeprom
.ops
.read(hw
, pba_ptr
+ offset
, &data
);
557 hw_dbg(hw
, "NVM Read Error\n");
560 pba_num
[offset
* 2] = (u8
)(data
>> 8);
561 pba_num
[(offset
* 2) + 1] = (u8
)(data
& 0xFF);
563 pba_num
[offset
* 2] = '\0';
569 * ixgbe_get_mac_addr_generic - Generic get MAC address
570 * @hw: pointer to hardware structure
571 * @mac_addr: Adapter MAC address
573 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
574 * A reset of the adapter must be performed prior to calling this function
575 * in order for the MAC address to have been loaded from the EEPROM into RAR0
577 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
583 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
584 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
586 for (i
= 0; i
< 4; i
++)
587 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
589 for (i
= 0; i
< 2; i
++)
590 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
595 enum ixgbe_bus_width
ixgbe_convert_bus_width(u16 link_status
)
597 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
598 case IXGBE_PCI_LINK_WIDTH_1
:
599 return ixgbe_bus_width_pcie_x1
;
600 case IXGBE_PCI_LINK_WIDTH_2
:
601 return ixgbe_bus_width_pcie_x2
;
602 case IXGBE_PCI_LINK_WIDTH_4
:
603 return ixgbe_bus_width_pcie_x4
;
604 case IXGBE_PCI_LINK_WIDTH_8
:
605 return ixgbe_bus_width_pcie_x8
;
607 return ixgbe_bus_width_unknown
;
611 enum ixgbe_bus_speed
ixgbe_convert_bus_speed(u16 link_status
)
613 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
614 case IXGBE_PCI_LINK_SPEED_2500
:
615 return ixgbe_bus_speed_2500
;
616 case IXGBE_PCI_LINK_SPEED_5000
:
617 return ixgbe_bus_speed_5000
;
618 case IXGBE_PCI_LINK_SPEED_8000
:
619 return ixgbe_bus_speed_8000
;
621 return ixgbe_bus_speed_unknown
;
626 * ixgbe_get_bus_info_generic - Generic set PCI bus info
627 * @hw: pointer to hardware structure
629 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
631 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
633 struct ixgbe_adapter
*adapter
= hw
->back
;
634 struct ixgbe_mac_info
*mac
= &hw
->mac
;
637 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
639 /* Get the negotiated link width and speed from PCI config space */
640 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
643 hw
->bus
.width
= ixgbe_convert_bus_width(link_status
);
644 hw
->bus
.speed
= ixgbe_convert_bus_speed(link_status
);
646 mac
->ops
.set_lan_id(hw
);
652 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
653 * @hw: pointer to the HW structure
655 * Determines the LAN function id by reading memory-mapped registers
656 * and swaps the port value if requested.
658 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
660 struct ixgbe_bus_info
*bus
= &hw
->bus
;
663 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
664 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
665 bus
->lan_id
= bus
->func
;
667 /* check for a port swap */
668 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
669 if (reg
& IXGBE_FACTPS_LFS
)
674 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
675 * @hw: pointer to hardware structure
677 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
678 * disables transmit and receive units. The adapter_stopped flag is used by
679 * the shared code and drivers to determine if the adapter is in a stopped
680 * state and should not touch the hardware.
682 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
688 * Set the adapter_stopped flag so other driver functions stop touching
691 hw
->adapter_stopped
= true;
693 /* Disable the receive unit */
694 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, 0);
696 /* Clear interrupt mask to stop interrupts from being generated */
697 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
699 /* Clear any pending interrupts, flush previous writes */
700 IXGBE_READ_REG(hw
, IXGBE_EICR
);
702 /* Disable the transmit unit. Each queue must be disabled. */
703 for (i
= 0; i
< hw
->mac
.max_tx_queues
; i
++)
704 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), IXGBE_TXDCTL_SWFLSH
);
706 /* Disable the receive unit by stopping each queue */
707 for (i
= 0; i
< hw
->mac
.max_rx_queues
; i
++) {
708 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
709 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
710 reg_val
|= IXGBE_RXDCTL_SWFLSH
;
711 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
714 /* flush all queues disables */
715 IXGBE_WRITE_FLUSH(hw
);
716 usleep_range(1000, 2000);
719 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
720 * access and verify no pending requests
722 return ixgbe_disable_pcie_master(hw
);
726 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
727 * @hw: pointer to hardware structure
728 * @index: led number to turn on
730 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
732 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
734 /* To turn on the LED, set mode to ON. */
735 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
736 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
737 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
738 IXGBE_WRITE_FLUSH(hw
);
744 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
745 * @hw: pointer to hardware structure
746 * @index: led number to turn off
748 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
750 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
752 /* To turn off the LED, set mode to OFF. */
753 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
754 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
755 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
756 IXGBE_WRITE_FLUSH(hw
);
762 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
763 * @hw: pointer to hardware structure
765 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
766 * ixgbe_hw struct in order to set up EEPROM access.
768 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
770 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
774 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
775 eeprom
->type
= ixgbe_eeprom_none
;
776 /* Set default semaphore delay to 10ms which is a well
778 eeprom
->semaphore_delay
= 10;
779 /* Clear EEPROM page size, it will be initialized as needed */
780 eeprom
->word_page_size
= 0;
783 * Check for EEPROM present first.
784 * If not present leave as none
786 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
787 if (eec
& IXGBE_EEC_PRES
) {
788 eeprom
->type
= ixgbe_eeprom_spi
;
791 * SPI EEPROM is assumed here. This code would need to
792 * change if a future EEPROM is not SPI.
794 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
795 IXGBE_EEC_SIZE_SHIFT
);
796 eeprom
->word_size
= 1 << (eeprom_size
+
797 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
800 if (eec
& IXGBE_EEC_ADDR_SIZE
)
801 eeprom
->address_bits
= 16;
803 eeprom
->address_bits
= 8;
804 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
805 "%d\n", eeprom
->type
, eeprom
->word_size
,
806 eeprom
->address_bits
);
813 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
814 * @hw: pointer to hardware structure
815 * @offset: offset within the EEPROM to write
816 * @words: number of words
817 * @data: 16 bit word(s) to write to EEPROM
819 * Reads 16 bit word(s) from EEPROM through bit-bang method
821 s32
ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
822 u16 words
, u16
*data
)
827 hw
->eeprom
.ops
.init_params(hw
);
830 status
= IXGBE_ERR_INVALID_ARGUMENT
;
834 if (offset
+ words
> hw
->eeprom
.word_size
) {
835 status
= IXGBE_ERR_EEPROM
;
840 * The EEPROM page size cannot be queried from the chip. We do lazy
841 * initialization. It is worth to do that when we write large buffer.
843 if ((hw
->eeprom
.word_page_size
== 0) &&
844 (words
> IXGBE_EEPROM_PAGE_SIZE_MAX
))
845 ixgbe_detect_eeprom_page_size_generic(hw
, offset
);
848 * We cannot hold synchronization semaphores for too long
849 * to avoid other entity starvation. However it is more efficient
850 * to read in bursts than synchronizing access for each word.
852 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
853 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
854 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
855 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
+ i
,
867 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
868 * @hw: pointer to hardware structure
869 * @offset: offset within the EEPROM to be written to
870 * @words: number of word(s)
871 * @data: 16 bit word(s) to be written to the EEPROM
873 * If ixgbe_eeprom_update_checksum is not called after this function, the
874 * EEPROM will most likely contain an invalid checksum.
876 static s32
ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
877 u16 words
, u16
*data
)
883 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
885 /* Prepare the EEPROM for writing */
886 status
= ixgbe_acquire_eeprom(hw
);
889 if (ixgbe_ready_eeprom(hw
) != 0) {
890 ixgbe_release_eeprom(hw
);
891 status
= IXGBE_ERR_EEPROM
;
896 for (i
= 0; i
< words
; i
++) {
897 ixgbe_standby_eeprom(hw
);
899 /* Send the WRITE ENABLE command (8 bit opcode ) */
900 ixgbe_shift_out_eeprom_bits(hw
,
901 IXGBE_EEPROM_WREN_OPCODE_SPI
,
902 IXGBE_EEPROM_OPCODE_BITS
);
904 ixgbe_standby_eeprom(hw
);
907 * Some SPI eeproms use the 8th address bit embedded
910 if ((hw
->eeprom
.address_bits
== 8) &&
911 ((offset
+ i
) >= 128))
912 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
914 /* Send the Write command (8-bit opcode + addr) */
915 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
916 IXGBE_EEPROM_OPCODE_BITS
);
917 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
918 hw
->eeprom
.address_bits
);
920 page_size
= hw
->eeprom
.word_page_size
;
922 /* Send the data in burst via SPI*/
925 word
= (word
>> 8) | (word
<< 8);
926 ixgbe_shift_out_eeprom_bits(hw
, word
, 16);
931 /* do not wrap around page */
932 if (((offset
+ i
) & (page_size
- 1)) ==
935 } while (++i
< words
);
937 ixgbe_standby_eeprom(hw
);
938 usleep_range(10000, 20000);
940 /* Done with writing - release the EEPROM */
941 ixgbe_release_eeprom(hw
);
948 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
949 * @hw: pointer to hardware structure
950 * @offset: offset within the EEPROM to be written to
951 * @data: 16 bit word to be written to the EEPROM
953 * If ixgbe_eeprom_update_checksum is not called after this function, the
954 * EEPROM will most likely contain an invalid checksum.
