2 * Copyright (c) 2010-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <asm/unaligned.h>
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 #include "ar9003_mci.h"
23 #define COMP_HDR_LEN 4
24 #define COMP_CKSUM_LEN 2
26 #define LE16(x) __constant_cpu_to_le16(x)
27 #define LE32(x) __constant_cpu_to_le32(x)
29 /* Local defines to distinguish between extension and control CTL's */
30 #define EXT_ADDITIVE (0x8000)
31 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
32 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
33 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
35 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
36 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
38 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
40 #define EEPROM_DATA_LEN_9485 1088
42 static int ar9003_hw_power_interpolate(int32_t x
,
43 int32_t *px
, int32_t *py
, u_int16_t np
);
45 static const struct ar9300_eeprom ar9300_default
= {
48 .macAddr
= {0, 2, 3, 4, 5, 6},
49 .custData
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
52 .regDmn
= { LE16(0), LE16(0x1f) },
53 .txrxMask
= 0x77, /* 4 bits tx and 4 bits rx */
55 .opFlags
= AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
,
59 .blueToothOptions
= 0,
61 .deviceType
= 5, /* takes lower byte in eeprom location */
62 .pwrTableOffset
= AR9300_PWR_TABLE_OFFSET
,
63 .params_for_tuning_caps
= {0, 0},
64 .featureEnable
= 0x0c,
66 * bit0 - enable tx temp comp - disabled
67 * bit1 - enable tx volt comp - disabled
68 * bit2 - enable fastClock - enabled
69 * bit3 - enable doubling - enabled
70 * bit4 - enable internal regulator - disabled
71 * bit5 - enable pa predistortion - disabled
73 .miscConfiguration
= 0, /* bit0 - turn down drivestrength */
74 .eepromWriteEnableGpio
= 3,
77 .rxBandSelectGpio
= 0xff,
82 /* ar9300_modal_eep_header 2g */
83 /* 4 idle,t1,t2,b(4 bits per setting) */
84 .antCtrlCommon
= LE32(0x110),
85 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 .antCtrlCommon2
= LE32(0x22222),
89 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 * rx1, rx12, b (2 bits each)
92 .antCtrlChain
= { LE16(0x150), LE16(0x150), LE16(0x150) },
95 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
96 * for ar9280 (0xa20c/b20c 5:0)
98 .xatten1DB
= {0, 0, 0},
101 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 * for ar9280 (0xa20c/b20c 16:12
104 .xatten1Margin
= {0, 0, 0},
109 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 * channels in usual fbin coding format
112 .spurChans
= {0, 0, 0, 0, 0},
115 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 * if the register is per chain
118 .noiseFloorThreshCh
= {-1, 0, 0},
119 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
122 .txFrameToDataStart
= 0x0e,
123 .txFrameToPaOn
= 0x0e,
124 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
126 .switchSettling
= 0x2c,
127 .adcDesiredSize
= -30,
130 .txFrameToXpaOn
= 0xe,
132 .papdRateMaskHt20
= LE32(0x0cf0e0e0),
133 .papdRateMaskHt40
= LE32(0x6cf0e0e0),
134 .xlna_bias_strength
= 0,
140 .ant_div_control
= 0,
142 .tempslopextension
= {0, 0, 0, 0, 0, 0, 0, 0}
149 /* ar9300_cal_data_per_freq_op_loop 2g */
151 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 .calTarget_freqbin_Cck
= {
159 .calTarget_freqbin_2G
= {
164 .calTarget_freqbin_2GHT20
= {
169 .calTarget_freqbin_2GHT40
= {
174 .calTargetPowerCck
= {
175 /* 1L-5L,5S,11L,11S */
176 { {36, 36, 36, 36} },
177 { {36, 36, 36, 36} },
179 .calTargetPower2G
= {
181 { {32, 32, 28, 24} },
182 { {32, 32, 28, 24} },
183 { {32, 32, 28, 24} },
185 .calTargetPower2GHT20
= {
186 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 .calTargetPower2GHT40
= {
191 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 { {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
197 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
227 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
228 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
229 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
230 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
234 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
235 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
236 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
241 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
242 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
248 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
249 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
250 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
251 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
255 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
256 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
257 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
261 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
262 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
263 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
268 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
269 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
270 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
275 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
276 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
277 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
278 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
282 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
283 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
286 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
287 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
291 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 /* 4 idle,t1,t2,b (4 bits per setting) */
300 .antCtrlCommon
= LE32(0x110),
301 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
302 .antCtrlCommon2
= LE32(0x22222),
303 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
305 LE16(0x000), LE16(0x000), LE16(0x000),
307 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
308 .xatten1DB
= {0, 0, 0},
311 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
312 * for merlin (0xa20c/b20c 16:12
314 .xatten1Margin
= {0, 0, 0},
317 /* spurChans spur channels in usual fbin coding format */
318 .spurChans
= {0, 0, 0, 0, 0},
319 /* noiseFloorThreshCh Check if the register is per chain */
320 .noiseFloorThreshCh
= {-1, 0, 0},
321 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
324 .txFrameToDataStart
= 0x0e,
325 .txFrameToPaOn
= 0x0e,
326 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
328 .switchSettling
= 0x2d,
329 .adcDesiredSize
= -30,
332 .txFrameToXpaOn
= 0xe,
334 .papdRateMaskHt20
= LE32(0x0c80c080),
335 .papdRateMaskHt40
= LE32(0x0080c080),
336 .xlna_bias_strength
= 0,
344 .xatten1DBLow
= {0, 0, 0},
345 .xatten1MarginLow
= {0, 0, 0},
346 .xatten1DBHigh
= {0, 0, 0},
347 .xatten1MarginHigh
= {0, 0, 0}
392 .calTarget_freqbin_5G
= {
402 .calTarget_freqbin_5GHT20
= {
412 .calTarget_freqbin_5GHT40
= {
422 .calTargetPower5G
= {
424 { {20, 20, 20, 10} },
425 { {20, 20, 20, 10} },
426 { {20, 20, 20, 10} },
427 { {20, 20, 20, 10} },
428 { {20, 20, 20, 10} },
429 { {20, 20, 20, 10} },
430 { {20, 20, 20, 10} },
431 { {20, 20, 20, 10} },
433 .calTargetPower5GHT20
= {
435 * 0_8_16,1-3_9-11_17-19,
436 * 4,5,6,7,12,13,14,15,20,21,22,23
438 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 .calTargetPower5GHT40
= {
449 * 0_8_16,1-3_9-11_17-19,
450 * 4,5,6,7,12,13,14,15,20,21,22,23
452 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 { {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 0x10, 0x16, 0x18, 0x40, 0x46,
463 0x48, 0x30, 0x36, 0x38
467 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
468 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
469 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
470 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
471 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
472 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
473 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
474 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
478 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
479 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
480 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
481 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
482 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
483 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
484 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
488 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
489 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
490 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
491 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
492 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
493 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
494 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
495 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
499 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
500 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
501 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
502 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
503 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
504 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
505 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
506 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
510 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
511 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
512 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
513 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
514 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
515 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
516 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
517 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
521 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
522 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
523 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
524 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
525 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
526 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
527 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
528 /* Data[5].ctlEdges[7].bChannel */ 0xFF
532 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
533 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
534 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
535 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
536 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
537 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
538 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
539 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
543 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
544 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
545 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
546 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
547 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
548 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
549 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
550 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
554 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
555 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
556 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
557 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
558 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
559 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
560 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
561 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
567 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
568 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
573 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
574 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
579 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
580 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
585 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
586 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
591 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
592 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
597 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
603 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
609 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
610 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
615 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
616 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
622 static const struct ar9300_eeprom ar9300_x113
= {
624 .templateVersion
= 6,
625 .macAddr
= {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
626 .custData
= {"x113-023-f0000"},
628 .regDmn
= { LE16(0), LE16(0x1f) },
629 .txrxMask
= 0x77, /* 4 bits tx and 4 bits rx */
631 .opFlags
= AR5416_OPFLAGS_11A
,
635 .blueToothOptions
= 0,
637 .deviceType
= 5, /* takes lower byte in eeprom location */
638 .pwrTableOffset
= AR9300_PWR_TABLE_OFFSET
,
639 .params_for_tuning_caps
= {0, 0},
640 .featureEnable
= 0x0d,
642 * bit0 - enable tx temp comp - disabled
643 * bit1 - enable tx volt comp - disabled
644 * bit2 - enable fastClock - enabled
645 * bit3 - enable doubling - enabled
646 * bit4 - enable internal regulator - disabled
647 * bit5 - enable pa predistortion - disabled
649 .miscConfiguration
= 0, /* bit0 - turn down drivestrength */
650 .eepromWriteEnableGpio
= 6,
651 .wlanDisableGpio
= 0,
653 .rxBandSelectGpio
= 0xff,
658 /* ar9300_modal_eep_header 2g */
659 /* 4 idle,t1,t2,b(4 bits per setting) */
660 .antCtrlCommon
= LE32(0x110),
661 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
662 .antCtrlCommon2
= LE32(0x44444),
665 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
666 * rx1, rx12, b (2 bits each)
668 .antCtrlChain
= { LE16(0x150), LE16(0x150), LE16(0x150) },
671 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
672 * for ar9280 (0xa20c/b20c 5:0)
674 .xatten1DB
= {0, 0, 0},
677 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
678 * for ar9280 (0xa20c/b20c 16:12
680 .xatten1Margin
= {0, 0, 0},
685 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
686 * channels in usual fbin coding format
688 .spurChans
= {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
692 * if the register is per chain
694 .noiseFloorThreshCh
= {-1, 0, 0},
695 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698 .txFrameToDataStart
= 0x0e,
699 .txFrameToPaOn
= 0x0e,
700 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
702 .switchSettling
= 0x2c,
703 .adcDesiredSize
= -30,
706 .txFrameToXpaOn
= 0xe,
708 .papdRateMaskHt20
= LE32(0x0c80c080),
709 .papdRateMaskHt40
= LE32(0x0080c080),
710 .xlna_bias_strength
= 0,
716 .ant_div_control
= 0,
718 .tempslopextension
= {0, 0, 0, 0, 0, 0, 0, 0}
725 /* ar9300_cal_data_per_freq_op_loop 2g */
727 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
731 .calTarget_freqbin_Cck
= {
735 .calTarget_freqbin_2G
= {
740 .calTarget_freqbin_2GHT20
= {
745 .calTarget_freqbin_2GHT40
= {
750 .calTargetPowerCck
= {
751 /* 1L-5L,5S,11L,11S */
752 { {34, 34, 34, 34} },
753 { {34, 34, 34, 34} },
755 .calTargetPower2G
= {
757 { {34, 34, 32, 32} },
758 { {34, 34, 32, 32} },
759 { {34, 34, 32, 32} },
761 .calTargetPower2GHT20
= {
762 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 { {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
766 .calTargetPower2GHT40
= {
767 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
803 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
810 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
817 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
824 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
831 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
844 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
851 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
858 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
862 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
866 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
870 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
875 /* 4 idle,t1,t2,b (4 bits per setting) */
876 .antCtrlCommon
= LE32(0x220),
877 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 .antCtrlCommon2
= LE32(0x11111),
879 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
881 LE16(0x150), LE16(0x150), LE16(0x150),
883 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 .xatten1DB
= {0, 0, 0},
887 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 * for merlin (0xa20c/b20c 16:12
890 .xatten1Margin
= {0, 0, 0},
893 /* spurChans spur channels in usual fbin coding format */
894 .spurChans
= {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 /* noiseFloorThreshCh Check if the register is per chain */
896 .noiseFloorThreshCh
= {-1, 0, 0},
897 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
900 .txFrameToDataStart
= 0x0e,
901 .txFrameToPaOn
= 0x0e,
902 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
904 .switchSettling
= 0x2d,
905 .adcDesiredSize
= -30,
908 .txFrameToXpaOn
= 0xe,
910 .papdRateMaskHt20
= LE32(0x0cf0e0e0),
911 .papdRateMaskHt40
= LE32(0x6cf0e0e0),
912 .xlna_bias_strength
= 0,
919 .tempSlopeHigh
= 105,
920 .xatten1DBLow
= {0, 0, 0},
921 .xatten1MarginLow
= {0, 0, 0},
922 .xatten1DBHigh
= {0, 0, 0},
923 .xatten1MarginHigh
= {0, 0, 0}
968 .calTarget_freqbin_5G
= {
978 .calTarget_freqbin_5GHT20
= {
988 .calTarget_freqbin_5GHT40
= {
998 .calTargetPower5G
= {
1000 { {42, 40, 40, 34} },
1001 { {42, 40, 40, 34} },
1002 { {42, 40, 40, 34} },
1003 { {42, 40, 40, 34} },
1004 { {42, 40, 40, 34} },
1005 { {42, 40, 40, 34} },
1006 { {42, 40, 40, 34} },
1007 { {42, 40, 40, 34} },
1009 .calTargetPower5GHT20
= {
1011 * 0_8_16,1-3_9-11_17-19,
1012 * 4,5,6,7,12,13,14,15,20,21,22,23
1014 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 { {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 { {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1021 { {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1023 .calTargetPower5GHT40
= {
1025 * 0_8_16,1-3_9-11_17-19,
1026 * 4,5,6,7,12,13,14,15,20,21,22,23
1028 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 { {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 { {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1035 { {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1038 0x10, 0x16, 0x18, 0x40, 0x46,
1039 0x48, 0x30, 0x36, 0x38
1043 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1044 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1045 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1046 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1047 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1048 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1049 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1050 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1053 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1054 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1055 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1056 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1057 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1058 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1059 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1060 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1064 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1065 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1066 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1067 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1068 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1069 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1070 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1071 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1075 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1076 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1077 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1078 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1079 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1080 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1081 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1082 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1086 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1087 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1088 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1089 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1090 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1091 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1092 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1093 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1097 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1098 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1099 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1100 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1101 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1102 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1103 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1104 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1108 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1109 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1110 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1111 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1112 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1113 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1114 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1115 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1119 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1120 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1121 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1122 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1123 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1124 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1125 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1126 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1130 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1131 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1132 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1133 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1134 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1135 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1136 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1137 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1140 .ctlPowerData_5G
= {
1143 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1144 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1149 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1150 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1155 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1156 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1161 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1162 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1167 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1168 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1173 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1174 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1179 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1186 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1191 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1192 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1199 static const struct ar9300_eeprom ar9300_h112
= {
1201 .templateVersion
= 3,
1202 .macAddr
= {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1203 .custData
= {"h112-241-f0000"},
1205 .regDmn
= { LE16(0), LE16(0x1f) },
1206 .txrxMask
= 0x77, /* 4 bits tx and 4 bits rx */
1208 .opFlags
= AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
,
1212 .blueToothOptions
= 0,
1214 .deviceType
= 5, /* takes lower byte in eeprom location */
1215 .pwrTableOffset
= AR9300_PWR_TABLE_OFFSET
,
1216 .params_for_tuning_caps
= {0, 0},
1217 .featureEnable
= 0x0d,
