Linux 3.11-rc3
[cris-mirror.git] / drivers / net / wireless / ath / carl9170 / tx.c
blobe3f696ee4d2393b00cbebd38d7f2840c51376149
1 /*
2 * Atheros CARL9170 driver
4 * 802.11 xmit & status routines
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/module.h>
43 #include <linux/etherdevice.h>
44 #include <net/mac80211.h>
45 #include "carl9170.h"
46 #include "hw.h"
47 #include "cmd.h"
49 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
50 unsigned int queue)
52 if (unlikely(modparam_noht)) {
53 return queue;
54 } else {
56 * This is just another workaround, until
57 * someone figures out how to get QoS and
58 * AMPDU to play nicely together.
61 return 2; /* AC_BE */
65 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
66 struct sk_buff *skb)
68 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
71 static bool is_mem_full(struct ar9170 *ar)
73 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
74 atomic_read(&ar->mem_free_blocks));
77 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
79 int queue, i;
80 bool mem_full;
82 atomic_inc(&ar->tx_total_queued);
84 queue = skb_get_queue_mapping(skb);
85 spin_lock_bh(&ar->tx_stats_lock);
88 * The driver has to accept the frame, regardless if the queue is
89 * full to the brim, or not. We have to do the queuing internally,
90 * since mac80211 assumes that a driver which can operate with
91 * aggregated frames does not reject frames for this reason.
93 ar->tx_stats[queue].len++;
94 ar->tx_stats[queue].count++;
96 mem_full = is_mem_full(ar);
97 for (i = 0; i < ar->hw->queues; i++) {
98 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
99 ieee80211_stop_queue(ar->hw, i);
100 ar->queue_stop_timeout[i] = jiffies;
104 spin_unlock_bh(&ar->tx_stats_lock);
107 /* needs rcu_read_lock */
108 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
109 struct sk_buff *skb)
111 struct _carl9170_tx_superframe *super = (void *) skb->data;
112 struct ieee80211_hdr *hdr = (void *) super->frame_data;
113 struct ieee80211_vif *vif;
114 unsigned int vif_id;
116 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
117 CARL9170_TX_SUPER_MISC_VIF_ID_S;
119 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
120 return NULL;
122 vif = rcu_dereference(ar->vif_priv[vif_id].vif);
123 if (unlikely(!vif))
124 return NULL;
127 * Normally we should use wrappers like ieee80211_get_DA to get
128 * the correct peer ieee80211_sta.
130 * But there is a problem with indirect traffic (broadcasts, or
131 * data which is designated for other stations) in station mode.
132 * The frame will be directed to the AP for distribution and not
133 * to the actual destination.
136 return ieee80211_find_sta(vif, hdr->addr1);
139 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
141 struct ieee80211_sta *sta;
142 struct carl9170_sta_info *sta_info;
144 rcu_read_lock();
145 sta = __carl9170_get_tx_sta(ar, skb);
146 if (unlikely(!sta))
147 goto out_rcu;
149 sta_info = (struct carl9170_sta_info *) sta->drv_priv;
150 if (atomic_dec_return(&sta_info->pending_frames) == 0)
151 ieee80211_sta_block_awake(ar->hw, sta, false);
153 out_rcu:
154 rcu_read_unlock();
157 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
159 int queue;
161 queue = skb_get_queue_mapping(skb);
163 spin_lock_bh(&ar->tx_stats_lock);
165 ar->tx_stats[queue].len--;
167 if (!is_mem_full(ar)) {
168 unsigned int i;
169 for (i = 0; i < ar->hw->queues; i++) {
170 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
171 continue;
173 if (ieee80211_queue_stopped(ar->hw, i)) {
174 unsigned long tmp;
176 tmp = jiffies - ar->queue_stop_timeout[i];
177 if (tmp > ar->max_queue_stop_timeout[i])
178 ar->max_queue_stop_timeout[i] = tmp;
181 ieee80211_wake_queue(ar->hw, i);
185 spin_unlock_bh(&ar->tx_stats_lock);
187 if (atomic_dec_and_test(&ar->tx_total_queued))
188 complete(&ar->tx_flush);
191 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
193 struct _carl9170_tx_superframe *super = (void *) skb->data;
194 unsigned int chunks;
195 int cookie = -1;
197 atomic_inc(&ar->mem_allocs);
199 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
200 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
201 atomic_add(chunks, &ar->mem_free_blocks);
202 return -ENOSPC;
205 spin_lock_bh(&ar->mem_lock);
206 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
207 spin_unlock_bh(&ar->mem_lock);
209 if (unlikely(cookie < 0)) {
210 atomic_add(chunks, &ar->mem_free_blocks);
211 return -ENOSPC;
214 super = (void *) skb->data;
217 * Cookie #0 serves two special purposes:
218 * 1. The firmware might use it generate BlockACK frames
219 * in responds of an incoming BlockAckReqs.
221 * 2. Prevent double-free bugs.
223 super->s.cookie = (u8) cookie + 1;
224 return 0;
227 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
229 struct _carl9170_tx_superframe *super = (void *) skb->data;
230 int cookie;
232 /* make a local copy of the cookie */
233 cookie = super->s.cookie;
234 /* invalidate cookie */
235 super->s.cookie = 0;
238 * Do a out-of-bounds check on the cookie:
240 * * cookie "0" is reserved and won't be assigned to any
241 * out-going frame. Internally however, it is used to
242 * mark no longer/un-accounted frames and serves as a
243 * cheap way of preventing frames from being freed
244 * twice by _accident_. NB: There is a tiny race...