956 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
960 hw
->eeprom
.ops
.init_params(hw
);
962 if (offset
>= hw
->eeprom
.word_size
) {
963 status
= IXGBE_ERR_EEPROM
;
967 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
, 1, &data
);
974 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
975 * @hw: pointer to hardware structure
976 * @offset: offset within the EEPROM to be read
977 * @words: number of word(s)
978 * @data: read 16 bit words(s) from EEPROM
980 * Reads 16 bit word(s) from EEPROM through bit-bang method
982 s32
ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
983 u16 words
, u16
*data
)
988 hw
->eeprom
.ops
.init_params(hw
);
991 status
= IXGBE_ERR_INVALID_ARGUMENT
;
995 if (offset
+ words
> hw
->eeprom
.word_size
) {
996 status
= IXGBE_ERR_EEPROM
;
1001 * We cannot hold synchronization semaphores for too long
1002 * to avoid other entity starvation. However it is more efficient
1003 * to read in bursts than synchronizing access for each word.
1005 for (i
= 0; i
< words
; i
+= IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
) {
1006 count
= (words
- i
) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
> 0 ?
1007 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT
: (words
- i
);
1009 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
+ i
,
1021 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1022 * @hw: pointer to hardware structure
1023 * @offset: offset within the EEPROM to be read
1024 * @words: number of word(s)
1025 * @data: read 16 bit word(s) from EEPROM
1027 * Reads 16 bit word(s) from EEPROM through bit-bang method
1029 static s32
ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw
*hw
, u16 offset
,
1030 u16 words
, u16
*data
)
1034 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
1037 /* Prepare the EEPROM for reading */
1038 status
= ixgbe_acquire_eeprom(hw
);
1041 if (ixgbe_ready_eeprom(hw
) != 0) {
1042 ixgbe_release_eeprom(hw
);
1043 status
= IXGBE_ERR_EEPROM
;
1048 for (i
= 0; i
< words
; i
++) {
1049 ixgbe_standby_eeprom(hw
);
1051 * Some SPI eeproms use the 8th address bit embedded
1054 if ((hw
->eeprom
.address_bits
== 8) &&
1055 ((offset
+ i
) >= 128))
1056 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
1058 /* Send the READ command (opcode + addr) */
1059 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
1060 IXGBE_EEPROM_OPCODE_BITS
);
1061 ixgbe_shift_out_eeprom_bits(hw
, (u16
)((offset
+ i
) * 2),
1062 hw
->eeprom
.address_bits
);
1064 /* Read the data. */
1065 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
1066 data
[i
] = (word_in
>> 8) | (word_in
<< 8);
1069 /* End this read operation */
1070 ixgbe_release_eeprom(hw
);
1077 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1078 * @hw: pointer to hardware structure
1079 * @offset: offset within the EEPROM to be read
1080 * @data: read 16 bit value from EEPROM
1082 * Reads 16 bit value from EEPROM through bit-bang method
1084 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
1089 hw
->eeprom
.ops
.init_params(hw
);
1091 if (offset
>= hw
->eeprom
.word_size
) {
1092 status
= IXGBE_ERR_EEPROM
;
1096 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1103 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1104 * @hw: pointer to hardware structure
1105 * @offset: offset of word in the EEPROM to read
1106 * @words: number of word(s)
1107 * @data: 16 bit word(s) from the EEPROM
1109 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1111 s32
ixgbe_read_eerd_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1112 u16 words
, u16
*data
)
1118 hw
->eeprom
.ops
.init_params(hw
);
1121 status
= IXGBE_ERR_INVALID_ARGUMENT
;
1125 if (offset
>= hw
->eeprom
.word_size
) {
1126 status
= IXGBE_ERR_EEPROM
;
1130 for (i
= 0; i
< words
; i
++) {
1131 eerd
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1132 IXGBE_EEPROM_RW_REG_START
;
1134 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
1135 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
1138 data
[i
] = (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
1139 IXGBE_EEPROM_RW_REG_DATA
);
1141 hw_dbg(hw
, "Eeprom read timed out\n");
1150 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1151 * @hw: pointer to hardware structure
1152 * @offset: offset within the EEPROM to be used as a scratch pad
1154 * Discover EEPROM page size by writing marching data at given offset.
1155 * This function is called only when we are writing a new large buffer
1156 * at given offset so the data would be overwritten anyway.
1158 static s32
ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw
*hw
,
1161 u16 data
[IXGBE_EEPROM_PAGE_SIZE_MAX
];
1165 for (i
= 0; i
< IXGBE_EEPROM_PAGE_SIZE_MAX
; i
++)
1168 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
;
1169 status
= ixgbe_write_eeprom_buffer_bit_bang(hw
, offset
,
1170 IXGBE_EEPROM_PAGE_SIZE_MAX
, data
);
1171 hw
->eeprom
.word_page_size
= 0;
1175 status
= ixgbe_read_eeprom_buffer_bit_bang(hw
, offset
, 1, data
);
1180 * When writing in burst more than the actual page size
1181 * EEPROM address wraps around current page.
1183 hw
->eeprom
.word_page_size
= IXGBE_EEPROM_PAGE_SIZE_MAX
- data
[0];
1185 hw_dbg(hw
, "Detected EEPROM page size = %d words.",
1186 hw
->eeprom
.word_page_size
);
1192 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1193 * @hw: pointer to hardware structure
1194 * @offset: offset of word in the EEPROM to read
1195 * @data: word read from the EEPROM
1197 * Reads a 16 bit word from the EEPROM using the EERD register.
1199 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
1201 return ixgbe_read_eerd_buffer_generic(hw
, offset
, 1, data
);
1205 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1206 * @hw: pointer to hardware structure
1207 * @offset: offset of word in the EEPROM to write
1208 * @words: number of words
1209 * @data: word(s) write to the EEPROM
1211 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1213 s32
ixgbe_write_eewr_buffer_generic(struct ixgbe_hw
*hw
, u16 offset
,
1214 u16 words
, u16
*data
)
1220 hw
->eeprom
.ops
.init_params(hw
);
1223 status
= IXGBE_ERR_INVALID_ARGUMENT
;
1227 if (offset
>= hw
->eeprom
.word_size
) {
1228 status
= IXGBE_ERR_EEPROM
;
1232 for (i
= 0; i
< words
; i
++) {
1233 eewr
= ((offset
+ i
) << IXGBE_EEPROM_RW_ADDR_SHIFT
) |
1234 (data
[i
] << IXGBE_EEPROM_RW_REG_DATA
) |
1235 IXGBE_EEPROM_RW_REG_START
;
1237 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1239 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1243 IXGBE_WRITE_REG(hw
, IXGBE_EEWR
, eewr
);
1245 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_WRITE
);
1247 hw_dbg(hw
, "Eeprom write EEWR timed out\n");
1257 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1258 * @hw: pointer to hardware structure
1259 * @offset: offset of word in the EEPROM to write
1260 * @data: word write to the EEPROM
1262 * Write a 16 bit word to the EEPROM using the EEWR register.
1264 s32
ixgbe_write_eewr_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
1266 return ixgbe_write_eewr_buffer_generic(hw
, offset
, 1, &data
);
1270 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1271 * @hw: pointer to hardware structure
1272 * @ee_reg: EEPROM flag for polling
1274 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1275 * read or write is done respectively.
1277 static s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
1281 s32 status
= IXGBE_ERR_EEPROM
;
1283 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
1284 if (ee_reg
== IXGBE_NVM_POLL_READ
)
1285 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
1287 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
1289 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
1299 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1300 * @hw: pointer to hardware structure
1302 * Prepares EEPROM for access using bit-bang method. This function should
1303 * be called before issuing a command to the EEPROM.
1305 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
1311 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
1312 status
= IXGBE_ERR_SWFW_SYNC
;
1315 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1317 /* Request EEPROM Access */
1318 eec
|= IXGBE_EEC_REQ
;
1319 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1321 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
1322 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1323 if (eec
& IXGBE_EEC_GNT
)
1328 /* Release if grant not acquired */
1329 if (!(eec
& IXGBE_EEC_GNT
)) {
1330 eec
&= ~IXGBE_EEC_REQ
;
1331 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1332 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
1334 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1335 status
= IXGBE_ERR_EEPROM
;
1338 /* Setup EEPROM for Read/Write */
1340 /* Clear CS and SK */
1341 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
1342 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1343 IXGBE_WRITE_FLUSH(hw
);
1351 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1352 * @hw: pointer to hardware structure
1354 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1356 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
1358 s32 status
= IXGBE_ERR_EEPROM
;
1363 /* Get SMBI software semaphore between device drivers first */
1364 for (i
= 0; i
< timeout
; i
++) {
1366 * If the SMBI bit is 0 when we read it, then the bit will be
1367 * set and we have the semaphore
1369 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1370 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
1378 hw_dbg(hw
, "Driver can't access the Eeprom - SMBI Semaphore "
1381 * this release is particularly important because our attempts
1382 * above to get the semaphore may have succeeded, and if there
1383 * was a timeout, we should unconditionally clear the semaphore
1384 * bits to free the driver to make progress
1386 ixgbe_release_eeprom_semaphore(hw
);
1391 * If the SMBI bit is 0 when we read it, then the bit will be
1392 * set and we have the semaphore
1394 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1395 if (!(swsm
& IXGBE_SWSM_SMBI
))
1399 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1401 for (i
= 0; i
< timeout
; i
++) {
1402 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1404 /* Set the SW EEPROM semaphore bit to request access */
1405 swsm
|= IXGBE_SWSM_SWESMBI
;
1406 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
1409 * If we set the bit successfully then we got the
1412 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1413 if (swsm
& IXGBE_SWSM_SWESMBI
)
1420 * Release semaphores and return error if SW EEPROM semaphore
1421 * was not granted because we don't have access to the EEPROM
1424 hw_dbg(hw
, "SWESMBI Software EEPROM semaphore "
1426 ixgbe_release_eeprom_semaphore(hw
);
1427 status
= IXGBE_ERR_EEPROM
;
1430 hw_dbg(hw
, "Software semaphore SMBI between device drivers "
1438 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1439 * @hw: pointer to hardware structure
1441 * This function clears hardware semaphore bits.
