2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the
19 Free Software Foundation, Inc.,
20 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 Abstract: rt2x00 queue specific routines.
28 #include <linux/slab.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/dma-mapping.h>
34 #include "rt2x00lib.h"
36 struct sk_buff
*rt2x00queue_alloc_rxskb(struct queue_entry
*entry
, gfp_t gfp
)
38 struct data_queue
*queue
= entry
->queue
;
39 struct rt2x00_dev
*rt2x00dev
= queue
->rt2x00dev
;
41 struct skb_frame_desc
*skbdesc
;
42 unsigned int frame_size
;
43 unsigned int head_size
= 0;
44 unsigned int tail_size
= 0;
47 * The frame size includes descriptor size, because the
48 * hardware directly receive the frame into the skbuffer.
50 frame_size
= queue
->data_size
+ queue
->desc_size
+ queue
->winfo_size
;
53 * The payload should be aligned to a 4-byte boundary,
54 * this means we need at least 3 bytes for moving the frame
55 * into the correct offset.
60 * For IV/EIV/ICV assembly we must make sure there is
61 * at least 8 bytes bytes available in headroom for IV/EIV
62 * and 8 bytes for ICV data as tailroon.
64 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
)) {
72 skb
= __dev_alloc_skb(frame_size
+ head_size
+ tail_size
, gfp
);
77 * Make sure we not have a frame with the requested bytes
78 * available in the head and tail.
80 skb_reserve(skb
, head_size
);
81 skb_put(skb
, frame_size
);
86 skbdesc
= get_skb_frame_desc(skb
);
87 memset(skbdesc
, 0, sizeof(*skbdesc
));
88 skbdesc
->entry
= entry
;
90 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
)) {
93 skb_dma
= dma_map_single(rt2x00dev
->dev
, skb
->data
, skb
->len
,
95 if (unlikely(dma_mapping_error(rt2x00dev
->dev
, skb_dma
))) {
96 dev_kfree_skb_any(skb
);
100 skbdesc
->skb_dma
= skb_dma
;
101 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_RX
;
107 int rt2x00queue_map_txskb(struct queue_entry
*entry
)
109 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
110 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
113 dma_map_single(dev
, entry
->skb
->data
, entry
->skb
->len
, DMA_TO_DEVICE
);
115 if (unlikely(dma_mapping_error(dev
, skbdesc
->skb_dma
)))
118 skbdesc
->flags
|= SKBDESC_DMA_MAPPED_TX
;
121 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb
);
123 void rt2x00queue_unmap_skb(struct queue_entry
*entry
)
125 struct device
*dev
= entry
->queue
->rt2x00dev
->dev
;
126 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
128 if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_RX
) {
129 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
131 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_RX
;
132 } else if (skbdesc
->flags
& SKBDESC_DMA_MAPPED_TX
) {
133 dma_unmap_single(dev
, skbdesc
->skb_dma
, entry
->skb
->len
,
135 skbdesc
->flags
&= ~SKBDESC_DMA_MAPPED_TX
;
138 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb
);
140 void rt2x00queue_free_skb(struct queue_entry
*entry
)
145 rt2x00queue_unmap_skb(entry
);
146 dev_kfree_skb_any(entry
->skb
);
150 void rt2x00queue_align_frame(struct sk_buff
*skb
)
152 unsigned int frame_length
= skb
->len
;
153 unsigned int align
= ALIGN_SIZE(skb
, 0);
158 skb_push(skb
, align
);
159 memmove(skb
->data
, skb
->data
+ align
, frame_length
);
160 skb_trim(skb
, frame_length
);
163 void rt2x00queue_insert_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
165 unsigned int payload_length
= skb
->len
- header_length
;
166 unsigned int header_align
= ALIGN_SIZE(skb
, 0);
167 unsigned int payload_align
= ALIGN_SIZE(skb
, header_length
);
168 unsigned int l2pad
= payload_length
? L2PAD_SIZE(header_length
) : 0;
171 * Adjust the header alignment if the payload needs to be moved more
174 if (payload_align
> header_align
)
177 /* There is nothing to do if no alignment is needed */
181 /* Reserve the amount of space needed in front of the frame */
182 skb_push(skb
, header_align
);
187 memmove(skb
->data
, skb
->data
+ header_align
, header_length
);
189 /* Move the payload, if present and if required */
190 if (payload_length
&& payload_align
)
191 memmove(skb
->data
+ header_length
+ l2pad
,
192 skb
->data
+ header_length
+ l2pad
+ payload_align
,
195 /* Trim the skb to the correct size */
196 skb_trim(skb
, header_length
+ l2pad
+ payload_length
);
199 void rt2x00queue_remove_l2pad(struct sk_buff
*skb
, unsigned int header_length
)
202 * L2 padding is only present if the skb contains more than just the
203 * IEEE 802.11 header.
205 unsigned int l2pad
= (skb
->len
> header_length
) ?
