Linux 3.11-rc3
[cris-mirror.git] / drivers / net / wireless / iwlegacy / 4965.h
blob1b15b0b2292b4fe06c3fa1efcc95279c9901370e
1 /******************************************************************************
3 * GPL LICENSE SUMMARY
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *****************************************************************************/
30 #ifndef __il_4965_h__
31 #define __il_4965_h__
33 struct il_rx_queue;
34 struct il_rx_buf;
35 struct il_rx_pkt;
36 struct il_tx_queue;
37 struct il_rxon_context;
39 /* configuration for the _4965 devices */
40 extern struct il_cfg il4965_cfg;
41 extern const struct il_ops il4965_ops;
43 extern struct il_mod_params il4965_mod_params;
45 /* tx queue */
46 void il4965_free_tfds_in_queue(struct il_priv *il, int sta_id, int tid,
47 int freed);
49 /* RXON */
50 void il4965_set_rxon_chain(struct il_priv *il);
52 /* uCode */
53 int il4965_verify_ucode(struct il_priv *il);
55 /* lib */
56 void il4965_check_abort_status(struct il_priv *il, u8 frame_count, u32 status);
58 void il4965_rx_queue_reset(struct il_priv *il, struct il_rx_queue *rxq);
59 int il4965_rx_init(struct il_priv *il, struct il_rx_queue *rxq);
60 int il4965_hw_nic_init(struct il_priv *il);
61 int il4965_dump_fh(struct il_priv *il, char **buf, bool display);
63 void il4965_nic_config(struct il_priv *il);
65 /* rx */
66 void il4965_rx_queue_restock(struct il_priv *il);
67 void il4965_rx_replenish(struct il_priv *il);
68 void il4965_rx_replenish_now(struct il_priv *il);
69 void il4965_rx_queue_free(struct il_priv *il, struct il_rx_queue *rxq);
70 int il4965_rxq_stop(struct il_priv *il);
71 int il4965_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band);
72 void il4965_rx_handle(struct il_priv *il);
74 /* tx */
75 void il4965_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq);
76 int il4965_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq,
77 dma_addr_t addr, u16 len, u8 reset, u8 pad);
78 int il4965_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq);
79 void il4965_hwrate_to_tx_control(struct il_priv *il, u32 rate_n_flags,
80 struct ieee80211_tx_info *info);
81 int il4965_tx_skb(struct il_priv *il,
82 struct ieee80211_sta *sta,
83 struct sk_buff *skb);
84 int il4965_tx_agg_start(struct il_priv *il, struct ieee80211_vif *vif,
85 struct ieee80211_sta *sta, u16 tid, u16 * ssn);
86 int il4965_tx_agg_stop(struct il_priv *il, struct ieee80211_vif *vif,
87 struct ieee80211_sta *sta, u16 tid);
88 int il4965_txq_check_empty(struct il_priv *il, int sta_id, u8 tid, int txq_id);
89 int il4965_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx);
90 void il4965_hw_txq_ctx_free(struct il_priv *il);
91 int il4965_txq_ctx_alloc(struct il_priv *il);
92 void il4965_txq_ctx_reset(struct il_priv *il);
93 void il4965_txq_ctx_stop(struct il_priv *il);
94 void il4965_txq_set_sched(struct il_priv *il, u32 mask);
97 * Acquire il->lock before calling this function !
99 void il4965_set_wr_ptrs(struct il_priv *il, int txq_id, u32 idx);
101 * il4965_tx_queue_set_status - (optionally) start Tx/Cmd queue
102 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed
103 * @scd_retry: (1) Indicates queue will be used in aggregation mode
105 * NOTE: Acquire il->lock before calling this function !
107 void il4965_tx_queue_set_status(struct il_priv *il, struct il_tx_queue *txq,
108 int tx_fifo_id, int scd_retry);
110 /* scan */
111 int il4965_request_scan(struct il_priv *il, struct ieee80211_vif *vif);
113 /* station mgmt */
114 int il4965_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif,
115 bool add);
117 /* hcmd */
118 int il4965_send_beacon_cmd(struct il_priv *il);
120 #ifdef CONFIG_IWLEGACY_DEBUG
121 const char *il4965_get_tx_fail_reason(u32 status);
122 #else
123 static inline const char *
124 il4965_get_tx_fail_reason(u32 status)
126 return "";
128 #endif
130 /* station management */
131 int il4965_alloc_bcast_station(struct il_priv *il);
132 int il4965_add_bssid_station(struct il_priv *il, const u8 *addr, u8 *sta_id_r);
133 int il4965_remove_default_wep_key(struct il_priv *il,
134 struct ieee80211_key_conf *key);
135 int il4965_set_default_wep_key(struct il_priv *il,
136 struct ieee80211_key_conf *key);
137 int il4965_restore_default_wep_keys(struct il_priv *il);
138 int il4965_set_dynamic_key(struct il_priv *il,
139 struct ieee80211_key_conf *key, u8 sta_id);
140 int il4965_remove_dynamic_key(struct il_priv *il,
141 struct ieee80211_key_conf *key, u8 sta_id);
142 void il4965_update_tkip_key(struct il_priv *il,
143 struct ieee80211_key_conf *keyconf,
144 struct ieee80211_sta *sta, u32 iv32,
145 u16 *phase1key);
146 int il4965_sta_tx_modify_enable_tid(struct il_priv *il, int sta_id, int tid);
147 int il4965_sta_rx_agg_start(struct il_priv *il, struct ieee80211_sta *sta,
148 int tid, u16 ssn);
149 int il4965_sta_rx_agg_stop(struct il_priv *il, struct ieee80211_sta *sta,
150 int tid);
151 void il4965_sta_modify_sleep_tx_count(struct il_priv *il, int sta_id, int cnt);
152 int il4965_update_bcast_stations(struct il_priv *il);
154 /* rate */
155 static inline u8
156 il4965_hw_get_rate(__le32 rate_n_flags)
158 return le32_to_cpu(rate_n_flags) & 0xFF;
161 /* eeprom */
162 void il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac);
163 int il4965_eeprom_acquire_semaphore(struct il_priv *il);
164 void il4965_eeprom_release_semaphore(struct il_priv *il);
165 int il4965_eeprom_check_version(struct il_priv *il);
167 /* mac80211 handlers (for 4965) */
168 void il4965_mac_tx(struct ieee80211_hw *hw,
169 struct ieee80211_tx_control *control,
170 struct sk_buff *skb);
171 int il4965_mac_start(struct ieee80211_hw *hw);
172 void il4965_mac_stop(struct ieee80211_hw *hw);
173 void il4965_configure_filter(struct ieee80211_hw *hw,
174 unsigned int changed_flags,
175 unsigned int *total_flags, u64 multicast);
176 int il4965_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
177 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
178 struct ieee80211_key_conf *key);
179 void il4965_mac_update_tkip_key(struct ieee80211_hw *hw,
180 struct ieee80211_vif *vif,
181 struct ieee80211_key_conf *keyconf,
182 struct ieee80211_sta *sta, u32 iv32,
183 u16 *phase1key);
184 int il4965_mac_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
185 enum ieee80211_ampdu_mlme_action action,
186 struct ieee80211_sta *sta, u16 tid, u16 * ssn,
187 u8 buf_size);
188 int il4965_mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
189 struct ieee80211_sta *sta);
190 void il4965_mac_channel_switch(struct ieee80211_hw *hw,
191 struct ieee80211_channel_switch *ch_switch);
193 void il4965_led_enable(struct il_priv *il);
195 /* EEPROM */
196 #define IL4965_EEPROM_IMG_SIZE 1024
199 * uCode queue management definitions ...
