2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
27 #include <asm/unaligned.h>
34 * DOC: Protocol Control Unit (PCU) functions
36 * Protocol control unit is responsible to maintain various protocol
37 * properties before a frame is send and after a frame is received to/from
38 * baseband. To be more specific, PCU handles:
40 * - Buffering of RX and TX frames (after QCU/DCUs)
42 * - Encrypting and decrypting (using the built-in engine)
44 * - Generating ACKs, RTS/CTS frames
50 * - Updating beacon data (with TSF etc)
52 * - Generating virtual CCA
54 * - RX/Multicast filtering
58 * - Various statistics
60 * -Different operating modes: AP, STA, IBSS
62 * Note: Most of these functions can be tweaked/bypassed so you can do
63 * them on sw above for debugging or research. For more infos check out PCU
70 * AR5212+ can use higher rates for ack transmission
71 * based on current tx rate instead of the base rate.
72 * It does this to better utilize channel usage.
73 * There is a mapping between G rates (that cover both
74 * CCK and OFDM) and ack rates that we use when setting
75 * rate -> duration table. This mapping is hw-based so
76 * don't change anything.
78 * To enable this functionality we must set
79 * ah->ah_ack_bitrate_high to true else base rate is
80 * used (1Mb for CCK, 6Mb for OFDM).
82 static const unsigned int ack_rates_high
[] =
95 /* 54Mb -> 24Mb */ 8 };
102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
103 * @ah: The &struct ath5k_hw
104 * @len: Frame's length in bytes
105 * @rate: The @struct ieee80211_rate
106 * @shortpre: Indicate short preample
108 * Calculate tx duration of a frame given it's rate and length
109 * It extends ieee80211_generic_frame_duration for non standard
113 ath5k_hw_get_frame_duration(struct ath5k_hw
*ah
, enum ieee80211_band band
,
114 int len
, struct ieee80211_rate
*rate
, bool shortpre
)
116 int sifs
, preamble
, plcp_bits
, sym_time
;
117 int bitrate
, bits
, symbols
, symbol_bits
;
121 if (!ah
->ah_bwmode
) {
122 __le16 raw_dur
= ieee80211_generic_frame_duration(ah
->hw
,
123 NULL
, band
, len
, rate
);
125 /* subtract difference between long and short preamble */
126 dur
= le16_to_cpu(raw_dur
);
133 bitrate
= rate
->bitrate
;
134 preamble
= AR5K_INIT_OFDM_PREAMPLE_TIME
;
135 plcp_bits
= AR5K_INIT_OFDM_PLCP_BITS
;
136 sym_time
= AR5K_INIT_OFDM_SYMBOL_TIME
;
138 switch (ah
->ah_bwmode
) {
139 case AR5K_BWMODE_40MHZ
:
140 sifs
= AR5K_INIT_SIFS_TURBO
;
141 preamble
= AR5K_INIT_OFDM_PREAMBLE_TIME_MIN
;
143 case AR5K_BWMODE_10MHZ
:
144 sifs
= AR5K_INIT_SIFS_HALF_RATE
;
148 case AR5K_BWMODE_5MHZ
:
149 sifs
= AR5K_INIT_SIFS_QUARTER_RATE
;
154 sifs
= AR5K_INIT_SIFS_DEFAULT_BG
;
158 bits
= plcp_bits
+ (len
<< 3);
159 /* Bit rate is in 100Kbits */
160 symbol_bits
= bitrate
* sym_time
;
161 symbols
= DIV_ROUND_UP(bits
* 10, symbol_bits
);
163 dur
= sifs
+ preamble
+ (sym_time
* symbols
);
169 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
170 * @ah: The &struct ath5k_hw
173 ath5k_hw_get_default_slottime(struct ath5k_hw
*ah
)
175 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
176 unsigned int slot_time
;
178 switch (ah
->ah_bwmode
) {
179 case AR5K_BWMODE_40MHZ
:
180 slot_time
= AR5K_INIT_SLOT_TIME_TURBO
;
182 case AR5K_BWMODE_10MHZ
:
183 slot_time