206 L2PAD_SIZE(header_length
) : 0;
211 memmove(skb
->data
+ l2pad
, skb
->data
, header_length
);
212 skb_pull(skb
, l2pad
);
215 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev
*rt2x00dev
,
217 struct txentry_desc
*txdesc
)
219 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
220 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
221 struct rt2x00_intf
*intf
= vif_to_intf(tx_info
->control
.vif
);
224 if (!(tx_info
->flags
& IEEE80211_TX_CTL_ASSIGN_SEQ
))
227 __set_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
229 if (!test_bit(REQUIRE_SW_SEQNO
, &rt2x00dev
->cap_flags
)) {
231 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
232 * seqno on retransmited data (non-QOS) frames. To workaround
233 * the problem let's generate seqno in software if QOS is
236 if (test_bit(CONFIG_QOS_DISABLED
, &rt2x00dev
->flags
))
237 __clear_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
);
239 /* H/W will generate sequence number */
244 * The hardware is not able to insert a sequence number. Assign a
245 * software generated one here.
247 * This is wrong because beacons are not getting sequence
248 * numbers assigned properly.
250 * A secondary problem exists for drivers that cannot toggle
251 * sequence counting per-frame, since those will override the
252 * sequence counter given by mac80211.
254 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
255 seqno
= atomic_add_return(0x10, &intf
->seqno
);
257 seqno
= atomic_read(&intf
->seqno
);
259 hdr
->seq_ctrl
&= cpu_to_le16(IEEE80211_SCTL_FRAG
);
260 hdr
->seq_ctrl
|= cpu_to_le16(seqno
);
263 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev
*rt2x00dev
,
265 struct txentry_desc
*txdesc
,
266 const struct rt2x00_rate
*hwrate
)
268 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
269 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
270 unsigned int data_length
;
271 unsigned int duration
;
272 unsigned int residual
;
275 * Determine with what IFS priority this frame should be send.
276 * Set ifs to IFS_SIFS when the this is not the first fragment,
277 * or this fragment came after RTS/CTS.
279 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
))
280 txdesc
->u
.plcp
.ifs
= IFS_BACKOFF
;
282 txdesc
->u
.plcp
.ifs
= IFS_SIFS
;
284 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
285 data_length
= skb
->len
+ 4;
286 data_length
+= rt2x00crypto_tx_overhead(rt2x00dev
, skb
);
290 * Length calculation depends on OFDM/CCK rate.
292 txdesc
->u
.plcp
.signal
= hwrate
->plcp
;
293 txdesc
->u
.plcp
.service
= 0x04;
295 if (hwrate
->flags
& DEV_RATE_OFDM
) {
296 txdesc
->u
.plcp
.length_high
= (data_length
>> 6) & 0x3f;
297 txdesc
->u
.plcp
.length_low
= data_length
& 0x3f;
300 * Convert length to microseconds.
302 residual
= GET_DURATION_RES(data_length
, hwrate
->bitrate
);
303 duration
= GET_DURATION(data_length
, hwrate
->bitrate
);
309 * Check if we need to set the Length Extension
311 if (hwrate
->bitrate
== 110 && residual
<= 30)
312 txdesc
->u
.plcp
.service
|= 0x80;
315 txdesc
->u
.plcp
.length_high
= (duration
>> 8) & 0xff;
316 txdesc
->u
.plcp
.length_low
= duration
& 0xff;
319 * When preamble is enabled we should set the
320 * preamble bit for the signal.
322 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
323 txdesc
->u
.plcp
.signal
|= 0x08;
327 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev
*rt2x00dev
,
329 struct txentry_desc
*txdesc
,
330 struct ieee80211_sta
*sta
,
331 const struct rt2x00_rate
*hwrate
)
333 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
334 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
335 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
336 struct rt2x00_sta
*sta_priv
= NULL
;
339 txdesc
->u
.ht
.mpdu_density
=
340 sta
->ht_cap
.ampdu_density
;
342 sta_priv
= sta_to_rt2x00_sta(sta
);
343 txdesc
->u
.ht
.wcid
= sta_priv
->wcid
;
347 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
348 * mcs rate to be used
350 if (txrate
->flags
& IEEE80211_TX_RC_MCS
) {
351 txdesc
->u
.ht
.mcs
= txrate
->idx
;
354 * MIMO PS should be set to 1 for STA's using dynamic SM PS
355 * when using more then one tx stream (>MCS7).
357 if (sta
&& txdesc
->u
.ht
.mcs
> 7 &&
358 sta
->smps_mode
== IEEE80211_SMPS_DYNAMIC
)
359 __set_bit(ENTRY_TXD_HT_MIMO_PS
, &txdesc
->flags
);
361 txdesc
->u
.ht
.mcs
= rt2x00_get_rate_mcs(hwrate
->mcs
);
362 if (txrate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
)
363 txdesc
->u
.ht
.mcs
|= 0x08;
366 if (test_bit(CONFIG_HT_DISABLED
, &rt2x00dev
->flags
)) {
367 if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
368 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
370 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
372 /* Left zero on all other settings. */
376 txdesc
->u
.ht
.ba_size
= 7; /* FIXME: What value is needed? */
379 * Only one STBC stream is supported for now.
