2 Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
44 #include "rt2x00mmio.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
49 #include "rt2800pci.h"
52 * Allow hardware encryption to be disabled.
54 static bool modparam_nohwcrypt
= false;
55 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
56 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
58 static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev
*rt2x00dev
)
60 return modparam_nohwcrypt
;
63 static void rt2800pci_mcu_status(struct rt2x00_dev
*rt2x00dev
, const u8 token
)
69 * SOC devices don't support MCU requests.
71 if (rt2x00_is_soc(rt2x00dev
))
74 for (i
= 0; i
< 200; i
++) {
75 rt2x00mmio_register_read(rt2x00dev
, H2M_MAILBOX_CID
, ®
);
77 if ((rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD0
) == token
) ||
78 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD1
) == token
) ||
79 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD2
) == token
) ||
80 (rt2x00_get_field32(reg
, H2M_MAILBOX_CID_CMD3
) == token
))
83 udelay(REGISTER_BUSY_DELAY
);
87 rt2x00_err(rt2x00dev
, "MCU request failed, no response from hardware\n");
89 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_STATUS
, ~0);
90 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CID
, ~0);
93 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
94 static int rt2800pci_read_eeprom_soc(struct rt2x00_dev
*rt2x00dev
)
96 void __iomem
*base_addr
= ioremap(0x1F040000, EEPROM_SIZE
);
101 memcpy_fromio(rt2x00dev
->eeprom
, base_addr
, EEPROM_SIZE
);
107 static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev
*rt2x00dev
)
111 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
114 static void rt2800pci_eepromregister_read(struct eeprom_93cx6
*eeprom
)
116 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
119 rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
121 eeprom
->reg_data_in
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_IN
);
122 eeprom
->reg_data_out
= !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_OUT
);
123 eeprom
->reg_data_clock
=
124 !!rt2x00_get_field32(reg
, E2PROM_CSR_DATA_CLOCK
);
125 eeprom
->reg_chip_select
=
126 !!rt2x00_get_field32(reg
, E2PROM_CSR_CHIP_SELECT
);
129 static void rt2800pci_eepromregister_write(struct eeprom_93cx6
*eeprom
)
131 struct rt2x00_dev
*rt2x00dev
= eeprom
->data
;
134 rt2x00_set_field32(®
, E2PROM_CSR_DATA_IN
, !!eeprom
->reg_data_in
);
135 rt2x00_set_field32(®
, E2PROM_CSR_DATA_OUT
, !!eeprom
->reg_data_out
);
136 rt2x00_set_field32(®
, E2PROM_CSR_DATA_CLOCK
,
137 !!eeprom
->reg_data_clock
);
138 rt2x00_set_field32(®
, E2PROM_CSR_CHIP_SELECT
,
139 !!eeprom
->reg_chip_select
);
141 rt2x00mmio_register_write(rt2x00dev
, E2PROM_CSR
, reg
);
144 static int rt2800pci_read_eeprom_pci(struct rt2x00_dev
*rt2x00dev
)
146 struct eeprom_93cx6 eeprom
;
149 rt2x00mmio_register_read(rt2x00dev
, E2PROM_CSR
, ®
);
151 eeprom
.data
= rt2x00dev
;
152 eeprom
.register_read
= rt2800pci_eepromregister_read
;
153 eeprom
.register_write
= rt2800pci_eepromregister_write
;
154 switch (rt2x00_get_field32(reg
, E2PROM_CSR_TYPE
))
157 eeprom
.width
= PCI_EEPROM_WIDTH_93C46
;
160 eeprom
.width
= PCI_EEPROM_WIDTH_93C66
;
163 eeprom
.width
= PCI_EEPROM_WIDTH_93C86
;
166 eeprom
.reg_data_in
= 0;
167 eeprom
.reg_data_out
= 0;
168 eeprom
.reg_data_clock
= 0;
169 eeprom
.reg_chip_select
= 0;
171 eeprom_93cx6_multiread(&eeprom
, EEPROM_BASE
, rt2x00dev
->eeprom
,
172 EEPROM_SIZE
/ sizeof(u16
));
177 static int rt2800pci_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
179 return rt2800_efuse_detect(rt2x00dev
);
182 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
184 return rt2800_read_eeprom_efuse(rt2x00dev
);
187 static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev
*rt2x00dev
)
192 static inline int rt2800pci_efuse_detect(struct rt2x00_dev
*rt2x00dev
)
197 static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev
*rt2x00dev
)
201 #endif /* CONFIG_PCI */
206 static void rt2800pci_start_queue(struct data_queue
*queue
)
208 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
211 switch (queue
->qid
) {
213 rt2x00mmio_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
214 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 1);
215 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
218 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
219 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 1);
220 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 1);
221 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 1);
222 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
224 rt2x00mmio_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
225 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
, 1);
226 rt2x00mmio_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
233 static void rt2800pci_kick_queue(struct data_queue
*queue
)
235 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
236 struct queue_entry
*entry
;
238 switch (queue
->qid
) {
243 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
244 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX(queue
->qid
),
248 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
249 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX(5),
257 static void rt2800pci_stop_queue(struct data_queue
*queue
)
259 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
262 switch (queue
->qid
) {
264 rt2x00mmio_register_read(rt2x00dev
, MAC_SYS_CTRL
, ®
);
265 rt2x00_set_field32(®
, MAC_SYS_CTRL_ENABLE_RX
, 0);
266 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
269 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
270 rt2x00_set_field32(®
, BCN_TIME_CFG_TSF_TICKING
, 0);
271 rt2x00_set_field32(®
, BCN_TIME_CFG_TBTT_ENABLE
, 0);
272 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_GEN
, 0);
273 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
275 rt2x00mmio_register_read(rt2x00dev
, INT_TIMER_EN
, ®
);
276 rt2x00_set_field32(®
, INT_TIMER_EN_PRE_TBTT_TIMER
, 0);
277 rt2x00mmio_register_write(rt2x00dev
, INT_TIMER_EN
, reg
);
280 * Wait for current invocation to finish. The tasklet
281 * won't be scheduled anymore afterwards since we disabled
282 * the TBTT and PRE TBTT timer.
