Linux 3.11-rc3
[cris-mirror.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
blob9bcdeb89af5a0a532689cb7b91b2b3b64fca380a
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
51 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 u16 words, u16 *data);
53 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 u16 words, u16 *data);
55 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 u16 offset);
57 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 /**
60 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61 * control
62 * @hw: pointer to hardware structure
64 * There are several phys that do not support autoneg flow control. This
65 * function check the device id to see if the associated phy supports
66 * autoneg flow control.
67 **/
68 s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
71 switch (hw->device_id) {
72 case IXGBE_DEV_ID_X540T:
73 case IXGBE_DEV_ID_X540T1:
74 case IXGBE_DEV_ID_82599_T3_LOM:
75 return 0;
76 default:
77 return IXGBE_ERR_FC_NOT_SUPPORTED;
81 /**
82 * ixgbe_setup_fc - Set up flow control
83 * @hw: pointer to hardware structure
85 * Called at init time to set up flow control.
86 **/
87 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
89 s32 ret_val = 0;
90 u32 reg = 0, reg_bp = 0;
91 u16 reg_cu = 0;
92 bool got_lock = false;
95 * Validate the requested mode. Strict IEEE mode does not allow
96 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
98 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
99 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
100 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
101 goto out;
105 * 10gig parts do not have a word in the EEPROM to determine the
106 * default flow control setting, so we explicitly set it to full.
108 if (hw->fc.requested_mode == ixgbe_fc_default)
109 hw->fc.requested_mode = ixgbe_fc_full;
112 * Set up the 1G and 10G flow control advertisement registers so the
113 * HW will be able to do fc autoneg once the cable is plugged in. If
114 * we link at 10G, the 1G advertisement is harmless and vice versa.
116 switch (hw->phy.media_type) {
117 case ixgbe_media_type_fiber:
118 case ixgbe_media_type_backplane:
119 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
120 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
121 break;
122 case ixgbe_media_type_copper:
123 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
124 MDIO_MMD_AN, &reg_cu);
125 break;
126 default:
127 break;
131 * The possible values of fc.requested_mode are:
132 * 0: Flow control is completely disabled
133 * 1: Rx flow control is enabled (we can receive pause frames,
134 * but not send pause frames).
135 * 2: Tx flow control is enabled (we can send pause frames but
136 * we do not support receiving pause frames).
137 * 3: Both Rx and Tx flow control (symmetric) are enabled.
138 * other: Invalid.
140 switch (hw->fc.requested_mode) {
141 case ixgbe_fc_none:
142 /* Flow control completely disabled by software override. */
143 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
144 if (hw->phy.media_type == ixgbe_media_type_backplane)
145 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
146 IXGBE_AUTOC_ASM_PAUSE);
147 else if (hw->phy.media_type == ixgbe_media_type_copper)
148 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
149 break;
150 case ixgbe_fc_tx_pause:
152 * Tx Flow control is enabled, and Rx Flow control is
153 * disabled by software override.
155 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
156 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
157 if (hw->phy.media_type == ixgbe_media_type_backplane) {
158 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
159 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
160 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
161 reg_cu |= IXGBE_TAF_ASM_PAUSE;
162 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
164 break;
165 case ixgbe_fc_rx_pause:
167 * Rx Flow control is enabled and Tx Flow control is
168 * disabled by software override. Since there really
169 * isn't a way to advertise that we are capable of RX
170 * Pause ONLY, we will advertise that we support both
171 * symmetric and asymmetric Rx PAUSE, as such we fall
172 * through to the fc_full statement. Later, we will
173 * disable the adapter's ability to send PAUSE frames.
175 case ixgbe_fc_full:
176 /* Flow control (both Rx and Tx) is enabled by SW override. */
177 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
178 if (hw->phy.media_type == ixgbe_media_type_backplane)
179 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
180 IXGBE_AUTOC_ASM_PAUSE;
181 else if (hw->phy.media_type == ixgbe_media_type_copper)
182 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
183 break;
184 default:
185 hw_dbg(hw, "Flow control param set incorrectly\n");
186 ret_val = IXGBE_ERR_CONFIG;
187 goto out;
188 break;
191 if (hw->mac.type != ixgbe_mac_X540) {
193 * Enable auto-negotiation between the MAC & PHY;
194 * the MAC will advertise clause 37 flow control.
196 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
197 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
199 /* Disable AN timeout */
200 if (hw->fc.strict_ieee)
201 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
203 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
204 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
208 * AUTOC restart handles negotiation of 1G and 10G on backplane
209 * and copper. There is no need to set the PCS1GCTL register.
212 if (hw->phy.media_type == ixgbe_media_type_backplane) {
213 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
214 * LESM is on, likewise reset_pipeline requries the lock as
215 * it also writes AUTOC.
217 if ((hw->mac.type == ixgbe_mac_82599EB) &&
218 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
219 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
220 IXGBE_GSSR_MAC_CSR_SM);
221 if (ret_val)
222 goto out;
224 got_lock = true;
227 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
229 if (hw->mac.type == ixgbe_mac_82599EB)
230 ixgbe_reset_pipeline_82599(hw);
232 if (got_lock)
233 hw->mac.ops.release_swfw_sync(hw,
234 IXGBE_GSSR_MAC_CSR_SM);
236 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
237 (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
238 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
239 MDIO_MMD_AN, reg_cu);
242 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
243 out:
244 return ret_val;
248 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
249 * @hw: pointer to hardware structure
251 * Starts the hardware by filling the bus info structure and media type, clears
252 * all on chip counters, initializes receive address registers, multicast
253 * table, VLAN filter table, calls routine to set up link and flow control
254 * settings, and leaves transmit and receive units disabled and uninitialized
256 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
258 u32 ctrl_ext;
260 /* Set the media type */
261 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
263 /* Identify the PHY */
264 hw->phy.ops.identify(hw);
266 /* Clear the VLAN filter table */
267 hw->mac.ops.clear_vfta(hw);
269 /* Clear statistics registers */
270 hw->mac.ops.clear_hw_cntrs(hw);
272 /* Set No Snoop Disable */
273 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
274 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
275 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
276 IXGBE_WRITE_FLUSH(hw);
278 /* Setup flow control */
279 ixgbe_setup_fc(hw);
281 /* Clear adapter stopped flag */
282 hw->adapter_stopped = false;
284 return 0;
288 * ixgbe_start_hw_gen2 - Init sequence for common device family
289 * @hw: pointer to hw structure
291 * Performs the init sequence common to the second generation
292 * of 10 GbE devices.
293 * Devices in the second generation:
294 * 82599
295 * X540
297 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
299 u32 i;
300 u32 regval;
302 /* Clear the rate limiters */
303 for (i = 0; i < hw->mac.max_tx_queues; i++) {
304 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
305 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
307 IXGBE_WRITE_FLUSH(hw);
309 /* Disable relaxed ordering */
310 for (i = 0; i < hw->mac.max_tx_queues; i++) {
311 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
312 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
313 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
316 for (i = 0; i < hw->mac.max_rx_queues; i++) {
317 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
318 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
319 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
320 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
323 return 0;
327 * ixgbe_init_hw_generic - Generic hardware initialization
328 * @hw: pointer to hardware structure
330 * Initialize the hardware by resetting the hardware, filling the bus info
331 * structure and media type, clears all on chip counters, initializes receive
332 * address registers, multicast table, VLAN filter table, calls routine to set
333 * up link and flow control settings, and leaves transmit and receive units
334 * disabled and uninitialized
336 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
338 s32 status;
340 /* Reset the hardware */
341 status = hw->mac.ops.reset_hw(hw);
343 if (status == 0) {
344 /* Start the HW */
345 status = hw->mac.ops.start_hw(hw);
348 return status;
352 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
353 * @hw: pointer to hardware structure
355 * Clears all hardware statistics counters by reading them from the hardware
356 * Statistics counters are clear on read.
358 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
360 u16 i = 0;
362 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
363 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
364 IXGBE_READ_REG(hw, IXGBE_ERRBC);
365 IXGBE_READ_REG(hw, IXGBE_MSPDC);
366 for (i = 0; i < 8; i++)
367 IXGBE_READ_REG(hw, IXGBE_MPC(i));
369 IXGBE_READ_REG(hw, IXGBE_MLFC);
370 IXGBE_READ_REG(hw, IXGBE_MRFC);
371 IXGBE_READ_REG(hw, IXGBE_RLEC);
372 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
373 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
374 if (hw->mac.type >= ixgbe_mac_82599EB) {
375 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
376 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
377 } else {
378 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
379 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
382 for (i = 0; i < 8; i++) {
383 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
384 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
385 if (hw->mac.type >= ixgbe_mac_82599EB) {
386 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
387 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
388 } else {
389 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
390 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
393 if (hw->mac.type >= ixgbe_mac_82599EB)
394 for (i = 0; i < 8; i++)
395 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
396 IXGBE_READ_REG(hw, IXGBE_PRC64);
397 IXGBE_READ_REG(hw, IXGBE_PRC127);
398 IXGBE_READ_REG(hw, IXGBE_PRC255);
399 IXGBE_READ_REG(hw, IXGBE_PRC511);
400 IXGBE_READ_REG(hw, IXGBE_PRC1023);
401 IXGBE_READ_REG(hw, IXGBE_PRC1522);
402 IXGBE_READ_REG(hw, IXGBE_GPRC);
403 IXGBE_READ_REG(hw, IXGBE_BPRC);
404 IXGBE_READ_REG(hw, IXGBE_MPRC);
405 IXGBE_READ_REG(hw, IXGBE_GPTC);
406 IXGBE_READ_REG(hw, IXGBE_GORCL);
407 IXGBE_READ_REG(hw, IXGBE_GORCH);
408 IXGBE_READ_REG(hw, IXGBE_GOTCL);
409 IXGBE_READ_REG(hw, IXGBE_GOTCH);
410 if (hw->mac.type == ixgbe_mac_82598EB)
411 for (i = 0; i < 8; i++)
412 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
413 IXGBE_READ_REG(hw, IXGBE_RUC);
414 IXGBE_READ_REG(hw, IXGBE_RFC);
415 IXGBE_READ_REG(hw, IXGBE_ROC);
416 IXGBE_READ_REG(hw, IXGBE_RJC);
417 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
418 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
419 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
420 IXGBE_READ_REG(hw, IXGBE_TORL);
421 IXGBE_READ_REG(hw, IXGBE_TORH);
422 IXGBE_READ_REG(hw, IXGBE_TPR);
423 IXGBE_READ_REG(hw, IXGBE_TPT);
424 IXGBE_READ_REG(hw, IXGBE_PTC64);
425 IXGBE_READ_REG(hw, IXGBE_PTC127);
426 IXGBE_READ_REG(hw, IXGBE_PTC255);
427 IXGBE_READ_REG(hw, IXGBE_PTC511);
428 IXGBE_READ_REG(hw, IXGBE_PTC1023);
429 IXGBE_READ_REG(hw, IXGBE_PTC1522);
430 IXGBE_READ_REG(hw, IXGBE_MPTC);
431 IXGBE_READ_REG(hw, IXGBE_BPTC);
432 for (i = 0; i < 16; i++) {
433 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
434 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
435 if (hw->mac.type >= ixgbe_mac_82599EB) {
436 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
437 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
438 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
439 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
440 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
441 } else {
442 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
443 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
447 if (hw->mac.type == ixgbe_mac_X540) {
448 if (hw->phy.id == 0)
449 hw->phy.ops.identify(hw);
450 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
451 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
452 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
453 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
456 return 0;
460 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
461 * @hw: pointer to hardware structure
462 * @pba_num: stores the part number string from the EEPROM
463 * @pba_num_size: part number string buffer length
465 * Reads the part number string from the EEPROM.