1219 * bit0 - enable tx temp comp - disabled
1220 * bit1 - enable tx volt comp - disabled
1221 * bit2 - enable fastClock - enabled
1222 * bit3 - enable doubling - enabled
1223 * bit4 - enable internal regulator - disabled
1224 * bit5 - enable pa predistortion - disabled
1226 .miscConfiguration
= 0, /* bit0 - turn down drivestrength */
1227 .eepromWriteEnableGpio
= 6,
1228 .wlanDisableGpio
= 0,
1230 .rxBandSelectGpio
= 0xff,
1235 /* ar9300_modal_eep_header 2g */
1236 /* 4 idle,t1,t2,b(4 bits per setting) */
1237 .antCtrlCommon
= LE32(0x110),
1238 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1239 .antCtrlCommon2
= LE32(0x44444),
1242 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1243 * rx1, rx12, b (2 bits each)
1245 .antCtrlChain
= { LE16(0x150), LE16(0x150), LE16(0x150) },
1248 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
1249 * for ar9280 (0xa20c/b20c 5:0)
1251 .xatten1DB
= {0, 0, 0},
1254 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1255 * for ar9280 (0xa20c/b20c 16:12
1257 .xatten1Margin
= {0, 0, 0},
1262 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1263 * channels in usual fbin coding format
1265 .spurChans
= {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1268 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1269 * if the register is per chain
1271 .noiseFloorThreshCh
= {-1, 0, 0},
1272 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1275 .txFrameToDataStart
= 0x0e,
1276 .txFrameToPaOn
= 0x0e,
1277 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1279 .switchSettling
= 0x2c,
1280 .adcDesiredSize
= -30,
1283 .txFrameToXpaOn
= 0xe,
1285 .papdRateMaskHt20
= LE32(0x0c80c080),
1286 .papdRateMaskHt40
= LE32(0x0080c080),
1287 .xlna_bias_strength
= 0,
1289 0, 0, 0, 0, 0, 0, 0,
1293 .ant_div_control
= 0,
1294 .future
= {0, 0, 0},
1295 .tempslopextension
= {0, 0, 0, 0, 0, 0, 0, 0}
1302 /* ar9300_cal_data_per_freq_op_loop 2g */
1304 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1305 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1306 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1308 .calTarget_freqbin_Cck
= {
1312 .calTarget_freqbin_2G
= {
1317 .calTarget_freqbin_2GHT20
= {
1322 .calTarget_freqbin_2GHT40
= {
1327 .calTargetPowerCck
= {
1328 /* 1L-5L,5S,11L,11S */
1329 { {34, 34, 34, 34} },
1330 { {34, 34, 34, 34} },
1332 .calTargetPower2G
= {
1334 { {34, 34, 32, 32} },
1335 { {34, 34, 32, 32} },
1336 { {34, 34, 32, 32} },
1338 .calTargetPower2GHT20
= {
1339 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1340 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1341 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1343 .calTargetPower2GHT40
= {
1344 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1345 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1346 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1349 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1350 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1380 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1381 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1382 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1383 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1387 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1388 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1389 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1394 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1395 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1401 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1402 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1403 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1404 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1408 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1409 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1410 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1414 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1421 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1422 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1423 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1428 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1429 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1430 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1431 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1434 .ctlPowerData_2G
= {
1435 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1436 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1437 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1439 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1440 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1444 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1449 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1452 /* 4 idle,t1,t2,b (4 bits per setting) */
1453 .antCtrlCommon
= LE32(0x220),
1454 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1455 .antCtrlCommon2
= LE32(0x44444),
1456 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1458 LE16(0x150), LE16(0x150), LE16(0x150),
1460 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1461 .xatten1DB
= {0, 0, 0},
1464 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1465 * for merlin (0xa20c/b20c 16:12
1467 .xatten1Margin
= {0, 0, 0},
1470 /* spurChans spur channels in usual fbin coding format */
1471 .spurChans
= {0, 0, 0, 0, 0},
1472 /* noiseFloorThreshCh Check if the register is per chain */
1473 .noiseFloorThreshCh
= {-1, 0, 0},
1474 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1477 .txFrameToDataStart
= 0x0e,
1478 .txFrameToPaOn
= 0x0e,
1479 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1481 .switchSettling
= 0x2d,
1482 .adcDesiredSize
= -30,
1485 .txFrameToXpaOn
= 0xe,
1487 .papdRateMaskHt20
= LE32(0x0cf0e0e0),
1488 .papdRateMaskHt40
= LE32(0x6cf0e0e0),
1489 .xlna_bias_strength
= 0,
1491 0, 0, 0, 0, 0, 0, 0,
1496 .tempSlopeHigh
= 50,
1497 .xatten1DBLow
= {0, 0, 0},
1498 .xatten1MarginLow
= {0, 0, 0},
1499 .xatten1DBHigh
= {0, 0, 0},
1500 .xatten1MarginHigh
= {0, 0, 0}
1545 .calTarget_freqbin_5G
= {
1555 .calTarget_freqbin_5GHT20
= {
1565 .calTarget_freqbin_5GHT40
= {
1575 .calTargetPower5G
= {
1577 { {30, 30, 28, 24} },
1578 { {30, 30, 28, 24} },
1579 { {30, 30, 28, 24} },
1580 { {30, 30, 28, 24} },
1581 { {30, 30, 28, 24} },
1582 { {30, 30, 28, 24} },
1583 { {30, 30, 28, 24} },
1584 { {30, 30, 28, 24} },
1586 .calTargetPower5GHT20
= {
1588 * 0_8_16,1-3_9-11_17-19,
1589 * 4,5,6,7,12,13,14,15,20,21,22,23
1591 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1592 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1593 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1594 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1595 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1596 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1597 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1598 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1600 .calTargetPower5GHT40
= {
1602 * 0_8_16,1-3_9-11_17-19,
1603 * 4,5,6,7,12,13,14,15,20,21,22,23
1605 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1606 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1607 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1608 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1609 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1610 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1611 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1612 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1615 0x10, 0x16, 0x18, 0x40, 0x46,
1616 0x48, 0x30, 0x36, 0x38
1620 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1621 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1622 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1623 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1624 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1625 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1626 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1627 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1630 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1631 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1632 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1633 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1634 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1635 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1636 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1637 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1641 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1642 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1643 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1644 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1645 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1646 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1647 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1648 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1652 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1653 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1654 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1655 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1656 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1657 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1658 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
1659 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
1663 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1664 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1665 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1666 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1667 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
1668 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
1669 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
1670 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
1674 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1675 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1676 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1677 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1678 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1679 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1680 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
1681 /* Data[5].ctlEdges[7].bChannel */ 0xFF
1685 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1686 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1687 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1688 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1689 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1690 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1691 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1692 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1696 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1697 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1698 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1699 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1700 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1701 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1702 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1703 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1707 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1708 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1709 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1710 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1711 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1712 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1713 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1714 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1717 .ctlPowerData_5G
= {
1720 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1721 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1726 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1732 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1733 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1738 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1739 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1744 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1750 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1751 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1756 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1762 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1763 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1768 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1769 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1776 static const struct ar9300_eeprom ar9300_x112
= {
1778 .templateVersion
= 5,
1779 .macAddr
= {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1780 .custData
= {"x112-041-f0000"},
1782 .regDmn
= { LE16(0), LE16(0x1f) },
1783 .txrxMask
= 0x77, /* 4 bits tx and 4 bits rx */
1785 .opFlags
= AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
,
1789 .blueToothOptions
= 0,
1791 .deviceType
= 5, /* takes lower byte in eeprom location */
1792 .pwrTableOffset
= AR9300_PWR_TABLE_OFFSET
,
1793 .params_for_tuning_caps
= {0, 0},
1794 .featureEnable
= 0x0d,
1796 * bit0 - enable tx temp comp - disabled
1797 * bit1 - enable tx volt comp - disabled
1798 * bit2 - enable fastclock - enabled
1799 * bit3 - enable doubling - enabled
1800 * bit4 - enable internal regulator - disabled
1801 * bit5 - enable pa predistortion - disabled
1803 .miscConfiguration
= 0, /* bit0 - turn down drivestrength */
1804 .eepromWriteEnableGpio
= 6,
1805 .wlanDisableGpio
= 0,
1807 .rxBandSelectGpio
= 0xff,
1812 /* ar9300_modal_eep_header 2g */
1813 /* 4 idle,t1,t2,b(4 bits per setting) */
1814 .antCtrlCommon
= LE32(0x110),
1815 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1816 .antCtrlCommon2
= LE32(0x22222),
1819 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1820 * rx1, rx12, b (2 bits each)
1822 .antCtrlChain
= { LE16(0x10), LE16(0x10), LE16(0x10) },
1825 * xatten1DB[AR9300_max_chains]; 3 xatten1_db
1826 * for ar9280 (0xa20c/b20c 5:0)
1828 .xatten1DB
= {0x1b, 0x1b, 0x1b},
1831 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1832 * for ar9280 (0xa20c/b20c 16:12
1834 .xatten1Margin
= {0x15, 0x15, 0x15},
1839 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1840 * channels in usual fbin coding format
1842 .spurChans
= {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1845 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1846 * if the register is per chain
1848 .noiseFloorThreshCh
= {-1, 0, 0},
1849 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1852 .txFrameToDataStart
= 0x0e,
1853 .txFrameToPaOn
= 0x0e,
1854 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1856 .switchSettling
= 0x2c,
1857 .adcDesiredSize
= -30,
1860 .txFrameToXpaOn
= 0xe,
1862 .papdRateMaskHt20
= LE32(0x0c80c080),
1863 .papdRateMaskHt40
= LE32(0x0080c080),
1864 .xlna_bias_strength
= 0,
1866 0, 0, 0, 0, 0, 0, 0,
1870 .ant_div_control
= 0,
1871 .future
= {0, 0, 0},
1872 .tempslopextension
= {0, 0, 0, 0, 0, 0, 0, 0}
1879 /* ar9300_cal_data_per_freq_op_loop 2g */
1881 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1882 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1883 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1885 .calTarget_freqbin_Cck
= {
1889 .calTarget_freqbin_2G
= {
1894 .calTarget_freqbin_2GHT20
= {
1899 .calTarget_freqbin_2GHT40
= {
1904 .calTargetPowerCck
= {
1905 /* 1L-5L,5S,11L,11s */
1906 { {38, 38, 38, 38} },
1907 { {38, 38, 38, 38} },
1909 .calTargetPower2G
= {
1911 { {38, 38, 36, 34} },
1912 { {38, 38, 36, 34} },
1913 { {38, 38, 34, 32} },
1915 .calTargetPower2GHT20
= {
1916 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1917 { {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1918 { {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1920 .calTargetPower2GHT40
= {
1921 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1922 { {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1923 { {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1926 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1927 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1957 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1958 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1959 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1960 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1964 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1971 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1978 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1979 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1980 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1981 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1985 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1991 /* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 /* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 /* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1998 /* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 /* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 /* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2005 /* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 /* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 /* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 /* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2011 .ctlPowerData_2G
= {
2012 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2016 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2017 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2018 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2020 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2021 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2024 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2026 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2029 /* 4 idle,t1,t2,b (4 bits per setting) */
2030 .antCtrlCommon
= LE32(0x110),
2031 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2032 .antCtrlCommon2
= LE32(0x22222),
2033 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2035 LE16(0x0), LE16(0x0), LE16(0x0),
2037 /* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2038 .xatten1DB
= {0x13, 0x19, 0x17},
2041 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2042 * for merlin (0xa20c/b20c 16:12
2044 .xatten1Margin
= {0x19, 0x19, 0x19},
2047 /* spurChans spur channels in usual fbin coding format */
2048 .spurChans
= {0, 0, 0, 0, 0},
2049 /* noiseFloorThreshch check if the register is per chain */
2050 .noiseFloorThreshCh
= {-1, 0, 0},
2051 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2054 .txFrameToDataStart
= 0x0e,
2055 .txFrameToPaOn
= 0x0e,
2056 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2058 .switchSettling
= 0x2d,
2059 .adcDesiredSize
= -30,
2062 .txFrameToXpaOn
= 0xe,
2064 .papdRateMaskHt20
= LE32(0x0cf0e0e0),
2065 .papdRateMaskHt40
= LE32(0x6cf0e0e0),
2066 .xlna_bias_strength
= 0,
2068 0, 0, 0, 0, 0, 0, 0,
2073 .tempSlopeHigh
= 105,
2074 .xatten1DBLow
= {0x10, 0x14, 0x10},
2075 .xatten1MarginLow
= {0x19, 0x19 , 0x19},
2076 .xatten1DBHigh
= {0x1d, 0x20, 0x24},
2077 .xatten1MarginHigh
= {0x10, 0x10, 0x10}
2122 .calTarget_freqbin_5G
= {
2132 .calTarget_freqbin_5GHT20
= {
2142 .calTarget_freqbin_5GHT40
= {
2152 .calTargetPower5G
= {
2154 { {32, 32, 28, 26} },
2155 { {32, 32, 28, 26} },
2156 { {32, 32, 28, 26} },
2157 { {32, 32, 26, 24} },
2158 { {32, 32, 26, 24} },
2159 { {32, 32, 24, 22} },
2160 { {30, 30, 24, 22} },
2161 { {30, 30, 24, 22} },
2163 .calTargetPower5GHT20
= {
2165 * 0_8_16,1-3_9-11_17-19,
2166 * 4,5,6,7,12,13,14,15,20,21,22,23
2168 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2169 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2170 { {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2171 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2172 { {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2173 { {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2174 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2175 { {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2177 .calTargetPower5GHT40
= {
2179 * 0_8_16,1-3_9-11_17-19,
2180 * 4,5,6,7,12,13,14,15,20,21,22,23
2182 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2183 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2184 { {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2185 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2186 { {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2187 { {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2188 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2189 { {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2192 0x10, 0x16, 0x18, 0x40, 0x46,
2193 0x48, 0x30, 0x36, 0x38
2197 /* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2198 /* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2199 /* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2200 /* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2201 /* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2202 /* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2203 /* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2204 /* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2207 /* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2208 /* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2209 /* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2210 /* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2211 /* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2212 /* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2213 /* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2214 /* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2218 /* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2219 /* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2220 /* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2221 /* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2222 /* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2223 /* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2224 /* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2225 /* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2229 /* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2230 /* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2231 /* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2232 /* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2233 /* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2234 /* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2235 /* Data[3].ctledges[6].bchannel */ 0xFF,
2236 /* Data[3].ctledges[7].bchannel */ 0xFF,
2240 /* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2241 /* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2242 /* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2243 /* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2244 /* Data[4].ctledges[4].bchannel */ 0xFF,
2245 /* Data[4].ctledges[5].bchannel */ 0xFF,
2246 /* Data[4].ctledges[6].bchannel */ 0xFF,
2247 /* Data[4].ctledges[7].bchannel */ 0xFF,
2251 /* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2252 /* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2253 /* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2254 /* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2255 /* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2256 /* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2257 /* Data[5].ctledges[6].bchannel */ 0xFF,
2258 /* Data[5].ctledges[7].bchannel */ 0xFF