284 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
285 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
296 static char *rt2800pci_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
299 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
301 if (rt2x00_rt(rt2x00dev
, RT3290
))
302 return FIRMWARE_RT3290
;
304 return FIRMWARE_RT2860
;
307 static int rt2800pci_write_firmware(struct rt2x00_dev
*rt2x00dev
,
308 const u8
*data
, const size_t len
)
313 * enable Host program ram write selection
316 rt2x00_set_field32(®
, PBF_SYS_CTRL_HOST_RAM_WRITE
, 1);
317 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, reg
);
320 * Write firmware to device.
322 rt2x00mmio_register_multiwrite(rt2x00dev
, FIRMWARE_IMAGE_BASE
,
325 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000);
326 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00001);
328 rt2x00mmio_register_write(rt2x00dev
, H2M_BBP_AGENT
, 0);
329 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CSR
, 0);
335 * Initialization functions.
337 static bool rt2800pci_get_entry_state(struct queue_entry
*entry
)
339 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
342 if (entry
->queue
->qid
== QID_RX
) {
343 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
345 return (!rt2x00_get_field32(word
, RXD_W1_DMA_DONE
));
347 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
349 return (!rt2x00_get_field32(word
, TXD_W1_DMA_DONE
));
353 static void rt2800pci_clear_entry(struct queue_entry
*entry
)
355 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
356 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
357 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
360 if (entry
->queue
->qid
== QID_RX
) {
361 rt2x00_desc_read(entry_priv
->desc
, 0, &word
);
362 rt2x00_set_field32(&word
, RXD_W0_SDP0
, skbdesc
->skb_dma
);
363 rt2x00_desc_write(entry_priv
->desc
, 0, word
);
365 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
366 rt2x00_set_field32(&word
, RXD_W1_DMA_DONE
, 0);
367 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
370 * Set RX IDX in register to inform hardware that we have
371 * handled this entry and it is available for reuse again.
373 rt2x00mmio_register_write(rt2x00dev
, RX_CRX_IDX
,
376 rt2x00_desc_read(entry_priv
->desc
, 1, &word
);
377 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 1);
378 rt2x00_desc_write(entry_priv
->desc
, 1, word
);
382 static int rt2800pci_init_queues(struct rt2x00_dev
*rt2x00dev
)
384 struct queue_entry_priv_mmio
*entry_priv
;
387 * Initialize registers.
389 entry_priv
= rt2x00dev
->tx
[0].entries
[0].priv_data
;
390 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR0
,
391 entry_priv
->desc_dma
);
392 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT0
,
393 rt2x00dev
->tx
[0].limit
);
394 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX0
, 0);
395 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX0
, 0);
397 entry_priv
= rt2x00dev
->tx
[1].entries
[0].priv_data
;
398 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR1
,
399 entry_priv
->desc_dma
);
400 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT1
,
401 rt2x00dev
->tx
[1].limit
);
402 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX1
, 0);
403 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX1
, 0);
405 entry_priv
= rt2x00dev
->tx
[2].entries
[0].priv_data
;
406 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR2
,
407 entry_priv
->desc_dma
);
408 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT2
,
409 rt2x00dev
->tx
[2].limit
);
410 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX2
, 0);
411 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX2
, 0);
413 entry_priv
= rt2x00dev
->tx
[3].entries
[0].priv_data
;
414 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR3
,
415 entry_priv
->desc_dma
);
416 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT3
,
417 rt2x00dev
->tx
[3].limit
);
418 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX3
, 0);
419 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX3
, 0);
421 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR4
, 0);
422 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT4
, 0);
423 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX4
, 0);
424 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX4
, 0);
426 rt2x00mmio_register_write(rt2x00dev
, TX_BASE_PTR5
, 0);
427 rt2x00mmio_register_write(rt2x00dev
, TX_MAX_CNT5
, 0);
428 rt2x00mmio_register_write(rt2x00dev
, TX_CTX_IDX5
, 0);
429 rt2x00mmio_register_write(rt2x00dev
, TX_DTX_IDX5
, 0);
431 entry_priv
= rt2x00dev
->rx
->entries
[0].priv_data
;
432 rt2x00mmio_register_write(rt2x00dev
, RX_BASE_PTR
,
433 entry_priv
->desc_dma
);
434 rt2x00mmio_register_write(rt2x00dev
, RX_MAX_CNT
,
435 rt2x00dev
->rx
[0].limit
);
436 rt2x00mmio_register_write(rt2x00dev
, RX_CRX_IDX
,
437 rt2x00dev
->rx
[0].limit
- 1);
438 rt2x00mmio_register_write(rt2x00dev
, RX_DRX_IDX
, 0);
440 rt2800_disable_wpdma(rt2x00dev
);
442 rt2x00mmio_register_write(rt2x00dev
, DELAY_INT_CFG
, 0);
448 * Device state switch handlers.