200 * The first queue used for block-ack aggregation is #7 (4965 only).
201 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
203 #define IL49_FIRST_AMPDU_QUEUE 7
205 /* Sizes and addresses for instruction and data memory (SRAM) in
206 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
207 #define IL49_RTC_INST_LOWER_BOUND (0x000000)
208 #define IL49_RTC_INST_UPPER_BOUND (0x018000)
210 #define IL49_RTC_DATA_LOWER_BOUND (0x800000)
211 #define IL49_RTC_DATA_UPPER_BOUND (0x80A000)
213 #define IL49_RTC_INST_SIZE (IL49_RTC_INST_UPPER_BOUND - \
214 IL49_RTC_INST_LOWER_BOUND)
215 #define IL49_RTC_DATA_SIZE (IL49_RTC_DATA_UPPER_BOUND - \
216 IL49_RTC_DATA_LOWER_BOUND)
218 #define IL49_MAX_INST_SIZE IL49_RTC_INST_SIZE
219 #define IL49_MAX_DATA_SIZE IL49_RTC_DATA_SIZE
221 /* Size of uCode instruction memory in bootstrap state machine */
222 #define IL49_MAX_BSM_SIZE BSM_SRAM_SIZE
224 static inline int
225 il4965_hw_valid_rtc_data_addr(u32 addr)
227 return (addr >= IL49_RTC_DATA_LOWER_BOUND &&
228 addr < IL49_RTC_DATA_UPPER_BOUND);
231 /********************* START TEMPERATURE *************************************/
234 * 4965 temperature calculation.
236 * The driver must calculate the device temperature before calculating
237 * a txpower setting (amplifier gain is temperature dependent). The
238 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
239 * values used for the life of the driver, and one of which (R4) is the
240 * real-time temperature indicator.
242 * uCode provides all 4 values to the driver via the "initialize alive"
243 * notification (see struct il4965_init_alive_resp). After the runtime uCode
244 * image loads, uCode updates the R4 value via stats notifications
245 * (see N_STATS), which occur after each received beacon
246 * when associated, or can be requested via C_STATS.
248 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
249 * must sign-extend to 32 bits before applying formula below.
251 * Formula:
253 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
255 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
256 * an additional correction, which should be centered around 0 degrees
257 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
258 * centering the 97/100 correction around 0 degrees K.
260 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
261 * temperature with factory-measured temperatures when calculating txpower
262 * settings.
264 #define TEMPERATURE_CALIB_KELVIN_OFFSET 8
265 #define TEMPERATURE_CALIB_A_VAL 259
267 /* Limit range of calculated temperature to be between these Kelvin values */
268 #define IL_TX_POWER_TEMPERATURE_MIN (263)
269 #define IL_TX_POWER_TEMPERATURE_MAX (410)
271 #define IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
272 ((t) < IL_TX_POWER_TEMPERATURE_MIN || \
273 (t) > IL_TX_POWER_TEMPERATURE_MAX)
275 extern void il4965_temperature_calib(struct il_priv *il);
276 /********************* END TEMPERATURE ***************************************/
278 /********************* START TXPOWER *****************************************/
281 * 4965 txpower calculations rely on information from three sources:
283 * 1) EEPROM
284 * 2) "initialize" alive notification
285 * 3) stats notifications
287 * EEPROM data consists of:
289 * 1) Regulatory information (max txpower and channel usage flags) is provided
290 * separately for each channel that can possibly supported by 4965.
291 * 40 MHz wide (.11n HT40) channels are listed separately from 20 MHz
292 * (legacy) channels.
294 * See struct il4965_eeprom_channel for format, and struct il4965_eeprom
295 * for locations in EEPROM.
297 * 2) Factory txpower calibration information is provided separately for
298 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
299 * but 5 GHz has several sub-bands.
301 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
303 * See struct il4965_eeprom_calib_info (and the tree of structures
304 * contained within it) for format, and struct il4965_eeprom for
305 * locations in EEPROM.
307 * "Initialization alive" notification (see struct il4965_init_alive_resp)
308 * consists of:
310 * 1) Temperature calculation parameters.
312 * 2) Power supply voltage measurement.
314 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
316 * Statistics notifications deliver:
318 * 1) Current values for temperature param R4.