= AR5K_INIT_SLOT_TIME_HALF_RATE
;
185 case AR5K_BWMODE_5MHZ
:
186 slot_time
= AR5K_INIT_SLOT_TIME_QUARTER_RATE
;
188 case AR5K_BWMODE_DEFAULT
:
190 slot_time
= AR5K_INIT_SLOT_TIME_DEFAULT
;
191 if ((channel
->hw_value
== AR5K_MODE_11B
) && !ah
->ah_short_slot
)
192 slot_time
= AR5K_INIT_SLOT_TIME_B
;
200 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
201 * @ah: The &struct ath5k_hw
204 ath5k_hw_get_default_sifs(struct ath5k_hw
*ah
)
206 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
209 switch (ah
->ah_bwmode
) {
210 case AR5K_BWMODE_40MHZ
:
211 sifs
= AR5K_INIT_SIFS_TURBO
;
213 case AR5K_BWMODE_10MHZ
:
214 sifs
= AR5K_INIT_SIFS_HALF_RATE
;
216 case AR5K_BWMODE_5MHZ
:
217 sifs
= AR5K_INIT_SIFS_QUARTER_RATE
;
219 case AR5K_BWMODE_DEFAULT
:
220 sifs
= AR5K_INIT_SIFS_DEFAULT_BG
;
222 if (channel
->band
== IEEE80211_BAND_5GHZ
)
223 sifs
= AR5K_INIT_SIFS_DEFAULT_A
;
231 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
232 * @ah: The &struct ath5k_hw
234 * Reads MIB counters from PCU and updates sw statistics. Is called after a
235 * MIB interrupt, because one of these counters might have reached their maximum
236 * and triggered the MIB interrupt, to let us read and clear the counter.
238 * NOTE: Is called in interrupt context!
241 ath5k_hw_update_mib_counters(struct ath5k_hw
*ah
)
243 struct ath5k_statistics
*stats
= &ah
->stats
;
246 stats
->ack_fail
+= ath5k_hw_reg_read(ah
, AR5K_ACK_FAIL
);
247 stats
->rts_fail
+= ath5k_hw_reg_read(ah
, AR5K_RTS_FAIL
);
248 stats
->rts_ok
+= ath5k_hw_reg_read(ah
, AR5K_RTS_OK
);
249 stats
->fcs_error
+= ath5k_hw_reg_read(ah
, AR5K_FCS_FAIL
);
250 stats
->beacons
+= ath5k_hw_reg_read(ah
, AR5K_BEACON_CNT
);
259 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
260 * @ah: The &struct ath5k_hw
262 * Write the rate code to duration table upon hw reset. This is a helper for
263 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
264 * the hardware, based on current mode, for each rate. The rates which are
265 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
266 * different rate code so we write their value twice (one for long preamble
267 * and one for short).
269 * Note: Band doesn't matter here, if we set the values for OFDM it works
270 * on both a and g modes. So all we have to do is set values for all g rates
271 * that include all OFDM and CCK rates.
275 ath5k_hw_write_rate_duration(struct ath5k_hw
*ah
)
277 struct ieee80211_rate
*rate
;
279 /* 802.11g covers both OFDM and CCK */
280 u8 band
= IEEE80211_BAND_2GHZ
;
282 /* Write rate duration table */
283 for (i
= 0; i
< ah
->sbands
[band
].n_bitrates
; i
++) {
287 if (ah
->ah_ack_bitrate_high
)
288 rate
= &ah
->sbands
[band
].bitrates
[ack_rates_high
[i
]];
291 rate
= &ah
->sbands
[band
].bitrates
[0];
294 rate
= &ah
->sbands
[band
].bitrates
[4];
296 /* Set ACK timeout */
297 reg
= AR5K_RATE_DUR(rate
->hw_value
);
299 /* An ACK frame consists of 10 bytes. If you add the FCS,
300 * which ieee80211_generic_frame_duration() adds,
301 * its 14 bytes. Note we use the control rate and not the
302 * actual rate for this rate. See mac80211 tx.c
303 * ieee80211_duration() for a brief description of
304 * what rate we should choose to TX ACKs. */
305 tx_time
= ath5k_hw_get_frame_duration(ah
, band
, 10,