450 static void rt2800pci_toggle_irq(struct rt2x00_dev
*rt2x00dev
,
451 enum dev_state state
)
457 * When interrupts are being enabled, the interrupt registers
458 * should clear the register to assure a clean state.
460 if (state
== STATE_RADIO_IRQ_ON
) {
461 rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
462 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
465 spin_lock_irqsave(&rt2x00dev
->irqmask_lock
, flags
);
467 if (state
== STATE_RADIO_IRQ_ON
) {
468 rt2x00_set_field32(®
, INT_MASK_CSR_RX_DONE
, 1);
469 rt2x00_set_field32(®
, INT_MASK_CSR_TBTT
, 1);
470 rt2x00_set_field32(®
, INT_MASK_CSR_PRE_TBTT
, 1);
471 rt2x00_set_field32(®
, INT_MASK_CSR_TX_FIFO_STATUS
, 1);
472 rt2x00_set_field32(®
, INT_MASK_CSR_AUTO_WAKEUP
, 1);
474 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
475 spin_unlock_irqrestore(&rt2x00dev
->irqmask_lock
, flags
);
477 if (state
== STATE_RADIO_IRQ_OFF
) {
479 * Wait for possibly running tasklets to finish.
481 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
482 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
483 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
484 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
485 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
489 static int rt2800pci_init_registers(struct rt2x00_dev
*rt2x00dev
)
496 rt2x00mmio_register_read(rt2x00dev
, WPDMA_RST_IDX
, ®
);
497 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX0
, 1);
498 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX1
, 1);
499 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX2
, 1);
500 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX3
, 1);
501 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX4
, 1);
502 rt2x00_set_field32(®
, WPDMA_RST_IDX_DTX_IDX5
, 1);
503 rt2x00_set_field32(®
, WPDMA_RST_IDX_DRX_IDX0
, 1);
504 rt2x00mmio_register_write(rt2x00dev
, WPDMA_RST_IDX
, reg
);
506 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e1f);
507 rt2x00mmio_register_write(rt2x00dev
, PBF_SYS_CTRL
, 0x00000e00);
509 if (rt2x00_is_pcie(rt2x00dev
) &&
510 (rt2x00_rt(rt2x00dev
, RT3572
) ||
511 rt2x00_rt(rt2x00dev
, RT5390
) ||
512 rt2x00_rt(rt2x00dev
, RT5392
))) {
513 rt2x00mmio_register_read(rt2x00dev
, AUX_CTRL
, ®
);
514 rt2x00_set_field32(®
, AUX_CTRL_FORCE_PCIE_CLK
, 1);
515 rt2x00_set_field32(®
, AUX_CTRL_WAKE_PCIE_EN
, 1);
516 rt2x00mmio_register_write(rt2x00dev
, AUX_CTRL
, reg
);
519 rt2x00mmio_register_write(rt2x00dev
, PWR_PIN_CFG
, 0x00000003);
522 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_CSR
, 1);
523 rt2x00_set_field32(®
, MAC_SYS_CTRL_RESET_BBP
, 1);
524 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, reg
);
526 rt2x00mmio_register_write(rt2x00dev
, MAC_SYS_CTRL
, 0x00000000);
531 static int rt2800pci_enable_radio(struct rt2x00_dev
*rt2x00dev
)
535 /* Wait for DMA, ignore error until we initialize queues. */
536 rt2800_wait_wpdma_ready(rt2x00dev
);
538 if (unlikely(rt2800pci_init_queues(rt2x00dev
)))
541 retval
= rt2800_enable_radio(rt2x00dev
);
545 /* After resume MCU_BOOT_SIGNAL will trash these. */
546 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_STATUS
, ~0);
547 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CID
, ~0);
549 rt2800_mcu_request(rt2x00dev
, MCU_SLEEP
, TOKEN_RADIO_OFF
, 0xff, 0x02);
550 rt2800pci_mcu_status(rt2x00dev
, TOKEN_RADIO_OFF
);
552 rt2800_mcu_request(rt2x00dev
, MCU_WAKEUP
, TOKEN_WAKEUP
, 0, 0);
553 rt2800pci_mcu_status(rt2x00dev
, TOKEN_WAKEUP
);
558 static void rt2800pci_disable_radio(struct rt2x00_dev
*rt2x00dev
)
560 if (rt2x00_is_soc(rt2x00dev
)) {
561 rt2800_disable_radio(rt2x00dev
);
562 rt2x00mmio_register_write(rt2x00dev
, PWR_PIN_CFG
, 0);
563 rt2x00mmio_register_write(rt2x00dev
, TX_PIN_CFG
, 0);
567 static int rt2800pci_set_state(struct rt2x00_dev
*rt2x00dev
,
568 enum dev_state state
)
570 if (state
== STATE_AWAKE
) {
571 rt2800_mcu_request(rt2x00dev
, MCU_WAKEUP
, TOKEN_WAKEUP
,
573 rt2800pci_mcu_status(rt2x00dev
, TOKEN_WAKEUP
);
574 } else if (state
== STATE_SLEEP
) {
575 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_STATUS
,
577 rt2x00mmio_register_write(rt2x00dev
, H2M_MAILBOX_CID
,
579 rt2800_mcu_request(rt2x00dev
, MCU_SLEEP
, TOKEN_SLEEP
,
586 static int rt2800pci_set_device_state(struct rt2x00_dev
*rt2x00dev
,
587 enum dev_state state
)
593 retval
= rt2800pci_enable_radio(rt2x00dev
);
595 case STATE_RADIO_OFF
:
597 * After the radio has been disabled, the device should
598 * be put to sleep for powersaving.