322 * To calculate a txpower setting for a given desired target txpower, channel,
323 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
324 * support MIMO and transmit diversity), driver must do the following:
326 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
327 * Do not exceed regulatory limit; reduce target txpower if necessary.
329 * If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
330 * 2 transmitters will be used simultaneously; driver must reduce the
331 * regulatory limit by 3 dB (half-power) for each transmitter, so the
332 * combined total output of the 2 transmitters is within regulatory limits.
335 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
336 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
337 * reduce target txpower if necessary.
339 * Backoff values below are in 1/2 dB units (equivalent to steps in
340 * txpower gain tables):
342 * OFDM 6 - 36 MBit: 10 steps (5 dB)
343 * OFDM 48 MBit: 15 steps (7.5 dB)
344 * OFDM 54 MBit: 17 steps (8.5 dB)
345 * OFDM 60 MBit: 20 steps (10 dB)
346 * CCK all rates: 10 steps (5 dB)
348 * Backoff values apply to saturation txpower on a per-transmitter basis;
349 * when using MIMO (2 transmitters), each transmitter uses the same
350 * saturation level provided in EEPROM, and the same backoff values;
351 * no reduction (such as with regulatory txpower limits) is required.
353 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
354 * widths and 40 Mhz (.11n HT40) channel widths; there is no separate
355 * factory measurement for ht40 channels.
357 * The result of this step is the final target txpower. The rest of
358 * the steps figure out the proper settings for the device to achieve
359 * that target txpower.
362 * 3) Determine (EEPROM) calibration sub band for the target channel, by
363 * comparing against first and last channels in each sub band
364 * (see struct il4965_eeprom_calib_subband_info).
367 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
368 * referencing the 2 factory-measured (sample) channels within the sub band.
370 * Interpolation is based on difference between target channel's frequency
371 * and the sample channels' frequencies. Since channel numbers are based
372 * on frequency (5 MHz between each channel number), this is equivalent
373 * to interpolating based on channel number differences.
375 * Note that the sample channels may or may not be the channels at the
376 * edges of the sub band. The target channel may be "outside" of the
377 * span of the sampled channels.
379 * Driver may choose the pair (for 2 Tx chains) of measurements (see
380 * struct il4965_eeprom_calib_ch_info) for which the actual measured
381 * txpower comes closest to the desired txpower. Usually, though,
382 * the middle set of measurements is closest to the regulatory limits,
383 * and is therefore a good choice for all txpower calculations (this
384 * assumes that high accuracy is needed for maximizing legal txpower,
385 * while lower txpower configurations do not need as much accuracy).
387 * Driver should interpolate both members of the chosen measurement pair,
388 * i.e. for both Tx chains (radio transmitters), unless the driver knows
389 * that only one of the chains will be used (e.g. only one tx antenna
390 * connected, but this should be unusual). The rate scaling algorithm
391 * switches antennas to find best performance, so both Tx chains will
392 * be used (although only one at a time) even for non-MIMO transmissions.
394 * Driver should interpolate factory values for temperature, gain table
395 * idx, and actual power. The power amplifier detector values are
396 * not used by the driver.
398 * Sanity check: If the target channel happens to be one of the sample
399 * channels, the results should agree with the sample channel's
400 * measurements!
403 * 5) Find difference between desired txpower and (interpolated)
404 * factory-measured txpower. Using (interpolated) factory gain table idx
405 * (shown elsewhere) as a starting point, adjust this idx lower to
406 * increase txpower, or higher to decrease txpower, until the target
407 * txpower is reached. Each step in the gain table is 1/2 dB.
409 * For example, if factory measured txpower is 16 dBm, and target txpower
410 * is 13 dBm, add 6 steps to the factory gain idx to reduce txpower
411 * by 3 dB.
414 * 6) Find difference between current device temperature and (interpolated)
415 * factory-measured temperature for sub-band. Factory values are in
416 * degrees Celsius. To calculate current temperature, see comments for
417 * "4965 temperature calculation".
419 * If current temperature is higher than factory temperature, driver must
420 * increase gain (lower gain table idx), and vice verse.
422 * Temperature affects gain differently for different channels:
424 * 2.4 GHz all channels: 3.5 degrees per half-dB step
425 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
426 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
428 * NOTE: Temperature can increase rapidly when transmitting, especially
429 * with heavy traffic at high txpowers. Driver should update
430 * temperature calculations often under these conditions to
431 * maintain strong txpower in the face of rising temperature.
434 * 7) Find difference between current power supply voltage indicator
435 * (from "initialize alive") and factory-measured power supply voltage
436 * indicator (EEPROM).
438 * If the current voltage is higher (indicator is lower) than factory
439 * voltage, gain should be reduced (gain table idx increased) by:
441 * (eeprom - current) / 7
443 * If the current voltage is lower (indicator is higher) than factory
444 * voltage, gain should be increased (gain table idx decreased) by:
446 * 2 * (current - eeprom) / 7
448 * If number of idx steps in either direction turns out to be > 2,
449 * something is wrong ... just use 0.
451 * NOTE: Voltage compensation is independent of band/channel.
453 * NOTE: "Initialize" uCode measures current voltage, which is assumed
454 * to be constant after this initial measurement. Voltage
455 * compensation for txpower (number of steps in gain table)
456 * may be calculated once and used until the next uCode bootload.
459 * 8) If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
460 * adjust txpower for each transmitter chain, so txpower is balanced
461 * between the two chains. There are 5 pairs of tx_atten[group][chain]
462 * values in "initialize alive", one pair for each of 5 channel ranges:
464 * Group 0: 5 GHz channel 34-43
465 * Group 1: 5 GHz channel 44-70
466 * Group 2: 5 GHz channel 71-124
467 * Group 3: 5 GHz channel 125-200
468 * Group 4: 2.4 GHz all channels
470 * Add the tx_atten[group][chain] value to the idx for the target chain.
471 * The values are signed, but are in pairs of 0 and a non-negative number,
472 * so as to reduce gain (if necessary) of the "hotter" channel. This
473 * avoids any need to double-check for regulatory compliance after
474 * this step.