381 if (tx_info
->flags
& IEEE80211_TX_CTL_STBC
)
382 txdesc
->u
.ht
.stbc
= 1;
385 * This frame is eligible for an AMPDU, however, don't aggregate
386 * frames that are intended to probe a specific tx rate.
388 if (tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
&&
389 !(tx_info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
))
390 __set_bit(ENTRY_TXD_HT_AMPDU
, &txdesc
->flags
);
393 * Set 40Mhz mode if necessary (for legacy rates this will
394 * duplicate the frame to both channels).
396 if (txrate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
||
397 txrate
->flags
& IEEE80211_TX_RC_DUP_DATA
)
398 __set_bit(ENTRY_TXD_HT_BW_40
, &txdesc
->flags
);
399 if (txrate
->flags
& IEEE80211_TX_RC_SHORT_GI
)
400 __set_bit(ENTRY_TXD_HT_SHORT_GI
, &txdesc
->flags
);
403 * Determine IFS values
404 * - Use TXOP_BACKOFF for management frames except beacons
405 * - Use TXOP_SIFS for fragment bursts
406 * - Use TXOP_HTTXOP for everything else
408 * Note: rt2800 devices won't use CTS protection (if used)
409 * for frames not transmitted with TXOP_HTTXOP
411 if (ieee80211_is_mgmt(hdr
->frame_control
) &&
412 !ieee80211_is_beacon(hdr
->frame_control
))
413 txdesc
->u
.ht
.txop
= TXOP_BACKOFF
;
414 else if (!(tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
))
415 txdesc
->u
.ht
.txop
= TXOP_SIFS
;
417 txdesc
->u
.ht
.txop
= TXOP_HTTXOP
;
420 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev
*rt2x00dev
,
422 struct txentry_desc
*txdesc
,
423 struct ieee80211_sta
*sta
)
425 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(skb
);
426 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
427 struct ieee80211_tx_rate
*txrate
= &tx_info
->control
.rates
[0];
428 struct ieee80211_rate
*rate
;
429 const struct rt2x00_rate
*hwrate
= NULL
;
431 memset(txdesc
, 0, sizeof(*txdesc
));
434 * Header and frame information.
436 txdesc
->length
= skb
->len
;
437 txdesc
->header_length
= ieee80211_get_hdrlen_from_skb(skb
);
440 * Check whether this frame is to be acked.
442 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
))
443 __set_bit(ENTRY_TXD_ACK
, &txdesc
->flags
);
446 * Check if this is a RTS/CTS frame
448 if (ieee80211_is_rts(hdr
->frame_control
) ||
449 ieee80211_is_cts(hdr
->frame_control
)) {
450 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
451 if (ieee80211_is_rts(hdr
->frame_control
))
452 __set_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
);
454 __set_bit(ENTRY_TXD_CTS_FRAME
, &txdesc
->flags
);
455 if (tx_info
->control
.rts_cts_rate_idx
>= 0)
457 ieee80211_get_rts_cts_rate(rt2x00dev
->hw
, tx_info
);
461 * Determine retry information.
463 txdesc
->retry_limit
= tx_info
->control
.rates
[0].count
- 1;
464 if (txdesc
->retry_limit
>= rt2x00dev
->long_retry
)
465 __set_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
);
468 * Check if more fragments are pending
470 if (ieee80211_has_morefrags(hdr
->frame_control
)) {
471 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
472 __set_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
);
476 * Check if more frames (!= fragments) are pending
478 if (tx_info
->flags
& IEEE80211_TX_CTL_MORE_FRAMES
)
479 __set_bit(ENTRY_TXD_BURST
, &txdesc
->flags
);
482 * Beacons and probe responses require the tsf timestamp
483 * to be inserted into the frame.
485 if (ieee80211_is_beacon(hdr
->frame_control
) ||
486 ieee80211_is_probe_resp(hdr
->frame_control
))
487 __set_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
);
489 if ((tx_info
->flags
& IEEE80211_TX_CTL_FIRST_FRAGMENT
) &&
490 !test_bit(ENTRY_TXD_RTS_FRAME
, &txdesc
->flags
))
491 __set_bit(ENTRY_TXD_FIRST_FRAGMENT
, &txdesc
->flags
);
494 * Determine rate modulation.