600 rt2800pci_disable_radio(rt2x00dev
);
601 rt2800pci_set_state(rt2x00dev
, STATE_SLEEP
);
603 case STATE_RADIO_IRQ_ON
:
604 case STATE_RADIO_IRQ_OFF
:
605 rt2800pci_toggle_irq(rt2x00dev
, state
);
607 case STATE_DEEP_SLEEP
:
611 retval
= rt2800pci_set_state(rt2x00dev
, state
);
618 if (unlikely(retval
))
619 rt2x00_err(rt2x00dev
, "Device failed to enter state %d (%d)\n",
626 * TX descriptor initialization
628 static __le32
*rt2800pci_get_txwi(struct queue_entry
*entry
)
630 return (__le32
*) entry
->skb
->data
;
633 static void rt2800pci_write_tx_desc(struct queue_entry
*entry
,
634 struct txentry_desc
*txdesc
)
636 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
637 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
638 __le32
*txd
= entry_priv
->desc
;
640 const unsigned int txwi_size
= entry
->queue
->winfo_size
;
643 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
644 * must contains a TXWI structure + 802.11 header + padding + 802.11
645 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
646 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
647 * data. It means that LAST_SEC0 is always 0.
651 * Initialize TX descriptor
654 rt2x00_set_field32(&word
, TXD_W0_SD_PTR0
, skbdesc
->skb_dma
);
655 rt2x00_desc_write(txd
, 0, word
);
658 rt2x00_set_field32(&word
, TXD_W1_SD_LEN1
, entry
->skb
->len
);
659 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC1
,
660 !test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
661 rt2x00_set_field32(&word
, TXD_W1_BURST
,
662 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
663 rt2x00_set_field32(&word
, TXD_W1_SD_LEN0
, txwi_size
);
664 rt2x00_set_field32(&word
, TXD_W1_LAST_SEC0
, 0);
665 rt2x00_set_field32(&word
, TXD_W1_DMA_DONE
, 0);
666 rt2x00_desc_write(txd
, 1, word
);
669 rt2x00_set_field32(&word
, TXD_W2_SD_PTR1
,
670 skbdesc
->skb_dma
+ txwi_size
);
671 rt2x00_desc_write(txd
, 2, word
);
674 rt2x00_set_field32(&word
, TXD_W3_WIV
,
675 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
->flags
));
676 rt2x00_set_field32(&word
, TXD_W3_QSEL
, 2);
677 rt2x00_desc_write(txd
, 3, word
);
680 * Register descriptor details in skb frame descriptor.
683 skbdesc
->desc_len
= TXD_DESC_SIZE
;
687 * RX control handlers
689 static void rt2800pci_fill_rxdone(struct queue_entry
*entry
,
690 struct rxdone_entry_desc
*rxdesc
)
692 struct queue_entry_priv_mmio
*entry_priv
= entry
->priv_data
;
693 __le32
*rxd
= entry_priv
->desc
;
696 rt2x00_desc_read(rxd
, 3, &word
);
698 if (rt2x00_get_field32(word
, RXD_W3_CRC_ERROR
))
699 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
702 * Unfortunately we don't know the cipher type used during
703 * decryption. This prevents us from correct providing
704 * correct statistics through debugfs.
706 rxdesc
->cipher_status
= rt2x00_get_field32(word
, RXD_W3_CIPHER_ERROR
);
708 if (rt2x00_get_field32(word
, RXD_W3_DECRYPTED
)) {
710 * Hardware has stripped IV/EIV data from 802.11 frame during
711 * decryption. Unfortunately the descriptor doesn't contain
712 * any fields with the EIV/IV data either, so they can't
713 * be restored by rt2x00lib.
715 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
718 * The hardware has already checked the Michael Mic and has
719 * stripped it from the frame. Signal this to mac80211.
721 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
723 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
724 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
725 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
726 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
729 if (rt2x00_get_field32(word
, RXD_W3_MY_BSS
))
730 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
732 if (rt2x00_get_field32(word
, RXD_W3_L2PAD
))
733 rxdesc
->dev_flags
|= RXDONE_L2PAD
;
736 * Process the RXWI structure that is at the start of the buffer.
738 rt2800_process_rxwi(entry
, rxdesc
);
742 * Interrupt functions.
744 static void rt2800pci_wakeup(struct rt2x00_dev
*rt2x00dev
)
746 struct ieee80211_conf conf
= { .flags
= 0 };
747 struct rt2x00lib_conf libconf
= { .conf
= &conf
};
749 rt2800_config(rt2x00dev
, &libconf
, IEEE80211_CONF_CHANGE_PS
);
752 static bool rt2800pci_txdone_entry_check(struct queue_entry
*entry
, u32 status
)
758 wcid
= rt2x00_get_field32(status
, TX_STA_FIFO_WCID
);
760 txwi
= rt2800_drv_get_txwi(entry
);
761 rt2x00_desc_read(txwi
, 1, &word
);
762 tx_wcid
= rt2x00_get_field32(word
, TXWI_W1_WIRELESS_CLI_ID
);
764 return (tx_wcid
== wcid
);
767 static bool rt2800pci_txdone_find_entry(struct queue_entry
*entry
, void *data
)
769 u32 status
= *(u32
*)data
;
772 * rt2800pci hardware might reorder frames when exchanging traffic
773 * with multiple BA enabled STAs.