246 * * obviously, cookie number is limited by the amount
247 * of available memory blocks, so the number can
248 * never execeed the mem_blocks count.
250 if (unlikely(WARN_ON_ONCE(cookie == 0) ||
251 WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
252 return;
254 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
255 &ar->mem_free_blocks);
257 spin_lock_bh(&ar->mem_lock);
258 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
259 spin_unlock_bh(&ar->mem_lock);
262 /* Called from any context */
263 static void carl9170_tx_release(struct kref *ref)
265 struct ar9170 *ar;
266 struct carl9170_tx_info *arinfo;
267 struct ieee80211_tx_info *txinfo;
268 struct sk_buff *skb;
270 arinfo = container_of(ref, struct carl9170_tx_info, ref);
271 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
272 rate_driver_data);
273 skb = container_of((void *) txinfo, struct sk_buff, cb);
275 ar = arinfo->ar;
276 if (WARN_ON_ONCE(!ar))
277 return;
279 BUILD_BUG_ON(
280 offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
282 memset(&txinfo->status.ack_signal, 0,
283 sizeof(struct ieee80211_tx_info) -
284 offsetof(struct ieee80211_tx_info, status.ack_signal));
286 if (atomic_read(&ar->tx_total_queued))
287 ar->tx_schedule = true;
289 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
290 if (!atomic_read(&ar->tx_ampdu_upload))
291 ar->tx_ampdu_schedule = true;
293 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
294 struct _carl9170_tx_superframe *super;
296 super = (void *)skb->data;
297 txinfo->status.ampdu_len = super->s.rix;
298 txinfo->status.ampdu_ack_len = super->s.cnt;
299 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
300 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
302 * drop redundant tx_status reports:
304 * 1. ampdu_ack_len of the final tx_status does
305 * include the feedback of this particular frame.
307 * 2. tx_status_irqsafe only queues up to 128
308 * tx feedback reports and discards the rest.
310 * 3. minstrel_ht is picky, it only accepts
311 * reports of frames with the TX_STATUS_AMPDU flag.
313 * 4. mac80211 is not particularly interested in
314 * feedback either [CTL_REQ_TX_STATUS not set]
317 ieee80211_free_txskb(ar->hw, skb);
318 return;
319 } else {
321 * Either the frame transmission has failed or
322 * mac80211 requested tx status.
327 skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
328 ieee80211_tx_status_irqsafe(ar->hw, skb);
331 void carl9170_tx_get_skb(struct sk_buff *skb)
333 struct carl9170_tx_info *arinfo = (void *)
334 (IEEE80211_SKB_CB(skb))->rate_driver_data;
335 kref_get(&arinfo->ref);
338 int carl9170_tx_put_skb(struct sk_buff *skb)
340 struct carl9170_tx_info *arinfo = (void *)
341 (IEEE80211_SKB_CB(skb))->rate_driver_data;
343 return kref_put(&arinfo->ref, carl9170_tx_release);
346 /* Caller must hold the tid_info->lock & rcu_read_lock */
347 static void carl9170_tx_shift_bm(struct ar9170 *ar,
348 struct carl9170_sta_tid *tid_info, u16 seq)
350 u16 off;
352 off = SEQ_DIFF(seq, tid_info->bsn);
354 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
355 return;
358 * Sanity check. For each MPDU we set the bit in bitmap and
359 * clear it once we received the tx_status.
360 * But if the bit is already cleared then we've been bitten
361 * by a bug.
363 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
365 off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
366 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
367 return;
369 if (!bitmap_empty(tid_info->bitmap, off))
370 off = find_first_bit(tid_info->bitmap, off);
372 tid_info->bsn += off;
373 tid_info->bsn &= 0x0fff;
375 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
376 off, CARL9170_BAW_BITS);
379 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
380 struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
382 struct _carl9170_tx_superframe *super = (void *) skb->data;
383 struct ieee80211_hdr *hdr = (void *) super->frame_data;
384 struct ieee80211_sta *sta;
385 struct carl9170_sta_info *sta_info;
386 struct carl9170_sta_tid *tid_info;
387 u8 tid;
389 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
390 txinfo->flags & IEEE80211_TX_CTL_INJECTED)
391 return;
393 rcu_read_lock();
394 sta = __carl9170_get_tx_sta(ar, skb);
395 if (unlikely(!sta))
396 goto out_rcu;
398 tid = get_tid_h(hdr);
400 sta_info = (void *) sta->drv_priv;
401 tid_info = rcu_dereference(sta_info->agg[tid]);
402 if (!tid_info)
403 goto out_rcu;
405 spin_lock_bh(&tid_info->lock);
406 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
407 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
409 if (sta_info->stats[tid].clear) {
410 sta_info->stats[tid].clear = false;
411 sta_info->stats[tid].req = false;
412 sta_info->stats[tid].ampdu_len = 0;
413 sta_info->stats[tid].ampdu_ack_len = 0;
416 sta_info->stats[tid].ampdu_len++;
417 if (txinfo->status.rates[0].count == 1)
418 sta_info->stats[tid].ampdu_ack_len++;
420 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
421 sta_info->stats[tid].req = true;
423 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
424 super->s.rix = sta_info->stats[tid].ampdu_len;
425 super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
426 txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
427 if (sta_info->stats[tid].req)
428 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
430 sta_info->stats[tid].clear = true;
432 spin_unlock_bh(&tid_info->lock);
434 out_rcu:
435 rcu_read_unlock();
438 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
439 struct ieee80211_tx_info *tx_info)
441 struct _carl9170_tx_superframe *super = (void *) skb->data;
442 struct ieee80211_bar *bar = (void *) super->frame_data;
445 * Unlike all other frames, the status report for BARs does
446 * not directly come from the hardware as it is incapable of
447 * matching a BA to a previously send BAR.