496 if (txrate
->flags
& IEEE80211_TX_RC_GREEN_FIELD
)
497 txdesc
->rate_mode
= RATE_MODE_HT_GREENFIELD
;
498 else if (txrate
->flags
& IEEE80211_TX_RC_MCS
)
499 txdesc
->rate_mode
= RATE_MODE_HT_MIX
;
501 rate
= ieee80211_get_tx_rate(rt2x00dev
->hw
, tx_info
);
502 hwrate
= rt2x00_get_rate(rate
->hw_value
);
503 if (hwrate
->flags
& DEV_RATE_OFDM
)
504 txdesc
->rate_mode
= RATE_MODE_OFDM
;
506 txdesc
->rate_mode
= RATE_MODE_CCK
;
510 * Apply TX descriptor handling by components
512 rt2x00crypto_create_tx_descriptor(rt2x00dev
, skb
, txdesc
);
513 rt2x00queue_create_tx_descriptor_seq(rt2x00dev
, skb
, txdesc
);
515 if (test_bit(REQUIRE_HT_TX_DESC
, &rt2x00dev
->cap_flags
))
516 rt2x00queue_create_tx_descriptor_ht(rt2x00dev
, skb
, txdesc
,
519 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev
, skb
, txdesc
,
523 static int rt2x00queue_write_tx_data(struct queue_entry
*entry
,
524 struct txentry_desc
*txdesc
)
526 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
529 * This should not happen, we already checked the entry
530 * was ours. When the hardware disagrees there has been
531 * a queue corruption!
533 if (unlikely(rt2x00dev
->ops
->lib
->get_entry_state
&&
534 rt2x00dev
->ops
->lib
->get_entry_state(entry
))) {
535 rt2x00_err(rt2x00dev
,
536 "Corrupt queue %d, accessing entry which is not ours\n"
537 "Please file bug report to %s\n",
538 entry
->queue
->qid
, DRV_PROJECT
);
543 * Add the requested extra tx headroom in front of the skb.
545 skb_push(entry
->skb
, rt2x00dev
->extra_tx_headroom
);
546 memset(entry
->skb
->data
, 0, rt2x00dev
->extra_tx_headroom
);
549 * Call the driver's write_tx_data function, if it exists.
551 if (rt2x00dev
->ops
->lib
->write_tx_data
)
552 rt2x00dev
->ops
->lib
->write_tx_data(entry
, txdesc
);
555 * Map the skb to DMA.
557 if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
) &&
558 rt2x00queue_map_txskb(entry
))
564 static void rt2x00queue_write_tx_descriptor(struct queue_entry
*entry
,
565 struct txentry_desc
*txdesc
)
567 struct data_queue
*queue
= entry
->queue
;
569 queue
->rt2x00dev
->ops
->lib
->write_tx_desc(entry
, txdesc
);
572 * All processing on the frame has been completed, this means
573 * it is now ready to be dumped to userspace through debugfs.
575 rt2x00debug_dump_frame(queue
->rt2x00dev
, DUMP_FRAME_TX
, entry
->skb
);
578 static void rt2x00queue_kick_tx_queue(struct data_queue
*queue
,
579 struct txentry_desc
*txdesc
)
582 * Check if we need to kick the queue, there are however a few rules
583 * 1) Don't kick unless this is the last in frame in a burst.
584 * When the burst flag is set, this frame is always followed
585 * by another frame which in some way are related to eachother.
586 * This is true for fragments, RTS or CTS-to-self frames.
587 * 2) Rule 1 can be broken when the available entries
588 * in the queue are less then a certain threshold.
590 if (rt2x00queue_threshold(queue
) ||
591 !test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
))
592 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
595 static void rt2x00queue_bar_check(struct queue_entry
*entry
)
597 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
598 struct ieee80211_bar
*bar
= (void *) (entry
->skb
->data
+
599 rt2x00dev
->extra_tx_headroom
);
600 struct rt2x00_bar_list_entry
*bar_entry
;
602 if (likely(!ieee80211_is_back_req(bar
->frame_control
)))
605 bar_entry
= kmalloc(sizeof(*bar_entry
), GFP_ATOMIC
);
608 * If the alloc fails we still send the BAR out but just don't track
609 * it in our bar list. And as a result we will report it to mac80211
615 bar_entry
->entry
= entry
;
616 bar_entry
->block_acked
= 0;
619 * Copy the relevant parts of the 802.11 BAR into out check list
620 * such that we can use RCU for less-overhead in the RX path since
621 * sending BARs and processing the according BlockAck should be
624 memcpy(bar_entry
->ra
, bar
->ra
, sizeof(bar
->ra
));
625 memcpy(bar_entry
->ta
, bar
->ta
, sizeof(bar
->ta
));
626 bar_entry
->control
= bar
->control
;
627 bar_entry
->start_seq_num
= bar
->start_seq_num
;
630 * Insert BAR into our BAR check list.
632 spin_lock_bh(&rt2x00dev
->bar_list_lock
);
633 list_add_tail_rcu(&bar_entry
->list
, &rt2x00dev
->bar_list
);
634 spin_unlock_bh(&rt2x00dev
->bar_list_lock
);
637 int rt2x00queue_write_tx_frame(struct data_queue
*queue
, struct sk_buff
*skb
,
640 struct ieee80211_tx_info
*tx_info
;
641 struct queue_entry
*entry
;
642 struct txentry_desc txdesc
;
643 struct skb_frame_desc
*skbdesc
;
644 u8 rate_idx
, rate_flags
;
648 * Copy all TX descriptor information into txdesc,
649 * after that we are free to use the skb->cb array
650 * for our information.