775 * For example, a tx queue
776 * [ STA1 | STA2 | STA1 | STA2 ]
777 * can result in tx status reports
778 * [ STA1 | STA1 | STA2 | STA2 ]
779 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
781 * To mitigate this effect, associate the tx status to the first frame
782 * in the tx queue with a matching wcid.
784 if (rt2800pci_txdone_entry_check(entry
, status
) &&
785 !test_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
)) {
787 * Got a matching frame, associate the tx status with
790 entry
->status
= status
;
791 set_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
);
795 /* Check the next frame */
799 static bool rt2800pci_txdone_match_first(struct queue_entry
*entry
, void *data
)
801 u32 status
= *(u32
*)data
;
804 * Find the first frame without tx status and assign this status to it
805 * regardless if it matches or not.
807 if (!test_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
)) {
809 * Got a matching frame, associate the tx status with
812 entry
->status
= status
;
813 set_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
);
817 /* Check the next frame */
820 static bool rt2800pci_txdone_release_entries(struct queue_entry
*entry
,
823 if (test_bit(ENTRY_DATA_STATUS_SET
, &entry
->flags
)) {
824 rt2800_txdone_entry(entry
, entry
->status
,
825 rt2800pci_get_txwi(entry
));
829 /* No more frames to release */
833 static bool rt2800pci_txdone(struct rt2x00_dev
*rt2x00dev
)
835 struct data_queue
*queue
;
838 int max_tx_done
= 16;
840 while (kfifo_get(&rt2x00dev
->txstatus_fifo
, &status
)) {
841 qid
= rt2x00_get_field32(status
, TX_STA_FIFO_PID_QUEUE
);
842 if (unlikely(qid
>= QID_RX
)) {
844 * Unknown queue, this shouldn't happen. Just drop
847 rt2x00_warn(rt2x00dev
, "Got TX status report with unexpected pid %u, dropping\n",
852 queue
= rt2x00queue_get_tx_queue(rt2x00dev
, qid
);
853 if (unlikely(queue
== NULL
)) {
855 * The queue is NULL, this shouldn't happen. Stop
856 * processing here and drop the tx status
858 rt2x00_warn(rt2x00dev
, "Got TX status for an unavailable queue %u, dropping\n",
863 if (unlikely(rt2x00queue_empty(queue
))) {
865 * The queue is empty. Stop processing here
866 * and drop the tx status.
868 rt2x00_warn(rt2x00dev
, "Got TX status for an empty queue %u, dropping\n",
874 * Let's associate this tx status with the first
877 if (!rt2x00queue_for_each_entry(queue
, Q_INDEX_DONE
,
879 rt2800pci_txdone_find_entry
)) {
881 * We cannot match the tx status to any frame, so just
884 if (!rt2x00queue_for_each_entry(queue
, Q_INDEX_DONE
,
886 rt2800pci_txdone_match_first
)) {
887 rt2x00_warn(rt2x00dev
, "No frame found for TX status on queue %u, dropping\n",
894 * Release all frames with a valid tx status.
896 rt2x00queue_for_each_entry(queue
, Q_INDEX_DONE
,
898 rt2800pci_txdone_release_entries
);
900 if (--max_tx_done
== 0)
907 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev
*rt2x00dev
,
908 struct rt2x00_field32 irq_field
)
913 * Enable a single interrupt. The interrupt mask register
914 * access needs locking.
916 spin_lock_irq(&rt2x00dev
->irqmask_lock
);
917 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
918 rt2x00_set_field32(®
, irq_field
, 1);
919 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
920 spin_unlock_irq(&rt2x00dev
->irqmask_lock
);
923 static void rt2800pci_txstatus_tasklet(unsigned long data
)
925 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
926 if (rt2800pci_txdone(rt2x00dev
))
927 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
930 * No need to enable the tx status interrupt here as we always
931 * leave it enabled to minimize the possibility of a tx status
932 * register overflow. See comment in interrupt handler.
936 static void rt2800pci_pretbtt_tasklet(unsigned long data
)
938 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
939 rt2x00lib_pretbtt(rt2x00dev
);
940 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
941 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_PRE_TBTT
);
944 static void rt2800pci_tbtt_tasklet(unsigned long data
)
946 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
947 struct rt2800_drv_data
*drv_data
= rt2x00dev
->drv_data
;
950 rt2x00lib_beacondone(rt2x00dev
);
952 if (rt2x00dev
->intf_ap_count
) {
954 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
955 * causing beacon skew and as a result causing problems with
956 * some powersaving clients over time. Shorten the beacon
957 * interval every 64 beacons by 64us to mitigate this effect.
