1 /******************************************************************************
3 * Copyright(c) 2003 - 2013 Intel Corporation. All rights reserved.
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
36 #include "iwl-op-mode.h"
38 /******************************************************************************
42 ******************************************************************************/
45 * Rx theory of operation
47 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48 * each of which point to Receive Buffers to be filled by the NIC. These get
49 * used not only for Rx frames, but for any command response or notification
50 * from the NIC. The driver and NIC manage the Rx buffers by means
51 * of indexes into the circular buffer.
54 * The host/firmware share two index registers for managing the Rx buffers.
56 * The READ index maps to the first position that the firmware may be writing
57 * to -- the driver can read up to (but not including) this position and get
59 * The READ index is managed by the firmware once the card is enabled.
61 * The WRITE index maps to the last position the driver has read from -- the
62 * position preceding WRITE is the last slot the firmware can place a packet.
64 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * During initialization, the host sets up the READ queue position to the first
68 * INDEX position, and WRITE to the last (READ - 1 wrapped)
70 * When the firmware places a packet in a buffer, it will advance the READ index
71 * and fire the RX interrupt. The driver can then query the READ index and
72 * process as many packets as possible, moving the WRITE index forward as it
73 * resets the Rx queue buffers with new memory.
75 * The management in the driver is as follows:
76 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
77 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
78 * to replenish the iwl->rxq->rx_free.
79 * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
80 * iwl->rxq is replenished and the READ INDEX is updated (updating the
81 * 'processed' and 'read' driver indexes as well)
82 * + A received packet is processed and handed to the kernel network stack,
83 * detached from the iwl->rxq. The driver 'processed' index is updated.
84 * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
85 * rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
86 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
87 * If there were enough free buffers and RX_STALLED is set it is cleared.
92 * iwl_rxq_alloc() Allocates rx_free
93 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
94 * iwl_pcie_rxq_restock
95 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
96 * queue, updates firmware pointers, and updates
97 * the WRITE index. If insufficient rx_free buffers
98 * are available, schedules iwl_pcie_rx_replenish
100 * -- enable interrupts --
101 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
102 * READ INDEX, detaching the SKB from the pool.
103 * Moves the packet buffer from queue to rx_used.
104 * Calls iwl_pcie_rxq_restock to refill any empty
111 * iwl_rxq_space - Return number of free slots available in queue.
113 static int iwl_rxq_space(const struct iwl_rxq
*rxq
)
115 int s
= rxq
->read
- rxq
->write
;
119 /* keep some buffer to not confuse full and empty queue */
127 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
129 static inline __le32
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr
)
131 return cpu_to_le32((u32
)(dma_addr
>> 8));
135 * iwl_pcie_rx_stop - stops the Rx DMA
137 int iwl_pcie_rx_stop(struct iwl_trans
*trans
)
139 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
140 return iwl_poll_direct_bit(trans
, FH_MEM_RSSR_RX_STATUS_REG
,
141 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE
, 1000);
145 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
147 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans
*trans
,
153 spin_lock_irqsave(&rxq
->lock
, flags
);
155 if (rxq
->need_update
== 0)
158 if (trans
->cfg
->base_params
->shadow_reg_enable
) {
159 /* shadow register enabled */
160 /* Device expects a multiple of 8 */
161 rxq
->write_actual
= (rxq
->write
& ~0x7);
162 iwl_write32(trans
, FH_RSCSR_CHNL0_WPTR
, rxq
->write_actual
);
164 struct iwl_trans_pcie
*trans_pcie
=
165 IWL_TRANS_GET_PCIE_TRANS(trans
);
167 /* If power-saving is in use, make sure device is awake */
168 if (test_bit(STATUS_TPOWER_PMI
, &trans_pcie
->status
)) {
169 reg
= iwl_read32(trans
, CSR_UCODE_DRV_GP1
);
171 if (reg
& CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP
) {
172 IWL_DEBUG_INFO(trans
,
173 "Rx queue requesting wakeup,"
174 " GP1 = 0x%x\n", reg
);
175 iwl_set_bit(trans
, CSR_GP_CNTRL
,
176 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ
);
180 rxq
->write_actual
= (rxq
->write
& ~0x7);
181 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_WPTR
,
184 /* Else device is assumed to be awake */
186 /* Device expects a multiple of 8 */
187 rxq
->write_actual
= (rxq
->write
& ~0x7);
188 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_WPTR
,
192 rxq
->need_update
= 0;
195 spin_unlock_irqrestore(&rxq
->lock
, flags
);
199 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
201 * If there are slots in the RX queue that need to be restocked,
202 * and we have free pre-allocated buffers, fill the ranks as much
203 * as we can, pulling from rx_free.
205 * This moves the 'write' index forward to catch up with 'processed', and
206 * also updates the memory address in the firmware to reference the new
209 static void iwl_pcie_rxq_restock(struct iwl_trans
*trans
)
211 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
212 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
213 struct iwl_rx_mem_buffer
*rxb
;
217 * If the device isn't enabled - not need to try to add buffers...
218 * This can happen when we stop the device and still have an interrupt
219 * pending. We stop the APM before we sync the interrupts because we
220 * have to (see comment there). On the other hand, since the APM is
221 * stopped, we cannot access the HW (in particular not prph).