652 rt2x00queue_create_tx_descriptor(queue
->rt2x00dev
, skb
, &txdesc
, NULL
);
655 * All information is retrieved from the skb->cb array,
656 * now we should claim ownership of the driver part of that
657 * array, preserving the bitrate index and flags.
659 tx_info
= IEEE80211_SKB_CB(skb
);
660 rate_idx
= tx_info
->control
.rates
[0].idx
;
661 rate_flags
= tx_info
->control
.rates
[0].flags
;
662 skbdesc
= get_skb_frame_desc(skb
);
663 memset(skbdesc
, 0, sizeof(*skbdesc
));
664 skbdesc
->tx_rate_idx
= rate_idx
;
665 skbdesc
->tx_rate_flags
= rate_flags
;
668 skbdesc
->flags
|= SKBDESC_NOT_MAC80211
;
671 * When hardware encryption is supported, and this frame
672 * is to be encrypted, we should strip the IV/EIV data from
673 * the frame so we can provide it to the driver separately.
675 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
.flags
) &&
676 !test_bit(ENTRY_TXD_ENCRYPT_IV
, &txdesc
.flags
)) {
677 if (test_bit(REQUIRE_COPY_IV
, &queue
->rt2x00dev
->cap_flags
))
678 rt2x00crypto_tx_copy_iv(skb
, &txdesc
);
680 rt2x00crypto_tx_remove_iv(skb
, &txdesc
);
684 * When DMA allocation is required we should guarantee to the
685 * driver that the DMA is aligned to a 4-byte boundary.
686 * However some drivers require L2 padding to pad the payload
687 * rather then the header. This could be a requirement for
688 * PCI and USB devices, while header alignment only is valid
691 if (test_bit(REQUIRE_L2PAD
, &queue
->rt2x00dev
->cap_flags
))
692 rt2x00queue_insert_l2pad(skb
, txdesc
.header_length
);
693 else if (test_bit(REQUIRE_DMA
, &queue
->rt2x00dev
->cap_flags
))
694 rt2x00queue_align_frame(skb
);
697 * That function must be called with bh disabled.
699 spin_lock(&queue
->tx_lock
);
701 if (unlikely(rt2x00queue_full(queue
))) {
702 rt2x00_err(queue
->rt2x00dev
, "Dropping frame due to full tx queue %d\n",
708 entry
= rt2x00queue_get_entry(queue
, Q_INDEX
);
710 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA
,
712 rt2x00_err(queue
->rt2x00dev
,
713 "Arrived at non-free entry in the non-full queue %d\n"
714 "Please file bug report to %s\n",
715 queue
->qid
, DRV_PROJECT
);
720 skbdesc
->entry
= entry
;
724 * It could be possible that the queue was corrupted and this
725 * call failed. Since we always return NETDEV_TX_OK to mac80211,
726 * this frame will simply be dropped.
728 if (unlikely(rt2x00queue_write_tx_data(entry
, &txdesc
))) {
729 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
736 * Put BlockAckReqs into our check list for driver BA processing.
738 rt2x00queue_bar_check(entry
);
740 set_bit(ENTRY_DATA_PENDING
, &entry
->flags
);
742 rt2x00queue_index_inc(entry
, Q_INDEX
);
743 rt2x00queue_write_tx_descriptor(entry
, &txdesc
);
744 rt2x00queue_kick_tx_queue(queue
, &txdesc
);
747 spin_unlock(&queue
->tx_lock
);
751 int rt2x00queue_clear_beacon(struct rt2x00_dev
*rt2x00dev
,
752 struct ieee80211_vif
*vif
)
754 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
756 if (unlikely(!intf
->beacon
))
759 mutex_lock(&intf
->beacon_skb_mutex
);
762 * Clean up the beacon skb.
764 rt2x00queue_free_skb(intf
->beacon
);
767 * Clear beacon (single bssid devices don't need to clear the beacon
768 * since the beacon queue will get stopped anyway).
770 if (rt2x00dev
->ops
->lib
->clear_beacon
)
771 rt2x00dev
->ops
->lib
->clear_beacon(intf
->beacon
);
773 mutex_unlock(&intf
->beacon_skb_mutex
);
778 int rt2x00queue_update_beacon_locked(struct rt2x00_dev
*rt2x00dev
,
779 struct ieee80211_vif
*vif
)
781 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
782 struct skb_frame_desc
*skbdesc
;
783 struct txentry_desc txdesc
;
785 if (unlikely(!intf
->beacon
))
789 * Clean up the beacon skb.
791 rt2x00queue_free_skb(intf
->beacon
);
793 intf
->beacon
->skb
= ieee80211_beacon_get(rt2x00dev
->hw
, vif
);
794 if (!intf
->beacon
->skb
)
798 * Copy all TX descriptor information into txdesc,
799 * after that we are free to use the skb->cb array
800 * for our information.
802 rt2x00queue_create_tx_descriptor(rt2x00dev
, intf
->beacon
->skb
, &txdesc
, NULL
);
805 * Fill in skb descriptor
807 skbdesc
= get_skb_frame_desc(intf
->beacon
->skb
);
808 memset(skbdesc
, 0, sizeof(*skbdesc
));
809 skbdesc
->entry
= intf
->beacon
;
812 * Send beacon to hardware.