308 ath5k_hw_reg_write(ah
, tx_time
, reg
);
310 if (!(rate
->flags
& IEEE80211_RATE_SHORT_PREAMBLE
))
313 tx_time
= ath5k_hw_get_frame_duration(ah
, band
, 10, rate
, true);
314 ath5k_hw_reg_write(ah
, tx_time
,
315 reg
+ (AR5K_SET_SHORT_PREAMBLE
<< 2));
320 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
321 * @ah: The &struct ath5k_hw
322 * @timeout: Timeout in usec
325 ath5k_hw_set_ack_timeout(struct ath5k_hw
*ah
, unsigned int timeout
)
327 if (ath5k_hw_clocktoh(ah
, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK
))
331 AR5K_REG_WRITE_BITS(ah
, AR5K_TIME_OUT
, AR5K_TIME_OUT_ACK
,
332 ath5k_hw_htoclock(ah
, timeout
));
338 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
339 * @ah: The &struct ath5k_hw
340 * @timeout: Timeout in usec
343 ath5k_hw_set_cts_timeout(struct ath5k_hw
*ah
, unsigned int timeout
)
345 if (ath5k_hw_clocktoh(ah
, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS
))
349 AR5K_REG_WRITE_BITS(ah
, AR5K_TIME_OUT
, AR5K_TIME_OUT_CTS
,
350 ath5k_hw_htoclock(ah
, timeout
));
356 /*******************\
357 * RX filter Control *
358 \*******************/
361 * ath5k_hw_set_lladdr() - Set station id
362 * @ah: The &struct ath5k_hw
363 * @mac: The card's mac address (array of octets)
365 * Set station id on hw using the provided mac address
368 ath5k_hw_set_lladdr(struct ath5k_hw
*ah
, const u8
*mac
)
370 struct ath_common
*common
= ath5k_hw_common(ah
);
374 /* Set new station ID */
375 memcpy(common
->macaddr
, mac
, ETH_ALEN
);
377 pcu_reg
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) & 0xffff0000;
379 low_id
= get_unaligned_le32(mac
);
380 high_id
= get_unaligned_le16(mac
+ 4);
382 ath5k_hw_reg_write(ah
, low_id
, AR5K_STA_ID0
);
383 ath5k_hw_reg_write(ah
, pcu_reg
| high_id
, AR5K_STA_ID1
);
389 * ath5k_hw_set_bssid() - Set current BSSID on hw
390 * @ah: The &struct ath5k_hw
392 * Sets the current BSSID and BSSID mask we have from the
393 * common struct into the hardware
396 ath5k_hw_set_bssid(struct ath5k_hw
*ah
)
398 struct ath_common
*common
= ath5k_hw_common(ah
);
402 * Set BSSID mask on 5212
404 if (ah
->ah_version
== AR5K_AR5212
)
405 ath_hw_setbssidmask(common
);
410 ath5k_hw_reg_write(ah
,
411 get_unaligned_le32(common
->curbssid
),
413 ath5k_hw_reg_write(ah
,
414 get_unaligned_le16(common
->curbssid
+ 4) |
415 ((common
->curaid
& 0x3fff) << AR5K_BSS_ID1_AID_S
),
418 if (common
->curaid
== 0) {
419 ath5k_hw_disable_pspoll(ah
);
423 AR5K_REG_WRITE_BITS(ah
, AR5K_BEACON
, AR5K_BEACON_TIM
,
424 tim_offset
? tim_offset
+ 4 : 0);
426 ath5k_hw_enable_pspoll(ah
, NULL
, 0);
430 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
431 * @ah: The &struct ath5k_hw
432 * @mask: The BSSID mask to set (array of octets)
434 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
435 * which bits of the interface's MAC address should be looked at when trying
436 * to decide which packets to ACK. In station mode and AP mode with a single
437 * BSS every bit matters since we lock to only one BSS. In AP mode with
438 * multiple BSSes (virtual interfaces) not every bit matters because hw must
439 * accept frames for all BSSes and so we tweak some bits of our mac address
440 * in order to have multiple BSSes.
442 * For more information check out ../hw.c of the common ath module.