1443 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
1447 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
1449 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1450 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
1451 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
1452 IXGBE_WRITE_FLUSH(hw
);
1456 * ixgbe_ready_eeprom - Polls for EEPROM ready
1457 * @hw: pointer to hardware structure
1459 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
1466 * Read "Status Register" repeatedly until the LSB is cleared. The
1467 * EEPROM will signal that the command has been completed by clearing
1468 * bit 0 of the internal status register. If it's not cleared within
1469 * 5 milliseconds, then error out.
1471 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
1472 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
1473 IXGBE_EEPROM_OPCODE_BITS
);
1474 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
1475 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
1479 ixgbe_standby_eeprom(hw
);
1483 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1484 * devices (and only 0-5mSec on 5V devices)
1486 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
1487 hw_dbg(hw
, "SPI EEPROM Status error\n");
1488 status
= IXGBE_ERR_EEPROM
;
1495 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1496 * @hw: pointer to hardware structure
1498 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
1502 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1504 /* Toggle CS to flush commands */
1505 eec
|= IXGBE_EEC_CS
;
1506 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1507 IXGBE_WRITE_FLUSH(hw
);
1509 eec
&= ~IXGBE_EEC_CS
;
1510 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1511 IXGBE_WRITE_FLUSH(hw
);
1516 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1517 * @hw: pointer to hardware structure
1518 * @data: data to send to the EEPROM
1519 * @count: number of bits to shift out
1521 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
1528 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1531 * Mask is used to shift "count" bits of "data" out to the EEPROM
1532 * one bit at a time. Determine the starting bit based on count
1534 mask
= 0x01 << (count
- 1);
1536 for (i
= 0; i
< count
; i
++) {
1538 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1539 * "1", and then raising and then lowering the clock (the SK
1540 * bit controls the clock input to the EEPROM). A "0" is
1541 * shifted out to the EEPROM by setting "DI" to "0" and then
1542 * raising and then lowering the clock.
1545 eec
|= IXGBE_EEC_DI
;
1547 eec
&= ~IXGBE_EEC_DI
;
1549 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1550 IXGBE_WRITE_FLUSH(hw
);
1554 ixgbe_raise_eeprom_clk(hw
, &eec
);
1555 ixgbe_lower_eeprom_clk(hw
, &eec
);
1558 * Shift mask to signify next bit of data to shift in to the
1564 /* We leave the "DI" bit set to "0" when we leave this routine. */
1565 eec
&= ~IXGBE_EEC_DI
;
1566 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1567 IXGBE_WRITE_FLUSH(hw
);
1571 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1572 * @hw: pointer to hardware structure
1574 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
1581 * In order to read a register from the EEPROM, we need to shift
1582 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1583 * the clock input to the EEPROM (setting the SK bit), and then reading
1584 * the value of the "DO" bit. During this "shifting in" process the
1585 * "DI" bit should always be clear.
1587 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1589 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
1591 for (i
= 0; i
< count
; i
++) {
1593 ixgbe_raise_eeprom_clk(hw
, &eec
);
1595 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1597 eec
&= ~(IXGBE_EEC_DI
);
1598 if (eec
& IXGBE_EEC_DO
)
1601 ixgbe_lower_eeprom_clk(hw
, &eec
);
1608 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1609 * @hw: pointer to hardware structure
1610 * @eec: EEC register's current value
1612 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1615 * Raise the clock input to the EEPROM
1616 * (setting the SK bit), then delay
1618 *eec
= *eec
| IXGBE_EEC_SK
;
1619 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1620 IXGBE_WRITE_FLUSH(hw
);
1625 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1626 * @hw: pointer to hardware structure
1627 * @eecd: EECD's current value
1629 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
1632 * Lower the clock input to the EEPROM (clearing the SK bit), then
1635 *eec
= *eec
& ~IXGBE_EEC_SK
;
1636 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
1637 IXGBE_WRITE_FLUSH(hw
);
1642 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1643 * @hw: pointer to hardware structure
1645 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
1649 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
1651 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
1652 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
1654 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1655 IXGBE_WRITE_FLUSH(hw
);
1659 /* Stop requesting EEPROM access */
1660 eec
&= ~IXGBE_EEC_REQ
;
1661 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1663 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1666 * Delay before attempt to obtain semaphore again to allow FW
1667 * access. semaphore_delay is in ms we need us for usleep_range
1669 usleep_range(hw
->eeprom
.semaphore_delay
* 1000,
1670 hw
->eeprom
.semaphore_delay
* 2000);
1674 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1675 * @hw: pointer to hardware structure
1677 u16
ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1686 /* Include 0x0-0x3F in the checksum */
1687 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1688 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1689 hw_dbg(hw
, "EEPROM read failed\n");
1695 /* Include all data from pointers except for the fw pointer */
1696 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1697 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1699 /* Make sure the pointer seems valid */
1700 if (pointer
!= 0xFFFF && pointer
!= 0) {
1701 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1703 if (length
!= 0xFFFF && length
!= 0) {
1704 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1705 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1712 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1718 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1719 * @hw: pointer to hardware structure
1720 * @checksum_val: calculated checksum
1722 * Performs checksum calculation and validates the EEPROM checksum. If the
1723 * caller does not need checksum_val, the value can be NULL.
1725 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1730 u16 read_checksum
= 0;
1733 * Read the first word from the EEPROM. If this times out or fails, do
1734 * not continue or we could be in for a very long wait while every
1737 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1740 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1742 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1745 * Verify read checksum from EEPROM is the same as
1746 * calculated checksum
1748 if (read_checksum
!= checksum
)
1749 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1751 /* If the user cares, return the calculated checksum */
1753 *checksum_val
= checksum
;
1755 hw_dbg(hw
, "EEPROM read failed\n");
1762 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1763 * @hw: pointer to hardware structure
1765 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1771 * Read the first word from the EEPROM. If this times out or fails, do
1772 * not continue or we could be in for a very long wait while every
1775 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1778 checksum
= hw
->eeprom
.ops
.calc_checksum(hw
);
1779 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1782 hw_dbg(hw
, "EEPROM read failed\n");
1789 * ixgbe_set_rar_generic - Set Rx address register
1790 * @hw: pointer to hardware structure
1791 * @index: Receive address register to write
1792 * @addr: Address to put into receive address register
1793 * @vmdq: VMDq "set" or "pool" index
1794 * @enable_addr: set flag that address is active
1796 * Puts an ethernet address into a receive address register.
1798 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1801 u32 rar_low
, rar_high
;
1802 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1804 /* Make sure we are using a valid rar index range */
1805 if (index
>= rar_entries
) {
1806 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1807 return IXGBE_ERR_INVALID_ARGUMENT
;
1810 /* setup VMDq pool selection before this RAR gets enabled */
1811 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1814 * HW expects these in little endian so we reverse the byte
1815 * order from network order (big endian) to little endian
1817 rar_low
= ((u32
)addr
[0] |
1818 ((u32
)addr
[1] << 8) |
1819 ((u32
)addr
[2] << 16) |
1820 ((u32
)addr
[3] << 24));
1822 * Some parts put the VMDq setting in the extra RAH bits,
1823 * so save everything except the lower 16 bits that hold part
1824 * of the address and the address valid bit.
1826 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1827 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1828 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1830 if (enable_addr
!= 0)
1831 rar_high
|= IXGBE_RAH_AV
;
1833 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1834 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1840 * ixgbe_clear_rar_generic - Remove Rx address register
1841 * @hw: pointer to hardware structure
1842 * @index: Receive address register to write
1844 * Clears an ethernet address from a receive address register.
1846 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1849 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1851 /* Make sure we are using a valid rar index range */
1852 if (index
>= rar_entries
) {
1853 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1854 return IXGBE_ERR_INVALID_ARGUMENT
;
1858 * Some parts put the VMDq setting in the extra RAH bits,
1859 * so save everything except the lower 16 bits that hold part
1860 * of the address and the address valid bit.
1862 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1863 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1865 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1866 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1868 /* clear VMDq pool/queue selection for this RAR */
1869 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1875 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1876 * @hw: pointer to hardware structure
1878 * Places the MAC address in receive address register 0 and clears the rest
1879 * of the receive address registers. Clears the multicast table. Assumes
1880 * the receiver is in reset when the routine is called.
1882 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1885 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1888 * If the current mac address is valid, assume it is a software override
1889 * to the permanent address.
1890 * Otherwise, use the permanent address from the eeprom.
1892 if (!is_valid_ether_addr(hw
->mac
.addr
)) {
1893 /* Get the MAC address from the RAR0 for later reference */
1894 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1896 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1898 /* Setup the receive address. */
1899 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1900 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1902 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1904 /* clear VMDq pool/queue selection for RAR 0 */
1905 hw
->mac
.ops
.clear_vmdq(hw
, 0, IXGBE_CLEAR_VMDQ_ALL
);
1907 hw
->addr_ctrl
.overflow_promisc
= 0;
1909 hw
->addr_ctrl
.rar_used_count
= 1;
1911 /* Zero out the other receive addresses. */
1912 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1913 for (i
= 1; i
< rar_entries
; i
++) {
1914 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1915 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1919 hw
->addr_ctrl
.mta_in_use
= 0;
1920 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1922 hw_dbg(hw
, " Clearing MTA\n");
1923 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1924 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1926 if (hw
->mac
.ops
.init_uta_tables
)
1927 hw
->mac
.ops
.init_uta_tables(hw
);
1933 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934 * @hw: pointer to hardware structure
1935 * @mc_addr: the multicast address
1937 * Extracts the 12 bits, from a multicast address, to determine which
1938 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939 * incoming rx multicast addresses, to determine the bit-vector to check in
1940 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1942 * to mc_filter_type.