477 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
478 * value to the idx:
480 * Hardware rev B: 9 steps (4.5 dB)
481 * Hardware rev C: 5 steps (2.5 dB)
483 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
484 * bits [3:2], 1 = B, 2 = C.
486 * NOTE: This compensation is in addition to any saturation backoff that
487 * might have been applied in an earlier step.
490 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
492 * Limit the adjusted idx to stay within the table!
495 * 11) Read gain table entries for DSP and radio gain, place into appropriate
496 * location(s) in command (struct il4965_txpowertable_cmd).
500 * When MIMO is used (2 transmitters operating simultaneously), driver should
501 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
502 * for the device. That is, use half power for each transmitter, so total
503 * txpower is within regulatory limits.
505 * The value "6" represents number of steps in gain table to reduce power 3 dB.
506 * Each step is 1/2 dB.
508 #define IL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
511 * CCK gain compensation.
513 * When calculating txpowers for CCK, after making sure that the target power
514 * is within regulatory and saturation limits, driver must additionally
515 * back off gain by adding these values to the gain table idx.
517 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
518 * bits [3:2], 1 = B, 2 = C.
520 #define IL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
521 #define IL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
524 * 4965 power supply voltage compensation for txpower
526 #define TX_POWER_IL_VOLTAGE_CODES_PER_03V (7)
529 * Gain tables.
531 * The following tables contain pair of values for setting txpower, i.e.
532 * gain settings for the output of the device's digital signal processor (DSP),
533 * and for the analog gain structure of the transmitter.
535 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
536 * are *relative* steps, not indications of absolute output power. Output
537 * power varies with temperature, voltage, and channel frequency, and also
538 * requires consideration of average power (to satisfy regulatory constraints),
539 * and peak power (to avoid distortion of the output signal).
541 * Each entry contains two values:
542 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
543 * linear value that multiplies the output of the digital signal processor,
544 * before being sent to the analog radio.
545 * 2) Radio gain. This sets the analog gain of the radio Tx path.
546 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
548 * EEPROM contains factory calibration data for txpower. This maps actual
549 * measured txpower levels to gain settings in the "well known" tables
550 * below ("well-known" means here that both factory calibration *and* the
551 * driver work with the same table).
553 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
554 * has an extension (into negative idxes), in case the driver needs to
555 * boost power setting for high device temperatures (higher than would be
556 * present during factory calibration). A 5 Ghz EEPROM idx of "40"
557 * corresponds to the 49th entry in the table used by the driver.
559 #define MIN_TX_GAIN_IDX (0) /* highest gain, lowest idx, 2.4 */
560 #define MIN_TX_GAIN_IDX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
563 * 2.4 GHz gain table
565 * Index Dsp gain Radio gain
566 * 0 110 0x3f (highest gain)
567 * 1 104 0x3f
568 * 2 98 0x3f
569 * 3 110 0x3e
570 * 4 104 0x3e
571 * 5 98 0x3e
572 * 6 110 0x3d
573 * 7 104 0x3d
574 * 8 98 0x3d
575 * 9 110 0x3c
576 * 10 104 0x3c
577 * 11 98 0x3c
578 * 12 110 0x3b
579 * 13 104 0x3b
580 * 14 98 0x3b
581 * 15 110 0x3a
582 * 16 104 0x3a
583 * 17 98 0x3a
584 * 18 110 0x39
585 * 19 104 0x39
586 * 20 98 0x39
587 * 21 110 0x38
588 * 22 104 0x38
589 * 23 98 0x38
590 * 24 110 0x37
591 * 25 104 0x37
592 * 26 98 0x37
593 * 27 110 0x36
594 * 28 104 0x36
595 * 29 98 0x36
596 * 30 110 0x35
597 * 31 104 0x35
598 * 32 98 0x35
599 * 33 110 0x34
600 * 34 104 0x34
601 * 35 98 0x34
602 * 36 110 0x33
603 * 37 104 0x33
604 * 38 98 0x33
605 * 39 110 0x32
606 * 40 104 0x32
607 * 41 98 0x32
608 * 42 110 0x31
609 * 43 104 0x31
610 * 44 98 0x31
611 * 45 110 0x30
612 * 46 104 0x30
613 * 47 98 0x30
614 * 48 110 0x6
615 * 49 104 0x6
616 * 50 98 0x6
617 * 51 110 0x5
618 * 52 104 0x5
619 * 53 98 0x5
620 * 54 110 0x4
621 * 55 104 0x4
622 * 56 98 0x4
623 * 57 110 0x3
624 * 58 104 0x3
625 * 59 98 0x3
626 * 60 110 0x2
627 * 61 104 0x2
628 * 62 98 0x2
629 * 63 110 0x1
630 * 64 104 0x1
631 * 65 98 0x1
632 * 66 110 0x0
633 * 67 104 0x0
634 * 68 98 0x0
635 * 69 97 0
636 * 70 96 0
637 * 71 95 0
638 * 72 94 0
639 * 73 93 0
640 * 74 92 0
641 * 75 91 0
642 * 76 90 0
643 * 77 89 0
644 * 78 88 0
645 * 79 87 0
646 * 80 86 0
647 * 81 85 0
648 * 82 84 0
649 * 83 83 0
650 * 84 82 0
651 * 85 81 0
652 * 86 80 0
653 * 87 79 0
654 * 88 78 0
655 * 89 77 0
656 * 90 76 0
657 * 91 75 0
658 * 92 74 0
659 * 93 73 0
660 * 94 72 0
661 * 95 71 0
662 * 96 70 0
663 * 97 69 0
664 * 98 68 0
668 * 5 GHz gain table
670 * Index Dsp gain Radio gain
671 * -9 123 0x3F (highest gain)
672 * -8 117 0x3F
673 * -7 110 0x3F
674 * -6 104 0x3F