448 * Instead the RX-path will scan for incoming BAs and set the
449 * IEEE80211_TX_STAT_ACK if it sees one that was likely
450 * caused by a BAR from us.
453 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
454 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
455 struct carl9170_bar_list_entry *entry;
456 int queue = skb_get_queue_mapping(skb);
458 rcu_read_lock();
459 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
460 if (entry->skb == skb) {
461 spin_lock_bh(&ar->bar_list_lock[queue]);
462 list_del_rcu(&entry->list);
463 spin_unlock_bh(&ar->bar_list_lock[queue]);
464 kfree_rcu(entry, head);
465 goto out;
469 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
470 queue, bar->ra, bar->ta, bar->control,
471 bar->start_seq_num);
472 out:
473 rcu_read_unlock();
477 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
478 const bool success)
480 struct ieee80211_tx_info *txinfo;
482 carl9170_tx_accounting_free(ar, skb);
484 txinfo = IEEE80211_SKB_CB(skb);
486 carl9170_tx_bar_status(ar, skb, txinfo);
488 if (success)
489 txinfo->flags |= IEEE80211_TX_STAT_ACK;
490 else
491 ar->tx_ack_failures++;
493 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
494 carl9170_tx_status_process_ampdu(ar, skb, txinfo);
496 carl9170_tx_ps_unblock(ar, skb);
497 carl9170_tx_put_skb(skb);
500 /* This function may be called form any context */
501 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
503 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
505 atomic_dec(&ar->tx_total_pending);
507 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
508 atomic_dec(&ar->tx_ampdu_upload);
510 if (carl9170_tx_put_skb(skb))
511 tasklet_hi_schedule(&ar->usb_tasklet);
514 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
515 struct sk_buff_head *queue)
517 struct sk_buff *skb;
519 spin_lock_bh(&queue->lock);
520 skb_queue_walk(queue, skb) {
521 struct _carl9170_tx_superframe *txc = (void *) skb->data;
523 if (txc->s.cookie != cookie)
524 continue;
526 __skb_unlink(skb, queue);
527 spin_unlock_bh(&queue->lock);
529 carl9170_release_dev_space(ar, skb);
530 return skb;
532 spin_unlock_bh(&queue->lock);
534 return NULL;
537 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
538 unsigned int tries, struct ieee80211_tx_info *txinfo)
540 unsigned int i;
542 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
543 if (txinfo->status.rates[i].idx < 0)
544 break;
546 if (i == rix) {
547 txinfo->status.rates[i].count = tries;
548 i++;
549 break;
553 for (; i < IEEE80211_TX_MAX_RATES; i++) {
554 txinfo->status.rates[i].idx = -1;
555 txinfo->status.rates[i].count = 0;
559 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
561 int i;
562 struct sk_buff *skb;
563 struct ieee80211_tx_info *txinfo;
564 struct carl9170_tx_info *arinfo;
565 bool restart = false;
567 for (i = 0; i < ar->hw->queues; i++) {
568 spin_lock_bh(&ar->tx_status[i].lock);
570 skb = skb_peek(&ar->tx_status[i]);
572 if (!skb)
573 goto next;
575 txinfo = IEEE80211_SKB_CB(skb);
576 arinfo = (void *) txinfo->rate_driver_data;
578 if (time_is_before_jiffies(arinfo->timeout +
579 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
580 restart = true;
582 next:
583 spin_unlock_bh(&ar->tx_status[i].lock);
586 if (restart) {
588 * At least one queue has been stuck for long enough.
589 * Give the device a kick and hope it gets back to
590 * work.
592 * possible reasons may include:
593 * - frames got lost/corrupted (bad connection to the device)
594 * - stalled rx processing/usb controller hiccups
595 * - firmware errors/bugs
596 * - every bug you can think of.
597 * - all bugs you can't...
598 * - ...
600 carl9170_restart(ar, CARL9170_RR_STUCK_TX);
604 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
606 struct carl9170_sta_tid *iter;
607 struct sk_buff *skb;
608 struct ieee80211_tx_info *txinfo;
609 struct carl9170_tx_info *arinfo;
610 struct ieee80211_sta *sta;
612 rcu_read_lock();
613 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
614 if (iter->state < CARL9170_TID_STATE_IDLE)
615 continue;
617 spin_lock_bh(&iter->lock);
618 skb = skb_peek(&iter->queue);
619 if (!skb)
620 goto unlock;
622 txinfo = IEEE80211_SKB_CB(skb);
623 arinfo = (void *)txinfo->rate_driver_data;
624 if (time_is_after_jiffies(arinfo->timeout +
625 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
626 goto unlock;
628 sta = iter->sta;
629 if (WARN_ON(!sta))
630 goto unlock;
632 ieee80211_stop_tx_ba_session(sta, iter->tid);
633 unlock:
634 spin_unlock_bh(&iter->lock);
637 rcu_read_unlock();
640 void carl9170_tx_janitor(struct work_struct *work)
642 struct ar9170 *ar = container_of(work, struct ar9170,
643 tx_janitor.work);
644 if (!IS_STARTED(ar))
645 return;
647 ar->tx_janitor_last_run = jiffies;
649 carl9170_check_queue_stop_timeout(ar);
650 carl9170_tx_ampdu_timeout(ar);
652 if (!atomic_read(&ar->tx_total_queued))
653 return;
655 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
656 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
659 static void __carl9170_tx_process_status(struct ar9170 *ar,
660 const uint8_t cookie, const uint8_t info)
662 struct sk_buff *skb;
663 struct ieee80211_tx_info *txinfo;
664 unsigned int r, t, q;
665 bool success = true;
667 q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
669 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
670 if (!skb) {
672 * We have lost the race to another thread.