959 if (drv_data
->tbtt_tick
== (BCN_TBTT_OFFSET
- 2)) {
960 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
961 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
,
962 (rt2x00dev
->beacon_int
* 16) - 1);
963 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
964 } else if (drv_data
->tbtt_tick
== (BCN_TBTT_OFFSET
- 1)) {
965 rt2x00mmio_register_read(rt2x00dev
, BCN_TIME_CFG
, ®
);
966 rt2x00_set_field32(®
, BCN_TIME_CFG_BEACON_INTERVAL
,
967 (rt2x00dev
->beacon_int
* 16));
968 rt2x00mmio_register_write(rt2x00dev
, BCN_TIME_CFG
, reg
);
970 drv_data
->tbtt_tick
++;
971 drv_data
->tbtt_tick
%= BCN_TBTT_OFFSET
;
974 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
975 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_TBTT
);
978 static void rt2800pci_rxdone_tasklet(unsigned long data
)
980 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
981 if (rt2x00mmio_rxdone(rt2x00dev
))
982 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
983 else if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
984 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_RX_DONE
);
987 static void rt2800pci_autowake_tasklet(unsigned long data
)
989 struct rt2x00_dev
*rt2x00dev
= (struct rt2x00_dev
*)data
;
990 rt2800pci_wakeup(rt2x00dev
);
991 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
992 rt2800pci_enable_interrupt(rt2x00dev
, INT_MASK_CSR_AUTO_WAKEUP
);
995 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev
*rt2x00dev
)
1001 * The TX_FIFO_STATUS interrupt needs special care. We should
1002 * read TX_STA_FIFO but we should do it immediately as otherwise
1003 * the register can overflow and we would lose status reports.
1005 * Hence, read the TX_STA_FIFO register and copy all tx status
1006 * reports into a kernel FIFO which is handled in the txstatus
1007 * tasklet. We use a tasklet to process the tx status reports
1008 * because we can schedule the tasklet multiple times (when the
1009 * interrupt fires again during tx status processing).
1011 * Furthermore we don't disable the TX_FIFO_STATUS
1012 * interrupt here but leave it enabled so that the TX_STA_FIFO
1013 * can also be read while the tx status tasklet gets executed.
1015 * Since we have only one producer and one consumer we don't
1016 * need to lock the kfifo.
1018 for (i
= 0; i
< rt2x00dev
->tx
->limit
; i
++) {
1019 rt2x00mmio_register_read(rt2x00dev
, TX_STA_FIFO
, &status
);
1021 if (!rt2x00_get_field32(status
, TX_STA_FIFO_VALID
))
1024 if (!kfifo_put(&rt2x00dev
->txstatus_fifo
, &status
)) {
1025 rt2x00_warn(rt2x00dev
, "TX status FIFO overrun, drop tx status report\n");
1030 /* Schedule the tasklet for processing the tx status. */
1031 tasklet_schedule(&rt2x00dev
->txstatus_tasklet
);
1034 static irqreturn_t
rt2800pci_interrupt(int irq
, void *dev_instance
)
1036 struct rt2x00_dev
*rt2x00dev
= dev_instance
;
1039 /* Read status and ACK all interrupts */
1040 rt2x00mmio_register_read(rt2x00dev
, INT_SOURCE_CSR
, ®
);
1041 rt2x00mmio_register_write(rt2x00dev
, INT_SOURCE_CSR
, reg
);
1046 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
1050 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
1051 * for interrupts and interrupt masks we can just use the value of
1052 * INT_SOURCE_CSR to create the interrupt mask.
1056 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TX_FIFO_STATUS
)) {
1057 rt2800pci_txstatus_interrupt(rt2x00dev
);
1059 * Never disable the TX_FIFO_STATUS interrupt.
1061 rt2x00_set_field32(&mask
, INT_MASK_CSR_TX_FIFO_STATUS
, 1);
1064 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_PRE_TBTT
))
1065 tasklet_hi_schedule(&rt2x00dev
->pretbtt_tasklet
);
1067 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_TBTT
))
1068 tasklet_hi_schedule(&rt2x00dev
->tbtt_tasklet
);
1070 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_RX_DONE
))
1071 tasklet_schedule(&rt2x00dev
->rxdone_tasklet
);
1073 if (rt2x00_get_field32(reg
, INT_SOURCE_CSR_AUTO_WAKEUP
))
1074 tasklet_schedule(&rt2x00dev
->autowake_tasklet
);
1077 * Disable all interrupts for which a tasklet was scheduled right now,
1078 * the tasklet will reenable the appropriate interrupts.
1080 spin_lock(&rt2x00dev
->irqmask_lock
);
1081 rt2x00mmio_register_read(rt2x00dev
, INT_MASK_CSR
, ®
);
1083 rt2x00mmio_register_write(rt2x00dev
, INT_MASK_CSR
, reg
);
1084 spin_unlock(&rt2x00dev
->irqmask_lock
);
1090 * Device probe functions.