675 * -5 98 0x3F
676 * -4 110 0x3E
677 * -3 104 0x3E
678 * -2 98 0x3E
679 * -1 110 0x3D
680 * 0 104 0x3D
681 * 1 98 0x3D
682 * 2 110 0x3C
683 * 3 104 0x3C
684 * 4 98 0x3C
685 * 5 110 0x3B
686 * 6 104 0x3B
687 * 7 98 0x3B
688 * 8 110 0x3A
689 * 9 104 0x3A
690 * 10 98 0x3A
691 * 11 110 0x39
692 * 12 104 0x39
693 * 13 98 0x39
694 * 14 110 0x38
695 * 15 104 0x38
696 * 16 98 0x38
697 * 17 110 0x37
698 * 18 104 0x37
699 * 19 98 0x37
700 * 20 110 0x36
701 * 21 104 0x36
702 * 22 98 0x36
703 * 23 110 0x35
704 * 24 104 0x35
705 * 25 98 0x35
706 * 26 110 0x34
707 * 27 104 0x34
708 * 28 98 0x34
709 * 29 110 0x33
710 * 30 104 0x33
711 * 31 98 0x33
712 * 32 110 0x32
713 * 33 104 0x32
714 * 34 98 0x32
715 * 35 110 0x31
716 * 36 104 0x31
717 * 37 98 0x31
718 * 38 110 0x30
719 * 39 104 0x30
720 * 40 98 0x30
721 * 41 110 0x25
722 * 42 104 0x25
723 * 43 98 0x25
724 * 44 110 0x24
725 * 45 104 0x24
726 * 46 98 0x24
727 * 47 110 0x23
728 * 48 104 0x23
729 * 49 98 0x23
730 * 50 110 0x22
731 * 51 104 0x18
732 * 52 98 0x18
733 * 53 110 0x17
734 * 54 104 0x17
735 * 55 98 0x17
736 * 56 110 0x16
737 * 57 104 0x16
738 * 58 98 0x16
739 * 59 110 0x15
740 * 60 104 0x15
741 * 61 98 0x15
742 * 62 110 0x14
743 * 63 104 0x14
744 * 64 98 0x14
745 * 65 110 0x13
746 * 66 104 0x13
747 * 67 98 0x13
748 * 68 110 0x12
749 * 69 104 0x08
750 * 70 98 0x08
751 * 71 110 0x07
752 * 72 104 0x07
753 * 73 98 0x07
754 * 74 110 0x06
755 * 75 104 0x06
756 * 76 98 0x06
757 * 77 110 0x05
758 * 78 104 0x05
759 * 79 98 0x05
760 * 80 110 0x04
761 * 81 104 0x04
762 * 82 98 0x04
763 * 83 110 0x03
764 * 84 104 0x03
765 * 85 98 0x03
766 * 86 110 0x02
767 * 87 104 0x02
768 * 88 98 0x02
769 * 89 110 0x01
770 * 90 104 0x01
771 * 91 98 0x01
772 * 92 110 0x00
773 * 93 104 0x00
774 * 94 98 0x00
775 * 95 93 0x00
776 * 96 88 0x00
777 * 97 83 0x00
778 * 98 78 0x00
782 * Sanity checks and default values for EEPROM regulatory levels.
783 * If EEPROM values fall outside MIN/MAX range, use default values.
785 * Regulatory limits refer to the maximum average txpower allowed by
786 * regulatory agencies in the geographies in which the device is meant
787 * to be operated. These limits are SKU-specific (i.e. geography-specific),
788 * and channel-specific; each channel has an individual regulatory limit
789 * listed in the EEPROM.
791 * Units are in half-dBm (i.e. "34" means 17 dBm).
793 #define IL_TX_POWER_DEFAULT_REGULATORY_24 (34)
794 #define IL_TX_POWER_DEFAULT_REGULATORY_52 (34)
795 #define IL_TX_POWER_REGULATORY_MIN (0)
796 #define IL_TX_POWER_REGULATORY_MAX (34)
799 * Sanity checks and default values for EEPROM saturation levels.
800 * If EEPROM values fall outside MIN/MAX range, use default values.
802 * Saturation is the highest level that the output power amplifier can produce
803 * without significant clipping distortion. This is a "peak" power level.
804 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
805 * require differing amounts of backoff, relative to their average power output,
806 * in order to avoid clipping distortion.
808 * Driver must make sure that it is violating neither the saturation limit,
809 * nor the regulatory limit, when calculating Tx power settings for various
810 * rates.
812 * Units are in half-dBm (i.e. "38" means 19 dBm).
814 #define IL_TX_POWER_DEFAULT_SATURATION_24 (38)
815 #define IL_TX_POWER_DEFAULT_SATURATION_52 (38)
816 #define IL_TX_POWER_SATURATION_MIN (20)
817 #define IL_TX_POWER_SATURATION_MAX (50)
820 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
821 * and thermal Txpower calibration.
823 * When calculating txpower, driver must compensate for current device
824 * temperature; higher temperature requires higher gain. Driver must calculate
825 * current temperature (see "4965 temperature calculation"), then compare vs.
826 * factory calibration temperature in EEPROM; if current temperature is higher
827 * than factory temperature, driver must *increase* gain by proportions shown
828 * in table below. If current temperature is lower than factory, driver must
829 * *decrease* gain.
831 * Different frequency ranges require different compensation, as shown below.
833 /* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
834 #define CALIB_IL_TX_ATTEN_GR1_FCH 34
835 #define CALIB_IL_TX_ATTEN_GR1_LCH 43
837 /* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
838 #define CALIB_IL_TX_ATTEN_GR2_FCH 44
839 #define CALIB_IL_TX_ATTEN_GR2_LCH 70
841 /* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
842 #define CALIB_IL_TX_ATTEN_GR3_FCH 71
843 #define CALIB_IL_TX_ATTEN_GR3_LCH 124
845 /* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
846 #define CALIB_IL_TX_ATTEN_GR4_FCH 125
847 #define CALIB_IL_TX_ATTEN_GR4_LCH 200
849 /* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
850 #define CALIB_IL_TX_ATTEN_GR5_FCH 1
851 #define CALIB_IL_TX_ATTEN_GR5_LCH 20
853 enum {
854 CALIB_CH_GROUP_1 = 0,
855 CALIB_CH_GROUP_2 = 1,
856 CALIB_CH_GROUP_3 = 2,
857 CALIB_CH_GROUP_4 = 3,
858 CALIB_CH_GROUP_5 = 4,
859 CALIB_CH_GROUP_MAX
862 /********************* END TXPOWER *****************************************/
865 * Tx/Rx Queues
867 * Most communication between driver and 4965 is via queues of data buffers.