2262 /* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2263 /* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2264 /* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2265 /* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2266 /* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2267 /* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2268 /* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2269 /* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2273 /* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2274 /* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2275 /* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2276 /* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2277 /* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2278 /* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2279 /* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2280 /* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2284 /* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2285 /* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2286 /* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2287 /* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2288 /* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2289 /* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2290 /* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2291 /* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2294 .ctlPowerData_5G
= {
2297 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2298 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2303 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2309 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2310 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2315 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2316 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2321 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2322 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2327 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2333 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2334 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2339 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2345 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2346 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2352 static const struct ar9300_eeprom ar9300_h116
= {
2354 .templateVersion
= 4,
2355 .macAddr
= {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2356 .custData
= {"h116-041-f0000"},
2358 .regDmn
= { LE16(0), LE16(0x1f) },
2359 .txrxMask
= 0x33, /* 4 bits tx and 4 bits rx */
2361 .opFlags
= AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
,
2365 .blueToothOptions
= 0,
2367 .deviceType
= 5, /* takes lower byte in eeprom location */
2368 .pwrTableOffset
= AR9300_PWR_TABLE_OFFSET
,
2369 .params_for_tuning_caps
= {0, 0},
2370 .featureEnable
= 0x0d,
2372 * bit0 - enable tx temp comp - disabled
2373 * bit1 - enable tx volt comp - disabled
2374 * bit2 - enable fastClock - enabled
2375 * bit3 - enable doubling - enabled
2376 * bit4 - enable internal regulator - disabled
2377 * bit5 - enable pa predistortion - disabled
2379 .miscConfiguration
= 0, /* bit0 - turn down drivestrength */
2380 .eepromWriteEnableGpio
= 6,
2381 .wlanDisableGpio
= 0,
2383 .rxBandSelectGpio
= 0xff,
2388 /* ar9300_modal_eep_header 2g */
2389 /* 4 idle,t1,t2,b(4 bits per setting) */
2390 .antCtrlCommon
= LE32(0x110),
2391 /* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2392 .antCtrlCommon2
= LE32(0x44444),
2395 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2396 * rx1, rx12, b (2 bits each)
2398 .antCtrlChain
= { LE16(0x10), LE16(0x10), LE16(0x10) },
2401 * xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
2402 * for ar9280 (0xa20c/b20c 5:0)
2404 .xatten1DB
= {0x1f, 0x1f, 0x1f},
2407 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2408 * for ar9280 (0xa20c/b20c 16:12
2410 .xatten1Margin
= {0x12, 0x12, 0x12},
2415 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2416 * channels in usual fbin coding format
2418 .spurChans
= {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2421 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2422 * if the register is per chain
2424 .noiseFloorThreshCh
= {-1, 0, 0},
2425 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2428 .txFrameToDataStart
= 0x0e,
2429 .txFrameToPaOn
= 0x0e,
2430 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2432 .switchSettling
= 0x2c,
2433 .adcDesiredSize
= -30,
2436 .txFrameToXpaOn
= 0xe,
2438 .papdRateMaskHt20
= LE32(0x0c80C080),
2439 .papdRateMaskHt40
= LE32(0x0080C080),
2440 .xlna_bias_strength
= 0,
2442 0, 0, 0, 0, 0, 0, 0,
2446 .ant_div_control
= 0,
2447 .future
= {0, 0, 0},
2448 .tempslopextension
= {0, 0, 0, 0, 0, 0, 0, 0}
2455 /* ar9300_cal_data_per_freq_op_loop 2g */
2457 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2458 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2459 { {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2461 .calTarget_freqbin_Cck
= {
2465 .calTarget_freqbin_2G
= {
2470 .calTarget_freqbin_2GHT20
= {
2475 .calTarget_freqbin_2GHT40
= {
2480 .calTargetPowerCck
= {
2481 /* 1L-5L,5S,11L,11S */
2482 { {34, 34, 34, 34} },
2483 { {34, 34, 34, 34} },
2485 .calTargetPower2G
= {
2487 { {34, 34, 32, 32} },
2488 { {34, 34, 32, 32} },
2489 { {34, 34, 32, 32} },
2491 .calTargetPower2GHT20
= {
2492 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2493 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2494 { {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2496 .calTargetPower2GHT40
= {
2497 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2498 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2499 { {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2502 0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2503 0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2533 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2534 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2535 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2536 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2540 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2541 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2542 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2547 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2548 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2554 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2555 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2556 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2557 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2561 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2567 /* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 /* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 /* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2574 /* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 /* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 /* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2581 /* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 /* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 /* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 /* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2587 .ctlPowerData_2G
= {
2588 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2592 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2593 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2596 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2597 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2600 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2601 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2602 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2605 /* 4 idle,t1,t2,b (4 bits per setting) */
2606 .antCtrlCommon
= LE32(0x220),
2607 /* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2608 .antCtrlCommon2
= LE32(0x44444),
2609 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2611 LE16(0x150), LE16(0x150), LE16(0x150),
2613 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2614 .xatten1DB
= {0x19, 0x19, 0x19},
2617 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2618 * for merlin (0xa20c/b20c 16:12
2620 .xatten1Margin
= {0x14, 0x14, 0x14},
2623 /* spurChans spur channels in usual fbin coding format */
2624 .spurChans
= {0, 0, 0, 0, 0},
2625 /* noiseFloorThreshCh Check if the register is per chain */
2626 .noiseFloorThreshCh
= {-1, 0, 0},
2627 .reserved
= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2630 .txFrameToDataStart
= 0x0e,
2631 .txFrameToPaOn
= 0x0e,
2632 .txClip
= 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2634 .switchSettling
= 0x2d,
2635 .adcDesiredSize
= -30,
2638 .txFrameToXpaOn
= 0xe,
2640 .papdRateMaskHt20
= LE32(0x0cf0e0e0),
2641 .papdRateMaskHt40
= LE32(0x6cf0e0e0),
2642 .xlna_bias_strength
= 0,
2644 0, 0, 0, 0, 0, 0, 0,
2649 .tempSlopeHigh
= 50,
2650 .xatten1DBLow
= {0, 0, 0},
2651 .xatten1MarginLow
= {0, 0, 0},
2652 .xatten1DBHigh
= {0, 0, 0},
2653 .xatten1MarginHigh
= {0, 0, 0}
2698 .calTarget_freqbin_5G
= {
2708 .calTarget_freqbin_5GHT20
= {
2718 .calTarget_freqbin_5GHT40
= {
2728 .calTargetPower5G
= {
2730 { {30, 30, 28, 24} },
2731 { {30, 30, 28, 24} },
2732 { {30, 30, 28, 24} },
2733 { {30, 30, 28, 24} },
2734 { {30, 30, 28, 24} },
2735 { {30, 30, 28, 24} },
2736 { {30, 30, 28, 24} },
2737 { {30, 30, 28, 24} },
2739 .calTargetPower5GHT20
= {
2741 * 0_8_16,1-3_9-11_17-19,
2742 * 4,5,6,7,12,13,14,15,20,21,22,23
2744 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2745 { {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2746 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2747 { {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2748 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2749 { {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2750 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2751 { {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2753 .calTargetPower5GHT40
= {
2755 * 0_8_16,1-3_9-11_17-19,
2756 * 4,5,6,7,12,13,14,15,20,21,22,23
2758 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2759 { {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2760 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2761 { {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2762 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2763 { {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2764 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2765 { {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2768 0x10, 0x16, 0x18, 0x40, 0x46,
2769 0x48, 0x30, 0x36, 0x38
2773 /* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 /* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 /* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 /* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 /* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2778 /* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 /* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 /* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2783 /* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 /* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 /* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 /* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 /* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2788 /* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 /* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 /* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2794 /* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2795 /* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2796 /* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2797 /* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2798 /* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2799 /* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2800 /* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2801 /* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2805 /* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2806 /* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2807 /* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2808 /* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2809 /* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2810 /* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2811 /* Data[3].ctlEdges[6].bChannel */ 0xFF,
2812 /* Data[3].ctlEdges[7].bChannel */ 0xFF,
2816 /* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 /* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2818 /* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2819 /* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2820 /* Data[4].ctlEdges[4].bChannel */ 0xFF,
2821 /* Data[4].ctlEdges[5].bChannel */ 0xFF,
2822 /* Data[4].ctlEdges[6].bChannel */ 0xFF,
2823 /* Data[4].ctlEdges[7].bChannel */ 0xFF,
2827 /* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2828 /* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2829 /* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2830 /* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2831 /* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2832 /* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2833 /* Data[5].ctlEdges[6].bChannel */ 0xFF,
2834 /* Data[5].ctlEdges[7].bChannel */ 0xFF
2838 /* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2839 /* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2840 /* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2841 /* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2842 /* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2843 /* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2844 /* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2845 /* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2849 /* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 /* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2851 /* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2852 /* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2853 /* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2854 /* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2855 /* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2856 /* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2860 /* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2861 /* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2862 /* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2863 /* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2864 /* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2865 /* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2866 /* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2867 /* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2870 .ctlPowerData_5G
= {
2873 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2874 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2879 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2880 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2885 CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2886 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2891 CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2897 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2898 CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2903 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2904 CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2909 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2910 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2915 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2916 CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2921 CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2922 CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2929 static const struct ar9300_eeprom
*ar9300_eep_templates
[] = {
2937 static const struct ar9300_eeprom
*ar9003_eeprom_struct_find_by_id(int id
)
2939 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2942 for (it
= 0; it
< N_LOOP
; it
++)
2943 if (ar9300_eep_templates
[it
]->templateVersion
== id
)
2944 return ar9300_eep_templates
[it
];
2949 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw
*ah
)
2954 static int interpolate(int x
, int xa
, int xb
, int ya
, int yb
)
2956 int bf
, factor
, plus
;
2958 bf
= 2 * (yb
- ya
) * (x
- xa
) / (xb
- xa
);
2961 return ya
+ factor
+ plus
;
2964 static u32
ath9k_hw_ar9300_get_eeprom(struct ath_hw
*ah
,
2965 enum eeprom_param param
)
2967 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
2968 struct ar9300_base_eep_hdr
*pBase
= &eep
->baseEepHeader
;
2972 return get_unaligned_be16(eep
->macAddr
);
2974 return get_unaligned_be16(eep
->macAddr
+ 2);
2976 return get_unaligned_be16(eep
->macAddr
+ 4);
2978 return le16_to_cpu(pBase
->regDmn
[0]);
2980 return pBase
->deviceCap
;
2982 return pBase
->opCapFlags
.opFlags
;
2984 return pBase
->rfSilent
;
2986 return (pBase
->txrxMask
>> 4) & 0xf;
2988 return pBase
->txrxMask
& 0xf;
2990 return !!(pBase
->featureEnable
& BIT(5));
2991 case EEP_CHAIN_MASK_REDUCE
:
2992 return (pBase
->miscConfiguration
>> 0x3) & 0x1;
2993 case EEP_ANT_DIV_CTL1
:
2994 return eep
->base_ext1
.ant_div_control
;
2995 case EEP_ANTENNA_GAIN_5G
:
2996 return eep
->modalHeader5G
.antennaGain
;
2997 case EEP_ANTENNA_GAIN_2G
:
2998 return eep
->modalHeader2G
.antennaGain
;
3004 static bool ar9300_eeprom_read_byte(struct ath_hw
*ah
, int address
,
3009 if (unlikely(!ath9k_hw_nvram_read(ah
, address
/ 2, &val
)))
3012 *buffer
= (val
>> (8 * (address
% 2))) & 0xff;
3016 static bool ar9300_eeprom_read_word(struct ath_hw
*ah
, int address
,
3021 if (unlikely(!ath9k_hw_nvram_read(ah
, address
/ 2, &val
)))
3024 buffer
[0] = val
>> 8;
3025 buffer
[1] = val
& 0xff;
3030 static bool ar9300_read_eeprom(struct ath_hw
*ah
, int address
, u8
*buffer
,
3033 struct ath_common
*common
= ath9k_hw_common(ah
);
3036 if ((address
< 0) || ((address
+ count
) / 2 > AR9300_EEPROM_SIZE
- 1)) {
3037 ath_dbg(common
, EEPROM
, "eeprom address not in range\n");
3042 * Since we're reading the bytes in reverse order from a little-endian
3043 * word stream, an even address means we only use the lower half of
3044 * the 16-bit word at that address
3046 if (address
% 2 == 0) {
3047 if (!ar9300_eeprom_read_byte(ah
, address
--, buffer
++))
3053 for (i
= 0; i
< count
/ 2; i
++) {
3054 if (!ar9300_eeprom_read_word(ah
, address
, buffer
))
3062 if (!ar9300_eeprom_read_byte(ah
, address
, buffer
))
3068 ath_dbg(common
, EEPROM
, "unable to read eeprom region at offset %d\n",
3073 static bool ar9300_otp_read_word(struct ath_hw
*ah
, int addr
, u32
*data
)
3075 REG_READ(ah
, AR9300_OTP_BASE
+ (4 * addr
));
3077 if (!ath9k_hw_wait(ah
, AR9300_OTP_STATUS
, AR9300_OTP_STATUS_TYPE
,
3078 AR9300_OTP_STATUS_VALID
, 1000))
3081 *data
= REG_READ(ah
, AR9300_OTP_READ_DATA
);
3085 static bool ar9300_read_otp(struct ath_hw
*ah
, int address
, u8
*buffer
,
3091 for (i
= 0; i
< count
; i
++) {
3092 int offset
= 8 * ((address
- i
) % 4);
3093 if (!ar9300_otp_read_word(ah
, (address
- i
) / 4, &data
))
3096 buffer
[i
] = (data
>> offset
) & 0xff;
3103 static void ar9300_comp_hdr_unpack(u8
*best
, int *code
, int *reference
,
3104 int *length
, int *major
, int *minor
)
3106 unsigned long value
[4];
3112 *code
= ((value
[0] >> 5) & 0x0007);
3113 *reference
= (value
[0] & 0x001f) | ((value
[1] >> 2) & 0x0020);
3114 *length
= ((value
[1] << 4) & 0x07f0) | ((value
[2] >> 4) & 0x000f);
3115 *major
= (value
[2] & 0x000f);
3116 *minor
= (value
[3] & 0x00ff);
3119 static u16
ar9300_comp_cksum(u8
*data
, int dsize
)
3121 int it
, checksum
= 0;
3123 for (it
= 0; it
< dsize
; it
++) {
3124 checksum
+= data
[it
];
3131 static bool ar9300_uncompress_block(struct ath_hw
*ah
,
3141 struct ath_common
*common
= ath9k_hw_common(ah
);
3145 for (it
= 0; it
< size
; it
+= (length
+2)) {
3149 length
= block
[it
+1];
3152 if (length
> 0 && spot
>= 0 && spot
+length
<= mdataSize
) {
3153 ath_dbg(common
, EEPROM
,
3154 "Restore at %d: spot=%d offset=%d length=%d\n",
3155 it
, spot
, offset
, length
);
3156 memcpy(&mptr
[spot
], &block
[it
+2], length
);
3158 } else if (length
> 0) {
3159 ath_dbg(common
, EEPROM
,
3160 "Bad restore at %d: spot=%d offset=%d length=%d\n",
3161 it
, spot
, offset
, length
);
3168 static int ar9300_compress_decision(struct ath_hw
*ah
,
3173 u8
*word
, int length
, int mdata_size
)
3175 struct ath_common
*common
= ath9k_hw_common(ah
);
3176 const struct ar9300_eeprom
*eep
= NULL
;
3180 if (length
!= mdata_size
) {
3181 ath_dbg(common
, EEPROM
,
3182 "EEPROM structure size mismatch memory=%d eeprom=%d\n",
3183 mdata_size
, length
);
3186 memcpy(mptr
, word
+ COMP_HDR_LEN
, length
);
3187 ath_dbg(common
, EEPROM
,
3188 "restored eeprom %d: uncompressed, length %d\n",
3191 case _CompressBlock
:
3192 if (reference
== 0) {
3194 eep
= ar9003_eeprom_struct_find_by_id(reference
);
3196 ath_dbg(common
, EEPROM
,
3197 "can't find reference eeprom struct %d\n",
3201 memcpy(mptr
, eep
, mdata_size
);
3203 ath_dbg(common
, EEPROM
,
3204 "restore eeprom %d: block, reference %d, length %d\n",
3205 it
, reference
, length
);
3206 ar9300_uncompress_block(ah
, mptr
, mdata_size
,
3207 (word
+ COMP_HDR_LEN
), length
);
3210 ath_dbg(common
, EEPROM
, "unknown compression code %d\n", code
);
3216 typedef bool (*eeprom_read_op
)(struct ath_hw
*ah
, int address
, u8
*buffer
,
3219 static bool ar9300_check_header(void *data
)
3222 return !(*word
== 0 || *word
== ~0);
3225 static bool ar9300_check_eeprom_header(struct ath_hw
*ah
, eeprom_read_op read
,
3230 if (!read(ah
, base_addr
, header
, 4))
3233 return ar9300_check_header(header
);
3236 static int ar9300_eeprom_restore_flash(struct ath_hw
*ah
, u8
*mptr
,
3239 u16
*data
= (u16
*) mptr
;
3242 for (i
= 0; i
< mdata_size
/ 2; i
++, data
++)
3243 ath9k_hw_nvram_read(ah
, i
, data
);
3248 * Read the configuration data from the eeprom.
3249 * The data can be put in any specified memory buffer.
3251 * Returns -1 on error.
3252 * Returns address of next memory location on success.
3254 static int ar9300_eeprom_restore_internal(struct ath_hw
*ah
,
3255 u8
*mptr
, int mdata_size
)
3262 int reference
, length
, major
, minor
;
3265 u16 checksum
, mchecksum
;
3266 struct ath_common
*common
= ath9k_hw_common(ah
);
3267 struct ar9300_eeprom
*eep
;
3268 eeprom_read_op read
;
3270 if (ath9k_hw_use_flash(ah
)) {
3273 ar9300_eeprom_restore_flash(ah
, mptr
, mdata_size
);
3275 /* check if eeprom contains valid data */
3276 eep
= (struct ar9300_eeprom
*) mptr
;
3277 txrx
= eep
->baseEepHeader
.txrxMask
;
3278 if (txrx
!= 0 && txrx
!= 0xff)
3282 word
= kzalloc(2048, GFP_KERNEL
);
3286 memcpy(mptr
, &ar9300_default
, mdata_size
);
3288 read
= ar9300_read_eeprom
;
3289 if (AR_SREV_9485(ah
))
3290 cptr
= AR9300_BASE_ADDR_4K
;
3291 else if (AR_SREV_9330(ah
))
3292 cptr
= AR9300_BASE_ADDR_512
;
3294 cptr
= AR9300_BASE_ADDR
;
3295 ath_dbg(common
, EEPROM
, "Trying EEPROM access at Address 0x%04x\n",
3297 if (ar9300_check_eeprom_header(ah
, read
, cptr
))
3300 cptr
= AR9300_BASE_ADDR_512
;
3301 ath_dbg(common
, EEPROM
, "Trying EEPROM access at Address 0x%04x\n",
3303 if (ar9300_check_eeprom_header(ah
, read
, cptr
))
3306 read
= ar9300_read_otp
;
3307 cptr
= AR9300_BASE_ADDR
;
3308 ath_dbg(common
, EEPROM
, "Trying OTP access at Address 0x%04x\n", cptr
);
3309 if (ar9300_check_eeprom_header(ah
, read
, cptr
))
3312 cptr
= AR9300_BASE_ADDR_512
;
3313 ath_dbg(common
, EEPROM
, "Trying OTP access at Address 0x%04x\n", cptr
);
3314 if (ar9300_check_eeprom_header(ah
, read
, cptr
))
3320 ath_dbg(common
, EEPROM
, "Found valid EEPROM data\n");
3322 for (it
= 0; it
< MSTATE
; it
++) {
3323 if (!read(ah
, cptr
, word
, COMP_HDR_LEN
))
3326 if (!ar9300_check_header(word
))
3329 ar9300_comp_hdr_unpack(word
, &code
, &reference
,
3330 &length
, &major
, &minor
);
3331 ath_dbg(common
, EEPROM
,
3332 "Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3333 cptr
, code
, reference
, length
, major
, minor
);
3334 if ((!AR_SREV_9485(ah
) && length
>= 1024) ||
3335 (AR_SREV_9485(ah
) && length
> EEPROM_DATA_LEN_9485
)) {
3336 ath_dbg(common
, EEPROM
, "Skipping bad header\n");
3337 cptr
-= COMP_HDR_LEN
;
3342 read(ah
, cptr
, word
, COMP_HDR_LEN
+ osize
+ COMP_CKSUM_LEN
);
3343 checksum
= ar9300_comp_cksum(&word
[COMP_HDR_LEN
], length
);
3344 mchecksum
= get_unaligned_le16(&word
[COMP_HDR_LEN
+ osize
]);
3345 ath_dbg(common
, EEPROM
, "checksum %x %x\n",
3346 checksum
, mchecksum
);
3347 if (checksum
== mchecksum
) {
3348 ar9300_compress_decision(ah
, it
, code
, reference
, mptr
,
3349 word
, length
, mdata_size
);
3351 ath_dbg(common
, EEPROM
,
3352 "skipping block with bad checksum\n");
3354 cptr
-= (COMP_HDR_LEN
+ osize
+ COMP_CKSUM_LEN
);
3366 * Restore the configuration structure by reading the eeprom.