222 * So don't try to restock if the APM has been already stopped.
224 if (!test_bit(STATUS_DEVICE_ENABLED
, &trans_pcie
->status
))
227 spin_lock_irqsave(&rxq
->lock
, flags
);
228 while ((iwl_rxq_space(rxq
) > 0) && (rxq
->free_count
)) {
229 /* The overwritten rxb must be a used one */
230 rxb
= rxq
->queue
[rxq
->write
];
231 BUG_ON(rxb
&& rxb
->page
);
233 /* Get next free Rx buffer, remove from free list */
234 rxb
= list_first_entry(&rxq
->rx_free
, struct iwl_rx_mem_buffer
,
236 list_del(&rxb
->list
);
238 /* Point to Rx buffer via next RBD in circular buffer */
239 rxq
->bd
[rxq
->write
] = iwl_pcie_dma_addr2rbd_ptr(rxb
->page_dma
);
240 rxq
->queue
[rxq
->write
] = rxb
;
241 rxq
->write
= (rxq
->write
+ 1) & RX_QUEUE_MASK
;
244 spin_unlock_irqrestore(&rxq
->lock
, flags
);
245 /* If the pre-allocated buffer pool is dropping low, schedule to
247 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
248 schedule_work(&trans_pcie
->rx_replenish
);
250 /* If we've added more space for the firmware to place data, tell it.
251 * Increment device's write pointer in multiples of 8. */
252 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
253 spin_lock_irqsave(&rxq
->lock
, flags
);
254 rxq
->need_update
= 1;
255 spin_unlock_irqrestore(&rxq
->lock
, flags
);
256 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
261 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
263 * A used RBD is an Rx buffer that has been given to the stack. To use it again
264 * a page must be allocated and the RBD must point to the page. This function
265 * doesn't change the HW pointer but handles the list of pages that is used by
266 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
269 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans
*trans
, gfp_t priority
)
271 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
272 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
273 struct iwl_rx_mem_buffer
*rxb
;
276 gfp_t gfp_mask
= priority
;
279 spin_lock_irqsave(&rxq
->lock
, flags
);
280 if (list_empty(&rxq
->rx_used
)) {
281 spin_unlock_irqrestore(&rxq
->lock
, flags
);
284 spin_unlock_irqrestore(&rxq
->lock
, flags
);
286 if (rxq
->free_count
> RX_LOW_WATERMARK
)
287 gfp_mask
|= __GFP_NOWARN
;
289 if (trans_pcie
->rx_page_order
> 0)
290 gfp_mask
|= __GFP_COMP
;
292 /* Alloc a new receive buffer */
293 page
= alloc_pages(gfp_mask
, trans_pcie
->rx_page_order
);
296 IWL_DEBUG_INFO(trans
, "alloc_pages failed, "
298 trans_pcie
->rx_page_order
);
300 if ((rxq
->free_count
<= RX_LOW_WATERMARK
) &&
302 IWL_CRIT(trans
, "Failed to alloc_pages with %s."
303 "Only %u free buffers remaining.\n",
304 priority
== GFP_ATOMIC
?
305 "GFP_ATOMIC" : "GFP_KERNEL",
307 /* We don't reschedule replenish work here -- we will
308 * call the restock method and if it still needs
309 * more buffers it will schedule replenish */
313 spin_lock_irqsave(&rxq
->lock
, flags
);
315 if (list_empty(&rxq
->rx_used
)) {
316 spin_unlock_irqrestore(&rxq
->lock
, flags
);
317 __free_pages(page
, trans_pcie
->rx_page_order
);
320 rxb
= list_first_entry(&rxq
->rx_used
, struct iwl_rx_mem_buffer
,
322 list_del(&rxb
->list
);
323 spin_unlock_irqrestore(&rxq
->lock
, flags
);
327 /* Get physical address of the RB */
329 dma_map_page(trans
->dev
, page
, 0,
330 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
332 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
334 spin_lock_irqsave(&rxq
->lock
, flags
);
335 list_add(&rxb
->list
, &rxq
->rx_used
);
336 spin_unlock_irqrestore(&rxq
->lock
, flags
);
337 __free_pages(page
, trans_pcie
->rx_page_order
);
340 /* dma address must be no more than 36 bits */
341 BUG_ON(rxb
->page_dma
& ~DMA_BIT_MASK(36));
342 /* and also 256 byte aligned! */
343 BUG_ON(rxb
->page_dma
& DMA_BIT_MASK(8));
345 spin_lock_irqsave(&rxq
->lock
, flags
);
347 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
350 spin_unlock_irqrestore(&rxq
->lock
, flags
);
354 static void iwl_pcie_rxq_free_rbs(struct iwl_trans
*trans
)
356 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
357 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
360 lockdep_assert_held(&rxq
->lock
);
362 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++) {
363 if (!rxq
->pool
[i
].page
)
365 dma_unmap_page(trans
->dev
, rxq
->pool
[i
].page_dma
,
366 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
368 __free_pages(rxq
->pool
[i
].page
, trans_pcie
->rx_page_order
);
369 rxq
->pool
[i
].page
= NULL
;
374 * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
376 * When moving to rx_free an page is allocated for the slot.
