Linux 3.11-rc3
[cris-mirror.git] / drivers / thermal / intel_powerclamp.c
blobb40b37cd25e08b7b2353b6ef6d85c321ad2e08eb
1 /*
2 * intel_powerclamp.c - package c-state idle injection
4 * Copyright (c) 2012, Intel Corporation.
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
35 * 2. synchronization with other hw blocks
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
72 #define DEFAULT_DURATION_JIFFIES (6)
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
87 static bool clamping;
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
100 static int duration_set(const char *arg, const struct kernel_param *kp)
102 int ret = 0;
103 unsigned long new_duration;
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
117 exit:
119 return ret;
122 static struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
131 struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
150 int ret = 0;
151 unsigned long new_window_size;
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
165 exit_win:
167 return ret;
170 static struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
181 static void find_target_mwait(void)
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
209 static u64 pkg_state_counter(void)
211 u64 val;
212 u64 count = 0;
214 static bool skip_c2;
215 static bool skip_c3;
216 static bool skip_c6;
217 static bool skip_c7;
219 if (!skip_c2) {
220 if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
221 count += val;
222 else
223 skip_c2 = true;
226 if (!skip_c3) {
227 if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
228 count += val;
229 else
230 skip_c3 = true;
233 if (!skip_c6) {
234 if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
235 count += val;
236 else
237 skip_c6 = true;
240 if (!skip_c7) {
241 if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
242 count += val;
243 else
244 skip_c7 = true;
247 return count;
250 static void noop_timer(unsigned long foo)
252 /* empty... just the fact that we get the interrupt wakes us up */
255 static unsigned int get_compensation(int ratio)
257 unsigned int comp = 0;
259 /* we only use compensation if all adjacent ones are good */
260 if (ratio == 1 &&
261 cal_data[ratio].confidence >= CONFIDENCE_OK &&
262 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
263 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
264 comp = (cal_data[ratio].steady_comp +
265 cal_data[ratio + 1].steady_comp +
266 cal_data[ratio + 2].steady_comp) / 3;
267 } else if (ratio == MAX_TARGET_RATIO - 1 &&
268 cal_data[ratio].confidence >= CONFIDENCE_OK &&
269 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
270 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
271 comp = (cal_data[ratio].steady_comp +
272 cal_data[ratio - 1].steady_comp +
273 cal_data[ratio - 2].steady_comp) / 3;
274 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
275 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
276 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
277 comp = (cal_data[ratio].steady_comp +
278 cal_data[ratio - 1].steady_comp +
279 cal_data[ratio + 1].steady_comp) / 3;
282 /* REVISIT: simple penalty of double idle injection */
283 if (reduce_irq)
284 comp = ratio;
285 /* do not exceed limit */
286 if (comp + ratio >= MAX_TARGET_RATIO)
287 comp = MAX_TARGET_RATIO - ratio - 1;
289 return comp;
292 static void adjust_compensation(int target_ratio, unsigned int win)
294 int delta;
295 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
298 * adjust compensations if confidence level has not been reached or
299 * there are too many wakeups during the last idle injection period, we
300 * cannot trust the data for compensation.
302 if (d->confidence >= CONFIDENCE_OK ||
303 atomic_read(&idle_wakeup_counter) >
304 win * num_online_cpus())
305 return;
307 delta = set_target_ratio - current_ratio;
308 /* filter out bad data */
309 if (delta >= 0 && delta <= (1+target_ratio/10)) {
310 if (d->steady_comp)
311 d->steady_comp =
312 roundup(delta+d->steady_comp, 2)/2;
313 else
314 d->steady_comp = delta;
315 d->confidence++;
319 static bool powerclamp_adjust_controls(unsigned int target_ratio,
320 unsigned int guard, unsigned int win)
322 static u64 msr_last, tsc_last;
323 u64 msr_now, tsc_now;
324 u64 val64;
326 /* check result for the last window */
327 msr_now = pkg_state_counter();
328 rdtscll(tsc_now);
330 /* calculate pkg cstate vs tsc ratio */
331 if (!msr_last || !tsc_last)
332 current_ratio = 1;
333 else if (tsc_now-tsc_last) {
334 val64 = 100*(msr_now-msr_last);
335 do_div(val64, (tsc_now-tsc_last));
336 current_ratio = val64;
339 /* update record */
340 msr_last = msr_now;
341 tsc_last = tsc_now;
343 adjust_compensation(target_ratio, win);
345 * too many external interrupts, set flag such
346 * that we can take measure later.