868 * For example, all commands that the driver issues to device's embedded
869 * controller (uCode) are via the command queue (one of the Tx queues). All
870 * uCode command responses/replies/notifications, including Rx frames, are
871 * conveyed from uCode to driver via the Rx queue.
873 * Most support for these queues, including handshake support, resides in
874 * structures in host DRAM, shared between the driver and the device. When
875 * allocating this memory, the driver must make sure that data written by
876 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
877 * cache memory), so DRAM and cache are consistent, and the device can
878 * immediately see changes made by the driver.
880 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
881 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
882 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
884 #define IL49_NUM_FIFOS 7
885 #define IL49_CMD_FIFO_NUM 4
886 #define IL49_NUM_QUEUES 16
887 #define IL49_NUM_AMPDU_QUEUES 8
890 * struct il4965_schedq_bc_tbl
892 * Byte Count table
894 * Each Tx queue uses a byte-count table containing 320 entries:
895 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
896 * duplicate the first 64 entries (to avoid wrap-around within a Tx win;
897 * max Tx win is 64 TFDs).
899 * When driver sets up a new TFD, it must also enter the total byte count
900 * of the frame to be transmitted into the corresponding entry in the byte
901 * count table for the chosen Tx queue. If the TFD idx is 0-63, the driver
902 * must duplicate the byte count entry in corresponding idx 256-319.
904 * padding puts each byte count table on a 1024-byte boundary;
905 * 4965 assumes tables are separated by 1024 bytes.
907 struct il4965_scd_bc_tbl {
908 __le16 tfd_offset[TFD_QUEUE_BC_SIZE];
909 u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
910 } __packed;
912 #define IL4965_RTC_INST_LOWER_BOUND (0x000000)
914 /* RSSI to dBm */
915 #define IL4965_RSSI_OFFSET 44
917 /* PCI registers */
918 #define PCI_CFG_RETRY_TIMEOUT 0x041
920 #define IL4965_DEFAULT_TX_RETRY 15
922 /* EEPROM */
923 #define IL4965_FIRST_AMPDU_QUEUE 10
925 /* Calibration */
926 void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp);
927 void il4965_sensitivity_calibration(struct il_priv *il, void *resp);
928 void il4965_init_sensitivity(struct il_priv *il);
929 void il4965_reset_run_time_calib(struct il_priv *il);
931 /* Debug */
932 #ifdef CONFIG_IWLEGACY_DEBUGFS
933 extern const struct il_debugfs_ops il4965_debugfs_ops;
934 #endif
936 /****************************/
937 /* Flow Handler Definitions */
938 /****************************/
941 * This I/O area is directly read/writable by driver (e.g. Linux uses writel())
942 * Addresses are offsets from device's PCI hardware base address.
944 #define FH49_MEM_LOWER_BOUND (0x1000)
945 #define FH49_MEM_UPPER_BOUND (0x2000)
948 * Keep-Warm (KW) buffer base address.
950 * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the
951 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency
952 * DRAM access when 4965 is Txing or Rxing. The dummy accesses prevent host
953 * from going into a power-savings mode that would cause higher DRAM latency,
954 * and possible data over/under-runs, before all Tx/Rx is complete.
956 * Driver loads FH49_KW_MEM_ADDR_REG with the physical address (bits 35:4)
957 * of the buffer, which must be 4K aligned. Once this is set up, the 4965
958 * automatically invokes keep-warm accesses when normal accesses might not
959 * be sufficient to maintain fast DRAM response.
961 * Bit fields:
962 * 31-0: Keep-warm buffer physical base address [35:4], must be 4K aligned
964 #define FH49_KW_MEM_ADDR_REG (FH49_MEM_LOWER_BOUND + 0x97C)
967 * TFD Circular Buffers Base (CBBC) addresses
969 * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident
970 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs)
971 * (see struct il_tfd_frame). These 16 pointer registers are offset by 0x04
972 * bytes from one another. Each TFD circular buffer in DRAM must be 256-byte
973 * aligned (address bits 0-7 must be 0).
975 * Bit fields in each pointer register:
976 * 27-0: TFD CB physical base address [35:8], must be 256-byte aligned
978 #define FH49_MEM_CBBC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0)
979 #define FH49_MEM_CBBC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xA10)
981 /* Find TFD CB base pointer for given queue (range 0-15). */
982 #define FH49_MEM_CBBC_QUEUE(x) (FH49_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
985 * Rx SRAM Control and Status Registers (RSCSR)
987 * These registers provide handshake between driver and 4965 for the Rx queue
988 * (this queue handles *all* command responses, notifications, Rx data, etc.
989 * sent from 4965 uCode to host driver). Unlike Tx, there is only one Rx
990 * queue, and only one Rx DMA/FIFO channel. Also unlike Tx, which can
991 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer
992 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1
993 * mapping between RBDs and RBs.
995 * Driver must allocate host DRAM memory for the following, and set the
996 * physical address of each into 4965 registers:
998 * 1) Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256
999 * entries (although any power of 2, up to 4096, is selectable by driver).
1000 * Each entry (1 dword) points to a receive buffer (RB) of consistent size
1001 * (typically 4K, although 8K or 16K are also selectable by driver).
1002 * Driver sets up RB size and number of RBDs in the CB via Rx config
1003 * register FH49_MEM_RCSR_CHNL0_CONFIG_REG.