378 * Also restock the Rx queue via iwl_pcie_rxq_restock.
379 * This is called as a scheduled work item (except for during initialization)
381 static void iwl_pcie_rx_replenish(struct iwl_trans
*trans
)
383 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
386 iwl_pcie_rxq_alloc_rbs(trans
, GFP_KERNEL
);
388 spin_lock_irqsave(&trans_pcie
->irq_lock
, flags
);
389 iwl_pcie_rxq_restock(trans
);
390 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
393 static void iwl_pcie_rx_replenish_now(struct iwl_trans
*trans
)
395 iwl_pcie_rxq_alloc_rbs(trans
, GFP_ATOMIC
);
397 iwl_pcie_rxq_restock(trans
);
400 static void iwl_pcie_rx_replenish_work(struct work_struct
*data
)
402 struct iwl_trans_pcie
*trans_pcie
=
403 container_of(data
, struct iwl_trans_pcie
, rx_replenish
);
405 iwl_pcie_rx_replenish(trans_pcie
->trans
);
408 static int iwl_pcie_rx_alloc(struct iwl_trans
*trans
)
410 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
411 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
412 struct device
*dev
= trans
->dev
;
414 memset(&trans_pcie
->rxq
, 0, sizeof(trans_pcie
->rxq
));
416 spin_lock_init(&rxq
->lock
);
418 if (WARN_ON(rxq
->bd
|| rxq
->rb_stts
))
421 /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
422 rxq
->bd
= dma_zalloc_coherent(dev
, sizeof(__le32
) * RX_QUEUE_SIZE
,
423 &rxq
->bd_dma
, GFP_KERNEL
);
427 /*Allocate the driver's pointer to receive buffer status */
428 rxq
->rb_stts
= dma_zalloc_coherent(dev
, sizeof(*rxq
->rb_stts
),
429 &rxq
->rb_stts_dma
, GFP_KERNEL
);
436 dma_free_coherent(dev
, sizeof(__le32
) * RX_QUEUE_SIZE
,
437 rxq
->bd
, rxq
->bd_dma
);
444 static void iwl_pcie_rx_hw_init(struct iwl_trans
*trans
, struct iwl_rxq
*rxq
)
446 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
448 const u32 rfdnlog
= RX_QUEUE_SIZE_LOG
; /* 256 RBDs */
450 if (trans_pcie
->rx_buf_size_8k
)
451 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K
;
453 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K
;
456 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
457 /* reset and flush pointers */
458 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_RBDCB_WPTR
, 0);
459 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ
, 0);
460 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_RDPTR
, 0);
462 /* Reset driver's Rx queue write index */
463 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_RBDCB_WPTR_REG
, 0);
465 /* Tell device where to find RBD circular buffer in DRAM */
466 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_RBDCB_BASE_REG
,
467 (u32
)(rxq
->bd_dma
>> 8));
469 /* Tell device where in DRAM to update its Rx status */
470 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_STTS_WPTR_REG
,
471 rxq
->rb_stts_dma
>> 4);
474 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
475 * the credit mechanism in 5000 HW RX FIFO
476 * Direct rx interrupts to hosts
477 * Rx buffer size 4 or 8k
481 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
,
482 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL
|
483 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY
|
484 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL
|
486 (RX_RB_TIMEOUT
<< FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS
)|
487 (rfdnlog
<< FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS
));
489 /* Set interrupt coalescing timer to default (2048 usecs) */
490 iwl_write8(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_TIMEOUT_DEF
);
493 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq
*rxq
)
497 lockdep_assert_held(&rxq
->lock
);
499 INIT_LIST_HEAD(&rxq
->rx_free
);
500 INIT_LIST_HEAD(&rxq
->rx_used
);
503 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++)
504 list_add(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
507 int iwl_pcie_rx_init(struct iwl_trans
*trans
)
509 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
510 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