814 rt2x00dev
->ops
->lib
->write_beacon(intf
->beacon
, &txdesc
);
820 int rt2x00queue_update_beacon(struct rt2x00_dev
*rt2x00dev
,
821 struct ieee80211_vif
*vif
)
823 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
826 mutex_lock(&intf
->beacon_skb_mutex
);
827 ret
= rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
828 mutex_unlock(&intf
->beacon_skb_mutex
);
833 bool rt2x00queue_for_each_entry(struct data_queue
*queue
,
834 enum queue_index start
,
835 enum queue_index end
,
837 bool (*fn
)(struct queue_entry
*entry
,
840 unsigned long irqflags
;
841 unsigned int index_start
;
842 unsigned int index_end
;
845 if (unlikely(start
>= Q_INDEX_MAX
|| end
>= Q_INDEX_MAX
)) {
846 rt2x00_err(queue
->rt2x00dev
,
847 "Entry requested from invalid index range (%d - %d)\n",
853 * Only protect the range we are going to loop over,
854 * if during our loop a extra entry is set to pending
855 * it should not be kicked during this run, since it
856 * is part of another TX operation.
858 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
859 index_start
= queue
->index
[start
];
860 index_end
= queue
->index
[end
];
861 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
864 * Start from the TX done pointer, this guarantees that we will
865 * send out all frames in the correct order.
867 if (index_start
< index_end
) {
868 for (i
= index_start
; i
< index_end
; i
++) {
869 if (fn(&queue
->entries
[i
], data
))
873 for (i
= index_start
; i
< queue
->limit
; i
++) {
874 if (fn(&queue
->entries
[i
], data
))
878 for (i
= 0; i
< index_end
; i
++) {
879 if (fn(&queue
->entries
[i
], data
))
886 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry
);
888 struct queue_entry
*rt2x00queue_get_entry(struct data_queue
*queue
,
889 enum queue_index index
)
891 struct queue_entry
*entry
;
892 unsigned long irqflags
;
894 if (unlikely(index
>= Q_INDEX_MAX
)) {
895 rt2x00_err(queue
->rt2x00dev
, "Entry requested from invalid index type (%d)\n",
900 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
902 entry
= &queue
->entries
[queue
->index
[index
]];
904 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
908 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry
);
910 void rt2x00queue_index_inc(struct queue_entry
*entry
, enum queue_index index
)
912 struct data_queue
*queue
= entry
->queue
;
913 unsigned long irqflags
;
915 if (unlikely(index
>= Q_INDEX_MAX
)) {
916 rt2x00_err(queue
->rt2x00dev
,
917 "Index change on invalid index type (%d)\n", index
);
921 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
923 queue
->index
[index
]++;
924 if (queue
->index
[index
] >= queue
->limit
)
925 queue
->index
[index
] = 0;
927 entry
->last_action
= jiffies
;
929 if (index
== Q_INDEX
) {
931 } else if (index
== Q_INDEX_DONE
) {
936 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
939 void rt2x00queue_pause_queue(struct data_queue
*queue
)
941 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
942 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
943 test_and_set_bit(QUEUE_PAUSED
, &queue
->flags
))
946 switch (queue
->qid
) {
952 * For TX queues, we have to disable the queue
955 ieee80211_stop_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
961 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue
);
963 void rt2x00queue_unpause_queue(struct data_queue
*queue
)
965 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
966 !test_bit(QUEUE_STARTED
, &queue
->flags
) ||
967 !test_and_clear_bit(QUEUE_PAUSED
, &queue
->flags
))
970 switch (queue
->qid
) {
976 * For TX queues, we have to enable the queue
979 ieee80211_wake_queue(queue
->rt2x00dev
->hw
, queue
->qid
);
983 * For RX we need to kick the queue now in order to
986 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
991 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue
);
993 void rt2x00queue_start_queue(struct data_queue
*queue
)
995 mutex_lock(&queue
->status_lock
);
997 if (!test_bit(DEVICE_STATE_PRESENT
, &queue
->rt2x00dev
->flags
) ||
998 test_and_set_bit(QUEUE_STARTED
, &queue
->flags
)) {
999 mutex_unlock(&queue
->status_lock
);
1003 set_bit(QUEUE_PAUSED
, &queue
->flags
);
1005 queue
->rt2x00dev
->ops
->lib
->start_queue(queue
);
1007 rt2x00queue_unpause_queue(queue
);
1009 mutex_unlock(&queue
->status_lock
);
1011 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue
);
1013 void rt2x00queue_stop_queue(struct data_queue
*queue
)
1015 mutex_lock(&queue
->status_lock
);
1017 if (!test_and_clear_bit(QUEUE_STARTED
, &queue
->flags
)) {
1018 mutex_unlock(&queue
->status_lock
);
1022 rt2x00queue_pause_queue(queue
);
1024 queue
->rt2x00dev
->ops
->lib
->stop_queue(queue
);
1026 mutex_unlock(&queue
->status_lock
);
1028 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue
);
1030 void rt2x00queue_flush_queue(struct data_queue
*queue
, bool drop
)
1034 (queue
->qid
== QID_AC_VO
) ||
1035 (queue
->qid
== QID_AC_VI
) ||
1036 (queue
->qid
== QID_AC_BE
) ||
1037 (queue
->qid
== QID_AC_BK
);
1039 mutex_lock(&queue
->status_lock
);
1042 * If the queue has been started, we must stop it temporarily
1043 * to prevent any new frames to be queued on the device. If
1044 * we are not dropping the pending frames, the queue must
1045 * only be stopped in the software and not the hardware,
1046 * otherwise the queue will never become empty on its own.