1092 static int rt2800pci_read_eeprom(struct rt2x00_dev
*rt2x00dev
)
1096 if (rt2x00_is_soc(rt2x00dev
))
1097 retval
= rt2800pci_read_eeprom_soc(rt2x00dev
);
1098 else if (rt2800pci_efuse_detect(rt2x00dev
))
1099 retval
= rt2800pci_read_eeprom_efuse(rt2x00dev
);
1101 retval
= rt2800pci_read_eeprom_pci(rt2x00dev
);
1106 static const struct ieee80211_ops rt2800pci_mac80211_ops
= {
1108 .start
= rt2x00mac_start
,
1109 .stop
= rt2x00mac_stop
,
1110 .add_interface
= rt2x00mac_add_interface
,
1111 .remove_interface
= rt2x00mac_remove_interface
,
1112 .config
= rt2x00mac_config
,
1113 .configure_filter
= rt2x00mac_configure_filter
,
1114 .set_key
= rt2x00mac_set_key
,
1115 .sw_scan_start
= rt2x00mac_sw_scan_start
,
1116 .sw_scan_complete
= rt2x00mac_sw_scan_complete
,
1117 .get_stats
= rt2x00mac_get_stats
,
1118 .get_tkip_seq
= rt2800_get_tkip_seq
,
1119 .set_rts_threshold
= rt2800_set_rts_threshold
,
1120 .sta_add
= rt2x00mac_sta_add
,
1121 .sta_remove
= rt2x00mac_sta_remove
,
1122 .bss_info_changed
= rt2x00mac_bss_info_changed
,
1123 .conf_tx
= rt2800_conf_tx
,
1124 .get_tsf
= rt2800_get_tsf
,
1125 .rfkill_poll
= rt2x00mac_rfkill_poll
,
1126 .ampdu_action
= rt2800_ampdu_action
,
1127 .flush
= rt2x00mac_flush
,
1128 .get_survey
= rt2800_get_survey
,
1129 .get_ringparam
= rt2x00mac_get_ringparam
,
1130 .tx_frames_pending
= rt2x00mac_tx_frames_pending
,
1133 static const struct rt2800_ops rt2800pci_rt2800_ops
= {
1134 .register_read
= rt2x00mmio_register_read
,
1135 .register_read_lock
= rt2x00mmio_register_read
, /* same for PCI */
1136 .register_write
= rt2x00mmio_register_write
,
1137 .register_write_lock
= rt2x00mmio_register_write
, /* same for PCI */
1138 .register_multiread
= rt2x00mmio_register_multiread
,
1139 .register_multiwrite
= rt2x00mmio_register_multiwrite
,
1140 .regbusy_read
= rt2x00mmio_regbusy_read
,
1141 .read_eeprom
= rt2800pci_read_eeprom
,
1142 .hwcrypt_disabled
= rt2800pci_hwcrypt_disabled
,
1143 .drv_write_firmware
= rt2800pci_write_firmware
,
1144 .drv_init_registers
= rt2800pci_init_registers
,
1145 .drv_get_txwi
= rt2800pci_get_txwi
,
1148 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops
= {
1149 .irq_handler
= rt2800pci_interrupt
,
1150 .txstatus_tasklet
= rt2800pci_txstatus_tasklet
,
1151 .pretbtt_tasklet
= rt2800pci_pretbtt_tasklet
,
1152 .tbtt_tasklet
= rt2800pci_tbtt_tasklet
,
1153 .rxdone_tasklet
= rt2800pci_rxdone_tasklet
,
1154 .autowake_tasklet
= rt2800pci_autowake_tasklet
,
1155 .probe_hw
= rt2800_probe_hw
,
1156 .get_firmware_name
= rt2800pci_get_firmware_name
,
1157 .check_firmware
= rt2800_check_firmware
,
1158 .load_firmware
= rt2800_load_firmware
,
1159 .initialize
= rt2x00mmio_initialize
,
1160 .uninitialize
= rt2x00mmio_uninitialize
,
1161 .get_entry_state
= rt2800pci_get_entry_state
,
1162 .clear_entry
= rt2800pci_clear_entry
,
1163 .set_device_state
= rt2800pci_set_device_state
,
1164 .rfkill_poll
= rt2800_rfkill_poll
,
1165 .link_stats
= rt2800_link_stats
,
1166 .reset_tuner
= rt2800_reset_tuner
,
1167 .link_tuner
= rt2800_link_tuner
,
1168 .gain_calibration
= rt2800_gain_calibration
,
1169 .vco_calibration
= rt2800_vco_calibration
,
1170 .start_queue
= rt2800pci_start_queue
,
1171 .kick_queue
= rt2800pci_kick_queue
,
1172 .stop_queue
= rt2800pci_stop_queue
,
1173 .flush_queue
= rt2x00mmio_flush_queue
,
1174 .write_tx_desc
= rt2800pci_write_tx_desc
,
1175 .write_tx_data
= rt2800_write_tx_data
,
1176 .write_beacon
= rt2800_write_beacon
,
1177 .clear_beacon
= rt2800_clear_beacon
,
1178 .fill_rxdone
= rt2800pci_fill_rxdone
,
1179 .config_shared_key
= rt2800_config_shared_key
,
1180 .config_pairwise_key
= rt2800_config_pairwise_key
,
1181 .config_filter
= rt2800_config_filter
,
1182 .config_intf
= rt2800_config_intf
,
1183 .config_erp
= rt2800_config_erp
,
1184 .config_ant
= rt2800_config_ant
,
1185 .config
= rt2800_config
,
1186 .sta_add
= rt2800_sta_add
,
1187 .sta_remove
= rt2800_sta_remove
,
1190 static void rt2800pci_queue_init(struct data_queue
*queue
)
1192 switch (queue
->qid
) {
1195 queue
->data_size
= AGGREGATION_SIZE
;
1196 queue
->desc_size
= RXD_DESC_SIZE
;
1197 queue
->winfo_size
= RXWI_DESC_SIZE_4WORDS
;
1198 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1206 queue
->data_size
= AGGREGATION_SIZE
;
1207 queue
->desc_size
= TXD_DESC_SIZE
;
1208 queue
->winfo_size
= TXWI_DESC_SIZE_4WORDS
;
1209 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1214 queue
->data_size
= 0; /* No DMA required for beacons */
1215 queue
->desc_size
= TXD_DESC_SIZE
;
1216 queue
->winfo_size
= TXWI_DESC_SIZE_4WORDS
;
1217 queue
->priv_size
= sizeof(struct queue_entry_priv_mmio
);
1228 static const struct rt2x00_ops rt2800pci_ops
= {
1229 .name
= KBUILD_MODNAME
,
1230 .drv_data_size
= sizeof(struct rt2800_drv_data
),
1232 .eeprom_size
= EEPROM_SIZE
,
1234 .tx_queues
= NUM_TX_QUEUES
,
1235 .queue_init
= rt2800pci_queue_init
,
1236 .lib
= &rt2800pci_rt2x00_ops
,
1237 .drv
= &rt2800pci_rt2800_ops
,
1238 .hw
= &rt2800pci_mac80211_ops
,
1239 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1240 .debugfs
= &rt2800_rt2x00debug
,
1241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1245 * RT2800pci module information.