445 ath5k_hw_set_bssid_mask(struct ath5k_hw
*ah
, const u8
*mask
)
447 struct ath_common
*common
= ath5k_hw_common(ah
);
449 /* Cache bssid mask so that we can restore it
451 memcpy(common
->bssidmask
, mask
, ETH_ALEN
);
452 if (ah
->ah_version
== AR5K_AR5212
)
453 ath_hw_setbssidmask(common
);
457 * ath5k_hw_set_mcast_filter() - Set multicast filter
458 * @ah: The &struct ath5k_hw
459 * @filter0: Lower 32bits of muticast filter
460 * @filter1: Higher 16bits of multicast filter
463 ath5k_hw_set_mcast_filter(struct ath5k_hw
*ah
, u32 filter0
, u32 filter1
)
465 ath5k_hw_reg_write(ah
, filter0
, AR5K_MCAST_FILTER0
);
466 ath5k_hw_reg_write(ah
, filter1
, AR5K_MCAST_FILTER1
);
470 * ath5k_hw_get_rx_filter() - Get current rx filter
471 * @ah: The &struct ath5k_hw
473 * Returns the RX filter by reading rx filter and
474 * phy error filter registers. RX filter is used
475 * to set the allowed frame types that PCU will accept
476 * and pass to the driver. For a list of frame types
480 ath5k_hw_get_rx_filter(struct ath5k_hw
*ah
)
482 u32 data
, filter
= 0;
484 filter
= ath5k_hw_reg_read(ah
, AR5K_RX_FILTER
);
486 /*Radar detection for 5212*/
487 if (ah
->ah_version
== AR5K_AR5212
) {
488 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_ERR_FIL
);
490 if (data
& AR5K_PHY_ERR_FIL_RADAR
)
491 filter
|= AR5K_RX_FILTER_RADARERR
;
492 if (data
& (AR5K_PHY_ERR_FIL_OFDM
| AR5K_PHY_ERR_FIL_CCK
))
493 filter
|= AR5K_RX_FILTER_PHYERR
;
500 * ath5k_hw_set_rx_filter() - Set rx filter
501 * @ah: The &struct ath5k_hw
502 * @filter: RX filter mask (see reg.h)
504 * Sets RX filter register and also handles PHY error filter
505 * register on 5212 and newer chips so that we have proper PHY
509 ath5k_hw_set_rx_filter(struct ath5k_hw
*ah
, u32 filter
)
513 /* Set PHY error filter register on 5212*/
514 if (ah
->ah_version
== AR5K_AR5212
) {
515 if (filter
& AR5K_RX_FILTER_RADARERR
)
516 data
|= AR5K_PHY_ERR_FIL_RADAR
;
517 if (filter
& AR5K_RX_FILTER_PHYERR
)
518 data
|= AR5K_PHY_ERR_FIL_OFDM
| AR5K_PHY_ERR_FIL_CCK
;
522 * The AR5210 uses promiscuous mode to detect radar activity
524 if (ah
->ah_version
== AR5K_AR5210
&&
525 (filter
& AR5K_RX_FILTER_RADARERR
)) {
526 filter
&= ~AR5K_RX_FILTER_RADARERR
;
527 filter
|= AR5K_RX_FILTER_PROM
;
530 /*Zero length DMA (phy error reporting) */
532 AR5K_REG_ENABLE_BITS(ah
, AR5K_RXCFG
, AR5K_RXCFG_ZLFDMA
);
534 AR5K_REG_DISABLE_BITS(ah
, AR5K_RXCFG
, AR5K_RXCFG_ZLFDMA
);
536 /*Write RX Filter register*/
537 ath5k_hw_reg_write(ah
, filter
& 0xff, AR5K_RX_FILTER
);
539 /*Write PHY error filter register on 5212*/
540 if (ah
->ah_version
== AR5K_AR5212
)
541 ath5k_hw_reg_write(ah
, data
, AR5K_PHY_ERR_FIL
);
550 #define ATH5K_MAX_TSF_READ 10
553 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
554 * @ah: The &struct ath5k_hw
556 * Returns the current TSF
559 ath5k_hw_get_tsf64(struct ath5k_hw
*ah
)
561 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
565 /* This code is time critical - we don't want to be interrupted here */
566 local_irq_save(flags
);
569 * While reading TSF upper and then lower part, the clock is still
570 * counting (or jumping in case of IBSS merge) so we might get
571 * inconsistent values. To avoid this, we read the upper part again
572 * and check it has not been changed. We make the hypothesis that a
573 * maximum of 3 changes can happens in a row (we use 10 as a safe
576 * Impact on performance is pretty small, since in most cases, only
577 * 3 register reads are needed.