3367 * This function destroys any existing in-memory structure
3370 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw
*ah
)
3372 u8
*mptr
= (u8
*) &ah
->eeprom
.ar9300_eep
;
3374 if (ar9300_eeprom_restore_internal(ah
, mptr
,
3375 sizeof(struct ar9300_eeprom
)) < 0)
3381 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3382 static u32
ar9003_dump_modal_eeprom(char *buf
, u32 len
, u32 size
,
3383 struct ar9300_modal_eep_header
*modal_hdr
)
3385 PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr
->antCtrlChain
[0]));
3386 PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr
->antCtrlChain
[1]));
3387 PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr
->antCtrlChain
[2]));
3388 PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr
->antCtrlCommon
));
3389 PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr
->antCtrlCommon2
));
3390 PR_EEP("Ant. Gain", modal_hdr
->antennaGain
);
3391 PR_EEP("Switch Settle", modal_hdr
->switchSettling
);
3392 PR_EEP("Chain0 xatten1DB", modal_hdr
->xatten1DB
[0]);
3393 PR_EEP("Chain1 xatten1DB", modal_hdr
->xatten1DB
[1]);
3394 PR_EEP("Chain2 xatten1DB", modal_hdr
->xatten1DB
[2]);
3395 PR_EEP("Chain0 xatten1Margin", modal_hdr
->xatten1Margin
[0]);
3396 PR_EEP("Chain1 xatten1Margin", modal_hdr
->xatten1Margin
[1]);
3397 PR_EEP("Chain2 xatten1Margin", modal_hdr
->xatten1Margin
[2]);
3398 PR_EEP("Temp Slope", modal_hdr
->tempSlope
);
3399 PR_EEP("Volt Slope", modal_hdr
->voltSlope
);
3400 PR_EEP("spur Channels0", modal_hdr
->spurChans
[0]);
3401 PR_EEP("spur Channels1", modal_hdr
->spurChans
[1]);
3402 PR_EEP("spur Channels2", modal_hdr
->spurChans
[2]);
3403 PR_EEP("spur Channels3", modal_hdr
->spurChans
[3]);
3404 PR_EEP("spur Channels4", modal_hdr
->spurChans
[4]);
3405 PR_EEP("Chain0 NF Threshold", modal_hdr
->noiseFloorThreshCh
[0]);
3406 PR_EEP("Chain1 NF Threshold", modal_hdr
->noiseFloorThreshCh
[1]);
3407 PR_EEP("Chain2 NF Threshold", modal_hdr
->noiseFloorThreshCh
[2]);
3408 PR_EEP("Quick Drop", modal_hdr
->quick_drop
);
3409 PR_EEP("txEndToXpaOff", modal_hdr
->txEndToXpaOff
);
3410 PR_EEP("xPA Bias Level", modal_hdr
->xpaBiasLvl
);
3411 PR_EEP("txFrameToDataStart", modal_hdr
->txFrameToDataStart
);
3412 PR_EEP("txFrameToPaOn", modal_hdr
->txFrameToPaOn
);
3413 PR_EEP("txFrameToXpaOn", modal_hdr
->txFrameToXpaOn
);
3414 PR_EEP("txClip", modal_hdr
->txClip
);
3415 PR_EEP("ADC Desired size", modal_hdr
->adcDesiredSize
);
3420 static u32
ath9k_hw_ar9003_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
3421 u8
*buf
, u32 len
, u32 size
)
3423 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3424 struct ar9300_base_eep_hdr
*pBase
;
3426 if (!dump_base_hdr
) {
3427 len
+= snprintf(buf
+ len
, size
- len
,
3428 "%20s :\n", "2GHz modal Header");
3429 len
= ar9003_dump_modal_eeprom(buf
, len
, size
,
3430 &eep
->modalHeader2G
);
3431 len
+= snprintf(buf
+ len
, size
- len
,
3432 "%20s :\n", "5GHz modal Header");
3433 len
= ar9003_dump_modal_eeprom(buf
, len
, size
,
3434 &eep
->modalHeader5G
);
3438 pBase
= &eep
->baseEepHeader
;
3440 PR_EEP("EEPROM Version", ah
->eeprom
.ar9300_eep
.eepromVersion
);
3441 PR_EEP("RegDomain1", le16_to_cpu(pBase
->regDmn
[0]));
3442 PR_EEP("RegDomain2", le16_to_cpu(pBase
->regDmn
[1]));
3443 PR_EEP("TX Mask", (pBase
->txrxMask
>> 4));
3444 PR_EEP("RX Mask", (pBase
->txrxMask
& 0x0f));
3445 PR_EEP("Allow 5GHz", !!(pBase
->opCapFlags
.opFlags
&
3446 AR5416_OPFLAGS_11A
));
3447 PR_EEP("Allow 2GHz", !!(pBase
->opCapFlags
.opFlags
&
3448 AR5416_OPFLAGS_11G
));
3449 PR_EEP("Disable 2GHz HT20", !!(pBase
->opCapFlags
.opFlags
&
3450 AR5416_OPFLAGS_N_2G_HT20
));
3451 PR_EEP("Disable 2GHz HT40", !!(pBase
->opCapFlags
.opFlags
&
3452 AR5416_OPFLAGS_N_2G_HT40
));
3453 PR_EEP("Disable 5Ghz HT20", !!(pBase
->opCapFlags
.opFlags
&
3454 AR5416_OPFLAGS_N_5G_HT20
));
3455 PR_EEP("Disable 5Ghz HT40", !!(pBase
->opCapFlags
.opFlags
&
3456 AR5416_OPFLAGS_N_5G_HT40
));
3457 PR_EEP("Big Endian", !!(pBase
->opCapFlags
.eepMisc
& 0x01));
3458 PR_EEP("RF Silent", pBase
->rfSilent
);
3459 PR_EEP("BT option", pBase
->blueToothOptions
);
3460 PR_EEP("Device Cap", pBase
->deviceCap
);
3461 PR_EEP("Device Type", pBase
->deviceType
);
3462 PR_EEP("Power Table Offset", pBase
->pwrTableOffset
);
3463 PR_EEP("Tuning Caps1", pBase
->params_for_tuning_caps
[0]);
3464 PR_EEP("Tuning Caps2", pBase
->params_for_tuning_caps
[1]);
3465 PR_EEP("Enable Tx Temp Comp", !!(pBase
->featureEnable
& BIT(0)));
3466 PR_EEP("Enable Tx Volt Comp", !!(pBase
->featureEnable
& BIT(1)));
3467 PR_EEP("Enable fast clock", !!(pBase
->featureEnable
& BIT(2)));
3468 PR_EEP("Enable doubling", !!(pBase
->featureEnable
& BIT(3)));
3469 PR_EEP("Internal regulator", !!(pBase
->featureEnable
& BIT(4)));
3470 PR_EEP("Enable Paprd", !!(pBase
->featureEnable
& BIT(5)));
3471 PR_EEP("Driver Strength", !!(pBase
->miscConfiguration
& BIT(0)));
3472 PR_EEP("Quick Drop", !!(pBase
->miscConfiguration
& BIT(1)));
3473 PR_EEP("Chain mask Reduce", (pBase
->miscConfiguration
>> 0x3) & 0x1);
3474 PR_EEP("Write enable Gpio", pBase
->eepromWriteEnableGpio
);
3475 PR_EEP("WLAN Disable Gpio", pBase
->wlanDisableGpio
);
3476 PR_EEP("WLAN LED Gpio", pBase
->wlanLedGpio
);
3477 PR_EEP("Rx Band Select Gpio", pBase
->rxBandSelectGpio
);
3478 PR_EEP("Tx Gain", pBase
->txrxgain
>> 4);
3479 PR_EEP("Rx Gain", pBase
->txrxgain
& 0xf);
3480 PR_EEP("SW Reg", le32_to_cpu(pBase
->swreg
));
3482 len
+= snprintf(buf
+ len
, size
- len
, "%20s : %pM\n", "MacAddress",
3483 ah
->eeprom
.ar9300_eep
.macAddr
);
3491 static u32
ath9k_hw_ar9003_dump_eeprom(struct ath_hw
*ah
, bool dump_base_hdr
,
3492 u8
*buf
, u32 len
, u32 size
)
3498 /* XXX: review hardware docs */
3499 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw
*ah
)
3501 return ah
->eeprom
.ar9300_eep
.eepromVersion
;
3504 /* XXX: could be read from the eepromVersion, not sure yet */
3505 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw
*ah
)
3510 static struct ar9300_modal_eep_header
*ar9003_modal_header(struct ath_hw
*ah
,
3513 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3516 return &eep
->modalHeader2G
;
3518 return &eep
->modalHeader5G
;
3521 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw
*ah
, bool is2ghz
)
3523 int bias
= ar9003_modal_header(ah
, is2ghz
)->xpaBiasLvl
;
3525 if (AR_SREV_9485(ah
) || AR_SREV_9330(ah
) || AR_SREV_9340(ah
))
3526 REG_RMW_FIELD(ah
, AR_CH0_TOP2
, AR_CH0_TOP2_XPABIASLVL
, bias
);
3527 else if (AR_SREV_9462(ah
) || AR_SREV_9550(ah
) || AR_SREV_9565(ah
))
3528 REG_RMW_FIELD(ah
, AR_CH0_TOP
, AR_CH0_TOP_XPABIASLVL
, bias
);
3530 REG_RMW_FIELD(ah
, AR_CH0_TOP
, AR_CH0_TOP_XPABIASLVL
, bias
);
3531 REG_RMW_FIELD(ah
, AR_CH0_THERM
,
3532 AR_CH0_THERM_XPABIASLVL_MSB
,
3534 REG_RMW_FIELD(ah
, AR_CH0_THERM
,
3535 AR_CH0_THERM_XPASHORT2GND
, 1);
3539 static u16
ar9003_switch_com_spdt_get(struct ath_hw
*ah
, bool is2ghz
)
3541 return le16_to_cpu(ar9003_modal_header(ah
, is2ghz
)->switchcomspdt
);
3545 static u32
ar9003_hw_ant_ctrl_common_get(struct ath_hw
*ah
, bool is2ghz
)
3547 return le32_to_cpu(ar9003_modal_header(ah
, is2ghz
)->antCtrlCommon
);
3550 static u32
ar9003_hw_ant_ctrl_common_2_get(struct ath_hw
*ah
, bool is2ghz
)
3552 return le32_to_cpu(ar9003_modal_header(ah
, is2ghz
)->antCtrlCommon2
);
3555 static u16
ar9003_hw_ant_ctrl_chain_get(struct ath_hw
*ah
, int chain
,
3558 __le16 val
= ar9003_modal_header(ah
, is2ghz
)->antCtrlChain
[chain
];
3559 return le16_to_cpu(val
);
3562 static void ar9003_hw_ant_ctrl_apply(struct ath_hw
*ah
, bool is2ghz
)
3564 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
3566 u32 regval
, value
, gpio
;
3567 static const u32 switch_chain_reg
[AR9300_MAX_CHAINS
] = {
3568 AR_PHY_SWITCH_CHAIN_0
,
3569 AR_PHY_SWITCH_CHAIN_1
,
3570 AR_PHY_SWITCH_CHAIN_2
,
3573 if (AR_SREV_9485(ah
) && (ar9003_hw_get_rx_gain_idx(ah
) == 0)) {
3574 if (ah
->config
.xlna_gpio
)
3575 gpio
= ah
->config
.xlna_gpio
;
3577 gpio
= AR9300_EXT_LNA_CTL_GPIO_AR9485
;
3579 ath9k_hw_cfg_output(ah
, gpio
,
3580 AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED
);
3583 value
= ar9003_hw_ant_ctrl_common_get(ah
, is2ghz
);
3585 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3586 REG_RMW_FIELD(ah
, AR_PHY_SWITCH_COM
,
3587 AR_SWITCH_TABLE_COM_AR9462_ALL
, value
);
3588 } else if (AR_SREV_9550(ah
)) {
3589 REG_RMW_FIELD(ah
, AR_PHY_SWITCH_COM
,
3590 AR_SWITCH_TABLE_COM_AR9550_ALL
, value
);
3592 REG_RMW_FIELD(ah
, AR_PHY_SWITCH_COM
,
3593 AR_SWITCH_TABLE_COM_ALL
, value
);
3597 * AR9462 defines new switch table for BT/WLAN,
3598 * here's new field name in XXX.ref for both 2G and 5G.