515 err
= iwl_pcie_rx_alloc(trans
);
520 spin_lock_irqsave(&rxq
->lock
, flags
);
522 INIT_WORK(&trans_pcie
->rx_replenish
, iwl_pcie_rx_replenish_work
);
524 /* free all first - we might be reconfigured for a different size */
525 iwl_pcie_rxq_free_rbs(trans
);
526 iwl_pcie_rx_init_rxb_lists(rxq
);
528 for (i
= 0; i
< RX_QUEUE_SIZE
; i
++)
529 rxq
->queue
[i
] = NULL
;
531 /* Set us so that we have processed and used all buffers, but have
532 * not restocked the Rx queue with fresh buffers */
533 rxq
->read
= rxq
->write
= 0;
534 rxq
->write_actual
= 0;
535 memset(rxq
->rb_stts
, 0, sizeof(*rxq
->rb_stts
));
536 spin_unlock_irqrestore(&rxq
->lock
, flags
);
538 iwl_pcie_rx_replenish(trans
);
540 iwl_pcie_rx_hw_init(trans
, rxq
);
542 spin_lock_irqsave(&trans_pcie
->irq_lock
, flags
);
543 rxq
->need_update
= 1;
544 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
545 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
550 void iwl_pcie_rx_free(struct iwl_trans
*trans
)
552 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
553 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
556 /*if rxq->bd is NULL, it means that nothing has been allocated,
559 IWL_DEBUG_INFO(trans
, "Free NULL rx context\n");
563 cancel_work_sync(&trans_pcie
->rx_replenish
);
565 spin_lock_irqsave(&rxq
->lock
, flags
);
566 iwl_pcie_rxq_free_rbs(trans
);
567 spin_unlock_irqrestore(&rxq
->lock
, flags
);
569 dma_free_coherent(trans
->dev
, sizeof(__le32
) * RX_QUEUE_SIZE
,
570 rxq
->bd
, rxq
->bd_dma
);
575 dma_free_coherent(trans
->dev
,
576 sizeof(struct iwl_rb_status
),
577 rxq
->rb_stts
, rxq
->rb_stts_dma
);
579 IWL_DEBUG_INFO(trans
, "Free rxq->rb_stts which is NULL\n");
580 rxq
->rb_stts_dma
= 0;
584 static void iwl_pcie_rx_handle_rb(struct iwl_trans
*trans
,
585 struct iwl_rx_mem_buffer
*rxb
)
587 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
588 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
589 struct iwl_txq
*txq
= &trans_pcie
->txq
[trans_pcie
->cmd_queue
];
591 bool page_stolen
= false;
592 int max_len
= PAGE_SIZE
<< trans_pcie
->rx_page_order
;
598 dma_unmap_page(trans
->dev
, rxb
->page_dma
, max_len
, DMA_FROM_DEVICE
);
600 while (offset
+ sizeof(u32
) + sizeof(struct iwl_cmd_header
) < max_len
) {
601 struct iwl_rx_packet
*pkt
;
602 struct iwl_device_cmd
*cmd
;
605 int index
, cmd_index
, err
, len
;
606 struct iwl_rx_cmd_buffer rxcb
= {
608 ._rx_page_order
= trans_pcie
->rx_page_order
,
610 ._page_stolen
= false,
614 pkt
= rxb_addr(&rxcb
);
616 if (pkt
->len_n_flags
== cpu_to_le32(FH_RSCSR_FRAME_INVALID
))
619 IWL_DEBUG_RX(trans
, "cmd at offset %d: %s (0x%.2x)\n",
620 rxcb
._offset
, get_cmd_string(trans_pcie
, pkt
->hdr
.cmd
),
623 len
= le32_to_cpu(pkt
->len_n_flags
) & FH_RSCSR_FRAME_SIZE_MSK
;
624 len
+= sizeof(u32
); /* account for status word */
625 trace_iwlwifi_dev_rx(trans
->dev
, trans
, pkt
, len
);
626 trace_iwlwifi_dev_rx_data(trans
->dev
, trans
, pkt
, len
);
628 /* Reclaim a command buffer only if this packet is a response
629 * to a (driver-originated) command.
630 * If the packet (e.g. Rx frame) originated from uCode,
631 * there is no command buffer to reclaim.
632 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
633 * but apparently a few don't get set; catch them here. */
634 reclaim
= !(pkt
->hdr
.sequence
& SEQ_RX_FRAME
);
638 for (i
= 0; i
< trans_pcie
->n_no_reclaim_cmds
; i
++) {
639 if (trans_pcie
->no_reclaim_cmds
[i
] ==
647 sequence
= le16_to_cpu(pkt
->hdr
.sequence
);
648 index
= SEQ_TO_INDEX(sequence
);
649 cmd_index
= get_cmd_index(&txq
->q
, index
);
652 cmd
= txq
->entries
[cmd_index
].cmd
;
656 err
= iwl_op_mode_rx(trans
->op_mode
, &rxcb
, cmd
);
659 kfree(txq
->entries
[cmd_index
].free_buf
);
660 txq
->entries
[cmd_index
].free_buf
= NULL
;
664 * After here, we should always check rxcb._page_stolen,
665 * if it is true then one of the handlers took the page.