580 tsf_upper1
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
581 for (i
= 0; i
< ATH5K_MAX_TSF_READ
; i
++) {
582 tsf_lower
= ath5k_hw_reg_read(ah
, AR5K_TSF_L32
);
583 tsf_upper2
= ath5k_hw_reg_read(ah
, AR5K_TSF_U32
);
584 if (tsf_upper2
== tsf_upper1
)
586 tsf_upper1
= tsf_upper2
;
589 local_irq_restore(flags
);
591 WARN_ON(i
== ATH5K_MAX_TSF_READ
);
593 return ((u64
)tsf_upper1
<< 32) | tsf_lower
;
596 #undef ATH5K_MAX_TSF_READ
599 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
600 * @ah: The &struct ath5k_hw
601 * @tsf64: The new 64bit TSF
606 ath5k_hw_set_tsf64(struct ath5k_hw
*ah
, u64 tsf64
)
608 ath5k_hw_reg_write(ah
, tsf64
& 0xffffffff, AR5K_TSF_L32
);
609 ath5k_hw_reg_write(ah
, (tsf64
>> 32) & 0xffffffff, AR5K_TSF_U32
);
613 * ath5k_hw_reset_tsf() - Force a TSF reset
614 * @ah: The &struct ath5k_hw
616 * Forces a TSF reset on PCU
619 ath5k_hw_reset_tsf(struct ath5k_hw
*ah
)
623 val
= ath5k_hw_reg_read(ah
, AR5K_BEACON
) | AR5K_BEACON_RESET_TSF
;
626 * Each write to the RESET_TSF bit toggles a hardware internal
627 * signal to reset TSF, but if left high it will cause a TSF reset
628 * on the next chip reset as well. Thus we always write the value
629 * twice to clear the signal.
631 ath5k_hw_reg_write(ah
, val
, AR5K_BEACON
);
632 ath5k_hw_reg_write(ah
, val
, AR5K_BEACON
);
636 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
637 * @ah: The &struct ath5k_hw
638 * @next_beacon: Next TBTT
639 * @interval: Current beacon interval
641 * This function is used to initialize beacon timers based on current
642 * operation mode and settings.
645 ath5k_hw_init_beacon_timers(struct ath5k_hw
*ah
, u32 next_beacon
, u32 interval
)
647 u32 timer1
, timer2
, timer3
;
650 * Set the additional timers by mode
652 switch (ah
->opmode
) {
653 case NL80211_IFTYPE_MONITOR
:
654 case NL80211_IFTYPE_STATION
:
655 /* In STA mode timer1 is used as next wakeup
656 * timer and timer2 as next CFP duration start
657 * timer. Both in 1/8TUs. */
658 /* TODO: PCF handling */
659 if (ah
->ah_version
== AR5K_AR5210
) {
666 /* Mark associated AP as PCF incapable for now */
667 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_PCF
);
669 case NL80211_IFTYPE_ADHOC
:
670 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
, AR5K_TXCFG_ADHOC_BCN_ATIM
);
672 /* On non-STA modes timer1 is used as next DMA
673 * beacon alert (DBA) timer and timer2 as next
674 * software beacon alert. Both in 1/8TUs. */
675 timer1
= (next_beacon
- AR5K_TUNE_DMA_BEACON_RESP
) << 3;
676 timer2
= (next_beacon
- AR5K_TUNE_SW_BEACON_RESP
) << 3;
680 /* Timer3 marks the end of our ATIM window
681 * a zero length window is not allowed because
682 * we 'll get no beacons */
683 timer3
= next_beacon
+ 1;
686 * Set the beacon register and enable all timers.