1005 * Bit fields within one RBD:
1006 * 27-0: Receive Buffer physical address bits [35:8], 256-byte aligned
1008 * Driver sets physical address [35:8] of base of RBD circular buffer
1009 * into FH49_RSCSR_CHNL0_RBDCB_BASE_REG [27:0].
1011 * 2) Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers
1012 * (RBs) have been filled, via a "write pointer", actually the idx of
1013 * the RB's corresponding RBD within the circular buffer. Driver sets
1014 * physical address [35:4] into FH49_RSCSR_CHNL0_STTS_WPTR_REG [31:0].
1016 * Bit fields in lower dword of Rx status buffer (upper dword not used
1017 * by driver; see struct il4965_shared, val0):
1018 * 31-12: Not used by driver
1019 * 11- 0: Index of last filled Rx buffer descriptor
1020 * (4965 writes, driver reads this value)
1022 * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must
1023 * enter pointers to these RBs into contiguous RBD circular buffer entries,
1024 * and update the 4965's "write" idx register,
1025 * FH49_RSCSR_CHNL0_RBDCB_WPTR_REG.
1027 * This "write" idx corresponds to the *next* RBD that the driver will make
1028 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within
1029 * the circular buffer. This value should initially be 0 (before preparing any
1030 * RBs), should be 8 after preparing the first 8 RBs (for example), and must
1031 * wrap back to 0 at the end of the circular buffer (but don't wrap before
1032 * "read" idx has advanced past 1! See below).
1033 * NOTE: 4965 EXPECTS THE WRITE IDX TO BE INCREMENTED IN MULTIPLES OF 8.
1035 * As the 4965 fills RBs (referenced from contiguous RBDs within the circular
1036 * buffer), it updates the Rx status buffer in host DRAM, 2) described above,
1037 * to tell the driver the idx of the latest filled RBD. The driver must
1038 * read this "read" idx from DRAM after receiving an Rx interrupt from 4965.
1040 * The driver must also internally keep track of a third idx, which is the
1041 * next RBD to process. When receiving an Rx interrupt, driver should process
1042 * all filled but unprocessed RBs up to, but not including, the RB
1043 * corresponding to the "read" idx. For example, if "read" idx becomes "1",
1044 * driver may process the RB pointed to by RBD 0. Depending on volume of
1045 * traffic, there may be many RBs to process.
1047 * If read idx == write idx, 4965 thinks there is no room to put new data.
1048 * Due to this, the maximum number of filled RBs is 255, instead of 256. To
1049 * be safe, make sure that there is a gap of at least 2 RBDs between "write"
1050 * and "read" idxes; that is, make sure that there are no more than 254
1051 * buffers waiting to be filled.
1053 #define FH49_MEM_RSCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xBC0)
1054 #define FH49_MEM_RSCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00)
1055 #define FH49_MEM_RSCSR_CHNL0 (FH49_MEM_RSCSR_LOWER_BOUND)
1058 * Physical base address of 8-byte Rx Status buffer.
1059 * Bit fields:
1060 * 31-0: Rx status buffer physical base address [35:4], must 16-byte aligned.
1062 #define FH49_RSCSR_CHNL0_STTS_WPTR_REG (FH49_MEM_RSCSR_CHNL0)
1065 * Physical base address of Rx Buffer Descriptor Circular Buffer.
1066 * Bit fields:
1067 * 27-0: RBD CD physical base address [35:8], must be 256-byte aligned.
1069 #define FH49_RSCSR_CHNL0_RBDCB_BASE_REG (FH49_MEM_RSCSR_CHNL0 + 0x004)
1072 * Rx write pointer (idx, really!).
1073 * Bit fields:
1074 * 11-0: Index of driver's most recent prepared-to-be-filled RBD, + 1.
1075 * NOTE: For 256-entry circular buffer, use only bits [7:0].
1077 #define FH49_RSCSR_CHNL0_RBDCB_WPTR_REG (FH49_MEM_RSCSR_CHNL0 + 0x008)
1078 #define FH49_RSCSR_CHNL0_WPTR (FH49_RSCSR_CHNL0_RBDCB_WPTR_REG)
1081 * Rx Config/Status Registers (RCSR)
1082 * Rx Config Reg for channel 0 (only channel used)
1084 * Driver must initialize FH49_MEM_RCSR_CHNL0_CONFIG_REG as follows for
1085 * normal operation (see bit fields).
1087 * Clearing FH49_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA.
1088 * Driver should poll FH49_MEM_RSSR_RX_STATUS_REG for
1089 * FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing.
1091 * Bit fields:
1092 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1093 * '10' operate normally
1094 * 29-24: reserved
1095 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal),
1096 * min "5" for 32 RBDs, max "12" for 4096 RBDs.
1097 * 19-18: reserved
1098 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K,
1099 * '10' 12K, '11' 16K.
1100 * 15-14: reserved
1101 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation)
1102 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec)
1103 * typical value 0x10 (about 1/2 msec)
1104 * 3- 0: reserved
1106 #define FH49_MEM_RCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC00)
1107 #define FH49_MEM_RCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xCC0)
1108 #define FH49_MEM_RCSR_CHNL0 (FH49_MEM_RCSR_LOWER_BOUND)
1110 #define FH49_MEM_RCSR_CHNL0_CONFIG_REG (FH49_MEM_RCSR_CHNL0)
1112 #define FH49_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0) /* bits 4-11 */
1113 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK (0x00001000) /* bits 12 */
1114 #define FH49_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000) /* bit 15 */
1115 #define FH49_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK (0x00030000) /* bits 16-17 */
1116 #define FH49_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000) /* bits 20-23 */
1117 #define FH49_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000) /* bits 30-31 */
1119 #define FH49_RCSR_RX_CONFIG_RBDCB_SIZE_POS (20)
1120 #define FH49_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS (4)
1121 #define RX_RB_TIMEOUT (0x10)
1123 #define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL (0x00000000)
1124 #define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL (0x40000000)
1125 #define FH49_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL (0x80000000)
1127 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K (0x00000000)
1128 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K (0x00010000)
1129 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K (0x00020000)
1130 #define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K (0x00030000)
1132 #define FH49_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY (0x00000004)
1133 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL (0x00000000)
1134 #define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL (0x00001000)
1137 * Rx Shared Status Registers (RSSR)
1139 * After stopping Rx DMA channel (writing 0 to
1140 * FH49_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll
1141 * FH49_MEM_RSSR_RX_STATUS_REG until Rx channel is idle.