669 /* Invoke any callbacks, transfer the buffer to caller,
670 * and fire off the (possibly) blocking
671 * iwl_trans_send_cmd()
672 * as we reclaim the driver command queue */
673 if (!rxcb
._page_stolen
)
674 iwl_pcie_hcmd_complete(trans
, &rxcb
, err
);
676 IWL_WARN(trans
, "Claim null rxb?\n");
679 page_stolen
|= rxcb
._page_stolen
;
680 offset
+= ALIGN(len
, FH_RSCSR_FRAME_ALIGN
);
683 /* page was stolen from us -- free our reference */
685 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
689 /* Reuse the page if possible. For notification packets and
690 * SKBs that fail to Rx correctly, add them back into the
691 * rx_free list for reuse later. */
692 spin_lock_irqsave(&rxq
->lock
, flags
);
693 if (rxb
->page
!= NULL
) {
695 dma_map_page(trans
->dev
, rxb
->page
, 0,
696 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
698 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
700 * free the page(s) as well to not break
701 * the invariant that the items on the used
702 * list have no page(s)
704 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
706 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
708 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
712 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
713 spin_unlock_irqrestore(&rxq
->lock
, flags
);
717 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
719 static void iwl_pcie_rx_handle(struct iwl_trans
*trans
)
721 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
722 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
728 /* uCode's read index (stored in shared DRAM) indicates the last Rx
729 * buffer that the driver may process (last buffer filled by ucode). */
730 r
= le16_to_cpu(ACCESS_ONCE(rxq
->rb_stts
->closed_rb_num
)) & 0x0FFF;
733 /* Rx interrupt, but nothing sent from uCode */
735 IWL_DEBUG_RX(trans
, "HW = SW = %d\n", r
);
737 /* calculate total frames need to be restock after handling RX */
738 total_empty
= r
- rxq
->write_actual
;
740 total_empty
+= RX_QUEUE_SIZE
;
742 if (total_empty
> (RX_QUEUE_SIZE
/ 2))
746 struct iwl_rx_mem_buffer
*rxb
;
749 rxq
->queue
[i
] = NULL
;
751 IWL_DEBUG_RX(trans
, "rxbuf: HW = %d, SW = %d (%p)\n",
753 iwl_pcie_rx_handle_rb(trans
, rxb
);
755 i
= (i
+ 1) & RX_QUEUE_MASK
;
756 /* If there are a lot of unused frames,
757 * restock the Rx queue so ucode wont assert. */
762 iwl_pcie_rx_replenish_now(trans
);
768 /* Backtrack one entry */
771 iwl_pcie_rx_replenish_now(trans
);
773 iwl_pcie_rxq_restock(trans
);
777 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
779 static void iwl_pcie_irq_handle_error(struct iwl_trans
*trans
)
781 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
783 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
784 if (trans
->cfg
->internal_wimax_coex
&&
785 (!(iwl_read_prph(trans
, APMG_CLK_CTRL_REG
) &
786 APMS_CLK_VAL_MRB_FUNC_MODE
) ||
787 (iwl_read_prph(trans
, APMG_PS_CTRL_REG
) &
788 APMG_PS_CTRL_VAL_RESET_REQ
))) {
789 clear_bit(STATUS_HCMD_ACTIVE
, &trans_pcie
->status
);
790 iwl_op_mode_wimax_active(trans
->op_mode
);
791 wake_up(&trans_pcie
->wait_command_queue
);
795 iwl_pcie_dump_csr(trans
);
796 iwl_pcie_dump_fh(trans
, NULL
);
798 set_bit(STATUS_FW_ERROR
, &trans_pcie
->status
);
799 clear_bit(STATUS_HCMD_ACTIVE
, &trans_pcie
->status
);
800 wake_up(&trans_pcie
->wait_command_queue
);
803 iwl_op_mode_nic_error(trans
->op_mode
);
807 irqreturn_t
iwl_pcie_irq_handler(int irq
, void *dev_id
)
809 struct iwl_trans
*trans
= dev_id
;
810 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
811 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
817 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
819 spin_lock_irqsave(&trans_pcie
->irq_lock
, flags
);
821 /* Ack/clear/reset pending uCode interrupts.
822 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
824 /* There is a hardware bug in the interrupt mask function that some
825 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
826 * they are disabled in the CSR_INT_MASK register. Furthermore the
827 * ICT interrupt handling mechanism has another bug that might cause
828 * these unmasked interrupts fail to be detected. We workaround the
829 * hardware bugs here by ACKing all the possible interrupts so that
830 * interrupt coalescing can still be achieved.
832 iwl_write32(trans
, CSR_INT
,
833 trans_pcie
->inta
| ~trans_pcie
->inta_mask
);
835 inta
= trans_pcie
->inta
;
837 if (iwl_have_debug_level(IWL_DL_ISR
))
838 IWL_DEBUG_ISR(trans
, "inta 0x%08x, enabled 0x%08x\n",
839 inta
, iwl_read32(trans
, CSR_INT_MASK
));
841 /* saved interrupt in inta variable now we can reset trans_pcie->inta */
842 trans_pcie
->inta
= 0;
844 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
846 /* Now service all interrupt bits discovered above. */
847 if (inta
& CSR_INT_BIT_HW_ERR
) {
848 IWL_ERR(trans
, "Hardware error detected. Restarting.\n");
850 /* Tell the device to stop sending interrupts */
851 iwl_disable_interrupts(trans
);
854 iwl_pcie_irq_handle_error(trans
);
856 handled
|= CSR_INT_BIT_HW_ERR
;
861 if (iwl_have_debug_level(IWL_DL_ISR
)) {
862 /* NIC fires this, but we don't use it, redundant with WAKEUP */
863 if (inta
& CSR_INT_BIT_SCD
) {