467 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
468 u32 pba_num_size)
470 s32 ret_val;
471 u16 data;
472 u16 pba_ptr;
473 u16 offset;
474 u16 length;
476 if (pba_num == NULL) {
477 hw_dbg(hw, "PBA string buffer was null\n");
478 return IXGBE_ERR_INVALID_ARGUMENT;
481 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
482 if (ret_val) {
483 hw_dbg(hw, "NVM Read Error\n");
484 return ret_val;
487 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
488 if (ret_val) {
489 hw_dbg(hw, "NVM Read Error\n");
490 return ret_val;
494 * if data is not ptr guard the PBA must be in legacy format which
495 * means pba_ptr is actually our second data word for the PBA number
496 * and we can decode it into an ascii string
498 if (data != IXGBE_PBANUM_PTR_GUARD) {
499 hw_dbg(hw, "NVM PBA number is not stored as string\n");
501 /* we will need 11 characters to store the PBA */
502 if (pba_num_size < 11) {
503 hw_dbg(hw, "PBA string buffer too small\n");
504 return IXGBE_ERR_NO_SPACE;
507 /* extract hex string from data and pba_ptr */
508 pba_num[0] = (data >> 12) & 0xF;
509 pba_num[1] = (data >> 8) & 0xF;
510 pba_num[2] = (data >> 4) & 0xF;
511 pba_num[3] = data & 0xF;
512 pba_num[4] = (pba_ptr >> 12) & 0xF;
513 pba_num[5] = (pba_ptr >> 8) & 0xF;
514 pba_num[6] = '-';
515 pba_num[7] = 0;
516 pba_num[8] = (pba_ptr >> 4) & 0xF;
517 pba_num[9] = pba_ptr & 0xF;
519 /* put a null character on the end of our string */
520 pba_num[10] = '\0';
522 /* switch all the data but the '-' to hex char */
523 for (offset = 0; offset < 10; offset++) {
524 if (pba_num[offset] < 0xA)
525 pba_num[offset] += '0';
526 else if (pba_num[offset] < 0x10)
527 pba_num[offset] += 'A' - 0xA;
530 return 0;
533 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
534 if (ret_val) {
535 hw_dbg(hw, "NVM Read Error\n");
536 return ret_val;
539 if (length == 0xFFFF || length == 0) {
540 hw_dbg(hw, "NVM PBA number section invalid length\n");
541 return IXGBE_ERR_PBA_SECTION;
544 /* check if pba_num buffer is big enough */
545 if (pba_num_size < (((u32)length * 2) - 1)) {
546 hw_dbg(hw, "PBA string buffer too small\n");
547 return IXGBE_ERR_NO_SPACE;
550 /* trim pba length from start of string */
551 pba_ptr++;
552 length--;
554 for (offset = 0; offset < length; offset++) {
555 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
556 if (ret_val) {
557 hw_dbg(hw, "NVM Read Error\n");
558 return ret_val;
560 pba_num[offset * 2] = (u8)(data >> 8);
561 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
563 pba_num[offset * 2] = '\0';
565 return 0;
569 * ixgbe_get_mac_addr_generic - Generic get MAC address
570 * @hw: pointer to hardware structure
571 * @mac_addr: Adapter MAC address
573 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
574 * A reset of the adapter must be performed prior to calling this function
575 * in order for the MAC address to have been loaded from the EEPROM into RAR0
577 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
579 u32 rar_high;
580 u32 rar_low;
581 u16 i;
583 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
584 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
586 for (i = 0; i < 4; i++)
587 mac_addr[i] = (u8)(rar_low >> (i*8));
589 for (i = 0; i < 2; i++)
590 mac_addr[i+4] = (u8)(rar_high >> (i*8));
592 return 0;
595 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
597 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
598 case IXGBE_PCI_LINK_WIDTH_1:
599 return ixgbe_bus_width_pcie_x1;
600 case IXGBE_PCI_LINK_WIDTH_2:
601 return ixgbe_bus_width_pcie_x2;
602 case IXGBE_PCI_LINK_WIDTH_4:
603 return ixgbe_bus_width_pcie_x4;
604 case IXGBE_PCI_LINK_WIDTH_8:
605 return ixgbe_bus_width_pcie_x8;
606 default:
607 return ixgbe_bus_width_unknown;
611 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
613 switch (link_status & IXGBE_PCI_LINK_SPEED) {
614 case IXGBE_PCI_LINK_SPEED_2500:
615 return ixgbe_bus_speed_2500;
616 case IXGBE_PCI_LINK_SPEED_5000:
617 return ixgbe_bus_speed_5000;
618 case IXGBE_PCI_LINK_SPEED_8000:
619 return ixgbe_bus_speed_8000;
620 default:
621 return ixgbe_bus_speed_unknown;
626 * ixgbe_get_bus_info_generic - Generic set PCI bus info
627 * @hw: pointer to hardware structure
629 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
631 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
633 struct ixgbe_adapter *adapter = hw->back;
634 struct ixgbe_mac_info *mac = &hw->mac;
635 u16 link_status;
637 hw->bus.type = ixgbe_bus_type_pci_express;
639 /* Get the negotiated link width and speed from PCI config space */
640 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
641 &link_status);
643 hw->bus.width = ixgbe_convert_bus_width(link_status);
644 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
646 mac->ops.set_lan_id(hw);
648 return 0;
652 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
653 * @hw: pointer to the HW structure
655 * Determines the LAN function id by reading memory-mapped registers
656 * and swaps the port value if requested.
658 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
660 struct ixgbe_bus_info *bus = &hw->bus;
661 u32 reg;
663 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
664 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
665 bus->lan_id = bus->func;
667 /* check for a port swap */
668 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
669 if (reg & IXGBE_FACTPS_LFS)
670 bus->func ^= 0x1;
674 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
675 * @hw: pointer to hardware structure
677 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
678 * disables transmit and receive units. The adapter_stopped flag is used by
679 * the shared code and drivers to determine if the adapter is in a stopped
680 * state and should not touch the hardware.
682 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
684 u32 reg_val;
685 u16 i;
688 * Set the adapter_stopped flag so other driver functions stop touching
689 * the hardware
691 hw->adapter_stopped = true;
693 /* Disable the receive unit */
694 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
696 /* Clear interrupt mask to stop interrupts from being generated */
697 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
699 /* Clear any pending interrupts, flush previous writes */
700 IXGBE_READ_REG(hw, IXGBE_EICR);
702 /* Disable the transmit unit. Each queue must be disabled. */
703 for (i = 0; i < hw->mac.max_tx_queues; i++)
704 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
706 /* Disable the receive unit by stopping each queue */
707 for (i = 0; i < hw->mac.max_rx_queues; i++) {
708 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
709 reg_val &= ~IXGBE_RXDCTL_ENABLE;
710 reg_val |= IXGBE_RXDCTL_SWFLSH;
711 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
714 /* flush all queues disables */
715 IXGBE_WRITE_FLUSH(hw);
716 usleep_range(1000, 2000);
719 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
720 * access and verify no pending requests
722 return ixgbe_disable_pcie_master(hw);
726 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
727 * @hw: pointer to hardware structure
728 * @index: led number to turn on
730 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
732 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
734 /* To turn on the LED, set mode to ON. */
735 led_reg &= ~IXGBE_LED_MODE_MASK(index);
736 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
737 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
738 IXGBE_WRITE_FLUSH(hw);
740 return 0;
744 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
745 * @hw: pointer to hardware structure
746 * @index: led number to turn off
748 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
750 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
752 /* To turn off the LED, set mode to OFF. */
753 led_reg &= ~IXGBE_LED_MODE_MASK(index);
754 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
755 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
756 IXGBE_WRITE_FLUSH(hw);
758 return 0;
762 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
763 * @hw: pointer to hardware structure
765 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
766 * ixgbe_hw struct in order to set up EEPROM access.
768 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
770 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
771 u32 eec;
772 u16 eeprom_size;
774 if (eeprom->type == ixgbe_eeprom_uninitialized) {
775 eeprom->type = ixgbe_eeprom_none;
776 /* Set default semaphore delay to 10ms which is a well
777 * tested value */
778 eeprom->semaphore_delay = 10;
779 /* Clear EEPROM page size, it will be initialized as needed */
780 eeprom->word_page_size = 0;
783 * Check for EEPROM present first.
784 * If not present leave as none
786 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
787 if (eec & IXGBE_EEC_PRES) {
788 eeprom->type = ixgbe_eeprom_spi;
791 * SPI EEPROM is assumed here. This code would need to
792 * change if a future EEPROM is not SPI.
794 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
795 IXGBE_EEC_SIZE_SHIFT);
796 eeprom->word_size = 1 << (eeprom_size +
797 IXGBE_EEPROM_WORD_SIZE_SHIFT);
800 if (eec & IXGBE_EEC_ADDR_SIZE)
801 eeprom->address_bits = 16;
802 else
803 eeprom->address_bits = 8;
804 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
805 "%d\n", eeprom->type, eeprom->word_size,
806 eeprom->address_bits);
809 return 0;
813 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
814 * @hw: pointer to hardware structure
815 * @offset: offset within the EEPROM to write
816 * @words: number of words
817 * @data: 16 bit word(s) to write to EEPROM
819 * Reads 16 bit word(s) from EEPROM through bit-bang method
821 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
822 u16 words, u16 *data)
824 s32 status = 0;
825 u16 i, count;
827 hw->eeprom.ops.init_params(hw);
829 if (words == 0) {
830 status = IXGBE_ERR_INVALID_ARGUMENT;
831 goto out;
834 if (offset + words > hw->eeprom.word_size) {
835 status = IXGBE_ERR_EEPROM;
836 goto out;
840 * The EEPROM page size cannot be queried from the chip. We do lazy
841 * initialization. It is worth to do that when we write large buffer.
843 if ((hw->eeprom.word_page_size == 0) &&
844 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
845 ixgbe_detect_eeprom_page_size_generic(hw, offset);
848 * We cannot hold synchronization semaphores for too long
849 * to avoid other entity starvation. However it is more efficient
850 * to read in bursts than synchronizing access for each word.
852 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
853 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
854 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
855 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
856 count, &data[i]);
858 if (status != 0)
859 break;
862 out:
863 return status;
867 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
868 * @hw: pointer to hardware structure
869 * @offset: offset within the EEPROM to be written to
870 * @words: number of word(s)
871 * @data: 16 bit word(s) to be written to the EEPROM
873 * If ixgbe_eeprom_update_checksum is not called after this function, the
874 * EEPROM will most likely contain an invalid checksum.