1143 * Bit fields:
1144 * 24: 1 = Channel 0 is idle
1146 * FH49_MEM_RSSR_SHARED_CTRL_REG and FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV
1147 * contain default values that should not be altered by the driver.
1149 #define FH49_MEM_RSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xC40)
1150 #define FH49_MEM_RSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00)
1152 #define FH49_MEM_RSSR_SHARED_CTRL_REG (FH49_MEM_RSSR_LOWER_BOUND)
1153 #define FH49_MEM_RSSR_RX_STATUS_REG (FH49_MEM_RSSR_LOWER_BOUND + 0x004)
1154 #define FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\
1155 (FH49_MEM_RSSR_LOWER_BOUND + 0x008)
1157 #define FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (0x01000000)
1159 #define FH49_MEM_TFDIB_REG1_ADDR_BITSHIFT 28
1161 /* TFDB Area - TFDs buffer table */
1162 #define FH49_MEM_TFDIB_DRAM_ADDR_LSB_MSK (0xFFFFFFFF)
1163 #define FH49_TFDIB_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x900)
1164 #define FH49_TFDIB_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x958)
1165 #define FH49_TFDIB_CTRL0_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl))
1166 #define FH49_TFDIB_CTRL1_REG(_chnl) (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4)
1169 * Transmit DMA Channel Control/Status Registers (TCSR)
1171 * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels
1172 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM,
1173 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes.
1175 * To use a Tx DMA channel, driver must initialize its
1176 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl) with:
1178 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1179 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL
1181 * All other bits should be 0.
1183 * Bit fields:
1184 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1185 * '10' operate normally
1186 * 29- 4: Reserved, set to "0"
1187 * 3: Enable internal DMA requests (1, normal operation), disable (0)
1188 * 2- 0: Reserved, set to "0"
1190 #define FH49_TCSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xD00)
1191 #define FH49_TCSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xE60)
1193 /* Find Control/Status reg for given Tx DMA/FIFO channel */
1194 #define FH49_TCSR_CHNL_NUM (7)
1195 #define FH50_TCSR_CHNL_NUM (8)
1197 /* TCSR: tx_config register values */
1198 #define FH49_TCSR_CHNL_TX_CONFIG_REG(_chnl) \
1199 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl))
1200 #define FH49_TCSR_CHNL_TX_CREDIT_REG(_chnl) \
1201 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4)
1202 #define FH49_TCSR_CHNL_TX_BUF_STS_REG(_chnl) \
1203 (FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8)
1205 #define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF (0x00000000)
1206 #define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV (0x00000001)
1208 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE (0x00000000)
1209 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE (0x00000008)
1211 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT (0x00000000)
1212 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD (0x00100000)
1213 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD (0x00200000)
1215 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT (0x00000000)
1216 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD (0x00400000)
1217 #define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD (0x00800000)
1219 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE (0x00000000)
1220 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF (0x40000000)
1221 #define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE (0x80000000)
1223 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY (0x00000000)
1224 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT (0x00002000)
1225 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID (0x00000003)
1227 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM (20)
1228 #define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX (12)
1231 * Tx Shared Status Registers (TSSR)
1233 * After stopping Tx DMA channel (writing 0 to
1234 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll
1235 * FH49_TSSR_TX_STATUS_REG until selected Tx channel is idle
1236 * (channel's buffers empty | no pending requests).
1238 * Bit fields:
1239 * 31-24: 1 = Channel buffers empty (channel 7:0)
1240 * 23-16: 1 = No pending requests (channel 7:0)
1242 #define FH49_TSSR_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0xEA0)
1243 #define FH49_TSSR_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0xEC0)
1245 #define FH49_TSSR_TX_STATUS_REG (FH49_TSSR_LOWER_BOUND + 0x010)
1248 * Bit fields for TSSR(Tx Shared Status & Control) error status register:
1249 * 31: Indicates an address error when accessed to internal memory
1250 * uCode/driver must write "1" in order to clear this flag
1251 * 30: Indicates that Host did not send the expected number of dwords to FH
1252 * uCode/driver must write "1" in order to clear this flag
1253 * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA
1254 * command was received from the scheduler while the TRB was already full
1255 * with previous command
1256 * uCode/driver must write "1" in order to clear this flag
1257 * 7-0: Each status bit indicates a channel's TxCredit error. When an error
1258 * bit is set, it indicates that the FH has received a full indication
1259 * from the RTC TxFIFO and the current value of the TxCredit counter was
1260 * not equal to zero. This mean that the credit mechanism was not
1261 * synchronized to the TxFIFO status
1262 * uCode/driver must write "1" in order to clear this flag
1264 #define FH49_TSSR_TX_ERROR_REG (FH49_TSSR_LOWER_BOUND + 0x018)
1266 #define FH49_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16)
1268 /* Tx service channels */
1269 #define FH49_SRVC_CHNL (9)
1270 #define FH49_SRVC_LOWER_BOUND (FH49_MEM_LOWER_BOUND + 0x9C8)
1271 #define FH49_SRVC_UPPER_BOUND (FH49_MEM_LOWER_BOUND + 0x9D0)
1272 #define FH49_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \
1273 (FH49_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4)
1275 #define FH49_TX_CHICKEN_BITS_REG (FH49_MEM_LOWER_BOUND + 0xE98)
1276 /* Instruct FH to increment the retry count of a packet when
1277 * it is brought from the memory to TX-FIFO
1279 #define FH49_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN (0x00000002)
1281 /* Keep Warm Size */
1282 #define IL_KW_SIZE 0x1000 /* 4k */
1284 #endif /* __il_4965_h__ */