865 "Scheduler finished to transmit the frame/frames.\n");
869 /* Alive notification via Rx interrupt will do the real work */
870 if (inta
& CSR_INT_BIT_ALIVE
) {
871 IWL_DEBUG_ISR(trans
, "Alive interrupt\n");
876 /* Safely ignore these bits for debug checks below */
877 inta
&= ~(CSR_INT_BIT_SCD
| CSR_INT_BIT_ALIVE
);
879 /* HW RF KILL switch toggled */
880 if (inta
& CSR_INT_BIT_RF_KILL
) {
883 hw_rfkill
= iwl_is_rfkill_set(trans
);
884 IWL_WARN(trans
, "RF_KILL bit toggled to %s.\n",
885 hw_rfkill
? "disable radio" : "enable radio");
889 iwl_op_mode_hw_rf_kill(trans
->op_mode
, hw_rfkill
);
891 set_bit(STATUS_RFKILL
, &trans_pcie
->status
);
892 if (test_and_clear_bit(STATUS_HCMD_ACTIVE
,
893 &trans_pcie
->status
))
894 IWL_DEBUG_RF_KILL(trans
,
895 "Rfkill while SYNC HCMD in flight\n");
896 wake_up(&trans_pcie
->wait_command_queue
);
898 clear_bit(STATUS_RFKILL
, &trans_pcie
->status
);
901 handled
|= CSR_INT_BIT_RF_KILL
;
904 /* Chip got too hot and stopped itself */
905 if (inta
& CSR_INT_BIT_CT_KILL
) {
906 IWL_ERR(trans
, "Microcode CT kill error detected.\n");
908 handled
|= CSR_INT_BIT_CT_KILL
;
911 /* Error detected by uCode */
912 if (inta
& CSR_INT_BIT_SW_ERR
) {
913 IWL_ERR(trans
, "Microcode SW error detected. "
914 " Restarting 0x%X.\n", inta
);
916 iwl_pcie_irq_handle_error(trans
);
917 handled
|= CSR_INT_BIT_SW_ERR
;
920 /* uCode wakes up after power-down sleep */
921 if (inta
& CSR_INT_BIT_WAKEUP
) {
922 IWL_DEBUG_ISR(trans
, "Wakeup interrupt\n");
923 iwl_pcie_rxq_inc_wr_ptr(trans
, &trans_pcie
->rxq
);
924 for (i
= 0; i
< trans
->cfg
->base_params
->num_of_queues
; i
++)
925 iwl_pcie_txq_inc_wr_ptr(trans
, &trans_pcie
->txq
[i
]);
929 handled
|= CSR_INT_BIT_WAKEUP
;
932 /* All uCode command responses, including Tx command responses,
933 * Rx "responses" (frame-received notification), and other
934 * notifications from uCode come through here*/
935 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
|
936 CSR_INT_BIT_RX_PERIODIC
)) {
937 IWL_DEBUG_ISR(trans
, "Rx interrupt\n");
938 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
)) {
939 handled
|= (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
);
940 iwl_write32(trans
, CSR_FH_INT_STATUS
,
943 if (inta
& CSR_INT_BIT_RX_PERIODIC
) {
944 handled
|= CSR_INT_BIT_RX_PERIODIC
;
946 CSR_INT
, CSR_INT_BIT_RX_PERIODIC
);
948 /* Sending RX interrupt require many steps to be done in the
950 * 1- write interrupt to current index in ICT table.
952 * 3- update RX shared data to indicate last write index.
954 * This could lead to RX race, driver could receive RX interrupt
955 * but the shared data changes does not reflect this;
956 * periodic interrupt will detect any dangling Rx activity.
959 /* Disable periodic interrupt; we use it as just a one-shot. */
960 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
961 CSR_INT_PERIODIC_DIS
);
963 iwl_pcie_rx_handle(trans
);
966 * Enable periodic interrupt in 8 msec only if we received
967 * real RX interrupt (instead of just periodic int), to catch
968 * any dangling Rx interrupt. If it was just the periodic
969 * interrupt, there was no dangling Rx activity, and no need
970 * to extend the periodic interrupt; one-shot is enough.
972 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
))
973 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
974 CSR_INT_PERIODIC_ENA
);
979 /* This "Tx" DMA channel is used only for loading uCode */
980 if (inta
& CSR_INT_BIT_FH_TX
) {
981 iwl_write32(trans
, CSR_FH_INT_STATUS
, CSR_FH_INT_TX_MASK
);
982 IWL_DEBUG_ISR(trans
, "uCode load interrupt\n");
984 handled
|= CSR_INT_BIT_FH_TX
;
985 /* Wake up uCode load routine, now that load is complete */
986 trans_pcie
->ucode_write_complete
= true;
987 wake_up(&trans_pcie
->ucode_write_waitq
);
990 if (inta
& ~handled
) {
991 IWL_ERR(trans
, "Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
992 isr_stats
->unhandled
++;
995 if (inta
& ~(trans_pcie
->inta_mask
)) {
996 IWL_WARN(trans
, "Disabled INTA bits 0x%08x were pending\n",
997 inta
& ~trans_pcie
->inta_mask
);
1000 /* Re-enable all interrupts */
1001 /* only Re-enable if disabled by irq */
1002 if (test_bit(STATUS_INT_ENABLED
, &trans_pcie
->status
))
1003 iwl_enable_interrupts(trans
);
1004 /* Re-enable RF_KILL if it occurred */
1005 else if (handled
& CSR_INT_BIT_RF_KILL
)
1006 iwl_enable_rfkill_int(trans
);
1009 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1013 /******************************************************************************
1017 ******************************************************************************/
1019 /* a device (PCI-E) page is 4096 bytes long */
1020 #define ICT_SHIFT 12
1021 #define ICT_SIZE (1 << ICT_SHIFT)
1022 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
1024 /* Free dram table */
1025 void iwl_pcie_free_ict(struct iwl_trans
*trans
)
1027 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1029 if (trans_pcie
->ict_tbl
) {
1030 dma_free_coherent(trans
->dev
, ICT_SIZE
,
1031 trans_pcie
->ict_tbl
,
1032 trans_pcie
->ict_tbl_dma
);
1033 trans_pcie
->ict_tbl
= NULL
;
1034 trans_pcie
->ict_tbl_dma
= 0;
1039 * allocate dram shared table, it is an aligned memory
1040 * block of ICT_SIZE.