688 /* When in AP or Mesh Point mode zero timer0 to start TSF */
689 if (ah
->opmode
== NL80211_IFTYPE_AP
||
690 ah
->opmode
== NL80211_IFTYPE_MESH_POINT
)
691 ath5k_hw_reg_write(ah
, 0, AR5K_TIMER0
);
693 ath5k_hw_reg_write(ah
, next_beacon
, AR5K_TIMER0
);
694 ath5k_hw_reg_write(ah
, timer1
, AR5K_TIMER1
);
695 ath5k_hw_reg_write(ah
, timer2
, AR5K_TIMER2
);
696 ath5k_hw_reg_write(ah
, timer3
, AR5K_TIMER3
);
698 /* Force a TSF reset if requested and enable beacons */
699 if (interval
& AR5K_BEACON_RESET_TSF
)
700 ath5k_hw_reset_tsf(ah
);
702 ath5k_hw_reg_write(ah
, interval
& (AR5K_BEACON_PERIOD
|
706 /* Flush any pending BMISS interrupts on ISR by
707 * performing a clear-on-write operation on PISR
708 * register for the BMISS bit (writing a bit on
709 * ISR toggles a reset for that bit and leaves
710 * the remaining bits intact) */
711 if (ah
->ah_version
== AR5K_AR5210
)
712 ath5k_hw_reg_write(ah
, AR5K_ISR_BMISS
, AR5K_ISR
);
714 ath5k_hw_reg_write(ah
, AR5K_ISR_BMISS
, AR5K_PISR
);
716 /* TODO: Set enhanced sleep registers on AR5212
717 * based on vif->bss_conf params, until then
718 * disable power save reporting.*/
719 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_PWR_SV
);
724 * ath5k_check_timer_win() - Check if timer B is timer A + window
725 * @a: timer a (before b)
726 * @b: timer b (after a)
727 * @window: difference between a and b
728 * @intval: timers are increased by this interval
730 * This helper function checks if timer B is timer A + window and covers
731 * cases where timer A or B might have already been updated or wrapped
732 * around (Timers are 16 bit).
734 * Returns true if O.K.
737 ath5k_check_timer_win(int a
, int b
, int window
, int intval
)
740 * 1.) usually B should be A + window
741 * 2.) A already updated, B not updated yet
742 * 3.) A already updated and has wrapped around
743 * 4.) B has wrapped around
745 if ((b
- a
== window
) || /* 1.) */
746 (a
- b
== intval
- window
) || /* 2.) */
747 ((a
| 0x10000) - b
== intval
- window
) || /* 3.) */
748 ((b
| 0x10000) - a
== window
)) /* 4.) */
749 return true; /* O.K. */
754 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
755 * @ah: The &struct ath5k_hw
756 * @intval: beacon interval
758 * This is a workaround for IBSS mode
760 * The need for this function arises from the fact that we have 4 separate
761 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
762 * next beacon target time (NBTT), and that the HW updates these timers
763 * separately based on the current TSF value. The hardware increments each
764 * timer by the beacon interval, when the local TSF converted to TU is equal
765 * to the value stored in the timer.
767 * The reception of a beacon with the same BSSID can update the local HW TSF
768 * at any time - this is something we can't avoid. If the TSF jumps to a
769 * time which is later than the time stored in a timer, this timer will not
770 * be updated until the TSF in TU wraps around at 16 bit (the size of the
771 * timers) and reaches the time which is stored in the timer.
773 * The problem is that these timers are closely related to TIMER0 (NBTT) and
774 * that they define a time "window". When the TSF jumps between two timers
775 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
776 * updated), while the one in the future will be updated every beacon
777 * interval. This causes the window to get larger, until the TSF wraps
778 * around as described above and the timer which was left behind gets
779 * updated again. But - because the beacon interval is usually not an exact
780 * divisor of the size of the timers (16 bit), an unwanted "window" between
781 * these timers has developed!
783 * This is especially important with the ATIM window, because during
784 * the ATIM window only ATIM frames and no data frames are allowed to be
785 * sent, which creates transmission pauses after each beacon. This symptom
786 * has been described as "ramping ping" because ping times increase linearly
787 * for some time and then drop down again. A wrong window on the DMA beacon
788 * timer has the same effect, so we check for these two conditions.
790 * Returns true if O.K.