876 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
877 u16 words, u16 *data)
879 s32 status;
880 u16 word;
881 u16 page_size;
882 u16 i;
883 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
885 /* Prepare the EEPROM for writing */
886 status = ixgbe_acquire_eeprom(hw);
888 if (status == 0) {
889 if (ixgbe_ready_eeprom(hw) != 0) {
890 ixgbe_release_eeprom(hw);
891 status = IXGBE_ERR_EEPROM;
895 if (status == 0) {
896 for (i = 0; i < words; i++) {
897 ixgbe_standby_eeprom(hw);
899 /* Send the WRITE ENABLE command (8 bit opcode ) */
900 ixgbe_shift_out_eeprom_bits(hw,
901 IXGBE_EEPROM_WREN_OPCODE_SPI,
902 IXGBE_EEPROM_OPCODE_BITS);
904 ixgbe_standby_eeprom(hw);
907 * Some SPI eeproms use the 8th address bit embedded
908 * in the opcode
910 if ((hw->eeprom.address_bits == 8) &&
911 ((offset + i) >= 128))
912 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
914 /* Send the Write command (8-bit opcode + addr) */
915 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
916 IXGBE_EEPROM_OPCODE_BITS);
917 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
918 hw->eeprom.address_bits);
920 page_size = hw->eeprom.word_page_size;
922 /* Send the data in burst via SPI*/
923 do {
924 word = data[i];
925 word = (word >> 8) | (word << 8);
926 ixgbe_shift_out_eeprom_bits(hw, word, 16);
928 if (page_size == 0)
929 break;
931 /* do not wrap around page */
932 if (((offset + i) & (page_size - 1)) ==
933 (page_size - 1))
934 break;
935 } while (++i < words);
937 ixgbe_standby_eeprom(hw);
938 usleep_range(10000, 20000);
940 /* Done with writing - release the EEPROM */
941 ixgbe_release_eeprom(hw);
944 return status;
948 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
949 * @hw: pointer to hardware structure
950 * @offset: offset within the EEPROM to be written to
951 * @data: 16 bit word to be written to the EEPROM
953 * If ixgbe_eeprom_update_checksum is not called after this function, the
954 * EEPROM will most likely contain an invalid checksum.
956 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
958 s32 status;
960 hw->eeprom.ops.init_params(hw);
962 if (offset >= hw->eeprom.word_size) {
963 status = IXGBE_ERR_EEPROM;
964 goto out;
967 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
969 out:
970 return status;
974 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
975 * @hw: pointer to hardware structure
976 * @offset: offset within the EEPROM to be read
977 * @words: number of word(s)
978 * @data: read 16 bit words(s) from EEPROM
980 * Reads 16 bit word(s) from EEPROM through bit-bang method
982 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
983 u16 words, u16 *data)
985 s32 status = 0;
986 u16 i, count;
988 hw->eeprom.ops.init_params(hw);
990 if (words == 0) {
991 status = IXGBE_ERR_INVALID_ARGUMENT;
992 goto out;
995 if (offset + words > hw->eeprom.word_size) {
996 status = IXGBE_ERR_EEPROM;
997 goto out;
1001 * We cannot hold synchronization semaphores for too long
1002 * to avoid other entity starvation. However it is more efficient
1003 * to read in bursts than synchronizing access for each word.
1005 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1006 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1007 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1009 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1010 count, &data[i]);
1012 if (status != 0)
1013 break;
1016 out:
1017 return status;
1021 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1022 * @hw: pointer to hardware structure
1023 * @offset: offset within the EEPROM to be read
1024 * @words: number of word(s)
1025 * @data: read 16 bit word(s) from EEPROM
1027 * Reads 16 bit word(s) from EEPROM through bit-bang method
1029 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1030 u16 words, u16 *data)
1032 s32 status;
1033 u16 word_in;
1034 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1035 u16 i;
1037 /* Prepare the EEPROM for reading */
1038 status = ixgbe_acquire_eeprom(hw);
1040 if (status == 0) {
1041 if (ixgbe_ready_eeprom(hw) != 0) {
1042 ixgbe_release_eeprom(hw);
1043 status = IXGBE_ERR_EEPROM;
1047 if (status == 0) {
1048 for (i = 0; i < words; i++) {
1049 ixgbe_standby_eeprom(hw);
1051 * Some SPI eeproms use the 8th address bit embedded
1052 * in the opcode
1054 if ((hw->eeprom.address_bits == 8) &&
1055 ((offset + i) >= 128))
1056 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1058 /* Send the READ command (opcode + addr) */
1059 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060 IXGBE_EEPROM_OPCODE_BITS);
1061 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062 hw->eeprom.address_bits);
1064 /* Read the data. */
1065 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066 data[i] = (word_in >> 8) | (word_in << 8);
1069 /* End this read operation */
1070 ixgbe_release_eeprom(hw);
1073 return status;
1077 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1078 * @hw: pointer to hardware structure
1079 * @offset: offset within the EEPROM to be read
1080 * @data: read 16 bit value from EEPROM
1082 * Reads 16 bit value from EEPROM through bit-bang method
1084 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1085 u16 *data)
1087 s32 status;
1089 hw->eeprom.ops.init_params(hw);
1091 if (offset >= hw->eeprom.word_size) {
1092 status = IXGBE_ERR_EEPROM;
1093 goto out;
1096 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1098 out:
1099 return status;
1103 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1104 * @hw: pointer to hardware structure
1105 * @offset: offset of word in the EEPROM to read
1106 * @words: number of word(s)
1107 * @data: 16 bit word(s) from the EEPROM
1109 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1111 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1112 u16 words, u16 *data)
1114 u32 eerd;
1115 s32 status = 0;
1116 u32 i;
1118 hw->eeprom.ops.init_params(hw);
1120 if (words == 0) {
1121 status = IXGBE_ERR_INVALID_ARGUMENT;
1122 goto out;
1125 if (offset >= hw->eeprom.word_size) {
1126 status = IXGBE_ERR_EEPROM;
1127 goto out;
1130 for (i = 0; i < words; i++) {
1131 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1132 IXGBE_EEPROM_RW_REG_START;
1134 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1135 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1137 if (status == 0) {
1138 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1139 IXGBE_EEPROM_RW_REG_DATA);
1140 } else {
1141 hw_dbg(hw, "Eeprom read timed out\n");
1142 goto out;
1145 out:
1146 return status;
1150 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1151 * @hw: pointer to hardware structure
1152 * @offset: offset within the EEPROM to be used as a scratch pad
1154 * Discover EEPROM page size by writing marching data at given offset.
1155 * This function is called only when we are writing a new large buffer
1156 * at given offset so the data would be overwritten anyway.
1158 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1159 u16 offset)
1161 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1162 s32 status = 0;
1163 u16 i;
1165 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1166 data[i] = i;
1168 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1169 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1170 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1171 hw->eeprom.word_page_size = 0;
1172 if (status != 0)
1173 goto out;
1175 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1176 if (status != 0)
1177 goto out;
1180 * When writing in burst more than the actual page size
1181 * EEPROM address wraps around current page.
1183 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1185 hw_dbg(hw, "Detected EEPROM page size = %d words.",
1186 hw->eeprom.word_page_size);
1187 out:
1188 return status;
1192 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1193 * @hw: pointer to hardware structure
1194 * @offset: offset of word in the EEPROM to read
1195 * @data: word read from the EEPROM
1197 * Reads a 16 bit word from the EEPROM using the EERD register.
1199 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1201 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1205 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1206 * @hw: pointer to hardware structure
1207 * @offset: offset of word in the EEPROM to write
1208 * @words: number of words
1209 * @data: word(s) write to the EEPROM
1211 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1213 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1214 u16 words, u16 *data)
1216 u32 eewr;
1217 s32 status = 0;
1218 u16 i;
1220 hw->eeprom.ops.init_params(hw);
1222 if (words == 0) {
1223 status = IXGBE_ERR_INVALID_ARGUMENT;
1224 goto out;
1227 if (offset >= hw->eeprom.word_size) {
1228 status = IXGBE_ERR_EEPROM;
1229 goto out;
1232 for (i = 0; i < words; i++) {
1233 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1234 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1235 IXGBE_EEPROM_RW_REG_START;
1237 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1238 if (status != 0) {
1239 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1240 goto out;
1243 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1245 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1246 if (status != 0) {
1247 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1248 goto out;
1252 out:
1253 return status;
1257 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1258 * @hw: pointer to hardware structure
1259 * @offset: offset of word in the EEPROM to write
1260 * @data: word write to the EEPROM
1262 * Write a 16 bit word to the EEPROM using the EEWR register.
1264 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1266 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1270 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1271 * @hw: pointer to hardware structure
1272 * @ee_reg: EEPROM flag for polling
1274 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1275 * read or write is done respectively.
1277 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1279 u32 i;
1280 u32 reg;
1281 s32 status = IXGBE_ERR_EEPROM;
1283 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1284 if (ee_reg == IXGBE_NVM_POLL_READ)
1285 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1286 else
1287 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1289 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1290 status = 0;
1291 break;
1293 udelay(5);
1295 return status;
1299 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1300 * @hw: pointer to hardware structure
1302 * Prepares EEPROM for access using bit-bang method. This function should
1303 * be called before issuing a command to the EEPROM.
1305 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1307 s32 status = 0;
1308 u32 eec;
1309 u32 i;
1311 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1312 status = IXGBE_ERR_SWFW_SYNC;
1314 if (status == 0) {
1315 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1317 /* Request EEPROM Access */
1318 eec |= IXGBE_EEC_REQ;
1319 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1321 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1322 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1323 if (eec & IXGBE_EEC_GNT)
1324 break;
1325 udelay(5);
1328 /* Release if grant not acquired */
1329 if (!(eec & IXGBE_EEC_GNT)) {
1330 eec &= ~IXGBE_EEC_REQ;
1331 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1332 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1334 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1335 status = IXGBE_ERR_EEPROM;
1338 /* Setup EEPROM for Read/Write */
1339 if (status == 0) {
1340 /* Clear CS and SK */
1341 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1342 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1343 IXGBE_WRITE_FLUSH(hw);
1344 udelay(1);
1347 return status;
1351 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1352 * @hw: pointer to hardware structure
1354 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1356 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1358 s32 status = IXGBE_ERR_EEPROM;
1359 u32 timeout = 2000;
1360 u32 i;
1361 u32 swsm;
1363 /* Get SMBI software semaphore between device drivers first */
1364 for (i = 0; i < timeout; i++) {
1366 * If the SMBI bit is 0 when we read it, then the bit will be
1367 * set and we have the semaphore
1369 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1370 if (!(swsm & IXGBE_SWSM_SMBI)) {
1371 status = 0;
1372 break;
1374 udelay(50);
1377 if (i == timeout) {
1378 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1379 "not granted.\n");
1381 * this release is particularly important because our attempts
1382 * above to get the semaphore may have succeeded, and if there
1383 * was a timeout, we should unconditionally clear the semaphore
1384 * bits to free the driver to make progress
1386 ixgbe_release_eeprom_semaphore(hw);
1388 udelay(50);
1390 * one last try
1391 * If the SMBI bit is 0 when we read it, then the bit will be
1392 * set and we have the semaphore
1394 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1395 if (!(swsm & IXGBE_SWSM_SMBI))
1396 status = 0;
1399 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1400 if (status == 0) {
1401 for (i = 0; i < timeout; i++) {
1402 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1404 /* Set the SW EEPROM semaphore bit to request access */
1405 swsm |= IXGBE_SWSM_SWESMBI;
1406 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1409 * If we set the bit successfully then we got the
1410 * semaphore.