1041 * also reset all data related to ICT table interrupt.
1043 int iwl_pcie_alloc_ict(struct iwl_trans
*trans
)
1045 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1047 trans_pcie
->ict_tbl
=
1048 dma_alloc_coherent(trans
->dev
, ICT_SIZE
,
1049 &trans_pcie
->ict_tbl_dma
,
1051 if (!trans_pcie
->ict_tbl
)
1054 /* just an API sanity check ... it is guaranteed to be aligned */
1055 if (WARN_ON(trans_pcie
->ict_tbl_dma
& (ICT_SIZE
- 1))) {
1056 iwl_pcie_free_ict(trans
);
1060 IWL_DEBUG_ISR(trans
, "ict dma addr %Lx\n",
1061 (unsigned long long)trans_pcie
->ict_tbl_dma
);
1063 IWL_DEBUG_ISR(trans
, "ict vir addr %p\n", trans_pcie
->ict_tbl
);
1065 /* reset table and index to all 0 */
1066 memset(trans_pcie
->ict_tbl
, 0, ICT_SIZE
);
1067 trans_pcie
->ict_index
= 0;
1069 /* add periodic RX interrupt */
1070 trans_pcie
->inta_mask
|= CSR_INT_BIT_RX_PERIODIC
;
1074 /* Device is going up inform it about using ICT interrupt table,
1075 * also we need to tell the driver to start using ICT interrupt.
1077 void iwl_pcie_reset_ict(struct iwl_trans
*trans
)
1079 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1081 unsigned long flags
;
1083 if (!trans_pcie
->ict_tbl
)
1086 spin_lock_irqsave(&trans_pcie
->irq_lock
, flags
);
1087 iwl_disable_interrupts(trans
);
1089 memset(trans_pcie
->ict_tbl
, 0, ICT_SIZE
);
1091 val
= trans_pcie
->ict_tbl_dma
>> ICT_SHIFT
;
1093 val
|= CSR_DRAM_INT_TBL_ENABLE
;
1094 val
|= CSR_DRAM_INIT_TBL_WRAP_CHECK
;
1096 IWL_DEBUG_ISR(trans
, "CSR_DRAM_INT_TBL_REG =0x%x\n", val
);
1098 iwl_write32(trans
, CSR_DRAM_INT_TBL_REG
, val
);
1099 trans_pcie
->use_ict
= true;
1100 trans_pcie
->ict_index
= 0;
1101 iwl_write32(trans
, CSR_INT
, trans_pcie
->inta_mask
);
1102 iwl_enable_interrupts(trans
);
1103 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
1106 /* Device is going down disable ict interrupt usage */
1107 void iwl_pcie_disable_ict(struct iwl_trans
*trans
)
1109 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1110 unsigned long flags
;
1112 spin_lock_irqsave(&trans_pcie
->irq_lock
, flags
);
1113 trans_pcie
->use_ict
= false;
1114 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
1117 /* legacy (non-ICT) ISR. Assumes that trans_pcie->irq_lock is held */
1118 static irqreturn_t
iwl_pcie_isr(int irq
, void *data
)
1120 struct iwl_trans
*trans
= data
;
1121 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1122 u32 inta
, inta_mask
;
1124 lockdep_assert_held(&trans_pcie
->irq_lock
);
1126 trace_iwlwifi_dev_irq(trans
->dev
);
1128 /* Disable (but don't clear!) interrupts here to avoid
1129 * back-to-back ISRs and sporadic interrupts from our NIC.
1130 * If we have something to service, the irq thread will re-enable ints.
1131 * If we *don't* have something, we'll re-enable before leaving here. */
1132 inta_mask
= iwl_read32(trans
, CSR_INT_MASK
);
1133 iwl_write32(trans
, CSR_INT_MASK
, 0x00000000);
1135 /* Discover which interrupts are active/pending */
1136 inta
= iwl_read32(trans
, CSR_INT
);
1138 if (inta
& (~inta_mask
)) {
1139 IWL_DEBUG_ISR(trans
,
1140 "We got a masked interrupt (0x%08x)...Ack and ignore\n",
1141 inta
& (~inta_mask
));
1142 iwl_write32(trans
, CSR_INT
, inta
& (~inta_mask
));
1146 /* Ignore interrupt if there's nothing in NIC to service.