1048 started
= test_bit(QUEUE_STARTED
, &queue
->flags
);
1053 rt2x00queue_pause_queue(queue
);
1056 * If we are not supposed to drop any pending
1057 * frames, this means we must force a start (=kick)
1058 * to the queue to make sure the hardware will
1059 * start transmitting.
1061 if (!drop
&& tx_queue
)
1062 queue
->rt2x00dev
->ops
->lib
->kick_queue(queue
);
1066 * Check if driver supports flushing, if that is the case we can
1067 * defer the flushing to the driver. Otherwise we must use the
1068 * alternative which just waits for the queue to become empty.
1070 if (likely(queue
->rt2x00dev
->ops
->lib
->flush_queue
))
1071 queue
->rt2x00dev
->ops
->lib
->flush_queue(queue
, drop
);
1074 * The queue flush has failed...
1076 if (unlikely(!rt2x00queue_empty(queue
)))
1077 rt2x00_warn(queue
->rt2x00dev
, "Queue %d failed to flush\n",
1081 * Restore the queue to the previous status
1084 rt2x00queue_unpause_queue(queue
);
1086 mutex_unlock(&queue
->status_lock
);
1088 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue
);
1090 void rt2x00queue_start_queues(struct rt2x00_dev
*rt2x00dev
)
1092 struct data_queue
*queue
;
1095 * rt2x00queue_start_queue will call ieee80211_wake_queue
1096 * for each queue after is has been properly initialized.
1098 tx_queue_for_each(rt2x00dev
, queue
)
1099 rt2x00queue_start_queue(queue
);
1101 rt2x00queue_start_queue(rt2x00dev
->rx
);
1103 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues
);
1105 void rt2x00queue_stop_queues(struct rt2x00_dev
*rt2x00dev
)
1107 struct data_queue
*queue
;
1110 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1111 * as well, but we are completely shutting doing everything
1112 * now, so it is much safer to stop all TX queues at once,
1113 * and use rt2x00queue_stop_queue for cleaning up.
1115 ieee80211_stop_queues(rt2x00dev
->hw
);
1117 tx_queue_for_each(rt2x00dev
, queue
)
1118 rt2x00queue_stop_queue(queue
);
1120 rt2x00queue_stop_queue(rt2x00dev
->rx
);
1122 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues
);
1124 void rt2x00queue_flush_queues(struct rt2x00_dev
*rt2x00dev
, bool drop
)
1126 struct data_queue
*queue
;
1128 tx_queue_for_each(rt2x00dev
, queue
)
1129 rt2x00queue_flush_queue(queue
, drop
);
1131 rt2x00queue_flush_queue(rt2x00dev
->rx
, drop
);
1133 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues
);
1135 static void rt2x00queue_reset(struct data_queue
*queue
)
1137 unsigned long irqflags
;
1140 spin_lock_irqsave(&queue
->index_lock
, irqflags
);
1145 for (i
= 0; i
< Q_INDEX_MAX
; i
++)
1146 queue
->index
[i
] = 0;
1148 spin_unlock_irqrestore(&queue
->index_lock
, irqflags
);
1151 void rt2x00queue_init_queues(struct rt2x00_dev
*rt2x00dev
)
1153 struct data_queue
*queue
;
1156 queue_for_each(rt2x00dev
, queue
) {
1157 rt2x00queue_reset(queue
);
1159 for (i
= 0; i
< queue
->limit
; i
++)
1160 rt2x00dev
->ops
->lib
->clear_entry(&queue
->entries
[i
]);
1164 static int rt2x00queue_alloc_entries(struct data_queue
*queue
)
1166 struct queue_entry
*entries
;
1167 unsigned int entry_size
;
1170 rt2x00queue_reset(queue
);
1173 * Allocate all queue entries.