1412 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1413 if (swsm & IXGBE_SWSM_SWESMBI)
1414 break;
1416 udelay(50);
1420 * Release semaphores and return error if SW EEPROM semaphore
1421 * was not granted because we don't have access to the EEPROM
1423 if (i >= timeout) {
1424 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1425 "not granted.\n");
1426 ixgbe_release_eeprom_semaphore(hw);
1427 status = IXGBE_ERR_EEPROM;
1429 } else {
1430 hw_dbg(hw, "Software semaphore SMBI between device drivers "
1431 "not granted.\n");
1434 return status;
1438 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1439 * @hw: pointer to hardware structure
1441 * This function clears hardware semaphore bits.
1443 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1445 u32 swsm;
1447 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1449 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1450 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1451 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1452 IXGBE_WRITE_FLUSH(hw);
1456 * ixgbe_ready_eeprom - Polls for EEPROM ready
1457 * @hw: pointer to hardware structure
1459 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1461 s32 status = 0;
1462 u16 i;
1463 u8 spi_stat_reg;
1466 * Read "Status Register" repeatedly until the LSB is cleared. The
1467 * EEPROM will signal that the command has been completed by clearing
1468 * bit 0 of the internal status register. If it's not cleared within
1469 * 5 milliseconds, then error out.
1471 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1472 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1473 IXGBE_EEPROM_OPCODE_BITS);
1474 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1475 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1476 break;
1478 udelay(5);
1479 ixgbe_standby_eeprom(hw);
1483 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1484 * devices (and only 0-5mSec on 5V devices)
1486 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1487 hw_dbg(hw, "SPI EEPROM Status error\n");
1488 status = IXGBE_ERR_EEPROM;
1491 return status;
1495 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1496 * @hw: pointer to hardware structure
1498 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1500 u32 eec;
1502 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1504 /* Toggle CS to flush commands */
1505 eec |= IXGBE_EEC_CS;
1506 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1507 IXGBE_WRITE_FLUSH(hw);
1508 udelay(1);
1509 eec &= ~IXGBE_EEC_CS;
1510 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1511 IXGBE_WRITE_FLUSH(hw);
1512 udelay(1);
1516 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1517 * @hw: pointer to hardware structure
1518 * @data: data to send to the EEPROM
1519 * @count: number of bits to shift out
1521 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1522 u16 count)
1524 u32 eec;
1525 u32 mask;
1526 u32 i;
1528 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1531 * Mask is used to shift "count" bits of "data" out to the EEPROM
1532 * one bit at a time. Determine the starting bit based on count
1534 mask = 0x01 << (count - 1);
1536 for (i = 0; i < count; i++) {
1538 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1539 * "1", and then raising and then lowering the clock (the SK
1540 * bit controls the clock input to the EEPROM). A "0" is
1541 * shifted out to the EEPROM by setting "DI" to "0" and then
1542 * raising and then lowering the clock.
1544 if (data & mask)
1545 eec |= IXGBE_EEC_DI;
1546 else
1547 eec &= ~IXGBE_EEC_DI;
1549 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1550 IXGBE_WRITE_FLUSH(hw);
1552 udelay(1);
1554 ixgbe_raise_eeprom_clk(hw, &eec);
1555 ixgbe_lower_eeprom_clk(hw, &eec);
1558 * Shift mask to signify next bit of data to shift in to the
1559 * EEPROM
1561 mask = mask >> 1;
1564 /* We leave the "DI" bit set to "0" when we leave this routine. */
1565 eec &= ~IXGBE_EEC_DI;
1566 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1567 IXGBE_WRITE_FLUSH(hw);
1571 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1572 * @hw: pointer to hardware structure
1574 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1576 u32 eec;
1577 u32 i;
1578 u16 data = 0;
1581 * In order to read a register from the EEPROM, we need to shift
1582 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1583 * the clock input to the EEPROM (setting the SK bit), and then reading
1584 * the value of the "DO" bit. During this "shifting in" process the
1585 * "DI" bit should always be clear.
1587 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1589 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1591 for (i = 0; i < count; i++) {
1592 data = data << 1;
1593 ixgbe_raise_eeprom_clk(hw, &eec);
1595 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1597 eec &= ~(IXGBE_EEC_DI);
1598 if (eec & IXGBE_EEC_DO)
1599 data |= 1;
1601 ixgbe_lower_eeprom_clk(hw, &eec);
1604 return data;
1608 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1609 * @hw: pointer to hardware structure
1610 * @eec: EEC register's current value
1612 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1615 * Raise the clock input to the EEPROM
1616 * (setting the SK bit), then delay
1618 *eec = *eec | IXGBE_EEC_SK;
1619 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1620 IXGBE_WRITE_FLUSH(hw);
1621 udelay(1);
1625 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1626 * @hw: pointer to hardware structure
1627 * @eecd: EECD's current value
1629 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632 * Lower the clock input to the EEPROM (clearing the SK bit), then
1633 * delay
1635 *eec = *eec & ~IXGBE_EEC_SK;
1636 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1637 IXGBE_WRITE_FLUSH(hw);
1638 udelay(1);
1642 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1643 * @hw: pointer to hardware structure
1645 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1647 u32 eec;
1649 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1651 eec |= IXGBE_EEC_CS; /* Pull CS high */
1652 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1654 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1655 IXGBE_WRITE_FLUSH(hw);
1657 udelay(1);
1659 /* Stop requesting EEPROM access */
1660 eec &= ~IXGBE_EEC_REQ;
1661 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1663 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1666 * Delay before attempt to obtain semaphore again to allow FW
1667 * access. semaphore_delay is in ms we need us for usleep_range
1669 usleep_range(hw->eeprom.semaphore_delay * 1000,
1670 hw->eeprom.semaphore_delay * 2000);
1674 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1675 * @hw: pointer to hardware structure
1677 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1679 u16 i;
1680 u16 j;
1681 u16 checksum = 0;
1682 u16 length = 0;
1683 u16 pointer = 0;
1684 u16 word = 0;
1686 /* Include 0x0-0x3F in the checksum */
1687 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1688 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1689 hw_dbg(hw, "EEPROM read failed\n");
1690 break;
1692 checksum += word;
1695 /* Include all data from pointers except for the fw pointer */
1696 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1697 hw->eeprom.ops.read(hw, i, &pointer);
1699 /* Make sure the pointer seems valid */
1700 if (pointer != 0xFFFF && pointer != 0) {
1701 hw->eeprom.ops.read(hw, pointer, &length);
1703 if (length != 0xFFFF && length != 0) {
1704 for (j = pointer+1; j <= pointer+length; j++) {
1705 hw->eeprom.ops.read(hw, j, &word);
1706 checksum += word;
1712 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1714 return checksum;
1718 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1719 * @hw: pointer to hardware structure
1720 * @checksum_val: calculated checksum
1722 * Performs checksum calculation and validates the EEPROM checksum. If the
1723 * caller does not need checksum_val, the value can be NULL.
1725 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1726 u16 *checksum_val)
1728 s32 status;
1729 u16 checksum;
1730 u16 read_checksum = 0;
1733 * Read the first word from the EEPROM. If this times out or fails, do
1734 * not continue or we could be in for a very long wait while every
1735 * EEPROM read fails
1737 status = hw->eeprom.ops.read(hw, 0, &checksum);
1739 if (status == 0) {
1740 checksum = hw->eeprom.ops.calc_checksum(hw);
1742 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1745 * Verify read checksum from EEPROM is the same as
1746 * calculated checksum
1748 if (read_checksum != checksum)
1749 status = IXGBE_ERR_EEPROM_CHECKSUM;
1751 /* If the user cares, return the calculated checksum */
1752 if (checksum_val)
1753 *checksum_val = checksum;
1754 } else {
1755 hw_dbg(hw, "EEPROM read failed\n");
1758 return status;
1762 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1763 * @hw: pointer to hardware structure
1765 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1767 s32 status;
1768 u16 checksum;
1771 * Read the first word from the EEPROM. If this times out or fails, do
1772 * not continue or we could be in for a very long wait while every
1773 * EEPROM read fails
1775 status = hw->eeprom.ops.read(hw, 0, &checksum);
1777 if (status == 0) {
1778 checksum = hw->eeprom.ops.calc_checksum(hw);
1779 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1780 checksum);
1781 } else {
1782 hw_dbg(hw, "EEPROM read failed\n");
1785 return status;
1789 * ixgbe_set_rar_generic - Set Rx address register
1790 * @hw: pointer to hardware structure
1791 * @index: Receive address register to write
1792 * @addr: Address to put into receive address register
1793 * @vmdq: VMDq "set" or "pool" index
1794 * @enable_addr: set flag that address is active
1796 * Puts an ethernet address into a receive address register.
1798 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1799 u32 enable_addr)
1801 u32 rar_low, rar_high;
1802 u32 rar_entries = hw->mac.num_rar_entries;
1804 /* Make sure we are using a valid rar index range */
1805 if (index >= rar_entries) {
1806 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1807 return IXGBE_ERR_INVALID_ARGUMENT;
1810 /* setup VMDq pool selection before this RAR gets enabled */
1811 hw->mac.ops.set_vmdq(hw, index, vmdq);
1814 * HW expects these in little endian so we reverse the byte
1815 * order from network order (big endian) to little endian
1817 rar_low = ((u32)addr[0] |
1818 ((u32)addr[1] << 8) |
1819 ((u32)addr[2] << 16) |
1820 ((u32)addr[3] << 24));
1822 * Some parts put the VMDq setting in the extra RAH bits,
1823 * so save everything except the lower 16 bits that hold part
1824 * of the address and the address valid bit.
1826 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1827 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1828 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1830 if (enable_addr != 0)
1831 rar_high |= IXGBE_RAH_AV;
1833 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1834 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1836 return 0;
1840 * ixgbe_clear_rar_generic - Remove Rx address register
1841 * @hw: pointer to hardware structure
1842 * @index: Receive address register to write
1844 * Clears an ethernet address from a receive address register.
1846 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1848 u32 rar_high;
1849 u32 rar_entries = hw->mac.num_rar_entries;
1851 /* Make sure we are using a valid rar index range */
1852 if (index >= rar_entries) {
1853 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1854 return IXGBE_ERR_INVALID_ARGUMENT;
1858 * Some parts put the VMDq setting in the extra RAH bits,
1859 * so save everything except the lower 16 bits that hold part
1860 * of the address and the address valid bit.
1862 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1863 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1865 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1866 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868 /* clear VMDq pool/queue selection for this RAR */
1869 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1871 return 0;
1875 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1876 * @hw: pointer to hardware structure
1878 * Places the MAC address in receive address register 0 and clears the rest
1879 * of the receive address registers. Clears the multicast table. Assumes
1880 * the receiver is in reset when the routine is called.