675 return ;
678 txinfo = IEEE80211_SKB_CB(skb);
680 if (!(info & CARL9170_TX_STATUS_SUCCESS))
681 success = false;
683 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
684 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
686 carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
687 carl9170_tx_status(ar, skb, success);
690 void carl9170_tx_process_status(struct ar9170 *ar,
691 const struct carl9170_rsp *cmd)
693 unsigned int i;
695 for (i = 0; i < cmd->hdr.ext; i++) {
696 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
697 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
698 (void *) cmd, cmd->hdr.len + 4);
699 break;
702 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
703 cmd->_tx_status[i].info);
707 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
708 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
709 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
711 struct ieee80211_rate *rate = NULL;
712 u8 *txpower;
713 unsigned int idx;
715 idx = txrate->idx;
716 *tpc = 0;
717 *phyrate = 0;
719 if (txrate->flags & IEEE80211_TX_RC_MCS) {
720 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
721 /* +1 dBm for HT40 */
722 *tpc += 2;
724 if (info->band == IEEE80211_BAND_2GHZ)
725 txpower = ar->power_2G_ht40;
726 else
727 txpower = ar->power_5G_ht40;
728 } else {
729 if (info->band == IEEE80211_BAND_2GHZ)
730 txpower = ar->power_2G_ht20;
731 else
732 txpower = ar->power_5G_ht20;
735 *phyrate = txrate->idx;
736 *tpc += txpower[idx & 7];
737 } else {
738 if (info->band == IEEE80211_BAND_2GHZ) {
739 if (idx < 4)
740 txpower = ar->power_2G_cck;
741 else
742 txpower = ar->power_2G_ofdm;
743 } else {
744 txpower = ar->power_5G_leg;
745 idx += 4;
748 rate = &__carl9170_ratetable[idx];
749 *tpc += txpower[(rate->hw_value & 0x30) >> 4];
750 *phyrate = rate->hw_value & 0xf;
753 if (ar->eeprom.tx_mask == 1) {
754 *chains = AR9170_TX_PHY_TXCHAIN_1;
755 } else {
756 if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
757 rate && rate->bitrate >= 360)
758 *chains = AR9170_TX_PHY_TXCHAIN_1;
759 else
760 *chains = AR9170_TX_PHY_TXCHAIN_2;
763 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
766 static __le32 carl9170_tx_physet(struct ar9170 *ar,
767 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
769 unsigned int power = 0, chains = 0, phyrate = 0;
770 __le32 tmp;
772 tmp = cpu_to_le32(0);
774 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
775 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
776 AR9170_TX_PHY_BW_S);
777 /* this works because 40 MHz is 2 and dup is 3 */
778 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
779 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
780 AR9170_TX_PHY_BW_S);
782 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
783 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
785 if (txrate->flags & IEEE80211_TX_RC_MCS) {
786 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
788 /* heavy clip control */
789 tmp |= cpu_to_le32((txrate->idx & 0x7) <<
790 AR9170_TX_PHY_TX_HEAVY_CLIP_S);
792 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
795 * green field preamble does not work.
797 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
798 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
800 } else {
801 if (info->band == IEEE80211_BAND_2GHZ) {
802 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
803 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
804 else
805 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
806 } else {
807 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
811 * short preamble seems to be broken too.
813 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
814 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
817 carl9170_tx_rate_tpc_chains(ar, info, txrate,
818 &phyrate, &power, &chains);
820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
822 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
823 return tmp;
826 static bool carl9170_tx_rts_check(struct ar9170 *ar,
827 struct ieee80211_tx_rate *rate,
828 bool ampdu, bool multi)
830 switch (ar->erp_mode) {
831 case CARL9170_ERP_AUTO:
832 if (ampdu)
833 break;
835 case CARL9170_ERP_MAC80211:
836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
837 break;
839 case CARL9170_ERP_RTS:
840 if (likely(!multi))
841 return true;
843 default:
844 break;
847 return false;
850 static bool carl9170_tx_cts_check(struct ar9170 *ar,
851 struct ieee80211_tx_rate *rate)
853 switch (ar->erp_mode) {
854 case CARL9170_ERP_AUTO:
855 case CARL9170_ERP_MAC80211:
856 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
857 break;
859 case CARL9170_ERP_CTS:
860 return true;
862 default:
863 break;
866 return false;
869 static void carl9170_tx_get_rates(struct ar9170 *ar,
870 struct ieee80211_vif *vif,
871 struct ieee80211_sta *sta,
872 struct sk_buff *skb)
874 struct ieee80211_tx_info *info;
876 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
877 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE);
879 info = IEEE80211_SKB_CB(skb);
881 ieee80211_get_tx_rates(vif, sta, skb,
882 info->control.rates,
883 IEEE80211_TX_MAX_RATES);
886 static void carl9170_tx_apply_rateset(struct ar9170 *ar,
887 struct ieee80211_tx_info *sinfo,
888 struct sk_buff *skb)
890 struct ieee80211_tx_rate *txrate;
891 struct ieee80211_tx_info *info;
892 struct _carl9170_tx_superframe *txc = (void *) skb->data;
893 int i;
894 bool ampdu;
895 bool no_ack;
897 info = IEEE80211_SKB_CB(skb);
898 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
899 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
901 /* Set the rate control probe flag for all (sub-) frames.