1175 entry_size
= sizeof(*entries
) + queue
->priv_size
;
1176 entries
= kcalloc(queue
->limit
, entry_size
, GFP_KERNEL
);
1180 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1181 (((char *)(__base)) + ((__limit) * (__esize)) + \
1182 ((__index) * (__psize)))
1184 for (i
= 0; i
< queue
->limit
; i
++) {
1185 entries
[i
].flags
= 0;
1186 entries
[i
].queue
= queue
;
1187 entries
[i
].skb
= NULL
;
1188 entries
[i
].entry_idx
= i
;
1189 entries
[i
].priv_data
=
1190 QUEUE_ENTRY_PRIV_OFFSET(entries
, i
, queue
->limit
,
1191 sizeof(*entries
), queue
->priv_size
);
1194 #undef QUEUE_ENTRY_PRIV_OFFSET
1196 queue
->entries
= entries
;
1201 static void rt2x00queue_free_skbs(struct data_queue
*queue
)
1205 if (!queue
->entries
)
1208 for (i
= 0; i
< queue
->limit
; i
++) {
1209 rt2x00queue_free_skb(&queue
->entries
[i
]);
1213 static int rt2x00queue_alloc_rxskbs(struct data_queue
*queue
)
1216 struct sk_buff
*skb
;
1218 for (i
= 0; i
< queue
->limit
; i
++) {
1219 skb
= rt2x00queue_alloc_rxskb(&queue
->entries
[i
], GFP_KERNEL
);
1222 queue
->entries
[i
].skb
= skb
;
1228 int rt2x00queue_initialize(struct rt2x00_dev
*rt2x00dev
)
1230 struct data_queue
*queue
;
1233 status
= rt2x00queue_alloc_entries(rt2x00dev
->rx
);
1237 tx_queue_for_each(rt2x00dev
, queue
) {
1238 status
= rt2x00queue_alloc_entries(queue
);
1243 status
= rt2x00queue_alloc_entries(rt2x00dev
->bcn
);
1247 if (test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
)) {
1248 status
= rt2x00queue_alloc_entries(rt2x00dev
->atim
);
1253 status
= rt2x00queue_alloc_rxskbs(rt2x00dev
->rx
);
1260 rt2x00_err(rt2x00dev
, "Queue entries allocation failed\n");
1262 rt2x00queue_uninitialize(rt2x00dev
);
1267 void rt2x00queue_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1269 struct data_queue
*queue
;
1271 rt2x00queue_free_skbs(rt2x00dev
->rx
);
1273 queue_for_each(rt2x00dev
, queue
) {
1274 kfree(queue
->entries
);
1275 queue
->entries
= NULL
;
1279 static void rt2x00queue_init(struct rt2x00_dev
*rt2x00dev
,
1280 struct data_queue
*queue
, enum data_queue_qid qid
)
1282 mutex_init(&queue
->status_lock
);
1283 spin_lock_init(&queue
->tx_lock
);
1284 spin_lock_init(&queue
->index_lock
);
1286 queue
->rt2x00dev
= rt2x00dev
;
1293 rt2x00dev
->ops
->queue_init(queue
);
1295 queue
->threshold
= DIV_ROUND_UP(queue
->limit
, 10);
1298 int rt2x00queue_allocate(struct rt2x00_dev
*rt2x00dev
)
1300 struct data_queue
*queue
;
1301 enum data_queue_qid qid
;
1302 unsigned int req_atim
=
1303 !!test_bit(REQUIRE_ATIM_QUEUE
, &rt2x00dev
->cap_flags
);
1306 * We need the following queues:
1308 * TX: ops->tx_queues
1310 * Atim: 1 (if required)
1312 rt2x00dev
->data_queues
= 2 + rt2x00dev
->ops
->tx_queues
+ req_atim
;
1314 queue
= kcalloc(rt2x00dev
->data_queues
, sizeof(*queue
), GFP_KERNEL
);
1316 rt2x00_err(rt2x00dev
, "Queue allocation failed\n");
1321 * Initialize pointers
1323 rt2x00dev
->rx
= queue
;
1324 rt2x00dev
->tx
= &queue
[1];
1325 rt2x00dev
->bcn
= &queue
[1 + rt2x00dev
->ops
->tx_queues
];
1326 rt2x00dev
->atim
= req_atim
? &queue
[2 + rt2x00dev
->ops
->tx_queues
] : NULL
;
1329 * Initialize queue parameters.
1331 * TX: qid = QID_AC_VO + index
1332 * TX: cw_min: 2^5 = 32.
1333 * TX: cw_max: 2^10 = 1024.
1334 * BCN: qid = QID_BEACON
1335 * ATIM: qid = QID_ATIM
1337 rt2x00queue_init(rt2x00dev
, rt2x00dev
->rx
, QID_RX
);
1340 tx_queue_for_each(rt2x00dev
, queue
)
1341 rt2x00queue_init(rt2x00dev
, queue
, qid
++);
1343 rt2x00queue_init(rt2x00dev
, rt2x00dev
->bcn
, QID_BEACON
);
1345 rt2x00queue_init(rt2x00dev
, rt2x00dev
->atim
, QID_ATIM
);
1350 void rt2x00queue_free(struct rt2x00_dev
*rt2x00dev
)
1352 kfree(rt2x00dev
->rx
);
1353 rt2x00dev
->rx
= NULL
;
1354 rt2x00dev
->tx
= NULL
;
1355 rt2x00dev
->bcn
= NULL
;