1944 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1948 switch (hw
->mac
.mc_filter_type
) {
1949 case 0: /* use bits [47:36] of the address */
1950 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1952 case 1: /* use bits [46:35] of the address */
1953 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1955 case 2: /* use bits [45:34] of the address */
1956 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1958 case 3: /* use bits [43:32] of the address */
1959 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1961 default: /* Invalid mc_filter_type */
1962 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1966 /* vector can only be 12-bits or boundary will be exceeded */
1972 * ixgbe_set_mta - Set bit-vector in multicast table
1973 * @hw: pointer to hardware structure
1974 * @hash_value: Multicast address hash value
1976 * Sets the bit-vector in the multicast table.
1978 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1984 hw
->addr_ctrl
.mta_in_use
++;
1986 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1987 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1990 * The MTA is a register array of 128 32-bit registers. It is treated
1991 * like an array of 4096 bits. We want to set bit
1992 * BitArray[vector_value]. So we figure out what register the bit is
1993 * in, read it, OR in the new bit, then write back the new value. The
1994 * register is determined by the upper 7 bits of the vector value and
1995 * the bit within that register are determined by the lower 5 bits of
1998 vector_reg
= (vector
>> 5) & 0x7F;
1999 vector_bit
= vector
& 0x1F;
2000 hw
->mac
.mta_shadow
[vector_reg
] |= (1 << vector_bit
);
2004 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005 * @hw: pointer to hardware structure
2006 * @netdev: pointer to net device structure
2008 * The given list replaces any existing list. Clears the MC addrs from receive
2009 * address registers and the multicast table. Uses unused receive address
2010 * registers for the first multicast addresses, and hashes the rest into the
2013 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
2014 struct net_device
*netdev
)
2016 struct netdev_hw_addr
*ha
;
2020 * Set the new number of MC addresses that we are being requested to
2023 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
2024 hw
->addr_ctrl
.mta_in_use
= 0;
2026 /* Clear mta_shadow */
2027 hw_dbg(hw
, " Clearing MTA\n");
2028 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
2030 /* Update mta shadow */
2031 netdev_for_each_mc_addr(ha
, netdev
) {
2032 hw_dbg(hw
, " Adding the multicast addresses:\n");
2033 ixgbe_set_mta(hw
, ha
->addr
);
2037 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
2038 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_MTA(0), i
,
2039 hw
->mac
.mta_shadow
[i
]);
2041 if (hw
->addr_ctrl
.mta_in_use
> 0)
2042 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
2043 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
2045 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
2050 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2051 * @hw: pointer to hardware structure
2053 * Enables multicast address in RAR and the use of the multicast hash table.
2055 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
2057 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2059 if (a
->mta_in_use
> 0)
2060 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
2061 hw
->mac
.mc_filter_type
);
2067 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2068 * @hw: pointer to hardware structure
2070 * Disables multicast address in RAR and the use of the multicast hash table.
2072 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
2074 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
2076 if (a
->mta_in_use
> 0)
2077 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
2083 * ixgbe_fc_enable_generic - Enable flow control
2084 * @hw: pointer to hardware structure
2086 * Enable flow control according to the current settings.
2088 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
)
2091 u32 mflcn_reg
, fccfg_reg
;
2097 * Validate the water mark configuration for packet buffer 0. Zero
2098 * water marks indicate that the packet buffer was not configured
2099 * and the watermarks for packet buffer 0 should always be configured.
2101 if (!hw
->fc
.low_water
||
2102 !hw
->fc
.high_water
[0] ||
2103 !hw
->fc
.pause_time
) {
2104 hw_dbg(hw
, "Invalid water mark configuration\n");
2105 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
2109 /* Negotiate the fc mode to use */
2110 ixgbe_fc_autoneg(hw
);
2112 /* Disable any previous flow control settings */
2113 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
2114 mflcn_reg
&= ~(IXGBE_MFLCN_RPFCE_MASK
| IXGBE_MFLCN_RFCE
);
2116 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
2117 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
2120 * The possible values of fc.current_mode are:
2121 * 0: Flow control is completely disabled
2122 * 1: Rx flow control is enabled (we can receive pause frames,
2123 * but not send pause frames).
2124 * 2: Tx flow control is enabled (we can send pause frames but
2125 * we do not support receiving pause frames).
2126 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2129 switch (hw
->fc
.current_mode
) {
2132 * Flow control is disabled by software override or autoneg.
2133 * The code below will actually disable it in the HW.
2136 case ixgbe_fc_rx_pause
:
2138 * Rx Flow control is enabled and Tx Flow control is
2139 * disabled by software override. Since there really
2140 * isn't a way to advertise that we are capable of RX
2141 * Pause ONLY, we will advertise that we support both
2142 * symmetric and asymmetric Rx PAUSE. Later, we will
2143 * disable the adapter's ability to send PAUSE frames.
2145 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2147 case ixgbe_fc_tx_pause
:
2149 * Tx Flow control is enabled, and Rx Flow control is
2150 * disabled by software override.
2152 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2155 /* Flow control (both Rx and Tx) is enabled by SW override. */
2156 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
2157 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
2160 hw_dbg(hw
, "Flow control param set incorrectly\n");
2161 ret_val
= IXGBE_ERR_CONFIG
;
2166 /* Set 802.3x based flow control settings. */
2167 mflcn_reg
|= IXGBE_MFLCN_DPF
;
2168 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
2169 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
2171 fcrtl
= (hw
->fc
.low_water
<< 10) | IXGBE_FCRTL_XONE
;
2173 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174 for (i
= 0; i
< MAX_TRAFFIC_CLASS
; i
++) {
2175 if ((hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) &&
2176 hw
->fc
.high_water
[i
]) {
2177 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), fcrtl
);
2178 fcrth
= (hw
->fc
.high_water
[i
] << 10) | IXGBE_FCRTH_FCEN
;
2180 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(i
), 0);
2182 * In order to prevent Tx hangs when the internal Tx
2183 * switch is enabled we must set the high water mark
2184 * to the maximum FCRTH value. This allows the Tx
2185 * switch to function even under heavy Rx workloads.
2187 fcrth
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(i
)) - 32;
2190 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(i
), fcrth
);
2193 /* Configure pause time (2 TCs per register) */
2194 reg
= hw
->fc
.pause_time
* 0x00010001;
2195 for (i
= 0; i
< (MAX_TRAFFIC_CLASS
/ 2); i
++)
2196 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(i
), reg
);
2198 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, hw
->fc
.pause_time
/ 2);
2205 * ixgbe_negotiate_fc - Negotiate flow control
2206 * @hw: pointer to hardware structure
2207 * @adv_reg: flow control advertised settings
2208 * @lp_reg: link partner's flow control settings
2209 * @adv_sym: symmetric pause bit in advertisement
2210 * @adv_asm: asymmetric pause bit in advertisement
2211 * @lp_sym: symmetric pause bit in link partner advertisement
2212 * @lp_asm: asymmetric pause bit in link partner advertisement
2214 * Find the intersection between advertised settings and link partner's
2215 * advertised settings
2217 static s32
ixgbe_negotiate_fc(struct ixgbe_hw
*hw
, u32 adv_reg
, u32 lp_reg
,
2218 u32 adv_sym
, u32 adv_asm
, u32 lp_sym
, u32 lp_asm
)
2220 if ((!(adv_reg
)) || (!(lp_reg
)))
2221 return IXGBE_ERR_FC_NOT_NEGOTIATED
;
2223 if ((adv_reg
& adv_sym
) && (lp_reg
& lp_sym
)) {
2225 * Now we need to check if the user selected Rx ONLY
2226 * of pause frames. In this case, we had to advertise
2227 * FULL flow control because we could not advertise RX
2228 * ONLY. Hence, we must now check to see if we need to
2229 * turn OFF the TRANSMISSION of PAUSE frames.
2231 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
2232 hw
->fc
.current_mode
= ixgbe_fc_full
;
2233 hw_dbg(hw
, "Flow Control = FULL.\n");
2235 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2236 hw_dbg(hw
, "Flow Control=RX PAUSE frames only\n");
2238 } else if (!(adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2239 (lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2240 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
2241 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
2242 } else if ((adv_reg
& adv_sym
) && (adv_reg
& adv_asm
) &&
2243 !(lp_reg
& lp_sym
) && (lp_reg
& lp_asm
)) {
2244 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
2245 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
2247 hw
->fc
.current_mode
= ixgbe_fc_none
;
2248 hw_dbg(hw
, "Flow Control = NONE.\n");
2254 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255 * @hw: pointer to hardware structure
2257 * Enable flow control according on 1 gig fiber.
2259 static s32
ixgbe_fc_autoneg_fiber(struct ixgbe_hw
*hw
)
2261 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
2262 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2265 * On multispeed fiber at 1g, bail out if
2266 * - link is up but AN did not complete, or if
2267 * - link is up and AN completed but timed out
2270 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
2271 if ((!!(linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
2272 (!!(linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1))
2275 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
2276 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
2278 ret_val
= ixgbe_negotiate_fc(hw
, pcs_anadv_reg
,
2279 pcs_lpab_reg
, IXGBE_PCS1GANA_SYM_PAUSE
,
2280 IXGBE_PCS1GANA_ASM_PAUSE
,
2281 IXGBE_PCS1GANA_SYM_PAUSE
,
2282 IXGBE_PCS1GANA_ASM_PAUSE
);
2289 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290 * @hw: pointer to hardware structure
2292 * Enable flow control according to IEEE clause 37.