3599 * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3600 * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
3601 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3603 * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
3604 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3606 * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3607 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3609 if (AR_SREV_9462_20_OR_LATER(ah
) || AR_SREV_9565(ah
)) {
3610 value
= ar9003_switch_com_spdt_get(ah
, is2ghz
);
3611 REG_RMW_FIELD(ah
, AR_PHY_GLB_CONTROL
,
3612 AR_SWITCH_TABLE_COM_SPDT_ALL
, value
);
3613 REG_SET_BIT(ah
, AR_PHY_GLB_CONTROL
, AR_BTCOEX_CTRL_SPDT_ENABLE
);
3616 value
= ar9003_hw_ant_ctrl_common_2_get(ah
, is2ghz
);
3617 REG_RMW_FIELD(ah
, AR_PHY_SWITCH_COM_2
, AR_SWITCH_TABLE_COM2_ALL
, value
);
3619 if ((AR_SREV_9462(ah
)) && (ah
->rxchainmask
== 0x2)) {
3620 value
= ar9003_hw_ant_ctrl_chain_get(ah
, 1, is2ghz
);
3621 REG_RMW_FIELD(ah
, switch_chain_reg
[0],
3622 AR_SWITCH_TABLE_ALL
, value
);
3625 for (chain
= 0; chain
< AR9300_MAX_CHAINS
; chain
++) {
3626 if ((ah
->rxchainmask
& BIT(chain
)) ||
3627 (ah
->txchainmask
& BIT(chain
))) {
3628 value
= ar9003_hw_ant_ctrl_chain_get(ah
, chain
,
3630 REG_RMW_FIELD(ah
, switch_chain_reg
[chain
],
3631 AR_SWITCH_TABLE_ALL
, value
);
3635 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
3636 value
= ath9k_hw_ar9300_get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
3638 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3639 * are the fields present
3641 regval
= REG_READ(ah
, AR_PHY_MC_GAIN_CTRL
);
3642 regval
&= (~AR_ANT_DIV_CTRL_ALL
);
3643 regval
|= (value
& 0x3f) << AR_ANT_DIV_CTRL_ALL_S
;
3645 regval
&= (~AR_PHY_ANT_DIV_LNADIV
);
3646 regval
|= ((value
>> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S
;
3648 if (AR_SREV_9565(ah
)) {
3649 if (ah
->shared_chain_lnadiv
) {
3650 regval
|= (1 << AR_PHY_ANT_SW_RX_PROT_S
);
3652 regval
&= ~(1 << AR_PHY_ANT_DIV_LNADIV_S
);
3653 regval
&= ~(1 << AR_PHY_ANT_SW_RX_PROT_S
);
3657 REG_WRITE(ah
, AR_PHY_MC_GAIN_CTRL
, regval
);
3659 /*enable fast_div */
3660 regval
= REG_READ(ah
, AR_PHY_CCK_DETECT
);
3661 regval
&= (~AR_FAST_DIV_ENABLE
);
3662 regval
|= ((value
>> 7) & 0x1) << AR_FAST_DIV_ENABLE_S
;
3663 REG_WRITE(ah
, AR_PHY_CCK_DETECT
, regval
);
3665 if (pCap
->hw_caps
& ATH9K_HW_CAP_ANT_DIV_COMB
) {
3666 regval
= REG_READ(ah
, AR_PHY_MC_GAIN_CTRL
);
3668 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3671 regval
&= (~(AR_PHY_ANT_DIV_MAIN_LNACONF
|
3672 AR_PHY_ANT_DIV_ALT_LNACONF
|
3673 AR_PHY_ANT_DIV_ALT_GAINTB
|
3674 AR_PHY_ANT_DIV_MAIN_GAINTB
));
3675 /* by default use LNA1 for the main antenna */
3676 regval
|= (AR_PHY_ANT_DIV_LNA1
<<
3677 AR_PHY_ANT_DIV_MAIN_LNACONF_S
);
3678 regval
|= (AR_PHY_ANT_DIV_LNA2
<<
3679 AR_PHY_ANT_DIV_ALT_LNACONF_S
);
3680 REG_WRITE(ah
, AR_PHY_MC_GAIN_CTRL
, regval
);
3685 static void ar9003_hw_drive_strength_apply(struct ath_hw
*ah
)
3687 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3688 struct ar9300_base_eep_hdr
*pBase
= &eep
->baseEepHeader
;
3692 drive_strength
= pBase
->miscConfiguration
& BIT(0);
3693 if (!drive_strength
)
3696 reg
= REG_READ(ah
, AR_PHY_65NM_CH0_BIAS1
);
3704 REG_WRITE(ah
, AR_PHY_65NM_CH0_BIAS1
, reg
);
3706 reg
= REG_READ(ah
, AR_PHY_65NM_CH0_BIAS2
);
3717 REG_WRITE(ah
, AR_PHY_65NM_CH0_BIAS2
, reg
);
3719 reg
= REG_READ(ah
, AR_PHY_65NM_CH0_BIAS4
);
3724 REG_WRITE(ah
, AR_PHY_65NM_CH0_BIAS4
, reg
);
3727 static u16
ar9003_hw_atten_chain_get(struct ath_hw
*ah
, int chain
,
3728 struct ath9k_channel
*chan
)
3732 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3734 if (chain
>= 0 && chain
< 3) {
3735 if (IS_CHAN_2GHZ(chan
))
3736 return eep
->modalHeader2G
.xatten1DB
[chain
];
3737 else if (eep
->base_ext2
.xatten1DBLow
[chain
] != 0) {
3738 t
[0] = eep
->base_ext2
.xatten1DBLow
[chain
];
3740 t
[1] = eep
->modalHeader5G
.xatten1DB
[chain
];
3742 t
[2] = eep
->base_ext2
.xatten1DBHigh
[chain
];
3744 value
= ar9003_hw_power_interpolate((s32
) chan
->channel
,
3748 return eep
->modalHeader5G
.xatten1DB
[chain
];
3755 static u16
ar9003_hw_atten_chain_get_margin(struct ath_hw
*ah
, int chain
,
3756 struct ath9k_channel
*chan
)
3760 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3762 if (chain
>= 0 && chain
< 3) {
3763 if (IS_CHAN_2GHZ(chan
))
3764 return eep
->modalHeader2G
.xatten1Margin
[chain
];
3765 else if (eep
->base_ext2
.xatten1MarginLow
[chain
] != 0) {
3766 t
[0] = eep
->base_ext2
.xatten1MarginLow
[chain
];
3768 t
[1] = eep
->modalHeader5G
.xatten1Margin
[chain
];
3770 t
[2] = eep
->base_ext2
.xatten1MarginHigh
[chain
];
3772 value
= ar9003_hw_power_interpolate((s32
) chan
->channel
,
3776 return eep
->modalHeader5G
.xatten1Margin
[chain
];
3782 static void ar9003_hw_atten_apply(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
3786 unsigned long ext_atten_reg
[3] = {AR_PHY_EXT_ATTEN_CTL_0
,
3787 AR_PHY_EXT_ATTEN_CTL_1
,
3788 AR_PHY_EXT_ATTEN_CTL_2
,
3791 if ((AR_SREV_9462(ah
)) && (ah
->rxchainmask
== 0x2)) {
3792 value
= ar9003_hw_atten_chain_get(ah
, 1, chan
);
3793 REG_RMW_FIELD(ah
, ext_atten_reg
[0],
3794 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB
, value
);
3796 value
= ar9003_hw_atten_chain_get_margin(ah
, 1, chan
);
3797 REG_RMW_FIELD(ah
, ext_atten_reg
[0],
3798 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN
,
3802 /* Test value. if 0 then attenuation is unused. Don't load anything. */
3803 for (i
= 0; i
< 3; i
++) {
3804 if (ah
->txchainmask
& BIT(i
)) {
3805 value
= ar9003_hw_atten_chain_get(ah
, i
, chan
);
3806 REG_RMW_FIELD(ah
, ext_atten_reg
[i
],
3807 AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB
, value
);
3809 if (AR_SREV_9485(ah
) &&
3810 (ar9003_hw_get_rx_gain_idx(ah
) == 0) &&
3811 ah
->config
.xatten_margin_cfg
)
3814 value
= ar9003_hw_atten_chain_get_margin(ah
, i
, chan
);
3816 REG_RMW_FIELD(ah
, ext_atten_reg
[i
],
3817 AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN
,
3823 static bool is_pmu_set(struct ath_hw
*ah
, u32 pmu_reg
, int pmu_set
)
3827 while (pmu_set
!= REG_READ(ah
, pmu_reg
)) {
3830 REG_WRITE(ah
, pmu_reg
, pmu_set
);
3837 void ar9003_hw_internal_regulator_apply(struct ath_hw
*ah
)
3839 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3840 struct ar9300_base_eep_hdr
*pBase
= &eep
->baseEepHeader
;
3843 if (pBase
->featureEnable
& BIT(4)) {
3844 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
)) {
3847 reg_pmu_set
= REG_READ(ah
, AR_PHY_PMU2
) & ~AR_PHY_PMU2_PGM
;
3848 REG_WRITE(ah
, AR_PHY_PMU2
, reg_pmu_set
);
3849 if (!is_pmu_set(ah
, AR_PHY_PMU2
, reg_pmu_set
))
3852 if (AR_SREV_9330(ah
)) {
3853 if (ah
->is_clk_25mhz
) {
3854 reg_pmu_set
= (3 << 1) | (8 << 4) |
3855 (3 << 8) | (1 << 14) |
3856 (6 << 17) | (1 << 20) |
3859 reg_pmu_set
= (4 << 1) | (7 << 4) |
3860 (3 << 8) | (1 << 14) |
3861 (6 << 17) | (1 << 20) |
3865 reg_pmu_set
= (5 << 1) | (7 << 4) |
3866 (2 << 8) | (2 << 14) |
3867 (6 << 17) | (1 << 20) |
3868 (3 << 24) | (1 << 28);
3871 REG_WRITE(ah
, AR_PHY_PMU1
, reg_pmu_set
);
3872 if (!is_pmu_set(ah
, AR_PHY_PMU1
, reg_pmu_set
))
3875 reg_pmu_set
= (REG_READ(ah
, AR_PHY_PMU2
) & ~0xFFC00000)
3877 REG_WRITE(ah
, AR_PHY_PMU2
, reg_pmu_set
);
3878 if (!is_pmu_set(ah
, AR_PHY_PMU2
, reg_pmu_set
))
3881 reg_pmu_set
= (REG_READ(ah
, AR_PHY_PMU2
) & ~0x00200000)
3883 REG_WRITE(ah
, AR_PHY_PMU2
, reg_pmu_set
);
3884 if (!is_pmu_set(ah
, AR_PHY_PMU2
, reg_pmu_set
))
3886 } else if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3887 reg_val
= le32_to_cpu(pBase
->swreg
);
3888 REG_WRITE(ah
, AR_PHY_PMU1
, reg_val
);
3890 /* Internal regulator is ON. Write swreg register. */
3891 reg_val
= le32_to_cpu(pBase
->swreg
);
3892 REG_WRITE(ah
, AR_RTC_REG_CONTROL1
,
3893 REG_READ(ah
, AR_RTC_REG_CONTROL1
) &
3894 (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM
));
3895 REG_WRITE(ah
, AR_RTC_REG_CONTROL0
, reg_val
);
3896 /* Set REG_CONTROL1.SWREG_PROGRAM */
3897 REG_WRITE(ah
, AR_RTC_REG_CONTROL1
,
3899 AR_RTC_REG_CONTROL1
) |
3900 AR_RTC_REG_CONTROL1_SWREG_PROGRAM
);
3903 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
)) {
3904 REG_RMW_FIELD(ah
, AR_PHY_PMU2
, AR_PHY_PMU2_PGM
, 0);
3905 while (REG_READ_FIELD(ah
, AR_PHY_PMU2
,
3909 REG_RMW_FIELD(ah
, AR_PHY_PMU1
, AR_PHY_PMU1_PWD
, 0x1);
3910 while (!REG_READ_FIELD(ah
, AR_PHY_PMU1
,
3913 REG_RMW_FIELD(ah
, AR_PHY_PMU2
, AR_PHY_PMU2_PGM
, 0x1);
3914 while (!REG_READ_FIELD(ah
, AR_PHY_PMU2
,
3917 } else if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
3918 REG_RMW_FIELD(ah
, AR_PHY_PMU1
, AR_PHY_PMU1_PWD
, 0x1);
3920 reg_val
= REG_READ(ah
, AR_RTC_SLEEP_CLK
) |
3921 AR_RTC_FORCE_SWREG_PRD
;
3922 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, reg_val
);
3928 static void ar9003_hw_apply_tuning_caps(struct ath_hw
*ah
)
3930 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3931 u8 tuning_caps_param
= eep
->baseEepHeader
.params_for_tuning_caps
[0];
3933 if (AR_SREV_9485(ah
) || AR_SREV_9330(ah
) || AR_SREV_9340(ah
))
3936 if (eep
->baseEepHeader
.featureEnable
& 0x40) {
3937 tuning_caps_param
&= 0x7f;
3938 REG_RMW_FIELD(ah
, AR_CH0_XTAL
, AR_CH0_XTAL_CAPINDAC
,
3940 REG_RMW_FIELD(ah
, AR_CH0_XTAL
, AR_CH0_XTAL_CAPOUTDAC
,
3945 static void ar9003_hw_quick_drop_apply(struct ath_hw
*ah
, u16 freq
)
3947 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3948 struct ar9300_base_eep_hdr
*pBase
= &eep
->baseEepHeader
;
3950 s32 t
[3], f
[3] = {5180, 5500, 5785};
3952 if (!(pBase
->miscConfiguration
& BIT(1)))
3956 quick_drop
= eep
->modalHeader2G
.quick_drop
;
3958 t
[0] = eep
->base_ext1
.quick_drop_low
;
3959 t
[1] = eep
->modalHeader5G
.quick_drop
;
3960 t
[2] = eep
->base_ext1
.quick_drop_high
;
3961 quick_drop
= ar9003_hw_power_interpolate(freq
, f
, t
, 3);
3963 REG_RMW_FIELD(ah
, AR_PHY_AGC
, AR_PHY_AGC_QUICK_DROP
, quick_drop
);
3966 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw
*ah
, bool is2ghz
)
3970 value
= ar9003_modal_header(ah
, is2ghz
)->txEndToXpaOff
;
3972 REG_RMW_FIELD(ah
, AR_PHY_XPA_TIMING_CTL
,
3973 AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF
, value
);
3974 REG_RMW_FIELD(ah
, AR_PHY_XPA_TIMING_CTL
,
3975 AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF
, value
);
3978 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw
*ah
, bool is2ghz
)
3980 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
3983 if (!(eep
->baseEepHeader
.featureEnable
& 0x80))
3986 if (!AR_SREV_9300(ah
) && !AR_SREV_9340(ah
) && !AR_SREV_9580(ah
))
3989 xpa_ctl
= ar9003_modal_header(ah
, is2ghz
)->txFrameToXpaOn
;
3991 REG_RMW_FIELD(ah
, AR_PHY_XPA_TIMING_CTL
,
3992 AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON
, xpa_ctl
);
3994 REG_RMW_FIELD(ah
, AR_PHY_XPA_TIMING_CTL
,
3995 AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON
, xpa_ctl
);
3998 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw
*ah
, bool is2ghz
)
4000 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4003 if (!(eep
->baseEepHeader
.featureEnable
& 0x40))
4006 if (!AR_SREV_9300(ah
))
4009 bias
= ar9003_modal_header(ah
, is2ghz
)->xlna_bias_strength
;
4010 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH0_RXTX4
, AR_PHY_65NM_RXTX4_XLNA_BIAS
,
4013 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH1_RXTX4
, AR_PHY_65NM_RXTX4_XLNA_BIAS
,
4016 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH2_RXTX4
, AR_PHY_65NM_RXTX4_XLNA_BIAS
,
4020 static int ar9003_hw_get_thermometer(struct ath_hw
*ah
)
4022 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4023 struct ar9300_base_eep_hdr
*pBase
= &eep
->baseEepHeader
;
4024 int thermometer
= (pBase
->miscConfiguration
>> 1) & 0x3;
4026 return --thermometer
;
4029 static void ar9003_hw_thermometer_apply(struct ath_hw
*ah
)
4031 int thermometer
= ar9003_hw_get_thermometer(ah
);
4032 u8 therm_on
= (thermometer
< 0) ? 0 : 1;
4034 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH0_RXTX4
,
4035 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR
, therm_on
);
4036 if (ah
->caps
.tx_chainmask
& BIT(1))
4037 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH1_RXTX4
,
4038 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR
, therm_on
);
4039 if (ah
->caps
.tx_chainmask
& BIT(2))
4040 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH2_RXTX4
,
4041 AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR
, therm_on
);
4043 therm_on
= (thermometer
< 0) ? 0 : (thermometer
== 0);
4044 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH0_RXTX4
,
4045 AR_PHY_65NM_CH0_RXTX4_THERM_ON
, therm_on
);
4046 if (ah
->caps
.tx_chainmask
& BIT(1)) {
4047 therm_on
= (thermometer
< 0) ? 0 : (thermometer
== 1);
4048 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH1_RXTX4
,
4049 AR_PHY_65NM_CH0_RXTX4_THERM_ON
, therm_on
);
4051 if (ah
->caps
.tx_chainmask
& BIT(2)) {
4052 therm_on
= (thermometer
< 0) ? 0 : (thermometer
== 2);
4053 REG_RMW_FIELD(ah
, AR_PHY_65NM_CH2_RXTX4
,
4054 AR_PHY_65NM_CH0_RXTX4_THERM_ON
, therm_on
);
4058 static void ar9003_hw_thermo_cal_apply(struct ath_hw
*ah
)
4062 if (!AR_SREV_9462_20_OR_LATER(ah
))
4065 ar9300_otp_read_word(ah
, 1, &data
);
4067 kg
= (data
>> 8) & 0xff;
4069 REG_RMW_FIELD(ah
, AR_PHY_BB_THERM_ADC_3
,
4070 AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET
, ko
);
4071 REG_RMW_FIELD(ah
, AR_PHY_BB_THERM_ADC_3
,
4072 AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN
,
4077 static void ath9k_hw_ar9300_set_board_values(struct ath_hw
*ah
,
4078 struct ath9k_channel
*chan
)
4080 bool is2ghz
= IS_CHAN_2GHZ(chan
);
4081 ar9003_hw_xpa_timing_control_apply(ah
, is2ghz
);
4082 ar9003_hw_xpa_bias_level_apply(ah
, is2ghz
);
4083 ar9003_hw_ant_ctrl_apply(ah
, is2ghz
);
4084 ar9003_hw_drive_strength_apply(ah
);
4085 ar9003_hw_xlna_bias_strength_apply(ah
, is2ghz
);
4086 ar9003_hw_atten_apply(ah
, chan
);
4087 ar9003_hw_quick_drop_apply(ah
, chan
->channel
);
4088 if (!AR_SREV_9330(ah
) && !AR_SREV_9340(ah
) && !AR_SREV_9550(ah
))
4089 ar9003_hw_internal_regulator_apply(ah
);
4090 ar9003_hw_apply_tuning_caps(ah
);
4091 ar9003_hw_txend_to_xpa_off_apply(ah
, is2ghz
);
4092 ar9003_hw_thermometer_apply(ah
);
4093 ar9003_hw_thermo_cal_apply(ah
);
4096 static void ath9k_hw_ar9300_set_addac(struct ath_hw
*ah
,
4097 struct ath9k_channel
*chan
)
4102 * Returns the interpolated y value corresponding to the specified x value
4103 * from the np ordered pairs of data (px,py).