1882 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1884 u32 i;
1885 u32 rar_entries = hw->mac.num_rar_entries;
1888 * If the current mac address is valid, assume it is a software override
1889 * to the permanent address.
1890 * Otherwise, use the permanent address from the eeprom.
1892 if (!is_valid_ether_addr(hw->mac.addr)) {
1893 /* Get the MAC address from the RAR0 for later reference */
1894 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1896 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1897 } else {
1898 /* Setup the receive address. */
1899 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1900 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1902 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1904 /* clear VMDq pool/queue selection for RAR 0 */
1905 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1907 hw->addr_ctrl.overflow_promisc = 0;
1909 hw->addr_ctrl.rar_used_count = 1;
1911 /* Zero out the other receive addresses. */
1912 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913 for (i = 1; i < rar_entries; i++) {
1914 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1918 /* Clear the MTA */
1919 hw->addr_ctrl.mta_in_use = 0;
1920 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1922 hw_dbg(hw, " Clearing MTA\n");
1923 for (i = 0; i < hw->mac.mcft_size; i++)
1924 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1926 if (hw->mac.ops.init_uta_tables)
1927 hw->mac.ops.init_uta_tables(hw);
1929 return 0;
1933 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934 * @hw: pointer to hardware structure
1935 * @mc_addr: the multicast address
1937 * Extracts the 12 bits, from a multicast address, to determine which
1938 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939 * incoming rx multicast addresses, to determine the bit-vector to check in
1940 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1942 * to mc_filter_type.
1944 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1946 u32 vector = 0;
1948 switch (hw->mac.mc_filter_type) {
1949 case 0: /* use bits [47:36] of the address */
1950 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951 break;
1952 case 1: /* use bits [46:35] of the address */
1953 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954 break;
1955 case 2: /* use bits [45:34] of the address */
1956 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957 break;
1958 case 3: /* use bits [43:32] of the address */
1959 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960 break;
1961 default: /* Invalid mc_filter_type */
1962 hw_dbg(hw, "MC filter type param set incorrectly\n");
1963 break;
1966 /* vector can only be 12-bits or boundary will be exceeded */
1967 vector &= 0xFFF;
1968 return vector;
1972 * ixgbe_set_mta - Set bit-vector in multicast table
1973 * @hw: pointer to hardware structure
1974 * @hash_value: Multicast address hash value
1976 * Sets the bit-vector in the multicast table.
1978 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1980 u32 vector;
1981 u32 vector_bit;
1982 u32 vector_reg;
1984 hw->addr_ctrl.mta_in_use++;
1986 vector = ixgbe_mta_vector(hw, mc_addr);
1987 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1990 * The MTA is a register array of 128 32-bit registers. It is treated
1991 * like an array of 4096 bits. We want to set bit
1992 * BitArray[vector_value]. So we figure out what register the bit is
1993 * in, read it, OR in the new bit, then write back the new value. The
1994 * register is determined by the upper 7 bits of the vector value and
1995 * the bit within that register are determined by the lower 5 bits of
1996 * the value.
1998 vector_reg = (vector >> 5) & 0x7F;
1999 vector_bit = vector & 0x1F;
2000 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2004 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005 * @hw: pointer to hardware structure
2006 * @netdev: pointer to net device structure
2008 * The given list replaces any existing list. Clears the MC addrs from receive
2009 * address registers and the multicast table. Uses unused receive address
2010 * registers for the first multicast addresses, and hashes the rest into the
2011 * multicast table.
2013 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014 struct net_device *netdev)
2016 struct netdev_hw_addr *ha;
2017 u32 i;
2020 * Set the new number of MC addresses that we are being requested to
2021 * use.
2023 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024 hw->addr_ctrl.mta_in_use = 0;
2026 /* Clear mta_shadow */
2027 hw_dbg(hw, " Clearing MTA\n");
2028 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2030 /* Update mta shadow */
2031 netdev_for_each_mc_addr(ha, netdev) {
2032 hw_dbg(hw, " Adding the multicast addresses:\n");
2033 ixgbe_set_mta(hw, ha->addr);
2036 /* Enable mta */
2037 for (i = 0; i < hw->mac.mcft_size; i++)
2038 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039 hw->mac.mta_shadow[i]);
2041 if (hw->addr_ctrl.mta_in_use > 0)
2042 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2045 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046 return 0;
2050 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2051 * @hw: pointer to hardware structure
2053 * Enables multicast address in RAR and the use of the multicast hash table.
2055 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2057 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2059 if (a->mta_in_use > 0)
2060 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061 hw->mac.mc_filter_type);
2063 return 0;
2067 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2068 * @hw: pointer to hardware structure
2070 * Disables multicast address in RAR and the use of the multicast hash table.
2072 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2074 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2076 if (a->mta_in_use > 0)
2077 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2079 return 0;
2083 * ixgbe_fc_enable_generic - Enable flow control
2084 * @hw: pointer to hardware structure
2086 * Enable flow control according to the current settings.
2088 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2090 s32 ret_val = 0;
2091 u32 mflcn_reg, fccfg_reg;
2092 u32 reg;
2093 u32 fcrtl, fcrth;
2094 int i;
2097 * Validate the water mark configuration for packet buffer 0. Zero
2098 * water marks indicate that the packet buffer was not configured
2099 * and the watermarks for packet buffer 0 should always be configured.
2101 if (!hw->fc.low_water ||
2102 !hw->fc.high_water[0] ||
2103 !hw->fc.pause_time) {
2104 hw_dbg(hw, "Invalid water mark configuration\n");
2105 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2106 goto out;
2109 /* Negotiate the fc mode to use */
2110 ixgbe_fc_autoneg(hw);
2112 /* Disable any previous flow control settings */
2113 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2114 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2116 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2117 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2120 * The possible values of fc.current_mode are:
2121 * 0: Flow control is completely disabled
2122 * 1: Rx flow control is enabled (we can receive pause frames,
2123 * but not send pause frames).
2124 * 2: Tx flow control is enabled (we can send pause frames but
2125 * we do not support receiving pause frames).
2126 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2127 * other: Invalid.
2129 switch (hw->fc.current_mode) {
2130 case ixgbe_fc_none:
2132 * Flow control is disabled by software override or autoneg.
2133 * The code below will actually disable it in the HW.
2135 break;
2136 case ixgbe_fc_rx_pause:
2138 * Rx Flow control is enabled and Tx Flow control is
2139 * disabled by software override. Since there really
2140 * isn't a way to advertise that we are capable of RX
2141 * Pause ONLY, we will advertise that we support both
2142 * symmetric and asymmetric Rx PAUSE. Later, we will
2143 * disable the adapter's ability to send PAUSE frames.
2145 mflcn_reg |= IXGBE_MFLCN_RFCE;
2146 break;
2147 case ixgbe_fc_tx_pause:
2149 * Tx Flow control is enabled, and Rx Flow control is
2150 * disabled by software override.
2152 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2153 break;
2154 case ixgbe_fc_full:
2155 /* Flow control (both Rx and Tx) is enabled by SW override. */
2156 mflcn_reg |= IXGBE_MFLCN_RFCE;
2157 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2158 break;
2159 default:
2160 hw_dbg(hw, "Flow control param set incorrectly\n");
2161 ret_val = IXGBE_ERR_CONFIG;
2162 goto out;
2163 break;
2166 /* Set 802.3x based flow control settings. */
2167 mflcn_reg |= IXGBE_MFLCN_DPF;
2168 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2171 fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2173 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2175 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2176 hw->fc.high_water[i]) {
2177 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2178 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2179 } else {
2180 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2182 * In order to prevent Tx hangs when the internal Tx
2183 * switch is enabled we must set the high water mark
2184 * to the maximum FCRTH value. This allows the Tx
2185 * switch to function even under heavy Rx workloads.
2187 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2190 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2193 /* Configure pause time (2 TCs per register) */
2194 reg = hw->fc.pause_time * 0x00010001;
2195 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2198 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2200 out:
2201 return ret_val;
2205 * ixgbe_negotiate_fc - Negotiate flow control
2206 * @hw: pointer to hardware structure
2207 * @adv_reg: flow control advertised settings
2208 * @lp_reg: link partner's flow control settings
2209 * @adv_sym: symmetric pause bit in advertisement
2210 * @adv_asm: asymmetric pause bit in advertisement
2211 * @lp_sym: symmetric pause bit in link partner advertisement
2212 * @lp_asm: asymmetric pause bit in link partner advertisement
2214 * Find the intersection between advertised settings and link partner's
2215 * advertised settings
2217 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2218 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2220 if ((!(adv_reg)) || (!(lp_reg)))
2221 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2223 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2225 * Now we need to check if the user selected Rx ONLY
2226 * of pause frames. In this case, we had to advertise
2227 * FULL flow control because we could not advertise RX
2228 * ONLY. Hence, we must now check to see if we need to
2229 * turn OFF the TRANSMISSION of PAUSE frames.
2231 if (hw->fc.requested_mode == ixgbe_fc_full) {
2232 hw->fc.current_mode = ixgbe_fc_full;
2233 hw_dbg(hw, "Flow Control = FULL.\n");
2234 } else {
2235 hw->fc.current_mode = ixgbe_fc_rx_pause;
2236 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2238 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2239 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2240 hw->fc.current_mode = ixgbe_fc_tx_pause;
2241 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2242 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2243 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2244 hw->fc.current_mode = ixgbe_fc_rx_pause;
2245 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2246 } else {
2247 hw->fc.current_mode = ixgbe_fc_none;
2248 hw_dbg(hw, "Flow Control = NONE.\n");
2250 return 0;
2254 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255 * @hw: pointer to hardware structure
2257 * Enable flow control according on 1 gig fiber.
2259 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2261 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2262 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2265 * On multispeed fiber at 1g, bail out if
2266 * - link is up but AN did not complete, or if
2267 * - link is up and AN completed but timed out
2270 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2271 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2272 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2273 goto out;
2275 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2276 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2278 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2279 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2280 IXGBE_PCS1GANA_ASM_PAUSE,
2281 IXGBE_PCS1GANA_SYM_PAUSE,
2282 IXGBE_PCS1GANA_ASM_PAUSE);
2284 out:
2285 return ret_val;
2289 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290 * @hw: pointer to hardware structure
2292 * Enable flow control according to IEEE clause 37.
2294 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2296 u32 links2, anlp1_reg, autoc_reg, links;
2297 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2300 * On backplane, bail out if
2301 * - backplane autoneg was not completed, or if
2302 * - we are 82599 and link partner is not AN enabled
2304 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2305 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2306 goto out;
2308 if (hw->mac.type == ixgbe_mac_82599EB) {
2309 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2310 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2311 goto out;
2314 * Read the 10g AN autoc and LP ability registers and resolve
2315 * local flow control settings accordingly
2317 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2318 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2320 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2321 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2322 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2324 out:
2325 return ret_val;
2329 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330 * @hw: pointer to hardware structure
2332 * Enable flow control according to IEEE clause 37.