793 ath5k_hw_check_beacon_timers(struct ath5k_hw
*ah
, int intval
)
795 unsigned int nbtt
, atim
, dma
;
797 nbtt
= ath5k_hw_reg_read(ah
, AR5K_TIMER0
);
798 atim
= ath5k_hw_reg_read(ah
, AR5K_TIMER3
);
799 dma
= ath5k_hw_reg_read(ah
, AR5K_TIMER1
) >> 3;
801 /* NOTE: SWBA is different. Having a wrong window there does not
802 * stop us from sending data and this condition is caught by
803 * other means (SWBA interrupt) */
805 if (ath5k_check_timer_win(nbtt
, atim
, 1, intval
) &&
806 ath5k_check_timer_win(dma
, nbtt
, AR5K_TUNE_DMA_BEACON_RESP
,
808 return true; /* O.K. */
813 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
814 * @ah: The &struct ath5k_hw
815 * @coverage_class: IEEE 802.11 coverage class number
817 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
820 ath5k_hw_set_coverage_class(struct ath5k_hw
*ah
, u8 coverage_class
)
822 /* As defined by IEEE 802.11-2007 17.3.8.6 */
823 int slot_time
= ath5k_hw_get_default_slottime(ah
) + 3 * coverage_class
;
824 int ack_timeout
= ath5k_hw_get_default_sifs(ah
) + slot_time
;
825 int cts_timeout
= ack_timeout
;
827 ath5k_hw_set_ifs_intervals(ah
, slot_time
);
828 ath5k_hw_set_ack_timeout(ah
, ack_timeout
);
829 ath5k_hw_set_cts_timeout(ah
, cts_timeout
);
831 ah
->ah_coverage_class
= coverage_class
;
834 /***************************\
835 * Init/Start/Stop functions *
836 \***************************/
839 * ath5k_hw_start_rx_pcu() - Start RX engine
840 * @ah: The &struct ath5k_hw
842 * Starts RX engine on PCU so that hw can process RXed frames
845 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
848 ath5k_hw_start_rx_pcu(struct ath5k_hw
*ah
)
850 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW
, AR5K_DIAG_SW_DIS_RX
);
854 * at5k_hw_stop_rx_pcu() - Stop RX engine
855 * @ah: The &struct ath5k_hw
857 * Stops RX engine on PCU
860 ath5k_hw_stop_rx_pcu(struct ath5k_hw
*ah
)
862 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW
, AR5K_DIAG_SW_DIS_RX
);
866 * ath5k_hw_set_opmode() - Set PCU operating mode
867 * @ah: The &struct ath5k_hw
868 * @op_mode: One of enum nl80211_iftype
870 * Configure PCU for the various operating modes (AP/STA etc)
873 ath5k_hw_set_opmode(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
)
875 struct ath_common
*common
= ath5k_hw_common(ah
);
876 u32 pcu_reg
, beacon_reg
, low_id
, high_id
;
878 ATH5K_DBG(ah
, ATH5K_DEBUG_MODE
, "mode %d\n", op_mode
);
880 /* Preserve rest settings */
881 pcu_reg
= ath5k_hw_reg_read(ah
, AR5K_STA_ID1
) & 0xffff0000;
882 pcu_reg
&= ~(AR5K_STA_ID1_ADHOC
| AR5K_STA_ID1_AP
883 | AR5K_STA_ID1_KEYSRCH_MODE
884 | (ah
->ah_version
== AR5K_AR5210
?
885 (AR5K_STA_ID1_PWR_SV
| AR5K_STA_ID1_NO_PSPOLL
) : 0));
890 case NL80211_IFTYPE_ADHOC
:
891 pcu_reg
|= AR5K_STA_ID1_ADHOC
| AR5K_STA_ID1_KEYSRCH_MODE
;
892 beacon_reg
|= AR5K_BCR_ADHOC
;
893 if (ah
->ah_version
== AR5K_AR5210
)
894 pcu_reg
|= AR5K_STA_ID1_NO_PSPOLL
;
896 AR5K_REG_ENABLE_BITS(ah
, AR5K_CFG
, AR5K_CFG_IBSS
);
899 case NL80211_IFTYPE_AP
:
900 case NL80211_IFTYPE_MESH_POINT
:
901 pcu_reg
|= AR5K_STA_ID1_AP
| AR5K_STA_ID1_KEYSRCH_MODE
;
902 beacon_reg
|= AR5K_BCR_AP
;
903 if (ah
->ah_version
== AR5K_AR5210
)
904 pcu_reg
|= AR5K_STA_ID1_NO_PSPOLL
;
906 AR5K_REG_DISABLE_BITS(ah
, AR5K_CFG
, AR5K_CFG_IBSS
);
909 case NL80211_IFTYPE_STATION
:
910 pcu_reg
|= AR5K_STA_ID1_KEYSRCH_MODE
911 | (ah
->ah_version
== AR5K_AR5210
?