902 * This is because the TX_STATS_AMPDU flag is only set on
903 * the last frame, so it has to be inherited.
905 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
907 /* NOTE: For the first rate, the ERP & AMPDU flags are directly
908 * taken from mac_control. For all fallback rate, the firmware
909 * updates the mac_control flags from the rate info field.
911 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
912 __le32 phy_set;
914 txrate = &sinfo->control.rates[i];
915 if (txrate->idx < 0)
916 break;
918 phy_set = carl9170_tx_physet(ar, info, txrate);
919 if (i == 0) {
920 __le16 mac_tmp = cpu_to_le16(0);
922 /* first rate - part of the hw's frame header */
923 txc->f.phy_control = phy_set;
925 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
926 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
928 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
929 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
930 else if (carl9170_tx_cts_check(ar, txrate))
931 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
933 txc->f.mac_control |= mac_tmp;
934 } else {
935 /* fallback rates are stored in the firmware's
936 * retry rate set array.
938 txc->s.rr[i - 1] = phy_set;
941 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
942 txrate->count);
944 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
945 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
946 CARL9170_TX_SUPER_RI_ERP_PROT_S);
947 else if (carl9170_tx_cts_check(ar, txrate))
948 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
949 CARL9170_TX_SUPER_RI_ERP_PROT_S);
951 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
952 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
956 static int carl9170_tx_prepare(struct ar9170 *ar,
957 struct ieee80211_sta *sta,
958 struct sk_buff *skb)
960 struct ieee80211_hdr *hdr;
961 struct _carl9170_tx_superframe *txc;
962 struct carl9170_vif_info *cvif;
963 struct ieee80211_tx_info *info;
964 struct carl9170_tx_info *arinfo;
965 unsigned int hw_queue;
966 __le16 mac_tmp;
967 u16 len;
969 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
970 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
971 CARL9170_TX_SUPERDESC_LEN);
973 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
974 AR9170_TX_HWDESC_LEN);
976 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
977 ((CARL9170_TX_SUPER_MISC_VIF_ID >>
978 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
980 hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
982 hdr = (void *)skb->data;
983 info = IEEE80211_SKB_CB(skb);
984 len = skb->len;
987 * Note: If the frame was sent through a monitor interface,
988 * the ieee80211_vif pointer can be NULL.
990 if (likely(info->control.vif))
991 cvif = (void *) info->control.vif->drv_priv;
992 else
993 cvif = NULL;
995 txc = (void *)skb_push(skb, sizeof(*txc));
996 memset(txc, 0, sizeof(*txc));
998 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
1000 if (likely(cvif))
1001 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
1003 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
1004 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
1006 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
1007 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
1009 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
1010 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
1012 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
1013 AR9170_TX_MAC_BACKOFF);
1014 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
1015 AR9170_TX_MAC_QOS);
1017 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK))
1018 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
1020 if (info->control.hw_key) {
1021 len += info->control.hw_key->icv_len;
1023 switch (info->control.hw_key->cipher) {
1024 case WLAN_CIPHER_SUITE_WEP40:
1025 case WLAN_CIPHER_SUITE_WEP104:
1026 case WLAN_CIPHER_SUITE_TKIP:
1027 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
1028 break;
1029 case WLAN_CIPHER_SUITE_CCMP:
1030 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
1031 break;
1032 default:
1033 WARN_ON(1);
1034 goto err_out;
1038 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1039 unsigned int density, factor;
1041 if (unlikely(!sta || !cvif))
1042 goto err_out;
1044 factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
1045 density = sta->ht_cap.ampdu_density;
1047 if (density) {
1049 * Watch out!
1051 * Otus uses slightly different density values than
1052 * those from the 802.11n spec.
1055 density = max_t(unsigned int, density + 1, 7u);
1058 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
1059 txc->s.ampdu_settings, density);
1061 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
1062 txc->s.ampdu_settings, factor);
1065 txc->s.len = cpu_to_le16(skb->len);
1066 txc->f.length = cpu_to_le16(len + FCS_LEN);
1067 txc->f.mac_control = mac_tmp;
1069 arinfo = (void *)info->rate_driver_data;
1070 arinfo->timeout = jiffies;
1071 arinfo->ar = ar;
1072 kref_init(&arinfo->ref);
1073 return 0;
1075 err_out:
1076 skb_pull(skb, sizeof(*txc));
1077 return -EINVAL;
1080 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1082 struct _carl9170_tx_superframe *super;
1084 super = (void *) skb->data;
1085 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1088 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1090 struct _carl9170_tx_superframe *super;
1091 int tmp;
1093 super = (void *) skb->data;
1095 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1096 CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1099 * If you haven't noticed carl9170_tx_prepare has already filled
1100 * in all ampdu spacing & factor parameters.
1101 * Now it's the time to check whenever the settings have to be
1102 * updated by the firmware, or if everything is still the same.