2334 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2336 u16 technology_ability_reg = 0;
2337 u16 lp_technology_ability_reg = 0;
2339 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340 MDIO_MMD_AN,
2341 &technology_ability_reg);
2342 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2343 MDIO_MMD_AN,
2344 &lp_technology_ability_reg);
2346 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2347 (u32)lp_technology_ability_reg,
2348 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2349 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2353 * ixgbe_fc_autoneg - Configure flow control
2354 * @hw: pointer to hardware structure
2356 * Compares our advertised flow control capabilities to those advertised by
2357 * our link partner, and determines the proper flow control mode to use.
2359 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2361 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2362 ixgbe_link_speed speed;
2363 bool link_up;
2366 * AN should have completed when the cable was plugged in.
2367 * Look for reasons to bail out. Bail out if:
2368 * - FC autoneg is disabled, or if
2369 * - link is not up.
2371 * Since we're being called from an LSC, link is already known to be up.
2372 * So use link_up_wait_to_complete=false.
2374 if (hw->fc.disable_fc_autoneg)
2375 goto out;
2377 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2378 if (!link_up)
2379 goto out;
2381 switch (hw->phy.media_type) {
2382 /* Autoneg flow control on fiber adapters */
2383 case ixgbe_media_type_fiber:
2384 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2385 ret_val = ixgbe_fc_autoneg_fiber(hw);
2386 break;
2388 /* Autoneg flow control on backplane adapters */
2389 case ixgbe_media_type_backplane:
2390 ret_val = ixgbe_fc_autoneg_backplane(hw);
2391 break;
2393 /* Autoneg flow control on copper adapters */
2394 case ixgbe_media_type_copper:
2395 if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2396 ret_val = ixgbe_fc_autoneg_copper(hw);
2397 break;
2399 default:
2400 break;
2403 out:
2404 if (ret_val == 0) {
2405 hw->fc.fc_was_autonegged = true;
2406 } else {
2407 hw->fc.fc_was_autonegged = false;
2408 hw->fc.current_mode = hw->fc.requested_mode;
2413 * ixgbe_disable_pcie_master - Disable PCI-express master access
2414 * @hw: pointer to hardware structure
2416 * Disables PCI-Express master access and verifies there are no pending
2417 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418 * bit hasn't caused the master requests to be disabled, else 0
2419 * is returned signifying master requests disabled.
2421 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2423 struct ixgbe_adapter *adapter = hw->back;
2424 s32 status = 0;
2425 u32 i;
2426 u16 value;
2428 /* Always set this bit to ensure any future transactions are blocked */
2429 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2431 /* Exit if master requests are blocked */
2432 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2433 goto out;
2435 /* Poll for master request bit to clear */
2436 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2437 udelay(100);
2438 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2439 goto out;
2443 * Two consecutive resets are required via CTRL.RST per datasheet
2444 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2445 * of this need. The first reset prevents new master requests from
2446 * being issued by our device. We then must wait 1usec or more for any
2447 * remaining completions from the PCIe bus to trickle in, and then reset
2448 * again to clear out any effects they may have had on our device.
2450 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2451 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2454 * Before proceeding, make sure that the PCIe block does not have
2455 * transactions pending.
2457 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2458 udelay(100);
2459 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2460 &value);
2461 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2462 goto out;
2465 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2466 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2468 out:
2469 return status;
2473 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474 * @hw: pointer to hardware structure
2475 * @mask: Mask to specify which semaphore to acquire
2477 * Acquires the SWFW semaphore through the GSSR register for the specified
2478 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2480 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2482 u32 gssr;
2483 u32 swmask = mask;
2484 u32 fwmask = mask << 5;
2485 s32 timeout = 200;
2487 while (timeout) {
2489 * SW EEPROM semaphore bit is used for access to all
2490 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2492 if (ixgbe_get_eeprom_semaphore(hw))
2493 return IXGBE_ERR_SWFW_SYNC;
2495 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2496 if (!(gssr & (fwmask | swmask)))
2497 break;
2500 * Firmware currently using resource (fwmask) or other software
2501 * thread currently using resource (swmask)
2503 ixgbe_release_eeprom_semaphore(hw);
2504 usleep_range(5000, 10000);
2505 timeout--;
2508 if (!timeout) {
2509 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510 return IXGBE_ERR_SWFW_SYNC;
2513 gssr |= swmask;
2514 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2516 ixgbe_release_eeprom_semaphore(hw);
2517 return 0;
2521 * ixgbe_release_swfw_sync - Release SWFW semaphore
2522 * @hw: pointer to hardware structure
2523 * @mask: Mask to specify which semaphore to release
2525 * Releases the SWFW semaphore through the GSSR register for the specified
2526 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2528 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2530 u32 gssr;
2531 u32 swmask = mask;
2533 ixgbe_get_eeprom_semaphore(hw);
2535 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2536 gssr &= ~swmask;
2537 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2539 ixgbe_release_eeprom_semaphore(hw);
2543 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2544 * @hw: pointer to hardware structure
2546 * Stops the receive data path and waits for the HW to internally
2547 * empty the Rx security block.
2549 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2551 #define IXGBE_MAX_SECRX_POLL 40
2552 int i;
2553 int secrxreg;
2555 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2556 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2557 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2558 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2559 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2560 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2561 break;
2562 else
2563 /* Use interrupt-safe sleep just in case */
2564 udelay(1000);
2567 /* For informational purposes only */
2568 if (i >= IXGBE_MAX_SECRX_POLL)
2569 hw_dbg(hw, "Rx unit being enabled before security "
2570 "path fully disabled. Continuing with init.\n");
2572 return 0;
2577 * ixgbe_enable_rx_buff - Enables the receive data path
2578 * @hw: pointer to hardware structure
2580 * Enables the receive data path
2582 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2584 int secrxreg;
2586 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2587 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2588 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2589 IXGBE_WRITE_FLUSH(hw);
2591 return 0;
2595 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596 * @hw: pointer to hardware structure
2597 * @regval: register value to write to RXCTRL
2599 * Enables the Rx DMA unit
2601 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2603 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2605 return 0;
2609 * ixgbe_blink_led_start_generic - Blink LED based on index.
2610 * @hw: pointer to hardware structure
2611 * @index: led number to blink
2613 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2615 ixgbe_link_speed speed = 0;
2616 bool link_up = false;
2617 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2618 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2619 s32 ret_val = 0;
2622 * Link must be up to auto-blink the LEDs;
2623 * Force it if link is down.
2625 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2627 if (!link_up) {
2628 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2629 * LESM is on.
2631 bool got_lock = false;
2633 if ((hw->mac.type == ixgbe_mac_82599EB) &&
2634 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2635 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2636 IXGBE_GSSR_MAC_CSR_SM);
2637 if (ret_val)
2638 goto out;
2640 got_lock = true;
2642 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2643 autoc_reg |= IXGBE_AUTOC_FLU;
2644 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2645 IXGBE_WRITE_FLUSH(hw);
2647 if (got_lock)
2648 hw->mac.ops.release_swfw_sync(hw,
2649 IXGBE_GSSR_MAC_CSR_SM);
2650 usleep_range(10000, 20000);
2653 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2654 led_reg |= IXGBE_LED_BLINK(index);
2655 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2656 IXGBE_WRITE_FLUSH(hw);
2658 out:
2659 return ret_val;
2663 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2664 * @hw: pointer to hardware structure
2665 * @index: led number to stop blinking
2667 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2669 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2670 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2671 s32 ret_val = 0;
2672 bool got_lock = false;
2674 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2675 * LESM is on.
2677 if ((hw->mac.type == ixgbe_mac_82599EB) &&
2678 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2679 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2680 IXGBE_GSSR_MAC_CSR_SM);
2681 if (ret_val)
2682 goto out;
2684 got_lock = true;
2687 autoc_reg &= ~IXGBE_AUTOC_FLU;
2688 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2689 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2691 if (hw->mac.type == ixgbe_mac_82599EB)
2692 ixgbe_reset_pipeline_82599(hw);
2694 if (got_lock)
2695 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2697 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2698 led_reg &= ~IXGBE_LED_BLINK(index);
2699 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2700 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2701 IXGBE_WRITE_FLUSH(hw);
2703 out:
2704 return ret_val;
2708 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2709 * @hw: pointer to hardware structure
2710 * @san_mac_offset: SAN MAC address offset
2712 * This function will read the EEPROM location for the SAN MAC address
2713 * pointer, and returns the value at that location. This is used in both
2714 * get and set mac_addr routines.
2716 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2717 u16 *san_mac_offset)
2720 * First read the EEPROM pointer to see if the MAC addresses are
2721 * available.
2723 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2725 return 0;
2729 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2730 * @hw: pointer to hardware structure
2731 * @san_mac_addr: SAN MAC address
2733 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2734 * per-port, so set_lan_id() must be called before reading the addresses.
2735 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2736 * upon for non-SFP connections, so we must call it here.
2738 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2740 u16 san_mac_data, san_mac_offset;
2741 u8 i;
2744 * First read the EEPROM pointer to see if the MAC addresses are
2745 * available. If they're not, no point in calling set_lan_id() here.
2747 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2749 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2751 * No addresses available in this EEPROM. It's not an
2752 * error though, so just wipe the local address and return.
2754 for (i = 0; i < 6; i++)
2755 san_mac_addr[i] = 0xFF;
2757 goto san_mac_addr_out;
2760 /* make sure we know which port we need to program */
2761 hw->mac.ops.set_lan_id(hw);
2762 /* apply the port offset to the address offset */
2763 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2764 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2765 for (i = 0; i < 3; i++) {
2766 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2767 san_mac_addr[i * 2] = (u8)(san_mac_data);
2768 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2769 san_mac_offset++;
2772 san_mac_addr_out:
2773 return 0;
2777 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2778 * @hw: pointer to hardware structure
2780 * Read PCIe configuration space, and get the MSI-X vector count from
2781 * the capabilities table.
2783 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2785 struct ixgbe_adapter *adapter = hw->back;
2786 u16 msix_count = 1;
2787 u16 max_msix_count;
2788 u16 pcie_offset;
2790 switch (hw->mac.type) {
2791 case ixgbe_mac_82598EB:
2792 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2793 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2794 break;
2795 case ixgbe_mac_82599EB:
2796 case ixgbe_mac_X540:
2797 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2798 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2799 break;
2800 default:
2801 return msix_count;
2804 pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2805 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2807 /* MSI-X count is zero-based in HW */
2808 msix_count++;
2810 if (msix_count > max_msix_count)
2811 msix_count = max_msix_count;
2813 return msix_count;
2817 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2818 * @hw: pointer to hardware struct
2819 * @rar: receive address register index to disassociate
2820 * @vmdq: VMDq pool index to remove from the rar
2822 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2824 u32 mpsar_lo, mpsar_hi;
2825 u32 rar_entries = hw->mac.num_rar_entries;
2827 /* Make sure we are using a valid rar index range */
2828 if (rar >= rar_entries) {
2829 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2830 return IXGBE_ERR_INVALID_ARGUMENT;
2833 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2834 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2836 if (!mpsar_lo && !mpsar_hi)
2837 goto done;
2839 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2840 if (mpsar_lo) {
2841 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2842 mpsar_lo = 0;
2844 if (mpsar_hi) {
2845 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2846 mpsar_hi = 0;
2848 } else if (vmdq < 32) {
2849 mpsar_lo &= ~(1 << vmdq);
2850 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2851 } else {
2852 mpsar_hi &= ~(1 << (vmdq - 32));
2853 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2856 /* was that the last pool using this rar? */
2857 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2858 hw->mac.ops.clear_rar(hw, rar);
2859 done:
2860 return 0;
2864 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2865 * @hw: pointer to hardware struct
2866 * @rar: receive address register index to associate with a VMDq index
2867 * @vmdq: VMDq pool index
2869 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2871 u32 mpsar;
2872 u32 rar_entries = hw->mac.num_rar_entries;
2874 /* Make sure we are using a valid rar index range */
2875 if (rar >= rar_entries) {
2876 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2877 return IXGBE_ERR_INVALID_ARGUMENT;
2880 if (vmdq < 32) {
2881 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2882 mpsar |= 1 << vmdq;
2883 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2884 } else {
2885 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2886 mpsar |= 1 << (vmdq - 32);
2887 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2889 return 0;
2893 * This function should only be involved in the IOV mode.