4104 * The pairs do not have to be in any order.
4105 * If the specified x value is less than any of the px,
4106 * the returned y value is equal to the py for the lowest px.
4107 * If the specified x value is greater than any of the px,
4108 * the returned y value is equal to the py for the highest px.
4110 static int ar9003_hw_power_interpolate(int32_t x
,
4111 int32_t *px
, int32_t *py
, u_int16_t np
)
4114 int lx
= 0, ly
= 0, lhave
= 0;
4115 int hx
= 0, hy
= 0, hhave
= 0;
4122 /* identify best lower and higher x calibration measurement */
4123 for (ip
= 0; ip
< np
; ip
++) {
4126 /* this measurement is higher than our desired x */
4128 if (!hhave
|| dx
> (x
- hx
)) {
4129 /* new best higher x measurement */
4135 /* this measurement is lower than our desired x */
4137 if (!lhave
|| dx
< (x
- lx
)) {
4138 /* new best lower x measurement */
4146 /* the low x is good */
4148 /* so is the high x */
4150 /* they're the same, so just pick one */
4153 else /* interpolate */
4154 y
= interpolate(x
, lx
, hx
, ly
, hy
);
4155 } else /* only low is good, use it */
4157 } else if (hhave
) /* only high is good, use it */
4159 else /* nothing is good,this should never happen unless np=0, ???? */
4164 static u8
ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw
*ah
,
4165 u16 rateIndex
, u16 freq
, bool is2GHz
)
4168 s32 targetPowerArray
[AR9300_NUM_5G_20_TARGET_POWERS
];
4169 s32 freqArray
[AR9300_NUM_5G_20_TARGET_POWERS
];
4170 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4171 struct cal_tgt_pow_legacy
*pEepromTargetPwr
;
4175 numPiers
= AR9300_NUM_2G_20_TARGET_POWERS
;
4176 pEepromTargetPwr
= eep
->calTargetPower2G
;
4177 pFreqBin
= eep
->calTarget_freqbin_2G
;
4179 numPiers
= AR9300_NUM_5G_20_TARGET_POWERS
;
4180 pEepromTargetPwr
= eep
->calTargetPower5G
;
4181 pFreqBin
= eep
->calTarget_freqbin_5G
;
4185 * create array of channels and targetpower from
4186 * targetpower piers stored on eeprom
4188 for (i
= 0; i
< numPiers
; i
++) {
4189 freqArray
[i
] = ath9k_hw_fbin2freq(pFreqBin
[i
], is2GHz
);
4190 targetPowerArray
[i
] = pEepromTargetPwr
[i
].tPow2x
[rateIndex
];
4193 /* interpolate to get target power for given frequency */
4194 return (u8
) ar9003_hw_power_interpolate((s32
) freq
,
4196 targetPowerArray
, numPiers
);
4199 static u8
ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw
*ah
,
4201 u16 freq
, bool is2GHz
)
4204 s32 targetPowerArray
[AR9300_NUM_5G_20_TARGET_POWERS
];
4205 s32 freqArray
[AR9300_NUM_5G_20_TARGET_POWERS
];
4206 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4207 struct cal_tgt_pow_ht
*pEepromTargetPwr
;
4211 numPiers
= AR9300_NUM_2G_20_TARGET_POWERS
;
4212 pEepromTargetPwr
= eep
->calTargetPower2GHT20
;
4213 pFreqBin
= eep
->calTarget_freqbin_2GHT20
;
4215 numPiers
= AR9300_NUM_5G_20_TARGET_POWERS
;
4216 pEepromTargetPwr
= eep
->calTargetPower5GHT20
;
4217 pFreqBin
= eep
->calTarget_freqbin_5GHT20
;
4221 * create array of channels and targetpower
4222 * from targetpower piers stored on eeprom
4224 for (i
= 0; i
< numPiers
; i
++) {
4225 freqArray
[i
] = ath9k_hw_fbin2freq(pFreqBin
[i
], is2GHz
);
4226 targetPowerArray
[i
] = pEepromTargetPwr
[i
].tPow2x
[rateIndex
];
4229 /* interpolate to get target power for given frequency */
4230 return (u8
) ar9003_hw_power_interpolate((s32
) freq
,
4232 targetPowerArray
, numPiers
);
4235 static u8
ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw
*ah
,
4237 u16 freq
, bool is2GHz
)
4240 s32 targetPowerArray
[AR9300_NUM_5G_40_TARGET_POWERS
];
4241 s32 freqArray
[AR9300_NUM_5G_40_TARGET_POWERS
];
4242 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4243 struct cal_tgt_pow_ht
*pEepromTargetPwr
;
4247 numPiers
= AR9300_NUM_2G_40_TARGET_POWERS
;
4248 pEepromTargetPwr
= eep
->calTargetPower2GHT40
;
4249 pFreqBin
= eep
->calTarget_freqbin_2GHT40
;
4251 numPiers
= AR9300_NUM_5G_40_TARGET_POWERS
;
4252 pEepromTargetPwr
= eep
->calTargetPower5GHT40
;
4253 pFreqBin
= eep
->calTarget_freqbin_5GHT40
;
4257 * create array of channels and targetpower from
4258 * targetpower piers stored on eeprom
4260 for (i
= 0; i
< numPiers
; i
++) {
4261 freqArray
[i
] = ath9k_hw_fbin2freq(pFreqBin
[i
], is2GHz
);
4262 targetPowerArray
[i
] = pEepromTargetPwr
[i
].tPow2x
[rateIndex
];
4265 /* interpolate to get target power for given frequency */
4266 return (u8
) ar9003_hw_power_interpolate((s32
) freq
,
4268 targetPowerArray
, numPiers
);
4271 static u8
ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw
*ah
,
4272 u16 rateIndex
, u16 freq
)
4274 u16 numPiers
= AR9300_NUM_2G_CCK_TARGET_POWERS
, i
;
4275 s32 targetPowerArray
[AR9300_NUM_2G_CCK_TARGET_POWERS
];
4276 s32 freqArray
[AR9300_NUM_2G_CCK_TARGET_POWERS
];
4277 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4278 struct cal_tgt_pow_legacy
*pEepromTargetPwr
= eep
->calTargetPowerCck
;
4279 u8
*pFreqBin
= eep
->calTarget_freqbin_Cck
;
4282 * create array of channels and targetpower from
4283 * targetpower piers stored on eeprom
4285 for (i
= 0; i
< numPiers
; i
++) {
4286 freqArray
[i
] = ath9k_hw_fbin2freq(pFreqBin
[i
], 1);
4287 targetPowerArray
[i
] = pEepromTargetPwr
[i
].tPow2x
[rateIndex
];
4290 /* interpolate to get target power for given frequency */
4291 return (u8
) ar9003_hw_power_interpolate((s32
) freq
,
4293 targetPowerArray
, numPiers
);
4296 /* Set tx power registers to array of values passed in */
4297 static int ar9003_hw_tx_power_regwrite(struct ath_hw
*ah
, u8
* pPwrArray
)
4299 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
4300 /* make sure forced gain is not set */
4301 REG_WRITE(ah
, AR_PHY_TX_FORCED_GAIN
, 0);
4303 /* Write the OFDM power per rate set */
4305 /* 6 (LSB), 9, 12, 18 (MSB) */
4306 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(0),
4307 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 24) |
4308 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 16) |
4309 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 8) |
4310 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 0));
4312 /* 24 (LSB), 36, 48, 54 (MSB) */
4313 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(1),
4314 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_54
], 24) |
4315 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_48
], 16) |
4316 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_36
], 8) |
4317 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 0));
4319 /* Write the CCK power per rate set */
4321 /* 1L (LSB), reserved, 2L, 2S (MSB) */
4322 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(2),
4323 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_1L_5L
], 24) |
4324 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_1L_5L
], 16) |
4325 /* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
4326 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_1L_5L
], 0));
4328 /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4329 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(3),
4330 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_11S
], 24) |
4331 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_11L
], 16) |
4332 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_5S
], 8) |
4333 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_1L_5L
], 0)
4336 /* Write the power for duplicated frames - HT40 */
4338 /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4339 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(8),
4340 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 24) |
4341 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_1L_5L
], 16) |
4342 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_6_24
], 8) |
4343 POW_SM(pPwrArray
[ALL_TARGET_LEGACY_1L_5L
], 0)
4346 /* Write the HT20 power per rate set */
4348 /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4349 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(4),
4350 POW_SM(pPwrArray
[ALL_TARGET_HT20_5
], 24) |
4351 POW_SM(pPwrArray
[ALL_TARGET_HT20_4
], 16) |
4352 POW_SM(pPwrArray
[ALL_TARGET_HT20_1_3_9_11_17_19
], 8) |
4353 POW_SM(pPwrArray
[ALL_TARGET_HT20_0_8_16
], 0)
4356 /* 6 (LSB), 7, 12, 13 (MSB) */
4357 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(5),
4358 POW_SM(pPwrArray
[ALL_TARGET_HT20_13
], 24) |
4359 POW_SM(pPwrArray
[ALL_TARGET_HT20_12
], 16) |
4360 POW_SM(pPwrArray
[ALL_TARGET_HT20_7
], 8) |
4361 POW_SM(pPwrArray
[ALL_TARGET_HT20_6
], 0)
4364 /* 14 (LSB), 15, 20, 21 */
4365 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(9),
4366 POW_SM(pPwrArray
[ALL_TARGET_HT20_21
], 24) |
4367 POW_SM(pPwrArray
[ALL_TARGET_HT20_20
], 16) |
4368 POW_SM(pPwrArray
[ALL_TARGET_HT20_15
], 8) |
4369 POW_SM(pPwrArray
[ALL_TARGET_HT20_14
], 0)
4372 /* Mixed HT20 and HT40 rates */
4374 /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4375 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(10),
4376 POW_SM(pPwrArray
[ALL_TARGET_HT40_23
], 24) |
4377 POW_SM(pPwrArray
[ALL_TARGET_HT40_22
], 16) |
4378 POW_SM(pPwrArray
[ALL_TARGET_HT20_23
], 8) |
4379 POW_SM(pPwrArray
[ALL_TARGET_HT20_22
], 0)
4383 * Write the HT40 power per rate set
4384 * correct PAR difference between HT40 and HT20/LEGACY
4385 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4387 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(6),
4388 POW_SM(pPwrArray
[ALL_TARGET_HT40_5
], 24) |
4389 POW_SM(pPwrArray
[ALL_TARGET_HT40_4
], 16) |
4390 POW_SM(pPwrArray
[ALL_TARGET_HT40_1_3_9_11_17_19
], 8) |
4391 POW_SM(pPwrArray
[ALL_TARGET_HT40_0_8_16
], 0)
4394 /* 6 (LSB), 7, 12, 13 (MSB) */
4395 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(7),
4396 POW_SM(pPwrArray
[ALL_TARGET_HT40_13
], 24) |
4397 POW_SM(pPwrArray
[ALL_TARGET_HT40_12
], 16) |
4398 POW_SM(pPwrArray
[ALL_TARGET_HT40_7
], 8) |
4399 POW_SM(pPwrArray
[ALL_TARGET_HT40_6
], 0)
4402 /* 14 (LSB), 15, 20, 21 */
4403 REG_WRITE(ah
, AR_PHY_POWER_TX_RATE(11),
4404 POW_SM(pPwrArray
[ALL_TARGET_HT40_21
], 24) |
4405 POW_SM(pPwrArray
[ALL_TARGET_HT40_20
], 16) |
4406 POW_SM(pPwrArray
[ALL_TARGET_HT40_15
], 8) |
4407 POW_SM(pPwrArray
[ALL_TARGET_HT40_14
], 0)
4414 static void ar9003_hw_get_legacy_target_powers(struct ath_hw
*ah
, u16 freq
,
4415 u8
*targetPowerValT2
,
4418 targetPowerValT2
[ALL_TARGET_LEGACY_6_24
] =
4419 ar9003_hw_eeprom_get_tgt_pwr(ah
, LEGACY_TARGET_RATE_6_24
, freq
,
4421 targetPowerValT2
[ALL_TARGET_LEGACY_36
] =
4422 ar9003_hw_eeprom_get_tgt_pwr(ah
, LEGACY_TARGET_RATE_36
, freq
,
4424 targetPowerValT2
[ALL_TARGET_LEGACY_48
] =
4425 ar9003_hw_eeprom_get_tgt_pwr(ah
, LEGACY_TARGET_RATE_48
, freq
,
4427 targetPowerValT2
[ALL_TARGET_LEGACY_54
] =
4428 ar9003_hw_eeprom_get_tgt_pwr(ah
, LEGACY_TARGET_RATE_54
, freq
,
4432 static void ar9003_hw_get_cck_target_powers(struct ath_hw
*ah
, u16 freq
,
4433 u8
*targetPowerValT2
)
4435 targetPowerValT2
[ALL_TARGET_LEGACY_1L_5L
] =
4436 ar9003_hw_eeprom_get_cck_tgt_pwr(ah
, LEGACY_TARGET_RATE_1L_5L
,
4438 targetPowerValT2
[ALL_TARGET_LEGACY_5S
] =
4439 ar9003_hw_eeprom_get_cck_tgt_pwr(ah
, LEGACY_TARGET_RATE_5S
, freq
);
4440 targetPowerValT2
[ALL_TARGET_LEGACY_11L
] =
4441 ar9003_hw_eeprom_get_cck_tgt_pwr(ah
, LEGACY_TARGET_RATE_11L
, freq
);
4442 targetPowerValT2
[ALL_TARGET_LEGACY_11S
] =
4443 ar9003_hw_eeprom_get_cck_tgt_pwr(ah
, LEGACY_TARGET_RATE_11S
, freq
);
4446 static void ar9003_hw_get_ht20_target_powers(struct ath_hw
*ah
, u16 freq
,
4447 u8
*targetPowerValT2
, bool is2GHz
)
4449 targetPowerValT2
[ALL_TARGET_HT20_0_8_16
] =
4450 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_0_8_16
, freq
,
4452 targetPowerValT2
[ALL_TARGET_HT20_1_3_9_11_17_19
] =
4453 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_1_3_9_11_17_19
,
4455 targetPowerValT2
[ALL_TARGET_HT20_4
] =
4456 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_4
, freq
,
4458 targetPowerValT2
[ALL_TARGET_HT20_5
] =
4459 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_5
, freq
,
4461 targetPowerValT2
[ALL_TARGET_HT20_6
] =
4462 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_6
, freq
,
4464 targetPowerValT2
[ALL_TARGET_HT20_7
] =
4465 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_7
, freq
,
4467 targetPowerValT2
[ALL_TARGET_HT20_12
] =
4468 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_12
, freq
,
4470 targetPowerValT2
[ALL_TARGET_HT20_13
] =
4471 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_13
, freq
,
4473 targetPowerValT2
[ALL_TARGET_HT20_14
] =
4474 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_14
, freq
,
4476 targetPowerValT2
[ALL_TARGET_HT20_15
] =
4477 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_15
, freq
,
4479 targetPowerValT2
[ALL_TARGET_HT20_20
] =
4480 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_20
, freq
,
4482 targetPowerValT2
[ALL_TARGET_HT20_21
] =
4483 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_21
, freq
,
4485 targetPowerValT2
[ALL_TARGET_HT20_22
] =
4486 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_22
, freq
,
4488 targetPowerValT2
[ALL_TARGET_HT20_23