1248 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table
) = {
1249 { PCI_DEVICE(0x1814, 0x0601) },
1250 { PCI_DEVICE(0x1814, 0x0681) },
1251 { PCI_DEVICE(0x1814, 0x0701) },
1252 { PCI_DEVICE(0x1814, 0x0781) },
1253 { PCI_DEVICE(0x1814, 0x3090) },
1254 { PCI_DEVICE(0x1814, 0x3091) },
1255 { PCI_DEVICE(0x1814, 0x3092) },
1256 { PCI_DEVICE(0x1432, 0x7708) },
1257 { PCI_DEVICE(0x1432, 0x7727) },
1258 { PCI_DEVICE(0x1432, 0x7728) },
1259 { PCI_DEVICE(0x1432, 0x7738) },
1260 { PCI_DEVICE(0x1432, 0x7748) },
1261 { PCI_DEVICE(0x1432, 0x7758) },
1262 { PCI_DEVICE(0x1432, 0x7768) },
1263 { PCI_DEVICE(0x1462, 0x891a) },
1264 { PCI_DEVICE(0x1a3b, 0x1059) },
1265 #ifdef CONFIG_RT2800PCI_RT3290
1266 { PCI_DEVICE(0x1814, 0x3290) },
1268 #ifdef CONFIG_RT2800PCI_RT33XX
1269 { PCI_DEVICE(0x1814, 0x3390) },
1271 #ifdef CONFIG_RT2800PCI_RT35XX
1272 { PCI_DEVICE(0x1432, 0x7711) },
1273 { PCI_DEVICE(0x1432, 0x7722) },
1274 { PCI_DEVICE(0x1814, 0x3060) },
1275 { PCI_DEVICE(0x1814, 0x3062) },
1276 { PCI_DEVICE(0x1814, 0x3562) },
1277 { PCI_DEVICE(0x1814, 0x3592) },
1278 { PCI_DEVICE(0x1814, 0x3593) },
1279 { PCI_DEVICE(0x1814, 0x359f) },
1281 #ifdef CONFIG_RT2800PCI_RT53XX
1282 { PCI_DEVICE(0x1814, 0x5360) },
1283 { PCI_DEVICE(0x1814, 0x5362) },
1284 { PCI_DEVICE(0x1814, 0x5390) },
1285 { PCI_DEVICE(0x1814, 0x5392) },
1286 { PCI_DEVICE(0x1814, 0x539a) },
1287 { PCI_DEVICE(0x1814, 0x539b) },
1288 { PCI_DEVICE(0x1814, 0x539f) },
1292 #endif /* CONFIG_PCI */
1294 MODULE_AUTHOR(DRV_PROJECT
);
1295 MODULE_VERSION(DRV_VERSION
);
1296 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1297 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1299 MODULE_FIRMWARE(FIRMWARE_RT2860
);
1300 MODULE_DEVICE_TABLE(pci
, rt2800pci_device_table
);
1301 #endif /* CONFIG_PCI */
1302 MODULE_LICENSE("GPL");
1304 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1305 static int rt2800soc_probe(struct platform_device
*pdev
)
1307 return rt2x00soc_probe(pdev
, &rt2800pci_ops
);
1310 static struct platform_driver rt2800soc_driver
= {
1312 .name
= "rt2800_wmac",
1313 .owner
= THIS_MODULE
,
1314 .mod_name
= KBUILD_MODNAME
,
1316 .probe
= rt2800soc_probe
,
1317 .remove
= rt2x00soc_remove
,
1318 .suspend
= rt2x00soc_suspend
,
1319 .resume
= rt2x00soc_resume
,
1321 #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
1324 static int rt2800pci_probe(struct pci_dev
*pci_dev
,
1325 const struct pci_device_id
*id
)
1327 return rt2x00pci_probe(pci_dev
, &rt2800pci_ops
);
1330 static struct pci_driver rt2800pci_driver
= {
1331 .name
= KBUILD_MODNAME
,
1332 .id_table
= rt2800pci_device_table
,
1333 .probe
= rt2800pci_probe
,
1334 .remove
= rt2x00pci_remove
,
1335 .suspend
= rt2x00pci_suspend
,
1336 .resume
= rt2x00pci_resume
,
1338 #endif /* CONFIG_PCI */
1340 static int __init
rt2800pci_init(void)
1344 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1345 ret
= platform_driver_register(&rt2800soc_driver
);
1350 ret
= pci_register_driver(&rt2800pci_driver
);
1352 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1353 platform_driver_unregister(&rt2800soc_driver
);
1362 static void __exit
rt2800pci_exit(void)
1365 pci_unregister_driver(&rt2800pci_driver
);
1367 #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1368 platform_driver_unregister(&rt2800soc_driver
);
1372 module_init(rt2800pci_init
);
1373 module_exit(rt2800pci_exit
);