2294 static s32
ixgbe_fc_autoneg_backplane(struct ixgbe_hw
*hw
)
2296 u32 links2
, anlp1_reg
, autoc_reg
, links
;
2297 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2300 * On backplane, bail out if
2301 * - backplane autoneg was not completed, or if
2302 * - we are 82599 and link partner is not AN enabled
2304 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2305 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0)
2308 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
2309 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
2310 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0)
2314 * Read the 10g AN autoc and LP ability registers and resolve
2315 * local flow control settings accordingly
2317 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2318 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
2320 ret_val
= ixgbe_negotiate_fc(hw
, autoc_reg
,
2321 anlp1_reg
, IXGBE_AUTOC_SYM_PAUSE
, IXGBE_AUTOC_ASM_PAUSE
,
2322 IXGBE_ANLP1_SYM_PAUSE
, IXGBE_ANLP1_ASM_PAUSE
);
2329 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330 * @hw: pointer to hardware structure
2332 * Enable flow control according to IEEE clause 37.
2334 static s32
ixgbe_fc_autoneg_copper(struct ixgbe_hw
*hw
)
2336 u16 technology_ability_reg
= 0;
2337 u16 lp_technology_ability_reg
= 0;
2339 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_ADVERTISE
,
2341 &technology_ability_reg
);
2342 hw
->phy
.ops
.read_reg(hw
, MDIO_AN_LPA
,
2344 &lp_technology_ability_reg
);
2346 return ixgbe_negotiate_fc(hw
, (u32
)technology_ability_reg
,
2347 (u32
)lp_technology_ability_reg
,
2348 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
,
2349 IXGBE_TAF_SYM_PAUSE
, IXGBE_TAF_ASM_PAUSE
);
2353 * ixgbe_fc_autoneg - Configure flow control
2354 * @hw: pointer to hardware structure
2356 * Compares our advertised flow control capabilities to those advertised by
2357 * our link partner, and determines the proper flow control mode to use.
2359 void ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
2361 s32 ret_val
= IXGBE_ERR_FC_NOT_NEGOTIATED
;
2362 ixgbe_link_speed speed
;
2366 * AN should have completed when the cable was plugged in.
2367 * Look for reasons to bail out. Bail out if:
2368 * - FC autoneg is disabled, or if
2371 * Since we're being called from an LSC, link is already known to be up.
2372 * So use link_up_wait_to_complete=false.
2374 if (hw
->fc
.disable_fc_autoneg
)
2377 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2381 switch (hw
->phy
.media_type
) {
2382 /* Autoneg flow control on fiber adapters */
2383 case ixgbe_media_type_fiber
:
2384 if (speed
== IXGBE_LINK_SPEED_1GB_FULL
)
2385 ret_val
= ixgbe_fc_autoneg_fiber(hw
);
2388 /* Autoneg flow control on backplane adapters */
2389 case ixgbe_media_type_backplane
:
2390 ret_val
= ixgbe_fc_autoneg_backplane(hw
);
2393 /* Autoneg flow control on copper adapters */
2394 case ixgbe_media_type_copper
:
2395 if (ixgbe_device_supports_autoneg_fc(hw
) == 0)
2396 ret_val
= ixgbe_fc_autoneg_copper(hw
);
2405 hw
->fc
.fc_was_autonegged
= true;
2407 hw
->fc
.fc_was_autonegged
= false;
2408 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
2413 * ixgbe_disable_pcie_master - Disable PCI-express master access
2414 * @hw: pointer to hardware structure
2416 * Disables PCI-Express master access and verifies there are no pending
2417 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418 * bit hasn't caused the master requests to be disabled, else 0
2419 * is returned signifying master requests disabled.
2421 static s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2423 struct ixgbe_adapter
*adapter
= hw
->back
;
2428 /* Always set this bit to ensure any future transactions are blocked */
2429 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, IXGBE_CTRL_GIO_DIS
);
2431 /* Exit if master requests are blocked */
2432 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2435 /* Poll for master request bit to clear */
2436 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2438 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
))
2443 * Two consecutive resets are required via CTRL.RST per datasheet
2444 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2445 * of this need. The first reset prevents new master requests from
2446 * being issued by our device. We then must wait 1usec or more for any
2447 * remaining completions from the PCIe bus to trickle in, and then reset
2448 * again to clear out any effects they may have had on our device.
2450 hw_dbg(hw
, "GIO Master Disable bit didn't clear - requesting resets\n");
2451 hw
->mac
.flags
|= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
;
2454 * Before proceeding, make sure that the PCIe block does not have
2455 * transactions pending.
2457 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2459 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_DEVICE_STATUS
,
2461 if (!(value
& IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING
))
2465 hw_dbg(hw
, "PCIe transaction pending bit also did not clear.\n");
2466 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2473 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474 * @hw: pointer to hardware structure
2475 * @mask: Mask to specify which semaphore to acquire
2477 * Acquires the SWFW semaphore through the GSSR register for the specified
2478 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2480 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2484 u32 fwmask
= mask
<< 5;
2489 * SW EEPROM semaphore bit is used for access to all
2490 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2492 if (ixgbe_get_eeprom_semaphore(hw
))
2493 return IXGBE_ERR_SWFW_SYNC
;
2495 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2496 if (!(gssr
& (fwmask
| swmask
)))
2500 * Firmware currently using resource (fwmask) or other software
2501 * thread currently using resource (swmask)
2503 ixgbe_release_eeprom_semaphore(hw
);
2504 usleep_range(5000, 10000);
2509 hw_dbg(hw
, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510 return IXGBE_ERR_SWFW_SYNC
;
2514 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2516 ixgbe_release_eeprom_semaphore(hw
);
2521 * ixgbe_release_swfw_sync - Release SWFW semaphore
2522 * @hw: pointer to hardware structure
2523 * @mask: Mask to specify which semaphore to release
2525 * Releases the SWFW semaphore through the GSSR register for the specified
2526 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2528 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2533 ixgbe_get_eeprom_semaphore(hw
);
2535 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2537 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2539 ixgbe_release_eeprom_semaphore(hw
);
2543 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2544 * @hw: pointer to hardware structure
2546 * Stops the receive data path and waits for the HW to internally
2547 * empty the Rx security block.
2549 s32
ixgbe_disable_rx_buff_generic(struct ixgbe_hw
*hw
)
2551 #define IXGBE_MAX_SECRX_POLL 40
2555 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2556 secrxreg
|= IXGBE_SECRXCTRL_RX_DIS
;
2557 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2558 for (i
= 0; i
< IXGBE_MAX_SECRX_POLL
; i
++) {
2559 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXSTAT
);
2560 if (secrxreg
& IXGBE_SECRXSTAT_SECRX_RDY
)
2563 /* Use interrupt-safe sleep just in case */
2567 /* For informational purposes only */
2568 if (i
>= IXGBE_MAX_SECRX_POLL
)
2569 hw_dbg(hw
, "Rx unit being enabled before security "
2570 "path fully disabled. Continuing with init.\n");
2577 * ixgbe_enable_rx_buff - Enables the receive data path
2578 * @hw: pointer to hardware structure
2580 * Enables the receive data path
2582 s32
ixgbe_enable_rx_buff_generic(struct ixgbe_hw
*hw
)
2586 secrxreg
= IXGBE_READ_REG(hw
, IXGBE_SECRXCTRL
);
2587 secrxreg
&= ~IXGBE_SECRXCTRL_RX_DIS
;
2588 IXGBE_WRITE_REG(hw
, IXGBE_SECRXCTRL
, secrxreg
);
2589 IXGBE_WRITE_FLUSH(hw
);
2595 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596 * @hw: pointer to hardware structure
2597 * @regval: register value to write to RXCTRL
2599 * Enables the Rx DMA unit
2601 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2603 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2609 * ixgbe_blink_led_start_generic - Blink LED based on index.
2610 * @hw: pointer to hardware structure
2611 * @index: led number to blink
2613 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2615 ixgbe_link_speed speed
= 0;
2616 bool link_up
= false;
2617 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2618 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2622 * Link must be up to auto-blink the LEDs;
2623 * Force it if link is down.
2625 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2628 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2631 bool got_lock
= false;
2633 if ((hw
->mac
.type
== ixgbe_mac_82599EB
) &&
2634 ixgbe_verify_lesm_fw_enabled_82599(hw
)) {
2635 ret_val
= hw
->mac
.ops
.acquire_swfw_sync(hw
,
2636 IXGBE_GSSR_MAC_CSR_SM
);
2642 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2643 autoc_reg
|= IXGBE_AUTOC_FLU
;
2644 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2645 IXGBE_WRITE_FLUSH(hw
);
2648 hw
->mac
.ops
.release_swfw_sync(hw
,
2649 IXGBE_GSSR_MAC_CSR_SM
);
2650 usleep_range(10000, 20000);
2653 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2654 led_reg
|= IXGBE_LED_BLINK(index
);
2655 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2656 IXGBE_WRITE_FLUSH(hw
);
2663 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2664 * @hw: pointer to hardware structure
2665 * @index: led number to stop blinking
2667 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2669 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2670 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2672 bool got_lock
= false;
2674 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2677 if ((hw
->mac
.type
== ixgbe_mac_82599EB
) &&
2678 ixgbe_verify_lesm_fw_enabled_82599(hw
)) {
2679 ret_val
= hw
->mac
.ops
.acquire_swfw_sync(hw
,
2680 IXGBE_GSSR_MAC_CSR_SM
);
2687 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2688 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2689 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2691 if (hw
->mac
.type
== ixgbe_mac_82599EB
)
2692 ixgbe_reset_pipeline_82599(hw
);
2695 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_MAC_CSR_SM
);
2697 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2698 led_reg
&= ~IXGBE_LED_BLINK(index
);
2699 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2700 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2701 IXGBE_WRITE_FLUSH(hw
);
2708 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2709 * @hw: pointer to hardware structure
2710 * @san_mac_offset: SAN MAC address offset
2712 * This function will read the EEPROM location for the SAN MAC address
2713 * pointer, and returns the value at that location. This is used in both
2714 * get and set mac_addr routines.