912 AR5K_STA_ID1_PWR_SV
: 0);
913 case NL80211_IFTYPE_MONITOR
:
914 pcu_reg
|= AR5K_STA_ID1_KEYSRCH_MODE
915 | (ah
->ah_version
== AR5K_AR5210
?
916 AR5K_STA_ID1_NO_PSPOLL
: 0);
926 low_id
= get_unaligned_le32(common
->macaddr
);
927 high_id
= get_unaligned_le16(common
->macaddr
+ 4);
928 ath5k_hw_reg_write(ah
, low_id
, AR5K_STA_ID0
);
929 ath5k_hw_reg_write(ah
, pcu_reg
| high_id
, AR5K_STA_ID1
);
932 * Set Beacon Control Register on 5210
934 if (ah
->ah_version
== AR5K_AR5210
)
935 ath5k_hw_reg_write(ah
, beacon_reg
, AR5K_BCR
);
941 * ath5k_hw_pcu_init() - Initialize PCU
942 * @ah: The &struct ath5k_hw
943 * @op_mode: One of enum nl80211_iftype
944 * @mode: One of enum ath5k_driver_mode
946 * This function is used to initialize PCU by setting current
947 * operation mode and various other settings.
950 ath5k_hw_pcu_init(struct ath5k_hw
*ah
, enum nl80211_iftype op_mode
)
952 /* Set bssid and bssid mask */
953 ath5k_hw_set_bssid(ah
);
956 ath5k_hw_set_opmode(ah
, op_mode
);
958 /* Write rate duration table only on AR5212 and if
959 * virtual interface has already been brought up
960 * XXX: rethink this after new mode changes to
961 * mac80211 are integrated */
962 if (ah
->ah_version
== AR5K_AR5212
&&
964 ath5k_hw_write_rate_duration(ah
);
966 /* Set RSSI/BRSSI thresholds
968 * Note: If we decide to set this value
969 * dynamically, have in mind that when AR5K_RSSI_THR
970 * register is read it might return 0x40 if we haven't
971 * wrote anything to it plus BMISS RSSI threshold is zeroed.
972 * So doing a save/restore procedure here isn't the right
973 * choice. Instead store it on ath5k_hw */
974 ath5k_hw_reg_write(ah
, (AR5K_TUNE_RSSI_THRES
|
975 AR5K_TUNE_BMISS_THRES
<<
976 AR5K_RSSI_THR_BMISS_S
),
979 /* MIC QoS support */
980 if (ah
->ah_mac_srev
>= AR5K_SREV_AR2413
) {
981 ath5k_hw_reg_write(ah
, 0x000100aa, AR5K_MIC_QOS_CTL
);
982 ath5k_hw_reg_write(ah
, 0x00003210, AR5K_MIC_QOS_SEL
);
985 /* QoS NOACK Policy */
986 if (ah
->ah_version
== AR5K_AR5212
) {
987 ath5k_hw_reg_write(ah
,
988 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES
) |
989 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET
) |
990 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET
),
994 /* Restore slot time and ACK timeouts */
995 if (ah
->ah_coverage_class
> 0)
996 ath5k_hw_set_coverage_class(ah
, ah
->ah_coverage_class
);
998 /* Set ACK bitrate mode (see ack_rates_high) */
999 if (ah
->ah_version
== AR5K_AR5212
) {
1000 u32 val
= AR5K_STA_ID1_BASE_RATE_11B
| AR5K_STA_ID1_ACKCTS_6MB
;
1001 if (ah
->ah_ack_bitrate_high
)
1002 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, val
);
1004 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, val
);