1104 * There's no sane way to handle different density values with
1105 * this hardware, so we may as well just do the compare in the
1106 * driver.
1109 if (tmp != ar->current_density) {
1110 ar->current_density = tmp;
1111 super->s.ampdu_settings |=
1112 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1115 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1116 CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1118 if (tmp != ar->current_factor) {
1119 ar->current_factor = tmp;
1120 super->s.ampdu_settings |=
1121 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1125 static void carl9170_tx_ampdu(struct ar9170 *ar)
1127 struct sk_buff_head agg;
1128 struct carl9170_sta_tid *tid_info;
1129 struct sk_buff *skb, *first;
1130 struct ieee80211_tx_info *tx_info_first;
1131 unsigned int i = 0, done_ampdus = 0;
1132 u16 seq, queue, tmpssn;
1134 atomic_inc(&ar->tx_ampdu_scheduler);
1135 ar->tx_ampdu_schedule = false;
1137 if (atomic_read(&ar->tx_ampdu_upload))
1138 return;
1140 if (!ar->tx_ampdu_list_len)
1141 return;
1143 __skb_queue_head_init(&agg);
1145 rcu_read_lock();
1146 tid_info = rcu_dereference(ar->tx_ampdu_iter);
1147 if (WARN_ON_ONCE(!tid_info)) {
1148 rcu_read_unlock();
1149 return;
1152 retry:
1153 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1154 i++;
1156 if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1157 continue;
1159 queue = TID_TO_WME_AC(tid_info->tid);
1161 spin_lock_bh(&tid_info->lock);
1162 if (tid_info->state != CARL9170_TID_STATE_XMIT)
1163 goto processed;
1165 tid_info->counter++;
1166 first = skb_peek(&tid_info->queue);
1167 tmpssn = carl9170_get_seq(first);
1168 seq = tid_info->snx;
1170 if (unlikely(tmpssn != seq)) {
1171 tid_info->state = CARL9170_TID_STATE_IDLE;
1173 goto processed;
1176 tx_info_first = NULL;
1177 while ((skb = skb_peek(&tid_info->queue))) {
1178 /* strict 0, 1, ..., n - 1, n frame sequence order */
1179 if (unlikely(carl9170_get_seq(skb) != seq))
1180 break;
1182 /* don't upload more than AMPDU FACTOR allows. */
1183 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1184 (tid_info->max - 1)))
1185 break;
1187 if (!tx_info_first) {
1188 carl9170_tx_get_rates(ar, tid_info->vif,
1189 tid_info->sta, first);
1190 tx_info_first = IEEE80211_SKB_CB(first);
1193 carl9170_tx_apply_rateset(ar, tx_info_first, skb);
1195 atomic_inc(&ar->tx_ampdu_upload);
1196 tid_info->snx = seq = SEQ_NEXT(seq);
1197 __skb_unlink(skb, &tid_info->queue);
1199 __skb_queue_tail(&agg, skb);
1201 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1202 break;
1205 if (skb_queue_empty(&tid_info->queue) ||
1206 carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1207 tid_info->snx) {
1208 /* stop TID, if A-MPDU frames are still missing,
1209 * or whenever the queue is empty.
1212 tid_info->state = CARL9170_TID_STATE_IDLE;
1214 done_ampdus++;
1216 processed:
1217 spin_unlock_bh(&tid_info->lock);
1219 if (skb_queue_empty(&agg))
1220 continue;
1222 /* apply ampdu spacing & factor settings */
1223 carl9170_set_ampdu_params(ar, skb_peek(&agg));
1225 /* set aggregation push bit */
1226 carl9170_set_immba(ar, skb_peek_tail(&agg));
1228 spin_lock_bh(&ar->tx_pending[queue].lock);
1229 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1230 spin_unlock_bh(&ar->tx_pending[queue].lock);
1231 ar->tx_schedule = true;
1233 if ((done_ampdus++ == 0) && (i++ == 0))
1234 goto retry;
1236 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1237 rcu_read_unlock();
1240 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1241 struct sk_buff_head *queue)
1243 struct sk_buff *skb;
1244 struct ieee80211_tx_info *info;
1245 struct carl9170_tx_info *arinfo;
1247 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1249 spin_lock_bh(&queue->lock);
1250 skb = skb_peek(queue);
1251 if (unlikely(!skb))
1252 goto err_unlock;
1254 if (carl9170_alloc_dev_space(ar, skb))
1255 goto err_unlock;
1257 __skb_unlink(skb, queue);
1258 spin_unlock_bh(&queue->lock);
1260 info = IEEE80211_SKB_CB(skb);
1261 arinfo = (void *) info->rate_driver_data;
1263 arinfo->timeout = jiffies;
1264 return skb;
1266 err_unlock:
1267 spin_unlock_bh(&queue->lock);
1268 return NULL;
1271 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1273 struct _carl9170_tx_superframe *super;
1274 uint8_t q = 0;
1276 ar->tx_dropped++;
1278 super = (void *)skb->data;
1279 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1280 ar9170_qmap[carl9170_get_queue(ar, skb)]);
1281 __carl9170_tx_process_status(ar, super->s.cookie, q);
1284 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1286 struct ieee80211_sta *sta;
1287 struct carl9170_sta_info *sta_info;
1288 struct ieee80211_tx_info *tx_info;
1290 rcu_read_lock();
1291 sta = __carl9170_get_tx_sta(ar, skb);
1292 if (!sta)
1293 goto out_rcu;
1295 sta_info = (void *) sta->drv_priv;
1296 tx_info = IEEE80211_SKB_CB(skb);
1298 if (unlikely(sta_info->sleeping) &&
1299 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1300 IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1301 rcu_read_unlock();
1303 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1304 atomic_dec(&ar->tx_ampdu_upload);