2716 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2717 u16
*san_mac_offset
)
2720 * First read the EEPROM pointer to see if the MAC addresses are
2723 hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
, san_mac_offset
);
2729 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2730 * @hw: pointer to hardware structure
2731 * @san_mac_addr: SAN MAC address
2733 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2734 * per-port, so set_lan_id() must be called before reading the addresses.
2735 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2736 * upon for non-SFP connections, so we must call it here.
2738 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2740 u16 san_mac_data
, san_mac_offset
;
2744 * First read the EEPROM pointer to see if the MAC addresses are
2745 * available. If they're not, no point in calling set_lan_id() here.
2747 ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2749 if ((san_mac_offset
== 0) || (san_mac_offset
== 0xFFFF)) {
2751 * No addresses available in this EEPROM. It's not an
2752 * error though, so just wipe the local address and return.
2754 for (i
= 0; i
< 6; i
++)
2755 san_mac_addr
[i
] = 0xFF;
2757 goto san_mac_addr_out
;
2760 /* make sure we know which port we need to program */
2761 hw
->mac
.ops
.set_lan_id(hw
);
2762 /* apply the port offset to the address offset */
2763 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2764 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2765 for (i
= 0; i
< 3; i
++) {
2766 hw
->eeprom
.ops
.read(hw
, san_mac_offset
, &san_mac_data
);
2767 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2768 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2777 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2778 * @hw: pointer to hardware structure
2780 * Read PCIe configuration space, and get the MSI-X vector count from
2781 * the capabilities table.
2783 u16
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2785 struct ixgbe_adapter
*adapter
= hw
->back
;
2790 switch (hw
->mac
.type
) {
2791 case ixgbe_mac_82598EB
:
2792 pcie_offset
= IXGBE_PCIE_MSIX_82598_CAPS
;
2793 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82598
;
2795 case ixgbe_mac_82599EB
:
2796 case ixgbe_mac_X540
:
2797 pcie_offset
= IXGBE_PCIE_MSIX_82599_CAPS
;
2798 max_msix_count
= IXGBE_MAX_MSIX_VECTORS_82599
;
2804 pci_read_config_word(adapter
->pdev
, pcie_offset
, &msix_count
);
2805 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2807 /* MSI-X count is zero-based in HW */
2810 if (msix_count
> max_msix_count
)
2811 msix_count
= max_msix_count
;
2817 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2818 * @hw: pointer to hardware struct
2819 * @rar: receive address register index to disassociate
2820 * @vmdq: VMDq pool index to remove from the rar
2822 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2824 u32 mpsar_lo
, mpsar_hi
;
2825 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2827 /* Make sure we are using a valid rar index range */
2828 if (rar
>= rar_entries
) {
2829 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2830 return IXGBE_ERR_INVALID_ARGUMENT
;
2833 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2834 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2836 if (!mpsar_lo
&& !mpsar_hi
)
2839 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2841 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2845 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2848 } else if (vmdq
< 32) {
2849 mpsar_lo
&= ~(1 << vmdq
);
2850 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2852 mpsar_hi
&= ~(1 << (vmdq
- 32));
2853 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2856 /* was that the last pool using this rar? */
2857 if (mpsar_lo
== 0 && mpsar_hi
== 0 && rar
!= 0)
2858 hw
->mac
.ops
.clear_rar(hw
, rar
);
2864 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2865 * @hw: pointer to hardware struct
2866 * @rar: receive address register index to associate with a VMDq index
2867 * @vmdq: VMDq pool index
2869 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2872 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2874 /* Make sure we are using a valid rar index range */
2875 if (rar
>= rar_entries
) {
2876 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2877 return IXGBE_ERR_INVALID_ARGUMENT
;
2881 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2883 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
2885 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2886 mpsar
|= 1 << (vmdq
- 32);
2887 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
2893 * This function should only be involved in the IOV mode.
2894 * In IOV mode, Default pool is next pool after the number of
2895 * VFs advertized and not 0.
2896 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2898 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2899 * @hw: pointer to hardware struct
2900 * @vmdq: VMDq pool index
2902 s32
ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw
*hw
, u32 vmdq
)
2904 u32 rar
= hw
->mac
.san_mac_rar_index
;
2907 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 1 << vmdq
);
2908 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2910 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2911 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 1 << (vmdq
- 32));
2918 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2919 * @hw: pointer to hardware structure
2921 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
2925 for (i
= 0; i
< 128; i
++)
2926 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
2932 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2933 * @hw: pointer to hardware structure
2934 * @vlan: VLAN id to write to VLAN filter
2936 * return the VLVF index where this VLAN id should be placed
2939 static s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
)
2942 u32 first_empty_slot
= 0;
2945 /* short cut the special case */
2950 * Search for the vlan id in the VLVF entries. Save off the first empty
2951 * slot found along the way
2953 for (regindex
= 1; regindex
< IXGBE_VLVF_ENTRIES
; regindex
++) {
2954 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
2955 if (!bits
&& !(first_empty_slot
))
2956 first_empty_slot
= regindex
;
2957 else if ((bits
& 0x0FFF) == vlan
)
2962 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2963 * in the VLVF. Else use the first empty VLVF register for this
2966 if (regindex
>= IXGBE_VLVF_ENTRIES
) {
2967 if (first_empty_slot
)
2968 regindex
= first_empty_slot
;
2970 hw_dbg(hw
, "No space in VLVF.\n");
2971 regindex
= IXGBE_ERR_NO_SPACE
;
2979 * ixgbe_set_vfta_generic - Set VLAN filter table
2980 * @hw: pointer to hardware structure
2981 * @vlan: VLAN id to write to VLAN filter
2982 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2983 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2985 * Turn on/off specified VLAN in the VLAN filter table.
2987 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
2996 bool vfta_changed
= false;
2999 return IXGBE_ERR_PARAM
;
3002 * this is a 2 part operation - first the VFTA, then the
3003 * VLVF and VLVFB if VT Mode is set
3004 * We don't write the VFTA until we know the VLVF part succeeded.
3008 * The VFTA is a bitstring made up of 128 32-bit registers
3009 * that enable the particular VLAN id, much like the MTA:
3010 * bits[11-5]: which register
3011 * bits[4-0]: which bit in the register
3013 regindex
= (vlan
>> 5) & 0x7F;
3014 bitindex
= vlan
& 0x1F;
3015 targetbit
= (1 << bitindex
);
3016 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regindex
));
3019 if (!(vfta
& targetbit
)) {
3021 vfta_changed
= true;
3024 if ((vfta
& targetbit
)) {
3026 vfta_changed
= true;
3033 * make sure the vlan is in VLVF
3034 * set the vind bit in the matching VLVFB
3036 * clear the pool bit and possibly the vind
3038 vt
= IXGBE_READ_REG(hw
, IXGBE_VT_CTL
);
3039 if (vt
& IXGBE_VT_CTL_VT_ENABLE
) {
3042 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
);
3047 /* set the pool bit */
3049 bits
= IXGBE_READ_REG(hw
,
3050 IXGBE_VLVFB(vlvf_index
*2));
3051 bits
|= (1 << vind
);
3053 IXGBE_VLVFB(vlvf_index
*2),
3056 bits
= IXGBE_READ_REG(hw
,
3057 IXGBE_VLVFB((vlvf_index
*2)+1));
3058 bits
|= (1 << (vind
-32));
3060 IXGBE_VLVFB((vlvf_index
*2)+1),
3064 /* clear the pool bit */
3066 bits
= IXGBE_READ_REG(hw
,
3067 IXGBE_VLVFB(vlvf_index
*2));
3068 bits
&= ~(1 << vind
);
3070 IXGBE_VLVFB(vlvf_index
*2),
3072 bits
|= IXGBE_READ_REG(hw
,
3073 IXGBE_VLVFB((vlvf_index
*2)+1));
3075 bits
= IXGBE_READ_REG(hw
,
3076 IXGBE_VLVFB((vlvf_index
*2)+1));
3077 bits
&= ~(1 << (vind
-32));
3079 IXGBE_VLVFB((vlvf_index
*2)+1),
3081 bits
|= IXGBE_READ_REG(hw
,
3082 IXGBE_VLVFB(vlvf_index
*2));
3087 * If there are still bits set in the VLVFB registers
3088 * for the VLAN ID indicated we need to see if the
3089 * caller is requesting that we clear the VFTA entry bit.
3090 * If the caller has requested that we clear the VFTA
3091 * entry bit but there are still pools/VFs using this VLAN
3092 * ID entry then ignore the request. We're not worried
3093 * about the case where we're turning the VFTA VLAN ID
3094 * entry bit on, only when requested to turn it off as
3095 * there may be multiple pools and/or VFs using the
3096 * VLAN ID entry. In that case we cannot clear the
3097 * VFTA bit until all pools/VFs using that VLAN ID have also
3098 * been cleared. This will be indicated by "bits" being
3102 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
),
3103 (IXGBE_VLVF_VIEN
| vlan
));
3105 /* someone wants to clear the vfta entry
3106 * but some pools/VFs are still using it.