1147 * This may be due to IRQ shared with another device,
1148 * or due to sporadic interrupts thrown from our NIC. */
1150 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
1154 if ((inta
== 0xFFFFFFFF) || ((inta
& 0xFFFFFFF0) == 0xa5a5a5a0)) {
1155 /* Hardware disappeared. It might have already raised
1157 IWL_WARN(trans
, "HARDWARE GONE?? INTA == 0x%08x\n", inta
);
1161 if (iwl_have_debug_level(IWL_DL_ISR
))
1162 IWL_DEBUG_ISR(trans
,
1163 "ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n",
1165 iwl_read32(trans
, CSR_FH_INT_STATUS
));
1167 trans_pcie
->inta
|= inta
;
1168 /* the thread will service interrupts and re-enable them */
1170 return IRQ_WAKE_THREAD
;
1171 else if (test_bit(STATUS_INT_ENABLED
, &trans_pcie
->status
) &&
1173 iwl_enable_interrupts(trans
);
1177 /* re-enable interrupts here since we don't have anything to service. */
1178 /* only Re-enable if disabled by irq and no schedules tasklet. */
1179 if (test_bit(STATUS_INT_ENABLED
, &trans_pcie
->status
) &&
1181 iwl_enable_interrupts(trans
);
1186 /* interrupt handler using ict table, with this interrupt driver will
1187 * stop using INTA register to get device's interrupt, reading this register
1188 * is expensive, device will write interrupts in ICT dram table, increment
1189 * index then will fire interrupt to driver, driver will OR all ICT table
1190 * entries from current index up to table entry with 0 value. the result is
1191 * the interrupt we need to service, driver will set the entries back to 0 and
1194 irqreturn_t
iwl_pcie_isr_ict(int irq
, void *data
)
1196 struct iwl_trans
*trans
= data
;
1197 struct iwl_trans_pcie
*trans_pcie
;
1201 unsigned long flags
;
1206 trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1208 spin_lock_irqsave(&trans_pcie
->irq_lock
, flags
);
1210 /* dram interrupt table not set yet,
1211 * use legacy interrupt.
1213 if (unlikely(!trans_pcie
->use_ict
)) {
1214 irqreturn_t ret
= iwl_pcie_isr(irq
, data
);
1215 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
1219 trace_iwlwifi_dev_irq(trans
->dev
);
1221 /* Disable (but don't clear!) interrupts here to avoid
1222 * back-to-back ISRs and sporadic interrupts from our NIC.
1223 * If we have something to service, the tasklet will re-enable ints.
1224 * If we *don't* have something, we'll re-enable before leaving here.
1226 iwl_write32(trans
, CSR_INT_MASK
, 0x00000000);
1228 /* Ignore interrupt if there's nothing in NIC to service.
1229 * This may be due to IRQ shared with another device,
1230 * or due to sporadic interrupts thrown from our NIC. */
1231 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
1232 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
, read
);
1234 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
1239 * Collect all entries up to the first 0, starting from ict_index;
1240 * note we already read at ict_index.
1244 IWL_DEBUG_ISR(trans
, "ICT index %d value 0x%08X\n",
1245 trans_pcie
->ict_index
, read
);
1246 trans_pcie
->ict_tbl
[trans_pcie
->ict_index
] = 0;
1247 trans_pcie
->ict_index
=
1248 iwl_queue_inc_wrap(trans_pcie
->ict_index
, ICT_COUNT
);
1250 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
1251 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
,
1255 /* We should not get this value, just ignore it. */
1256 if (val
== 0xffffffff)
1260 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1261 * (bit 15 before shifting it to 31) to clear when using interrupt
1262 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1263 * so we use them to decide on the real state of the Rx bit.
1264 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1269 inta
= (0xff & val
) | ((0xff00 & val
) << 16);
1270 IWL_DEBUG_ISR(trans
, "ISR inta 0x%08x, enabled(sw) 0x%08x ict 0x%08x\n",
1271 inta
, trans_pcie
->inta_mask
, val
);
1272 if (iwl_have_debug_level(IWL_DL_ISR
))
1273 IWL_DEBUG_ISR(trans
, "enabled(hw) 0x%08x\n",
1274 iwl_read32(trans
, CSR_INT_MASK
));
1276 inta
&= trans_pcie
->inta_mask
;
1277 trans_pcie
->inta
|= inta
;
1279 /* iwl_pcie_tasklet() will service interrupts and re-enable them */
1281 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
1282 return IRQ_WAKE_THREAD
;
1283 } else if (test_bit(STATUS_INT_ENABLED
, &trans_pcie
->status
) &&
1284 !trans_pcie
->inta
) {
1285 /* Allow interrupt if was disabled by this handler and
1286 * no tasklet was schedules, We should not enable interrupt,
1287 * tasklet will enable it.
1289 iwl_enable_interrupts(trans
);
1292 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);
1296 /* re-enable interrupts here since we don't have anything to service.
1297 * only Re-enable if disabled by irq.
1299 if (test_bit(STATUS_INT_ENABLED
, &trans_pcie
->status
) &&
1301 iwl_enable_interrupts(trans
);
1303 spin_unlock_irqrestore(&trans_pcie
->irq_lock
, flags
);