2894 * In IOV mode, Default pool is next pool after the number of
2895 * VFs advertized and not 0.
2896 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2898 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2899 * @hw: pointer to hardware struct
2900 * @vmdq: VMDq pool index
2902 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2904 u32 rar = hw->mac.san_mac_rar_index;
2906 if (vmdq < 32) {
2907 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2908 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2909 } else {
2910 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2911 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2914 return 0;
2918 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2919 * @hw: pointer to hardware structure
2921 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2923 int i;
2925 for (i = 0; i < 128; i++)
2926 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2928 return 0;
2932 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2933 * @hw: pointer to hardware structure
2934 * @vlan: VLAN id to write to VLAN filter
2936 * return the VLVF index where this VLAN id should be placed
2939 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2941 u32 bits = 0;
2942 u32 first_empty_slot = 0;
2943 s32 regindex;
2945 /* short cut the special case */
2946 if (vlan == 0)
2947 return 0;
2950 * Search for the vlan id in the VLVF entries. Save off the first empty
2951 * slot found along the way
2953 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2954 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2955 if (!bits && !(first_empty_slot))
2956 first_empty_slot = regindex;
2957 else if ((bits & 0x0FFF) == vlan)
2958 break;
2962 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2963 * in the VLVF. Else use the first empty VLVF register for this
2964 * vlan id.
2966 if (regindex >= IXGBE_VLVF_ENTRIES) {
2967 if (first_empty_slot)
2968 regindex = first_empty_slot;
2969 else {
2970 hw_dbg(hw, "No space in VLVF.\n");
2971 regindex = IXGBE_ERR_NO_SPACE;
2975 return regindex;
2979 * ixgbe_set_vfta_generic - Set VLAN filter table
2980 * @hw: pointer to hardware structure
2981 * @vlan: VLAN id to write to VLAN filter
2982 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2983 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2985 * Turn on/off specified VLAN in the VLAN filter table.
2987 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2988 bool vlan_on)
2990 s32 regindex;
2991 u32 bitindex;
2992 u32 vfta;
2993 u32 bits;
2994 u32 vt;
2995 u32 targetbit;
2996 bool vfta_changed = false;
2998 if (vlan > 4095)
2999 return IXGBE_ERR_PARAM;
3002 * this is a 2 part operation - first the VFTA, then the
3003 * VLVF and VLVFB if VT Mode is set
3004 * We don't write the VFTA until we know the VLVF part succeeded.
3007 /* Part 1
3008 * The VFTA is a bitstring made up of 128 32-bit registers
3009 * that enable the particular VLAN id, much like the MTA:
3010 * bits[11-5]: which register
3011 * bits[4-0]: which bit in the register
3013 regindex = (vlan >> 5) & 0x7F;
3014 bitindex = vlan & 0x1F;
3015 targetbit = (1 << bitindex);
3016 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3018 if (vlan_on) {
3019 if (!(vfta & targetbit)) {
3020 vfta |= targetbit;
3021 vfta_changed = true;
3023 } else {
3024 if ((vfta & targetbit)) {
3025 vfta &= ~targetbit;
3026 vfta_changed = true;
3030 /* Part 2
3031 * If VT Mode is set
3032 * Either vlan_on
3033 * make sure the vlan is in VLVF
3034 * set the vind bit in the matching VLVFB
3035 * Or !vlan_on
3036 * clear the pool bit and possibly the vind
3038 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3039 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3040 s32 vlvf_index;
3042 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3043 if (vlvf_index < 0)
3044 return vlvf_index;
3046 if (vlan_on) {
3047 /* set the pool bit */
3048 if (vind < 32) {
3049 bits = IXGBE_READ_REG(hw,
3050 IXGBE_VLVFB(vlvf_index*2));
3051 bits |= (1 << vind);
3052 IXGBE_WRITE_REG(hw,
3053 IXGBE_VLVFB(vlvf_index*2),
3054 bits);
3055 } else {
3056 bits = IXGBE_READ_REG(hw,
3057 IXGBE_VLVFB((vlvf_index*2)+1));
3058 bits |= (1 << (vind-32));
3059 IXGBE_WRITE_REG(hw,
3060 IXGBE_VLVFB((vlvf_index*2)+1),
3061 bits);
3063 } else {
3064 /* clear the pool bit */
3065 if (vind < 32) {
3066 bits = IXGBE_READ_REG(hw,
3067 IXGBE_VLVFB(vlvf_index*2));
3068 bits &= ~(1 << vind);
3069 IXGBE_WRITE_REG(hw,
3070 IXGBE_VLVFB(vlvf_index*2),
3071 bits);
3072 bits |= IXGBE_READ_REG(hw,
3073 IXGBE_VLVFB((vlvf_index*2)+1));
3074 } else {
3075 bits = IXGBE_READ_REG(hw,
3076 IXGBE_VLVFB((vlvf_index*2)+1));
3077 bits &= ~(1 << (vind-32));
3078 IXGBE_WRITE_REG(hw,
3079 IXGBE_VLVFB((vlvf_index*2)+1),
3080 bits);
3081 bits |= IXGBE_READ_REG(hw,
3082 IXGBE_VLVFB(vlvf_index*2));
3087 * If there are still bits set in the VLVFB registers
3088 * for the VLAN ID indicated we need to see if the
3089 * caller is requesting that we clear the VFTA entry bit.
3090 * If the caller has requested that we clear the VFTA
3091 * entry bit but there are still pools/VFs using this VLAN
3092 * ID entry then ignore the request. We're not worried
3093 * about the case where we're turning the VFTA VLAN ID
3094 * entry bit on, only when requested to turn it off as
3095 * there may be multiple pools and/or VFs using the
3096 * VLAN ID entry. In that case we cannot clear the
3097 * VFTA bit until all pools/VFs using that VLAN ID have also
3098 * been cleared. This will be indicated by "bits" being
3099 * zero.
3101 if (bits) {
3102 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3103 (IXGBE_VLVF_VIEN | vlan));
3104 if (!vlan_on) {
3105 /* someone wants to clear the vfta entry
3106 * but some pools/VFs are still using it.
3107 * Ignore it. */
3108 vfta_changed = false;
3111 else
3112 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3115 if (vfta_changed)
3116 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3118 return 0;
3122 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3123 * @hw: pointer to hardware structure
3125 * Clears the VLAN filer table, and the VMDq index associated with the filter
3127 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3129 u32 offset;
3131 for (offset = 0; offset < hw->mac.vft_size; offset++)
3132 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3134 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3135 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3136 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3137 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3140 return 0;
3144 * ixgbe_check_mac_link_generic - Determine link and speed status
3145 * @hw: pointer to hardware structure
3146 * @speed: pointer to link speed
3147 * @link_up: true when link is up
3148 * @link_up_wait_to_complete: bool used to wait for link up or not
3150 * Reads the links register to determine if link is up and the current speed
3152 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3153 bool *link_up, bool link_up_wait_to_complete)
3155 u32 links_reg, links_orig;
3156 u32 i;
3158 /* clear the old state */
3159 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3161 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3163 if (links_orig != links_reg) {
3164 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3165 links_orig, links_reg);
3168 if (link_up_wait_to_complete) {
3169 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3170 if (links_reg & IXGBE_LINKS_UP) {
3171 *link_up = true;
3172 break;
3173 } else {
3174 *link_up = false;
3176 msleep(100);
3177 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3179 } else {
3180 if (links_reg & IXGBE_LINKS_UP)
3181 *link_up = true;
3182 else
3183 *link_up = false;
3186 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3187 IXGBE_LINKS_SPEED_10G_82599)
3188 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3189 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3190 IXGBE_LINKS_SPEED_1G_82599)
3191 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3192 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3193 IXGBE_LINKS_SPEED_100_82599)
3194 *speed = IXGBE_LINK_SPEED_100_FULL;
3195 else
3196 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3198 return 0;
3202 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3203 * the EEPROM
3204 * @hw: pointer to hardware structure
3205 * @wwnn_prefix: the alternative WWNN prefix
3206 * @wwpn_prefix: the alternative WWPN prefix
3208 * This function will read the EEPROM from the alternative SAN MAC address
3209 * block to check the support for the alternative WWNN/WWPN prefix support.
3211 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3212 u16 *wwpn_prefix)
3214 u16 offset, caps;
3215 u16 alt_san_mac_blk_offset;
3217 /* clear output first */
3218 *wwnn_prefix = 0xFFFF;
3219 *wwpn_prefix = 0xFFFF;
3221 /* check if alternative SAN MAC is supported */
3222 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3223 &alt_san_mac_blk_offset);
3225 if ((alt_san_mac_blk_offset == 0) ||
3226 (alt_san_mac_blk_offset == 0xFFFF))
3227 goto wwn_prefix_out;
3229 /* check capability in alternative san mac address block */
3230 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3231 hw->eeprom.ops.read(hw, offset, &caps);
3232 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3233 goto wwn_prefix_out;
3235 /* get the corresponding prefix for WWNN/WWPN */
3236 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3237 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3239 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3240 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3242 wwn_prefix_out:
3243 return 0;
3247 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3248 * @hw: pointer to hardware structure
3249 * @enable: enable or disable switch for anti-spoofing
3250 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3253 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3255 int j;
3256 int pf_target_reg = pf >> 3;
3257 int pf_target_shift = pf % 8;
3258 u32 pfvfspoof = 0;
3260 if (hw->mac.type == ixgbe_mac_82598EB)
3261 return;
3263 if (enable)
3264 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3267 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3268 * MAC anti-spoof enables in each register array element.
3270 for (j = 0; j < pf_target_reg; j++)
3271 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3274 * The PF should be allowed to spoof so that it can support
3275 * emulation mode NICs. Do not set the bits assigned to the PF
3277 pfvfspoof &= (1 << pf_target_shift) - 1;
3278 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3281 * Remaining pools belong to the PF so they do not need to have
3282 * anti-spoofing enabled.