3108 vfta_changed
= false;
3112 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
3116 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regindex
), vfta
);
3122 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3123 * @hw: pointer to hardware structure
3125 * Clears the VLAN filer table, and the VMDq index associated with the filter
3127 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
3131 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
3132 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
3134 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
3135 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
3136 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
*2), 0);
3137 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB((offset
*2)+1), 0);
3144 * ixgbe_check_mac_link_generic - Determine link and speed status
3145 * @hw: pointer to hardware structure
3146 * @speed: pointer to link speed
3147 * @link_up: true when link is up
3148 * @link_up_wait_to_complete: bool used to wait for link up or not
3150 * Reads the links register to determine if link is up and the current speed
3152 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
3153 bool *link_up
, bool link_up_wait_to_complete
)
3155 u32 links_reg
, links_orig
;
3158 /* clear the old state */
3159 links_orig
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3161 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3163 if (links_orig
!= links_reg
) {
3164 hw_dbg(hw
, "LINKS changed from %08X to %08X\n",
3165 links_orig
, links_reg
);
3168 if (link_up_wait_to_complete
) {
3169 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
3170 if (links_reg
& IXGBE_LINKS_UP
) {
3177 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
3180 if (links_reg
& IXGBE_LINKS_UP
)
3186 if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3187 IXGBE_LINKS_SPEED_10G_82599
)
3188 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
3189 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3190 IXGBE_LINKS_SPEED_1G_82599
)
3191 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
3192 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
3193 IXGBE_LINKS_SPEED_100_82599
)
3194 *speed
= IXGBE_LINK_SPEED_100_FULL
;
3196 *speed
= IXGBE_LINK_SPEED_UNKNOWN
;
3202 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3204 * @hw: pointer to hardware structure
3205 * @wwnn_prefix: the alternative WWNN prefix
3206 * @wwpn_prefix: the alternative WWPN prefix
3208 * This function will read the EEPROM from the alternative SAN MAC address
3209 * block to check the support for the alternative WWNN/WWPN prefix support.
3211 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
3215 u16 alt_san_mac_blk_offset
;
3217 /* clear output first */
3218 *wwnn_prefix
= 0xFFFF;
3219 *wwpn_prefix
= 0xFFFF;
3221 /* check if alternative SAN MAC is supported */
3222 hw
->eeprom
.ops
.read(hw
, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
,
3223 &alt_san_mac_blk_offset
);
3225 if ((alt_san_mac_blk_offset
== 0) ||
3226 (alt_san_mac_blk_offset
== 0xFFFF))
3227 goto wwn_prefix_out
;
3229 /* check capability in alternative san mac address block */
3230 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
3231 hw
->eeprom
.ops
.read(hw
, offset
, &caps
);
3232 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
3233 goto wwn_prefix_out
;
3235 /* get the corresponding prefix for WWNN/WWPN */
3236 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
3237 hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
);
3239 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
3240 hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
);
3247 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3248 * @hw: pointer to hardware structure
3249 * @enable: enable or disable switch for anti-spoofing
3250 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3253 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int pf
)
3256 int pf_target_reg
= pf
>> 3;
3257 int pf_target_shift
= pf
% 8;
3260 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3264 pfvfspoof
= IXGBE_SPOOF_MACAS_MASK
;
3267 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3268 * MAC anti-spoof enables in each register array element.
3270 for (j
= 0; j
< pf_target_reg
; j
++)
3271 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), pfvfspoof
);
3274 * The PF should be allowed to spoof so that it can support
3275 * emulation mode NICs. Do not set the bits assigned to the PF
3277 pfvfspoof
&= (1 << pf_target_shift
) - 1;
3278 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), pfvfspoof
);
3281 * Remaining pools belong to the PF so they do not need to have
3282 * anti-spoofing enabled.
3284 for (j
++; j
< IXGBE_PFVFSPOOF_REG_COUNT
; j
++)
3285 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(j
), 0);
3289 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3290 * @hw: pointer to hardware structure
3291 * @enable: enable or disable switch for VLAN anti-spoofing
3292 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3295 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw
*hw
, bool enable
, int vf
)
3297 int vf_target_reg
= vf
>> 3;
3298 int vf_target_shift
= vf
% 8 + IXGBE_SPOOF_VLANAS_SHIFT
;
3301 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
3304 pfvfspoof
= IXGBE_READ_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
));
3306 pfvfspoof
|= (1 << vf_target_shift
);
3308 pfvfspoof
&= ~(1 << vf_target_shift
);
3309 IXGBE_WRITE_REG(hw
, IXGBE_PFVFSPOOF(vf_target_reg
), pfvfspoof
);
3313 * ixgbe_get_device_caps_generic - Get additional device capabilities
3314 * @hw: pointer to hardware structure
3315 * @device_caps: the EEPROM word with the extra device capabilities
3317 * This function will read the EEPROM location for the device capabilities,
3318 * and return the word through device_caps.
3320 s32
ixgbe_get_device_caps_generic(struct ixgbe_hw
*hw
, u16
*device_caps
)
3322 hw
->eeprom
.ops
.read(hw
, IXGBE_DEVICE_CAPS
, device_caps
);
3328 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3329 * @hw: pointer to hardware structure
3330 * @num_pb: number of packet buffers to allocate
3331 * @headroom: reserve n KB of headroom
3332 * @strategy: packet buffer allocation strategy
3334 void ixgbe_set_rxpba_generic(struct ixgbe_hw
*hw
,
3339 u32 pbsize
= hw
->mac
.rx_pb_size
;
3341 u32 rxpktsize
, txpktsize
, txpbthresh
;
3343 /* Reserve headroom */
3349 /* Divide remaining packet buffer space amongst the number
3350 * of packet buffers requested using supplied strategy.
3353 case (PBA_STRATEGY_WEIGHTED
):
3354 /* pba_80_48 strategy weight first half of packet buffer with
3355 * 5/8 of the packet buffer space.
3357 rxpktsize
= ((pbsize
* 5 * 2) / (num_pb
* 8));
3358 pbsize
-= rxpktsize
* (num_pb
/ 2);
3359 rxpktsize
<<= IXGBE_RXPBSIZE_SHIFT
;
3360 for (; i
< (num_pb
/ 2); i
++)
3361 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3362 /* Fall through to configure remaining packet buffers */
3363 case (PBA_STRATEGY_EQUAL
):
3364 /* Divide the remaining Rx packet buffer evenly among the TCs */
3365 rxpktsize
= (pbsize
/ (num_pb
- i
)) << IXGBE_RXPBSIZE_SHIFT
;
3366 for (; i
< num_pb
; i
++)
3367 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), rxpktsize
);
3374 * Setup Tx packet buffer and threshold equally for all TCs
3375 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3376 * 10 since the largest packet we support is just over 9K.
3378 txpktsize
= IXGBE_TXPBSIZE_MAX
/ num_pb
;
3379 txpbthresh
= (txpktsize
/ 1024) - IXGBE_TXPKT_SIZE_MAX
;
3380 for (i
= 0; i
< num_pb
; i
++) {
3381 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), txpktsize
);
3382 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), txpbthresh
);
3385 /* Clear unused TCs, if any, to zero buffer size*/
3386 for (; i
< IXGBE_MAX_PB
; i
++) {
3387 IXGBE_WRITE_REG(hw
, IXGBE_RXPBSIZE(i
), 0);
3388 IXGBE_WRITE_REG(hw
, IXGBE_TXPBSIZE(i
), 0);
3389 IXGBE_WRITE_REG(hw
, IXGBE_TXPBTHRESH(i
), 0);
3394 * ixgbe_calculate_checksum - Calculate checksum for buffer
3395 * @buffer: pointer to EEPROM
3396 * @length: size of EEPROM to calculate a checksum for
3398 * Calculates the checksum for some buffer on a specified length. The
3399 * checksum calculated is returned.
3401 static u8
ixgbe_calculate_checksum(u8
*buffer
, u32 length
)
3409 for (i
= 0; i
< length
; i
++)
3412 return (u8
) (0 - sum
);
3416 * ixgbe_host_interface_command - Issue command to manageability block
3417 * @hw: pointer to the HW structure
3418 * @buffer: contains the command to write and where the return status will
3420 * @length: length of buffer, must be multiple of 4 bytes
3422 * Communicates with the manageability block. On success return 0
3423 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3425 static s32
ixgbe_host_interface_command(struct ixgbe_hw
*hw
, u32
*buffer
,
3429 u32 hdr_size
= sizeof(struct ixgbe_hic_hdr
);
3430 u8 buf_len
, dword_len
;
3434 if (length
== 0 || length
& 0x3 ||
3435 length
> IXGBE_HI_MAX_BLOCK_BYTE_LENGTH
) {
3436 hw_dbg(hw
, "Buffer length failure.\n");
3437 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3441 /* Check that the host interface is enabled. */
3442 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3443 if ((hicr
& IXGBE_HICR_EN
) == 0) {
3444 hw_dbg(hw
, "IXGBE_HOST_EN bit disabled.\n");
3445 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3449 /* Calculate length in DWORDs */
3450 dword_len
= length
>> 2;
3453 * The device driver writes the relevant command block
3454 * into the ram area.