] =
4489 ar9003_hw_eeprom_get_ht20_tgt_pwr(ah
, HT_TARGET_RATE_23
, freq
,
4493 static void ar9003_hw_get_ht40_target_powers(struct ath_hw
*ah
,
4495 u8
*targetPowerValT2
,
4498 /* XXX: hard code for now, need to get from eeprom struct */
4499 u8 ht40PowerIncForPdadc
= 0;
4501 targetPowerValT2
[ALL_TARGET_HT40_0_8_16
] =
4502 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_0_8_16
, freq
,
4503 is2GHz
) + ht40PowerIncForPdadc
;
4504 targetPowerValT2
[ALL_TARGET_HT40_1_3_9_11_17_19
] =
4505 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_1_3_9_11_17_19
,
4507 is2GHz
) + ht40PowerIncForPdadc
;
4508 targetPowerValT2
[ALL_TARGET_HT40_4
] =
4509 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_4
, freq
,
4510 is2GHz
) + ht40PowerIncForPdadc
;
4511 targetPowerValT2
[ALL_TARGET_HT40_5
] =
4512 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_5
, freq
,
4513 is2GHz
) + ht40PowerIncForPdadc
;
4514 targetPowerValT2
[ALL_TARGET_HT40_6
] =
4515 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_6
, freq
,
4516 is2GHz
) + ht40PowerIncForPdadc
;
4517 targetPowerValT2
[ALL_TARGET_HT40_7
] =
4518 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_7
, freq
,
4519 is2GHz
) + ht40PowerIncForPdadc
;
4520 targetPowerValT2
[ALL_TARGET_HT40_12
] =
4521 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_12
, freq
,
4522 is2GHz
) + ht40PowerIncForPdadc
;
4523 targetPowerValT2
[ALL_TARGET_HT40_13
] =
4524 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_13
, freq
,
4525 is2GHz
) + ht40PowerIncForPdadc
;
4526 targetPowerValT2
[ALL_TARGET_HT40_14
] =
4527 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_14
, freq
,
4528 is2GHz
) + ht40PowerIncForPdadc
;
4529 targetPowerValT2
[ALL_TARGET_HT40_15
] =
4530 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_15
, freq
,
4531 is2GHz
) + ht40PowerIncForPdadc
;
4532 targetPowerValT2
[ALL_TARGET_HT40_20
] =
4533 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_20
, freq
,
4534 is2GHz
) + ht40PowerIncForPdadc
;
4535 targetPowerValT2
[ALL_TARGET_HT40_21
] =
4536 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_21
, freq
,
4537 is2GHz
) + ht40PowerIncForPdadc
;
4538 targetPowerValT2
[ALL_TARGET_HT40_22
] =
4539 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_22
, freq
,
4540 is2GHz
) + ht40PowerIncForPdadc
;
4541 targetPowerValT2
[ALL_TARGET_HT40_23
] =
4542 ar9003_hw_eeprom_get_ht40_tgt_pwr(ah
, HT_TARGET_RATE_23
, freq
,
4543 is2GHz
) + ht40PowerIncForPdadc
;
4546 static void ar9003_hw_get_target_power_eeprom(struct ath_hw
*ah
,
4547 struct ath9k_channel
*chan
,
4548 u8
*targetPowerValT2
)
4550 bool is2GHz
= IS_CHAN_2GHZ(chan
);
4552 struct ath_common
*common
= ath9k_hw_common(ah
);
4553 u16 freq
= chan
->channel
;
4556 ar9003_hw_get_cck_target_powers(ah
, freq
, targetPowerValT2
);
4558 ar9003_hw_get_legacy_target_powers(ah
, freq
, targetPowerValT2
, is2GHz
);
4559 ar9003_hw_get_ht20_target_powers(ah
, freq
, targetPowerValT2
, is2GHz
);
4561 if (IS_CHAN_HT40(chan
))
4562 ar9003_hw_get_ht40_target_powers(ah
, freq
, targetPowerValT2
,
4565 for (i
= 0; i
< ar9300RateSize
; i
++) {
4566 ath_dbg(common
, REGULATORY
, "TPC[%02d] 0x%08x\n",
4567 i
, targetPowerValT2
[i
]);
4571 static int ar9003_hw_cal_pier_get(struct ath_hw
*ah
,
4577 int *ptemperature
, int *pvoltage
)
4580 struct ar9300_cal_data_per_freq_op_loop
*pCalPierStruct
;
4582 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4583 struct ath_common
*common
= ath9k_hw_common(ah
);
4585 if (ichain
>= AR9300_MAX_CHAINS
) {
4586 ath_dbg(common
, EEPROM
,
4587 "Invalid chain index, must be less than %d\n",
4592 if (mode
) { /* 5GHz */
4593 if (ipier
>= AR9300_NUM_5G_CAL_PIERS
) {
4594 ath_dbg(common
, EEPROM
,
4595 "Invalid 5GHz cal pier index, must be less than %d\n",
4596 AR9300_NUM_5G_CAL_PIERS
);
4599 pCalPier
= &(eep
->calFreqPier5G
[ipier
]);
4600 pCalPierStruct
= &(eep
->calPierData5G
[ichain
][ipier
]);
4603 if (ipier
>= AR9300_NUM_2G_CAL_PIERS
) {
4604 ath_dbg(common
, EEPROM
,
4605 "Invalid 2GHz cal pier index, must be less than %d\n",
4606 AR9300_NUM_2G_CAL_PIERS
);
4610 pCalPier
= &(eep
->calFreqPier2G
[ipier
]);
4611 pCalPierStruct
= &(eep
->calPierData2G
[ichain
][ipier
]);
4615 *pfrequency
= ath9k_hw_fbin2freq(*pCalPier
, is2GHz
);
4616 *pcorrection
= pCalPierStruct
->refPower
;
4617 *ptemperature
= pCalPierStruct
->tempMeas
;
4618 *pvoltage
= pCalPierStruct
->voltMeas
;
4623 static void ar9003_hw_power_control_override(struct ath_hw
*ah
,
4626 int *voltage
, int *temperature
)
4628 int temp_slope
= 0, temp_slope1
= 0, temp_slope2
= 0;
4629 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
4630 int f
[8], t
[8], t1
[3], t2
[3], i
;
4632 REG_RMW(ah
, AR_PHY_TPC_11_B0
,
4633 (correction
[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S
),
4634 AR_PHY_TPC_OLPC_GAIN_DELTA
);
4635 if (ah
->caps
.tx_chainmask
& BIT(1))
4636 REG_RMW(ah
, AR_PHY_TPC_11_B1
,
4637 (correction
[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S
),
4638 AR_PHY_TPC_OLPC_GAIN_DELTA
);
4639 if (ah
->caps
.tx_chainmask
& BIT(2))
4640 REG_RMW(ah
, AR_PHY_TPC_11_B2
,
4641 (correction
[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S
),
4642 AR_PHY_TPC_OLPC_GAIN_DELTA
);
4644 /* enable open loop power control on chip */
4645 REG_RMW(ah
, AR_PHY_TPC_6_B0
,
4646 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S
),
4647 AR_PHY_TPC_6_ERROR_EST_MODE
);
4648 if (ah
->caps
.tx_chainmask
& BIT(1))
4649 REG_RMW(ah
, AR_PHY_TPC_6_B1
,
4650 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S
),
4651 AR_PHY_TPC_6_ERROR_EST_MODE
);
4652 if (ah
->caps
.tx_chainmask
& BIT(2))
4653 REG_RMW(ah
, AR_PHY_TPC_6_B2
,
4654 (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S
),
4655 AR_PHY_TPC_6_ERROR_EST_MODE
);
4658 * enable temperature compensation
4659 * Need to use register names
4661 if (frequency
< 4000) {
4662 temp_slope
= eep
->modalHeader2G
.tempSlope
;
4664 if (AR_SREV_9550(ah
)) {
4665 t
[0] = eep
->base_ext1
.tempslopextension
[2];
4666 t1
[0] = eep
->base_ext1
.tempslopextension
[3];
4667 t2
[0] = eep
->base_ext1
.tempslopextension
[4];
4670 t
[1] = eep
->modalHeader5G
.tempSlope
;
4671 t1
[1] = eep
->base_ext1
.tempslopextension
[0];
4672 t2
[1] = eep
->base_ext1
.tempslopextension
[1];
4675 t
[2] = eep
->base_ext1
.tempslopextension
[5];
4676 t1
[2] = eep
->base_ext1
.tempslopextension
[6];
4677 t2
[2] = eep
->base_ext1
.tempslopextension
[7];
4680 temp_slope
= ar9003_hw_power_interpolate(frequency
,
4682 temp_slope1
= ar9003_hw_power_interpolate(frequency
,
4684 temp_slope2
= ar9003_hw_power_interpolate(frequency
,
4690 if ((eep
->baseEepHeader
.miscConfiguration
& 0x20) != 0) {
4691 for (i
= 0; i
< 8; i
++) {
4692 t
[i
] = eep
->base_ext1
.tempslopextension
[i
];
4693 f
[i
] = FBIN2FREQ(eep
->calFreqPier5G
[i
], 0);
4695 temp_slope
= ar9003_hw_power_interpolate((s32
) frequency
,
4697 } else if (eep
->base_ext2
.tempSlopeLow
!= 0) {
4698 t
[0] = eep
->base_ext2
.tempSlopeLow
;
4700 t
[1] = eep
->modalHeader5G
.tempSlope
;
4702 t
[2] = eep
->base_ext2
.tempSlopeHigh
;
4704 temp_slope
= ar9003_hw_power_interpolate((s32
) frequency
,
4707 temp_slope
= eep
->modalHeader5G
.tempSlope
;
4712 if (AR_SREV_9550(ah
)) {
4714 * AR955x has tempSlope register for each chain.
4715 * Check whether temp_compensation feature is enabled or not.
4717 if (eep
->baseEepHeader
.featureEnable
& 0x1) {
4718 if (frequency
< 4000) {
4719 REG_RMW_FIELD(ah
, AR_PHY_TPC_19
,
4720 AR_PHY_TPC_19_ALPHA_THERM
,
4721 eep
->base_ext2
.tempSlopeLow
);
4722 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B1
,
4723 AR_PHY_TPC_19_ALPHA_THERM
,
4725 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B2
,
4726 AR_PHY_TPC_19_ALPHA_THERM
,
4727 eep
->base_ext2
.tempSlopeHigh
);
4729 REG_RMW_FIELD(ah
, AR_PHY_TPC_19
,
4730 AR_PHY_TPC_19_ALPHA_THERM
,
4732 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B1
,
4733 AR_PHY_TPC_19_ALPHA_THERM
,
4735 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B2
,
4736 AR_PHY_TPC_19_ALPHA_THERM
,
4741 * If temp compensation is not enabled,
4742 * set all registers to 0.
4744 REG_RMW_FIELD(ah
, AR_PHY_TPC_19
,
4745 AR_PHY_TPC_19_ALPHA_THERM
, 0);
4746 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B1
,
4747 AR_PHY_TPC_19_ALPHA_THERM
, 0);
4748 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B2
,
4749 AR_PHY_TPC_19_ALPHA_THERM
, 0);
4752 REG_RMW_FIELD(ah
, AR_PHY_TPC_19
,
4753 AR_PHY_TPC_19_ALPHA_THERM
, temp_slope
);
4756 if (AR_SREV_9462_20_OR_LATER(ah
))
4757 REG_RMW_FIELD(ah
, AR_PHY_TPC_19_B1
,
4758 AR_PHY_TPC_19_B1_ALPHA_THERM
, temp_slope
);
4761 REG_RMW_FIELD(ah
, AR_PHY_TPC_18
, AR_PHY_TPC_18_THERM_CAL_VALUE
,
4765 /* Apply the recorded correction values. */
4766 static int ar9003_hw_calibration_apply(struct ath_hw
*ah
, int frequency
)
4768 int ichain
, ipier
, npier
;
4770 int lfrequency
[AR9300_MAX_CHAINS
],
4771 lcorrection
[AR9300_MAX_CHAINS
],
4772 ltemperature
[AR9300_MAX_CHAINS
], lvoltage
[AR9300_MAX_CHAINS
];
4773 int hfrequency
[AR9300_MAX_CHAINS
],
4774 hcorrection
[AR9300_MAX_CHAINS
],
4775 htemperature
[AR9300_MAX_CHAINS
], hvoltage
[AR9300_MAX_CHAINS
];
4777 int correction
[AR9300_MAX_CHAINS
],
4778 voltage
[AR9300_MAX_CHAINS
], temperature
[AR9300_MAX_CHAINS
];
4779 int pfrequency
, pcorrection
, ptemperature
, pvoltage
;
4780 struct ath_common
*common
= ath9k_hw_common(ah
);
4782 mode
= (frequency
>= 4000);
4784 npier
= AR9300_NUM_5G_CAL_PIERS
;
4786 npier
= AR9300_NUM_2G_CAL_PIERS
;
4788 for (ichain
= 0; ichain
< AR9300_MAX_CHAINS
; ichain
++) {
4789 lfrequency
[ichain
] = 0;
4790 hfrequency
[ichain
] = 100000;
4792 /* identify best lower and higher frequency calibration measurement */
4793 for (ichain
= 0; ichain
< AR9300_MAX_CHAINS
; ichain
++) {
4794 for (ipier
= 0; ipier
< npier
; ipier
++) {
4795 if (!ar9003_hw_cal_pier_get(ah
, mode
, ipier
, ichain
,
4796 &pfrequency
, &pcorrection
,
4797 &ptemperature
, &pvoltage
)) {
4798 fdiff
= frequency
- pfrequency
;
4801 * this measurement is higher than
4802 * our desired frequency
4805 if (hfrequency
[ichain
] <= 0 ||
4806 hfrequency
[ichain
] >= 100000 ||
4808 (frequency
- hfrequency
[ichain
])) {
4811 * frequency measurement
4813 hfrequency
[ichain
] = pfrequency
;
4814 hcorrection
[ichain
] =
4816 htemperature
[ichain
] =
4818 hvoltage
[ichain
] = pvoltage
;
4822 if (lfrequency
[ichain
] <= 0
4824 (frequency
- lfrequency
[ichain
])) {
4827 * frequency measurement
4829 lfrequency
[ichain
] = pfrequency
;
4830 lcorrection
[ichain
] =
4832 ltemperature
[ichain
] =
4834 lvoltage
[ichain
] = pvoltage
;
4842 for (ichain
= 0; ichain
< AR9300_MAX_CHAINS
; ichain
++) {
4843 ath_dbg(common
, EEPROM
, "ch=%d f=%d low=%d %d h=%d %d\n",
4844 ichain
, frequency
, lfrequency
[ichain
],
4845 lcorrection
[ichain
], hfrequency
[ichain
],
4846 hcorrection
[ichain
]);
4847 /* they're the same, so just pick one */
4848 if (hfrequency
[ichain
] == lfrequency
[ichain
]) {
4849 correction
[ichain
] = lcorrection
[ichain
];
4850 voltage
[ichain
] = lvoltage
[ichain
];
4851 temperature
[ichain
] = ltemperature
[ichain
];
4853 /* the low frequency is good */
4854 else if (frequency
- lfrequency
[ichain
] < 1000) {
4855 /* so is the high frequency, interpolate */
4856 if (hfrequency
[ichain
] - frequency
< 1000) {
4858 correction
[ichain
] = interpolate(frequency
,
4861 lcorrection
[ichain
],
4862 hcorrection
[ichain
]);
4864 temperature
[ichain
] = interpolate(frequency
,
4867 ltemperature
[ichain
],
4868 htemperature
[ichain
]);
4870 voltage
[ichain
] = interpolate(frequency
,
4876 /* only low is good, use it */
4878 correction
[ichain
] = lcorrection
[ichain
];
4879 temperature
[ichain
] = ltemperature
[ichain
];
4880 voltage
[ichain
] = lvoltage
[ichain
];
4883 /* only high is good, use it */
4884 else if (hfrequency
[ichain
] - frequency
< 1000) {
4885 correction
[ichain
] = hcorrection
[ichain
];
4886 temperature
[ichain
] = htemperature
[ichain
];
4887 voltage
[ichain
] = hvoltage
[ichain
];
4888 } else { /* nothing is good, presume 0???? */
4889 correction
[ichain
] = 0;
4890 temperature
[ichain
] = 0;
4891 voltage
[ichain
] = 0;
4895 ar9003_hw_power_control_override(ah
, frequency
, correction
, voltage
,
4898 ath_dbg(common
, EEPROM
,
4899 "for frequency=%d, calibration correction = %d %d %d\n",
4900 frequency
, correction
[0], correction
[1], correction
[2]);
4905 static u16
ar9003_hw_get_direct_edge_power(struct ar9300_eeprom
*eep
,
4910 struct cal_ctl_data_2g
*ctl_2g
= eep
->ctlPowerData_2G
;
4911 struct cal_ctl_data_5g
*ctl_5g
= eep
->ctlPowerData_5G
;
4914 return CTL_EDGE_TPOWER(ctl_2g
[idx
].ctlEdges
[edge
]);
4916 return CTL_EDGE_TPOWER(ctl_5g
[idx
].ctlEdges
[edge
]);
4919 static u16
ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom
*eep
,
4925 struct cal_ctl_data_2g
*ctl_2g
= eep
->ctlPowerData_2G
;
4926 struct cal_ctl_data_5g
*ctl_5g
= eep
->ctlPowerData_5G
;
4928 u8
*ctl_freqbin
= is2GHz
?