3284 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3285 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3289 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3290 * @hw: pointer to hardware structure
3291 * @enable: enable or disable switch for VLAN anti-spoofing
3292 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3295 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3297 int vf_target_reg = vf >> 3;
3298 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3299 u32 pfvfspoof;
3301 if (hw->mac.type == ixgbe_mac_82598EB)
3302 return;
3304 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3305 if (enable)
3306 pfvfspoof |= (1 << vf_target_shift);
3307 else
3308 pfvfspoof &= ~(1 << vf_target_shift);
3309 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3313 * ixgbe_get_device_caps_generic - Get additional device capabilities
3314 * @hw: pointer to hardware structure
3315 * @device_caps: the EEPROM word with the extra device capabilities
3317 * This function will read the EEPROM location for the device capabilities,
3318 * and return the word through device_caps.
3320 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3322 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3324 return 0;
3328 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3329 * @hw: pointer to hardware structure
3330 * @num_pb: number of packet buffers to allocate
3331 * @headroom: reserve n KB of headroom
3332 * @strategy: packet buffer allocation strategy
3334 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3335 int num_pb,
3336 u32 headroom,
3337 int strategy)
3339 u32 pbsize = hw->mac.rx_pb_size;
3340 int i = 0;
3341 u32 rxpktsize, txpktsize, txpbthresh;
3343 /* Reserve headroom */
3344 pbsize -= headroom;
3346 if (!num_pb)
3347 num_pb = 1;
3349 /* Divide remaining packet buffer space amongst the number
3350 * of packet buffers requested using supplied strategy.
3352 switch (strategy) {
3353 case (PBA_STRATEGY_WEIGHTED):
3354 /* pba_80_48 strategy weight first half of packet buffer with
3355 * 5/8 of the packet buffer space.
3357 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3358 pbsize -= rxpktsize * (num_pb / 2);
3359 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3360 for (; i < (num_pb / 2); i++)
3361 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3362 /* Fall through to configure remaining packet buffers */
3363 case (PBA_STRATEGY_EQUAL):
3364 /* Divide the remaining Rx packet buffer evenly among the TCs */
3365 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3366 for (; i < num_pb; i++)
3367 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3368 break;
3369 default:
3370 break;
3374 * Setup Tx packet buffer and threshold equally for all TCs
3375 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3376 * 10 since the largest packet we support is just over 9K.
3378 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3379 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3380 for (i = 0; i < num_pb; i++) {
3381 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3382 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3385 /* Clear unused TCs, if any, to zero buffer size*/
3386 for (; i < IXGBE_MAX_PB; i++) {
3387 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3388 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3389 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3394 * ixgbe_calculate_checksum - Calculate checksum for buffer
3395 * @buffer: pointer to EEPROM
3396 * @length: size of EEPROM to calculate a checksum for
3398 * Calculates the checksum for some buffer on a specified length. The
3399 * checksum calculated is returned.
3401 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3403 u32 i;
3404 u8 sum = 0;
3406 if (!buffer)
3407 return 0;
3409 for (i = 0; i < length; i++)
3410 sum += buffer[i];
3412 return (u8) (0 - sum);
3416 * ixgbe_host_interface_command - Issue command to manageability block
3417 * @hw: pointer to the HW structure
3418 * @buffer: contains the command to write and where the return status will
3419 * be placed
3420 * @length: length of buffer, must be multiple of 4 bytes
3422 * Communicates with the manageability block. On success return 0
3423 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3425 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3426 u32 length)
3428 u32 hicr, i, bi;
3429 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3430 u8 buf_len, dword_len;
3432 s32 ret_val = 0;
3434 if (length == 0 || length & 0x3 ||
3435 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3436 hw_dbg(hw, "Buffer length failure.\n");
3437 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3438 goto out;
3441 /* Check that the host interface is enabled. */
3442 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3443 if ((hicr & IXGBE_HICR_EN) == 0) {
3444 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3445 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3446 goto out;
3449 /* Calculate length in DWORDs */
3450 dword_len = length >> 2;
3453 * The device driver writes the relevant command block
3454 * into the ram area.
3456 for (i = 0; i < dword_len; i++)
3457 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3458 i, cpu_to_le32(buffer[i]));
3460 /* Setting this bit tells the ARC that a new command is pending. */
3461 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3463 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3464 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3465 if (!(hicr & IXGBE_HICR_C))
3466 break;
3467 usleep_range(1000, 2000);
3470 /* Check command successful completion. */
3471 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3472 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3473 hw_dbg(hw, "Command has failed with no status valid.\n");
3474 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3475 goto out;
3478 /* Calculate length in DWORDs */
3479 dword_len = hdr_size >> 2;
3481 /* first pull in the header so we know the buffer length */
3482 for (bi = 0; bi < dword_len; bi++) {
3483 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3484 le32_to_cpus(&buffer[bi]);
3487 /* If there is any thing in data position pull it in */
3488 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3489 if (buf_len == 0)
3490 goto out;
3492 if (length < (buf_len + hdr_size)) {
3493 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3494 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3495 goto out;
3498 /* Calculate length in DWORDs, add 3 for odd lengths */
3499 dword_len = (buf_len + 3) >> 2;
3501 /* Pull in the rest of the buffer (bi is where we left off)*/
3502 for (; bi <= dword_len; bi++) {
3503 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3504 le32_to_cpus(&buffer[bi]);
3507 out:
3508 return ret_val;
3512 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3513 * @hw: pointer to the HW structure
3514 * @maj: driver version major number
3515 * @min: driver version minor number
3516 * @build: driver version build number
3517 * @sub: driver version sub build number
3519 * Sends driver version number to firmware through the manageability
3520 * block. On success return 0
3521 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3522 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3524 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3525 u8 build, u8 sub)
3527 struct ixgbe_hic_drv_info fw_cmd;
3528 int i;
3529 s32 ret_val = 0;
3531 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3532 ret_val = IXGBE_ERR_SWFW_SYNC;
3533 goto out;
3536 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3537 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3538 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3539 fw_cmd.port_num = (u8)hw->bus.func;
3540 fw_cmd.ver_maj = maj;
3541 fw_cmd.ver_min = min;
3542 fw_cmd.ver_build = build;
3543 fw_cmd.ver_sub = sub;
3544 fw_cmd.hdr.checksum = 0;
3545 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3546 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3547 fw_cmd.pad = 0;
3548 fw_cmd.pad2 = 0;
3550 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3551 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3552 sizeof(fw_cmd));
3553 if (ret_val != 0)
3554 continue;
3556 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3557 FW_CEM_RESP_STATUS_SUCCESS)
3558 ret_val = 0;
3559 else
3560 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3562 break;
3565 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3566 out:
3567 return ret_val;
3571 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3572 * @hw: pointer to the hardware structure
3574 * The 82599 and x540 MACs can experience issues if TX work is still pending
3575 * when a reset occurs. This function prevents this by flushing the PCIe
3576 * buffers on the system.
3578 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3580 u32 gcr_ext, hlreg0;
3583 * If double reset is not requested then all transactions should
3584 * already be clear and as such there is no work to do
3586 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3587 return;
3590 * Set loopback enable to prevent any transmits from being sent
3591 * should the link come up. This assumes that the RXCTRL.RXEN bit
3592 * has already been cleared.
3594 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3595 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3597 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3598 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3599 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3600 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3602 /* Flush all writes and allow 20usec for all transactions to clear */
3603 IXGBE_WRITE_FLUSH(hw);
3604 udelay(20);
3606 /* restore previous register values */
3607 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3608 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3611 static const u8 ixgbe_emc_temp_data[4] = {
3612 IXGBE_EMC_INTERNAL_DATA,
3613 IXGBE_EMC_DIODE1_DATA,
3614 IXGBE_EMC_DIODE2_DATA,
3615 IXGBE_EMC_DIODE3_DATA
3617 static const u8 ixgbe_emc_therm_limit[4] = {
3618 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3619 IXGBE_EMC_DIODE1_THERM_LIMIT,
3620 IXGBE_EMC_DIODE2_THERM_LIMIT,
3621 IXGBE_EMC_DIODE3_THERM_LIMIT
3625 * ixgbe_get_ets_data - Extracts the ETS bit data
3626 * @hw: pointer to hardware structure
3627 * @ets_cfg: extected ETS data
3628 * @ets_offset: offset of ETS data
3630 * Returns error code.
3632 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3633 u16 *ets_offset)
3635 s32 status = 0;
3637 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3638 if (status)
3639 goto out;
3641 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3642 status = IXGBE_NOT_IMPLEMENTED;
3643 goto out;
3646 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3647 if (status)
3648 goto out;
3650 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3651 status = IXGBE_NOT_IMPLEMENTED;
3652 goto out;
3655 out:
3656 return status;
3660 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3661 * @hw: pointer to hardware structure
3663 * Returns the thermal sensor data structure
3665 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3667 s32 status = 0;
3668 u16 ets_offset;
3669 u16 ets_cfg;
3670 u16 ets_sensor;
3671 u8 num_sensors;
3672 u8 i;
3673 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3675 /* Only support thermal sensors attached to physical port 0 */
3676 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3677 status = IXGBE_NOT_IMPLEMENTED;
3678 goto out;
3681 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3682 if (status)
3683 goto out;
3685 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3686 if (num_sensors > IXGBE_MAX_SENSORS)
3687 num_sensors = IXGBE_MAX_SENSORS;
3689 for (i = 0; i < num_sensors; i++) {
3690 u8 sensor_index;
3691 u8 sensor_location;
3693 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3694 &ets_sensor);
3695 if (status)
3696 goto out;
3698 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3699 IXGBE_ETS_DATA_INDEX_SHIFT);
3700 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3701 IXGBE_ETS_DATA_LOC_SHIFT);
3703 if (sensor_location != 0) {
3704 status = hw->phy.ops.read_i2c_byte(hw,
3705 ixgbe_emc_temp_data[sensor_index],
3706 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3707 &data->sensor[i].temp);
3708 if (status)
3709 goto out;
3712 out:
3713 return status;
3717 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3718 * @hw: pointer to hardware structure
3720 * Inits the thermal sensor thresholds according to the NVM map
3721 * and save off the threshold and location values into mac.thermal_sensor_data
3723 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3725 s32 status = 0;
3726 u16 ets_offset;
3727 u16 ets_cfg;
3728 u16 ets_sensor;
3729 u8 low_thresh_delta;
3730 u8 num_sensors;
3731 u8 therm_limit;
3732 u8 i;
3733 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3735 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3737 /* Only support thermal sensors attached to physical port 0 */
3738 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3739 status = IXGBE_NOT_IMPLEMENTED;
3740 goto out;
3743 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3744 if (status)
3745 goto out;
3747 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3748 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3749 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3750 if (num_sensors > IXGBE_MAX_SENSORS)
3751 num_sensors = IXGBE_MAX_SENSORS;
3753 for (i = 0; i < num_sensors; i++) {
3754 u8 sensor_index;
3755 u8 sensor_location;
3757 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3758 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3759 IXGBE_ETS_DATA_INDEX_SHIFT);
3760 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3761 IXGBE_ETS_DATA_LOC_SHIFT);
3762 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3764 hw->phy.ops.write_i2c_byte(hw,
3765 ixgbe_emc_therm_limit[sensor_index],
3766 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3768 if (sensor_location == 0)
3769 continue;
3771 data->sensor[i].location = sensor_location;
3772 data->sensor[i].caution_thresh = therm_limit;
3773 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3775 out:
3776 return status;