3456 for (i
= 0; i
< dword_len
; i
++)
3457 IXGBE_WRITE_REG_ARRAY(hw
, IXGBE_FLEX_MNG
,
3458 i
, cpu_to_le32(buffer
[i
]));
3460 /* Setting this bit tells the ARC that a new command is pending. */
3461 IXGBE_WRITE_REG(hw
, IXGBE_HICR
, hicr
| IXGBE_HICR_C
);
3463 for (i
= 0; i
< IXGBE_HI_COMMAND_TIMEOUT
; i
++) {
3464 hicr
= IXGBE_READ_REG(hw
, IXGBE_HICR
);
3465 if (!(hicr
& IXGBE_HICR_C
))
3467 usleep_range(1000, 2000);
3470 /* Check command successful completion. */
3471 if (i
== IXGBE_HI_COMMAND_TIMEOUT
||
3472 (!(IXGBE_READ_REG(hw
, IXGBE_HICR
) & IXGBE_HICR_SV
))) {
3473 hw_dbg(hw
, "Command has failed with no status valid.\n");
3474 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3478 /* Calculate length in DWORDs */
3479 dword_len
= hdr_size
>> 2;
3481 /* first pull in the header so we know the buffer length */
3482 for (bi
= 0; bi
< dword_len
; bi
++) {
3483 buffer
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3484 le32_to_cpus(&buffer
[bi
]);
3487 /* If there is any thing in data position pull it in */
3488 buf_len
= ((struct ixgbe_hic_hdr
*)buffer
)->buf_len
;
3492 if (length
< (buf_len
+ hdr_size
)) {
3493 hw_dbg(hw
, "Buffer not large enough for reply message.\n");
3494 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3498 /* Calculate length in DWORDs, add 3 for odd lengths */
3499 dword_len
= (buf_len
+ 3) >> 2;
3501 /* Pull in the rest of the buffer (bi is where we left off)*/
3502 for (; bi
<= dword_len
; bi
++) {
3503 buffer
[bi
] = IXGBE_READ_REG_ARRAY(hw
, IXGBE_FLEX_MNG
, bi
);
3504 le32_to_cpus(&buffer
[bi
]);
3512 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3513 * @hw: pointer to the HW structure
3514 * @maj: driver version major number
3515 * @min: driver version minor number
3516 * @build: driver version build number
3517 * @sub: driver version sub build number
3519 * Sends driver version number to firmware through the manageability
3520 * block. On success return 0
3521 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3522 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3524 s32
ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw
*hw
, u8 maj
, u8 min
,
3527 struct ixgbe_hic_drv_info fw_cmd
;
3531 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
) != 0) {
3532 ret_val
= IXGBE_ERR_SWFW_SYNC
;
3536 fw_cmd
.hdr
.cmd
= FW_CEM_CMD_DRIVER_INFO
;
3537 fw_cmd
.hdr
.buf_len
= FW_CEM_CMD_DRIVER_INFO_LEN
;
3538 fw_cmd
.hdr
.cmd_or_resp
.cmd_resv
= FW_CEM_CMD_RESERVED
;
3539 fw_cmd
.port_num
= (u8
)hw
->bus
.func
;
3540 fw_cmd
.ver_maj
= maj
;
3541 fw_cmd
.ver_min
= min
;
3542 fw_cmd
.ver_build
= build
;
3543 fw_cmd
.ver_sub
= sub
;
3544 fw_cmd
.hdr
.checksum
= 0;
3545 fw_cmd
.hdr
.checksum
= ixgbe_calculate_checksum((u8
*)&fw_cmd
,
3546 (FW_CEM_HDR_LEN
+ fw_cmd
.hdr
.buf_len
));
3550 for (i
= 0; i
<= FW_CEM_MAX_RETRIES
; i
++) {
3551 ret_val
= ixgbe_host_interface_command(hw
, (u32
*)&fw_cmd
,
3556 if (fw_cmd
.hdr
.cmd_or_resp
.ret_status
==
3557 FW_CEM_RESP_STATUS_SUCCESS
)
3560 ret_val
= IXGBE_ERR_HOST_INTERFACE_COMMAND
;
3565 hw
->mac
.ops
.release_swfw_sync(hw
, IXGBE_GSSR_SW_MNG_SM
);
3571 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3572 * @hw: pointer to the hardware structure
3574 * The 82599 and x540 MACs can experience issues if TX work is still pending
3575 * when a reset occurs. This function prevents this by flushing the PCIe
3576 * buffers on the system.
3578 void ixgbe_clear_tx_pending(struct ixgbe_hw
*hw
)
3580 u32 gcr_ext
, hlreg0
;
3583 * If double reset is not requested then all transactions should
3584 * already be clear and as such there is no work to do
3586 if (!(hw
->mac
.flags
& IXGBE_FLAGS_DOUBLE_RESET_REQUIRED
))
3590 * Set loopback enable to prevent any transmits from being sent
3591 * should the link come up. This assumes that the RXCTRL.RXEN bit
3592 * has already been cleared.
3594 hlreg0
= IXGBE_READ_REG(hw
, IXGBE_HLREG0
);
3595 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
| IXGBE_HLREG0_LPBK
);
3597 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3598 gcr_ext
= IXGBE_READ_REG(hw
, IXGBE_GCR_EXT
);
3599 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
,
3600 gcr_ext
| IXGBE_GCR_EXT_BUFFERS_CLEAR
);
3602 /* Flush all writes and allow 20usec for all transactions to clear */
3603 IXGBE_WRITE_FLUSH(hw
);
3606 /* restore previous register values */
3607 IXGBE_WRITE_REG(hw
, IXGBE_GCR_EXT
, gcr_ext
);
3608 IXGBE_WRITE_REG(hw
, IXGBE_HLREG0
, hlreg0
);
3611 static const u8 ixgbe_emc_temp_data
[4] = {
3612 IXGBE_EMC_INTERNAL_DATA
,
3613 IXGBE_EMC_DIODE1_DATA
,
3614 IXGBE_EMC_DIODE2_DATA
,
3615 IXGBE_EMC_DIODE3_DATA
3617 static const u8 ixgbe_emc_therm_limit
[4] = {
3618 IXGBE_EMC_INTERNAL_THERM_LIMIT
,
3619 IXGBE_EMC_DIODE1_THERM_LIMIT
,
3620 IXGBE_EMC_DIODE2_THERM_LIMIT
,
3621 IXGBE_EMC_DIODE3_THERM_LIMIT
3625 * ixgbe_get_ets_data - Extracts the ETS bit data
3626 * @hw: pointer to hardware structure
3627 * @ets_cfg: extected ETS data
3628 * @ets_offset: offset of ETS data
3630 * Returns error code.
3632 static s32
ixgbe_get_ets_data(struct ixgbe_hw
*hw
, u16
*ets_cfg
,
3637 status
= hw
->eeprom
.ops
.read(hw
, IXGBE_ETS_CFG
, ets_offset
);
3641 if ((*ets_offset
== 0x0000) || (*ets_offset
== 0xFFFF)) {
3642 status
= IXGBE_NOT_IMPLEMENTED
;
3646 status
= hw
->eeprom
.ops
.read(hw
, *ets_offset
, ets_cfg
);
3650 if ((*ets_cfg
& IXGBE_ETS_TYPE_MASK
) != IXGBE_ETS_TYPE_EMC_SHIFTED
) {
3651 status
= IXGBE_NOT_IMPLEMENTED
;
3660 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3661 * @hw: pointer to hardware structure
3663 * Returns the thermal sensor data structure
3665 s32
ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw
*hw
)
3673 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3675 /* Only support thermal sensors attached to physical port 0 */
3676 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
)) {
3677 status
= IXGBE_NOT_IMPLEMENTED
;
3681 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3685 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3686 if (num_sensors
> IXGBE_MAX_SENSORS
)
3687 num_sensors
= IXGBE_MAX_SENSORS
;
3689 for (i
= 0; i
< num_sensors
; i
++) {
3693 status
= hw
->eeprom
.ops
.read(hw
, (ets_offset
+ 1 + i
),
3698 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
3699 IXGBE_ETS_DATA_INDEX_SHIFT
);
3700 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
3701 IXGBE_ETS_DATA_LOC_SHIFT
);
3703 if (sensor_location
!= 0) {
3704 status
= hw
->phy
.ops
.read_i2c_byte(hw
,
3705 ixgbe_emc_temp_data
[sensor_index
],
3706 IXGBE_I2C_THERMAL_SENSOR_ADDR
,
3707 &data
->sensor
[i
].temp
);
3717 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3718 * @hw: pointer to hardware structure
3720 * Inits the thermal sensor thresholds according to the NVM map
3721 * and save off the threshold and location values into mac.thermal_sensor_data
3723 s32
ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw
*hw
)
3729 u8 low_thresh_delta
;
3733 struct ixgbe_thermal_sensor_data
*data
= &hw
->mac
.thermal_sensor_data
;
3735 memset(data
, 0, sizeof(struct ixgbe_thermal_sensor_data
));
3737 /* Only support thermal sensors attached to physical port 0 */
3738 if ((IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_LAN_ID_1
)) {
3739 status
= IXGBE_NOT_IMPLEMENTED
;
3743 status
= ixgbe_get_ets_data(hw
, &ets_cfg
, &ets_offset
);
3747 low_thresh_delta
= ((ets_cfg
& IXGBE_ETS_LTHRES_DELTA_MASK
) >>
3748 IXGBE_ETS_LTHRES_DELTA_SHIFT
);
3749 num_sensors
= (ets_cfg
& IXGBE_ETS_NUM_SENSORS_MASK
);
3750 if (num_sensors
> IXGBE_MAX_SENSORS
)
3751 num_sensors
= IXGBE_MAX_SENSORS
;
3753 for (i
= 0; i
< num_sensors
; i
++) {
3757 hw
->eeprom
.ops
.read(hw
, (ets_offset
+ 1 + i
), &ets_sensor
);
3758 sensor_index
= ((ets_sensor
& IXGBE_ETS_DATA_INDEX_MASK
) >>
3759 IXGBE_ETS_DATA_INDEX_SHIFT
);
3760 sensor_location
= ((ets_sensor
& IXGBE_ETS_DATA_LOC_MASK
) >>
3761 IXGBE_ETS_DATA_LOC_SHIFT
);
3762 therm_limit
= ets_sensor
& IXGBE_ETS_DATA_HTHRESH_MASK
;
3764 hw
->phy
.ops
.write_i2c_byte(hw
,
3765 ixgbe_emc_therm_limit
[sensor_index
],
3766 IXGBE_I2C_THERMAL_SENSOR_ADDR
, therm_limit
);
3768 if (sensor_location
== 0)
3771 data
->sensor
[i
].location
= sensor_location
;
3772 data
->sensor
[i
].caution_thresh
= therm_limit
;
3773 data
->sensor
[i
].max_op_thresh
= therm_limit
- low_thresh_delta
;