4929 &eep
->ctl_freqbin_2G
[idx
][0] :
4930 &eep
->ctl_freqbin_5G
[idx
][0];
4933 if (ath9k_hw_fbin2freq(ctl_freqbin
[edge
- 1], 1) < freq
&&
4934 CTL_EDGE_FLAGS(ctl_2g
[idx
].ctlEdges
[edge
- 1]))
4935 return CTL_EDGE_TPOWER(ctl_2g
[idx
].ctlEdges
[edge
- 1]);
4937 if (ath9k_hw_fbin2freq(ctl_freqbin
[edge
- 1], 0) < freq
&&
4938 CTL_EDGE_FLAGS(ctl_5g
[idx
].ctlEdges
[edge
- 1]))
4939 return CTL_EDGE_TPOWER(ctl_5g
[idx
].ctlEdges
[edge
- 1]);
4942 return MAX_RATE_POWER
;
4946 * Find the maximum conformance test limit for the given channel and CTL info
4948 static u16
ar9003_hw_get_max_edge_power(struct ar9300_eeprom
*eep
,
4949 u16 freq
, int idx
, bool is2GHz
)
4951 u16 twiceMaxEdgePower
= MAX_RATE_POWER
;
4952 u8
*ctl_freqbin
= is2GHz
?
4953 &eep
->ctl_freqbin_2G
[idx
][0] :
4954 &eep
->ctl_freqbin_5G
[idx
][0];
4955 u16 num_edges
= is2GHz
?
4956 AR9300_NUM_BAND_EDGES_2G
: AR9300_NUM_BAND_EDGES_5G
;
4959 /* Get the edge power */
4961 (edge
< num_edges
) && (ctl_freqbin
[edge
] != AR5416_BCHAN_UNUSED
);
4964 * If there's an exact channel match or an inband flag set
4965 * on the lower channel use the given rdEdgePower
4967 if (freq
== ath9k_hw_fbin2freq(ctl_freqbin
[edge
], is2GHz
)) {
4969 ar9003_hw_get_direct_edge_power(eep
, idx
,
4972 } else if ((edge
> 0) &&
4973 (freq
< ath9k_hw_fbin2freq(ctl_freqbin
[edge
],
4976 ar9003_hw_get_indirect_edge_power(eep
, idx
,
4980 * Leave loop - no more affecting edges possible in
4981 * this monotonic increasing list
4986 return twiceMaxEdgePower
;
4989 static void ar9003_hw_set_power_per_rate_table(struct ath_hw
*ah
,
4990 struct ath9k_channel
*chan
,
4991 u8
*pPwrArray
, u16 cfgCtl
,
4992 u8 antenna_reduction
,
4995 struct ath_common
*common
= ath9k_hw_common(ah
);
4996 struct ar9300_eeprom
*pEepData
= &ah
->eeprom
.ar9300_eep
;
4997 u16 twiceMaxEdgePower
;
4999 u16 scaledPower
= 0, minCtlPower
;
5000 static const u16 ctlModesFor11a
[] = {
5001 CTL_11A
, CTL_5GHT20
, CTL_11A_EXT
, CTL_5GHT40
5003 static const u16 ctlModesFor11g
[] = {
5004 CTL_11B
, CTL_11G
, CTL_2GHT20
, CTL_11B_EXT
,
5005 CTL_11G_EXT
, CTL_2GHT40
5008 const u16
*pCtlMode
;
5010 struct chan_centers centers
;
5013 u16 twiceMinEdgePower
;
5014 bool is2ghz
= IS_CHAN_2GHZ(chan
);
5016 ath9k_hw_get_channel_centers(ah
, chan
, ¢ers
);
5017 scaledPower
= ath9k_hw_get_scaled_power(ah
, powerLimit
,
5021 /* Setup for CTL modes */
5022 /* CTL_11B, CTL_11G, CTL_2GHT20 */
5024 ARRAY_SIZE(ctlModesFor11g
) -
5025 SUB_NUM_CTL_MODES_AT_2G_40
;
5026 pCtlMode
= ctlModesFor11g
;
5027 if (IS_CHAN_HT40(chan
))
5029 numCtlModes
= ARRAY_SIZE(ctlModesFor11g
);
5031 /* Setup for CTL modes */
5032 /* CTL_11A, CTL_5GHT20 */
5033 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
) -
5034 SUB_NUM_CTL_MODES_AT_5G_40
;
5035 pCtlMode
= ctlModesFor11a
;
5036 if (IS_CHAN_HT40(chan
))
5038 numCtlModes
= ARRAY_SIZE(ctlModesFor11a
);
5042 * For MIMO, need to apply regulatory caps individually across
5043 * dynamically running modes: CCK, OFDM, HT20, HT40
5045 * The outer loop walks through each possible applicable runtime mode.
5046 * The inner loop walks through each ctlIndex entry in EEPROM.
5047 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5049 for (ctlMode
= 0; ctlMode
< numCtlModes
; ctlMode
++) {
5050 bool isHt40CtlMode
= (pCtlMode
[ctlMode
] == CTL_5GHT40
) ||
5051 (pCtlMode
[ctlMode
] == CTL_2GHT40
);
5053 freq
= centers
.synth_center
;
5054 else if (pCtlMode
[ctlMode
] & EXT_ADDITIVE
)
5055 freq
= centers
.ext_center
;
5057 freq
= centers
.ctl_center
;
5059 ath_dbg(common
, REGULATORY
,
5060 "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5061 ctlMode
, numCtlModes
, isHt40CtlMode
,
5062 (pCtlMode
[ctlMode
] & EXT_ADDITIVE
));
5064 /* walk through each CTL index stored in EEPROM */
5066 ctlIndex
= pEepData
->ctlIndex_2G
;
5067 ctlNum
= AR9300_NUM_CTLS_2G
;
5069 ctlIndex
= pEepData
->ctlIndex_5G
;
5070 ctlNum
= AR9300_NUM_CTLS_5G
;
5073 twiceMaxEdgePower
= MAX_RATE_POWER
;
5074 for (i
= 0; (i
< ctlNum
) && ctlIndex
[i
]; i
++) {
5075 ath_dbg(common
, REGULATORY
,
5076 "LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5077 i
, cfgCtl
, pCtlMode
[ctlMode
], ctlIndex
[i
],
5081 * compare test group from regulatory
5082 * channel list with test mode from pCtlMode
5085 if ((((cfgCtl
& ~CTL_MODE_M
) |
5086 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
5088 (((cfgCtl
& ~CTL_MODE_M
) |
5089 (pCtlMode
[ctlMode
] & CTL_MODE_M
)) ==
5090 ((ctlIndex
[i
] & CTL_MODE_M
) |
5093 ar9003_hw_get_max_edge_power(pEepData
,
5097 if ((cfgCtl
& ~CTL_MODE_M
) == SD_NO_CTL
)
5099 * Find the minimum of all CTL
5100 * edge powers that apply to
5104 min(twiceMaxEdgePower
,
5108 twiceMaxEdgePower
= twiceMinEdgePower
;
5114 minCtlPower
= (u8
)min(twiceMaxEdgePower
, scaledPower
);
5116 ath_dbg(common
, REGULATORY
,
5117 "SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5118 ctlMode
, pCtlMode
[ctlMode
], twiceMaxEdgePower
,
5119 scaledPower
, minCtlPower
);
5121 /* Apply ctl mode to correct target power set */
5122 switch (pCtlMode
[ctlMode
]) {
5124 for (i
= ALL_TARGET_LEGACY_1L_5L
;
5125 i
<= ALL_TARGET_LEGACY_11S
; i
++)
5126 pPwrArray
[i
] = (u8
)min((u16
)pPwrArray
[i
],
5131 for (i
= ALL_TARGET_LEGACY_6_24
;
5132 i
<= ALL_TARGET_LEGACY_54
; i
++)
5133 pPwrArray
[i
] = (u8
)min((u16
)pPwrArray
[i
],
5138 for (i
= ALL_TARGET_HT20_0_8_16
;
5139 i
<= ALL_TARGET_HT20_23
; i
++) {
5140 pPwrArray
[i
] = (u8
)min((u16
)pPwrArray
[i
],
5142 if (ath9k_hw_mci_is_enabled(ah
))
5144 (u8
)min((u16
)pPwrArray
[i
],
5145 ar9003_mci_get_max_txpower(ah
,
5146 pCtlMode
[ctlMode
]));
5151 for (i
= ALL_TARGET_HT40_0_8_16
;
5152 i
<= ALL_TARGET_HT40_23
; i
++) {
5153 pPwrArray
[i
] = (u8
)min((u16
)pPwrArray
[i
],
5155 if (ath9k_hw_mci_is_enabled(ah
))
5157 (u8
)min((u16
)pPwrArray
[i
],
5158 ar9003_mci_get_max_txpower(ah
,
5159 pCtlMode
[ctlMode
]));
5165 } /* end ctl mode checking */
5168 static inline u8
mcsidx_to_tgtpwridx(unsigned int mcs_idx
, u8 base_pwridx
)
5170 u8 mod_idx
= mcs_idx
% 8;
5173 return mod_idx
? (base_pwridx
+ 1) : base_pwridx
;
5175 return base_pwridx
+ 4 * (mcs_idx
/ 8) + mod_idx
- 2;
5178 static void ar9003_paprd_set_txpower(struct ath_hw
*ah
,
5179 struct ath9k_channel
*chan
,
5180 u8
*targetPowerValT2
)
5184 if (!ar9003_is_paprd_enabled(ah
))
5187 if (IS_CHAN_HT40(chan
))
5188 i
= ALL_TARGET_HT40_7
;
5190 i
= ALL_TARGET_HT20_7
;
5192 if (IS_CHAN_2GHZ(chan
)) {
5193 if (!AR_SREV_9330(ah
) && !AR_SREV_9340(ah
) &&
5194 !AR_SREV_9462(ah
) && !AR_SREV_9565(ah
)) {
5195 if (IS_CHAN_HT40(chan
))
5196 i
= ALL_TARGET_HT40_0_8_16
;
5198 i
= ALL_TARGET_HT20_0_8_16
;
5202 ah
->paprd_target_power
= targetPowerValT2
[i
];
5205 static void ath9k_hw_ar9300_set_txpower(struct ath_hw
*ah
,
5206 struct ath9k_channel
*chan
, u16 cfgCtl
,
5207 u8 twiceAntennaReduction
,
5208 u8 powerLimit
, bool test
)
5210 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
5211 struct ath_common
*common
= ath9k_hw_common(ah
);
5212 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
5213 struct ar9300_modal_eep_header
*modal_hdr
;
5214 u8 targetPowerValT2
[ar9300RateSize
];
5215 u8 target_power_val_t2_eep
[ar9300RateSize
];
5216 unsigned int i
= 0, paprd_scale_factor
= 0;
5217 u8 pwr_idx
, min_pwridx
= 0;
5219 memset(targetPowerValT2
, 0 , sizeof(targetPowerValT2
));
5222 * Get target powers from EEPROM - our baseline for TX Power
5224 ar9003_hw_get_target_power_eeprom(ah
, chan
, targetPowerValT2
);
5226 if (ar9003_is_paprd_enabled(ah
)) {
5227 if (IS_CHAN_2GHZ(chan
))
5228 modal_hdr
= &eep
->modalHeader2G
;
5230 modal_hdr
= &eep
->modalHeader5G
;
5232 ah
->paprd_ratemask
=
5233 le32_to_cpu(modal_hdr
->papdRateMaskHt20
) &
5234 AR9300_PAPRD_RATE_MASK
;
5236 ah
->paprd_ratemask_ht40
=
5237 le32_to_cpu(modal_hdr
->papdRateMaskHt40
) &
5238 AR9300_PAPRD_RATE_MASK
;
5240 paprd_scale_factor
= ar9003_get_paprd_scale_factor(ah
, chan
);
5241 min_pwridx
= IS_CHAN_HT40(chan
) ? ALL_TARGET_HT40_0_8_16
:
5242 ALL_TARGET_HT20_0_8_16
;
5244 if (!ah
->paprd_table_write_done
) {
5245 memcpy(target_power_val_t2_eep
, targetPowerValT2
,
5246 sizeof(targetPowerValT2
));
5247 for (i
= 0; i
< 24; i
++) {
5248 pwr_idx
= mcsidx_to_tgtpwridx(i
, min_pwridx
);
5249 if (ah
->paprd_ratemask
& (1 << i
)) {
5250 if (targetPowerValT2
[pwr_idx
] &&
5251 targetPowerValT2
[pwr_idx
] ==
5252 target_power_val_t2_eep
[pwr_idx
])
5253 targetPowerValT2
[pwr_idx
] -=
5258 memcpy(target_power_val_t2_eep
, targetPowerValT2
,
5259 sizeof(targetPowerValT2
));
5262 ar9003_hw_set_power_per_rate_table(ah
, chan
,
5263 targetPowerValT2
, cfgCtl
,
5264 twiceAntennaReduction
,
5267 if (ar9003_is_paprd_enabled(ah
)) {
5268 for (i
= 0; i
< ar9300RateSize
; i
++) {
5269 if ((ah
->paprd_ratemask
& (1 << i
)) &&
5270 (abs(targetPowerValT2
[i
] -
5271 target_power_val_t2_eep
[i
]) >
5272 paprd_scale_factor
)) {
5273 ah
->paprd_ratemask
&= ~(1 << i
);
5274 ath_dbg(common
, EEPROM
,
5275 "paprd disabled for mcs %d\n", i
);
5280 regulatory
->max_power_level
= 0;
5281 for (i
= 0; i
< ar9300RateSize
; i
++) {
5282 if (targetPowerValT2
[i
] > regulatory
->max_power_level
)
5283 regulatory
->max_power_level
= targetPowerValT2
[i
];
5286 ath9k_hw_update_regulatory_maxpower(ah
);
5291 for (i
= 0; i
< ar9300RateSize
; i
++) {
5292 ath_dbg(common
, REGULATORY
, "TPC[%02d] 0x%08x\n",
5293 i
, targetPowerValT2
[i
]);
5296 /* Write target power array to registers */
5297 ar9003_hw_tx_power_regwrite(ah
, targetPowerValT2
);
5298 ar9003_hw_calibration_apply(ah
, chan
->channel
);
5299 ar9003_paprd_set_txpower(ah
, chan
, targetPowerValT2
);
5302 static u16
ath9k_hw_ar9300_get_spur_channel(struct ath_hw
*ah
,
5308 s32
ar9003_hw_get_tx_gain_idx(struct ath_hw
*ah
)
5310 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
5312 return (eep
->baseEepHeader
.txrxgain
>> 4) & 0xf; /* bits 7:4 */
5315 s32
ar9003_hw_get_rx_gain_idx(struct ath_hw
*ah
)
5317 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
5319 return (eep
->baseEepHeader
.txrxgain
) & 0xf; /* bits 3:0 */
5322 u8
*ar9003_get_spur_chan_ptr(struct ath_hw
*ah
, bool is2ghz
)
5324 return ar9003_modal_header(ah
, is2ghz
)->spurChans
;
5327 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw
*ah
,
5328 struct ath9k_channel
*chan
)
5330 struct ar9300_eeprom
*eep
= &ah
->eeprom
.ar9300_eep
;
5332 if (IS_CHAN_2GHZ(chan
))
5333 return MS(le32_to_cpu(eep
->modalHeader2G
.papdRateMaskHt20
),
5334 AR9300_PAPRD_SCALE_1
);
5336 if (chan
->channel
>= 5700)
5337 return MS(le32_to_cpu(eep
->modalHeader5G
.papdRateMaskHt20
),
5338 AR9300_PAPRD_SCALE_1
);
5339 else if (chan
->channel
>= 5400)
5340 return MS(le32_to_cpu(eep
->modalHeader5G
.papdRateMaskHt40
),
5341 AR9300_PAPRD_SCALE_2
);
5343 return MS(le32_to_cpu(eep
->modalHeader5G
.papdRateMaskHt40
),
5344 AR9300_PAPRD_SCALE_1
);
5348 const struct eeprom_ops eep_ar9300_ops
= {
5349 .check_eeprom
= ath9k_hw_ar9300_check_eeprom
,
5350 .get_eeprom
= ath9k_hw_ar9300_get_eeprom
,
5351 .fill_eeprom
= ath9k_hw_ar9300_fill_eeprom
,
5352 .dump_eeprom
= ath9k_hw_ar9003_dump_eeprom
,
5353 .get_eeprom_ver
= ath9k_hw_ar9300_get_eeprom_ver
,
5354 .get_eeprom_rev
= ath9k_hw_ar9300_get_eeprom_rev
,
5355 .set_board_values
= ath9k_hw_ar9300_set_board_values
,
5356 .set_addac
= ath9k_hw_ar9300_set_addac
,
5357 .set_txpower
= ath9k_hw_ar9300_set_txpower
,
5358 .get_spur_channel
= ath9k_hw_ar9300_get_spur_channel