1306 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1307 carl9170_release_dev_space(ar, skb);
1308 carl9170_tx_status(ar, skb, false);
1309 return true;
1312 out_rcu:
1313 rcu_read_unlock();
1314 return false;
1317 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1319 struct _carl9170_tx_superframe *super = (void *) skb->data;
1320 struct ieee80211_bar *bar = (void *) super->frame_data;
1322 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1323 skb->len >= sizeof(struct ieee80211_bar)) {
1324 struct carl9170_bar_list_entry *entry;
1325 unsigned int queue = skb_get_queue_mapping(skb);
1327 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1328 if (!WARN_ON_ONCE(!entry)) {
1329 entry->skb = skb;
1330 spin_lock_bh(&ar->bar_list_lock[queue]);
1331 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1332 spin_unlock_bh(&ar->bar_list_lock[queue]);
1337 static void carl9170_tx(struct ar9170 *ar)
1339 struct sk_buff *skb;
1340 unsigned int i, q;
1341 bool schedule_garbagecollector = false;
1343 ar->tx_schedule = false;
1345 if (unlikely(!IS_STARTED(ar)))
1346 return;
1348 carl9170_usb_handle_tx_err(ar);
1350 for (i = 0; i < ar->hw->queues; i++) {
1351 while (!skb_queue_empty(&ar->tx_pending[i])) {
1352 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1353 if (unlikely(!skb))
1354 break;
1356 if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1357 continue;
1359 carl9170_bar_check(ar, skb);
1361 atomic_inc(&ar->tx_total_pending);
1363 q = __carl9170_get_queue(ar, i);
1365 * NB: tx_status[i] vs. tx_status[q],
1366 * TODO: Move into pick_skb or alloc_dev_space.
1368 skb_queue_tail(&ar->tx_status[q], skb);
1371 * increase ref count to "2".
1372 * Ref counting is the easiest way to solve the
1373 * race between the urb's completion routine:
1374 * carl9170_tx_callback
1375 * and wlan tx status functions:
1376 * carl9170_tx_status/janitor.
1378 carl9170_tx_get_skb(skb);
1380 carl9170_usb_tx(ar, skb);
1381 schedule_garbagecollector = true;
1385 if (!schedule_garbagecollector)
1386 return;
1388 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1389 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1392 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1393 struct ieee80211_sta *sta, struct sk_buff *skb,
1394 struct ieee80211_tx_info *txinfo)
1396 struct carl9170_sta_info *sta_info;
1397 struct carl9170_sta_tid *agg;
1398 struct sk_buff *iter;
1399 u16 tid, seq, qseq, off;
1400 bool run = false;
1402 tid = carl9170_get_tid(skb);
1403 seq = carl9170_get_seq(skb);
1404 sta_info = (void *) sta->drv_priv;
1406 rcu_read_lock();
1407 agg = rcu_dereference(sta_info->agg[tid]);
1409 if (!agg)
1410 goto err_unlock_rcu;
1412 spin_lock_bh(&agg->lock);
1413 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1414 goto err_unlock;
1416 /* check if sequence is within the BA window */
1417 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1418 goto err_unlock;
1420 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1421 goto err_unlock;
1423 off = SEQ_DIFF(seq, agg->bsn);
1424 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1425 goto err_unlock;
1427 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1428 __skb_queue_tail(&agg->queue, skb);
1429 agg->hsn = seq;
1430 goto queued;
1433 skb_queue_reverse_walk(&agg->queue, iter) {
1434 qseq = carl9170_get_seq(iter);
1436 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1437 __skb_queue_after(&agg->queue, iter, skb);
1438 goto queued;
1442 __skb_queue_head(&agg->queue, skb);
1443 queued:
1445 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1446 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1447 agg->state = CARL9170_TID_STATE_XMIT;
1448 run = true;
1452 spin_unlock_bh(&agg->lock);
1453 rcu_read_unlock();
1455 return run;
1457 err_unlock:
1458 spin_unlock_bh(&agg->lock);
1460 err_unlock_rcu:
1461 rcu_read_unlock();
1462 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1463 carl9170_tx_status(ar, skb, false);
1464 ar->tx_dropped++;
1465 return false;
1468 void carl9170_op_tx(struct ieee80211_hw *hw,
1469 struct ieee80211_tx_control *control,
1470 struct sk_buff *skb)
1472 struct ar9170 *ar = hw->priv;
1473 struct ieee80211_tx_info *info;
1474 struct ieee80211_sta *sta = control->sta;
1475 struct ieee80211_vif *vif;
1476 bool run;
1478 if (unlikely(!IS_STARTED(ar)))
1479 goto err_free;
1481 info = IEEE80211_SKB_CB(skb);
1482 vif = info->control.vif;
1484 if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1485 goto err_free;
1487 carl9170_tx_accounting(ar, skb);
1489 * from now on, one has to use carl9170_tx_status to free
1490 * all ressouces which are associated with the frame.
1493 if (sta) {
1494 struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1495 atomic_inc(&stai->pending_frames);
1498 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1499 /* to static code analyzers and reviewers:
1500 * mac80211 guarantees that a valid "sta"
1501 * reference is present, if a frame is to
1502 * be part of an ampdu. Hence any extra
1503 * sta == NULL checks are redundant in this
1504 * special case.
1506 run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1507 if (run)
1508 carl9170_tx_ampdu(ar);
1510 } else {
1511 unsigned int queue = skb_get_queue_mapping(skb);
1513 carl9170_tx_get_rates(ar, vif, sta, skb);
1514 carl9170_tx_apply_rateset(ar, info, skb);
1515 skb_queue_tail(&ar->tx_pending[queue], skb);
1518 carl9170_tx(ar);
1519 return;
1521 err_free:
1522 ar->tx_dropped++;
1523 ieee80211_free_txskb(ar->hw, skb);
1526 void carl9170_tx_scheduler(struct ar9170 *ar)
1529 if (ar->tx_ampdu_schedule)
1530 carl9170_tx_ampdu(ar);
1532 if (ar->tx_schedule)
1533 carl9170_tx(ar);
1536 /* caller has to take rcu_read_lock */
1537 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1539 struct carl9170_vif_info *cvif;
1540 int i = 1;
1542 /* The AR9170 hardware has no fancy beacon queue or some
1543 * other scheduling mechanism. So, the driver has to make
1544 * due by setting the two beacon timers (pretbtt and tbtt)
1545 * once and then swapping the beacon address in the HW's
1546 * register file each time the pretbtt fires.
1549 cvif = rcu_dereference(ar->beacon_iter);
1550 if (ar->vifs > 0 && cvif) {
1551 do {
1552 list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
1553 list) {
1554 if (cvif->active && cvif->enable_beacon)
1555 goto out;
1557 } while (ar->beacon_enabled && i--);
1560 out:
1561 rcu_assign_pointer(ar->beacon_iter, cvif);
1562 return cvif;
1565 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
1566 u32 *ht1, u32 *plcp)
1568 struct ieee80211_tx_info *txinfo;
1569 struct ieee80211_tx_rate *rate;
1570 unsigned int power, chains;
1571 bool ht_rate;
1573 txinfo = IEEE80211_SKB_CB(skb);
1574 rate = &txinfo->control.rates[0];
1575 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
1576 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1578 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1579 if (chains == AR9170_TX_PHY_TXCHAIN_2)
1580 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1581 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
1582 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
1583 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
1585 if (ht_rate) {
1586 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1587 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1588 *plcp |= AR9170_MAC_BCN_HT2_SGI;
1590 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1591 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1592 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1593 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1594 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1595 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1598 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
1599 } else {
1600 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1601 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1602 else
1603 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1606 return ht_rate;
1609 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1611 struct sk_buff *skb = NULL;
1612 struct carl9170_vif_info *cvif;
1613 __le32 *data, *old = NULL;
1614 u32 word, ht1, plcp, off, addr, len;
1615 int i = 0, err = 0;
1616 bool ht_rate;
1618 rcu_read_lock();
1619 cvif = carl9170_pick_beaconing_vif(ar);
1620 if (!cvif)
1621 goto out_unlock;
1623 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1624 NULL, NULL);
1626 if (!skb) {
1627 err = -ENOMEM;
1628 goto err_free;
1631 spin_lock_bh(&ar->beacon_lock);
1632 data = (__le32 *)skb->data;
1633 if (cvif->beacon)
1634 old = (__le32 *)cvif->beacon->data;
1636 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1637 addr = ar->fw.beacon_addr + off;
1638 len = roundup(skb->len + FCS_LEN, 4);
1640 if ((off + len) > ar->fw.beacon_max_len) {
1641 if (net_ratelimit()) {
1642 wiphy_err(ar->hw->wiphy, "beacon does not "
1643 "fit into device memory!\n");
1645 err = -EINVAL;
1646 goto err_unlock;
1649 if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1650 if (net_ratelimit()) {
1651 wiphy_err(ar->hw->wiphy, "no support for beacons "
1652 "bigger than %d (yours:%d).\n",
1653 AR9170_MAC_BCN_LENGTH_MAX, len);
1656 err = -EMSGSIZE;
1657 goto err_unlock;
1660 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1662 carl9170_async_regwrite_begin(ar);
1663 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1664 if (ht_rate)
1665 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1666 else
1667 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1669 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1671 * XXX: This accesses beyond skb data for up
1672 * to the last 3 bytes!!
1675 if (old && (data[i] == old[i]))
1676 continue;
1678 word = le32_to_cpu(data[i]);
1679 carl9170_async_regwrite(addr + 4 * i, word);
1681 carl9170_async_regwrite_finish();
1683 dev_kfree_skb_any(cvif->beacon);
1684 cvif->beacon = NULL;
1686 err = carl9170_async_regwrite_result();
1687 if (!err)
1688 cvif->beacon = skb;
1689 spin_unlock_bh(&ar->beacon_lock);
1690 if (err)
1691 goto err_free;
1693 if (submit) {
1694 err = carl9170_bcn_ctrl(ar, cvif->id,
1695 CARL9170_BCN_CTRL_CAB_TRIGGER,
1696 addr, skb->len + FCS_LEN);
1698 if (err)
1699 goto err_free;
1701 out_unlock:
1702 rcu_read_unlock();
1703 return 0;
1705 err_unlock:
1706 spin_unlock_bh(&ar->beacon_lock);
1708 err_free:
1709 rcu_read_unlock();
1710 dev_kfree_skb_any(skb);
1711 return err;