348 reduce_irq = atomic_read(&idle_wakeup_counter) >=
349 2 * win * num_online_cpus();
351 atomic_set(&idle_wakeup_counter, 0);
352 /* if we are above target+guard, skip */
353 return set_target_ratio + guard <= current_ratio;
356 static int clamp_thread(void *arg)
358 int cpunr = (unsigned long)arg;
359 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
360 static const struct sched_param param = {
361 .sched_priority = MAX_USER_RT_PRIO/2,
363 unsigned int count = 0;
364 unsigned int target_ratio;
366 set_bit(cpunr, cpu_clamping_mask);
367 set_freezable();
368 init_timer_on_stack(&wakeup_timer);
369 sched_setscheduler(current, SCHED_FIFO, &param);
371 while (true == clamping && !kthread_should_stop() &&
372 cpu_online(cpunr)) {
373 int sleeptime;
374 unsigned long target_jiffies;
375 unsigned int guard;
376 unsigned int compensation = 0;
377 int interval; /* jiffies to sleep for each attempt */
378 unsigned int duration_jiffies = msecs_to_jiffies(duration);
379 unsigned int window_size_now;
381 try_to_freeze();
383 * make sure user selected ratio does not take effect until
384 * the next round. adjust target_ratio if user has changed
385 * target such that we can converge quickly.
387 target_ratio = set_target_ratio;
388 guard = 1 + target_ratio/20;
389 window_size_now = window_size;
390 count++;
393 * systems may have different ability to enter package level
394 * c-states, thus we need to compensate the injected idle ratio
395 * to achieve the actual target reported by the HW.
397 compensation = get_compensation(target_ratio);
398 interval = duration_jiffies*100/(target_ratio+compensation);
400 /* align idle time */
401 target_jiffies = roundup(jiffies, interval);
402 sleeptime = target_jiffies - jiffies;
403 if (sleeptime <= 0)
404 sleeptime = 1;
405 schedule_timeout_interruptible(sleeptime);
407 * only elected controlling cpu can collect stats and update
408 * control parameters.
410 if (cpunr == control_cpu && !(count%window_size_now)) {
411 should_skip =
412 powerclamp_adjust_controls(target_ratio,
413 guard, window_size_now);
414 smp_mb();
417 if (should_skip)
418 continue;
420 target_jiffies = jiffies + duration_jiffies;
421 mod_timer(&wakeup_timer, target_jiffies);
422 if (unlikely(local_softirq_pending()))
423 continue;
425 * stop tick sched during idle time, interrupts are still
426 * allowed. thus jiffies are updated properly.
428 preempt_disable();
429 tick_nohz_idle_enter();
430 /* mwait until target jiffies is reached */
431 while (time_before(jiffies, target_jiffies)) {
432 unsigned long ecx = 1;
433 unsigned long eax = target_mwait;
436 * REVISIT: may call enter_idle() to notify drivers who
437 * can save power during cpu idle. same for exit_idle()
439 local_touch_nmi();
440 stop_critical_timings();
441 __monitor((void *)&current_thread_info()->flags, 0, 0);
442 cpu_relax(); /* allow HT sibling to run */
443 __mwait(eax, ecx);
444 start_critical_timings();
445 atomic_inc(&idle_wakeup_counter);
447 tick_nohz_idle_exit();
448 preempt_enable_no_resched();
450 del_timer_sync(&wakeup_timer);
451 clear_bit(cpunr, cpu_clamping_mask);
453 return 0;
457 * 1 HZ polling while clamping is active, useful for userspace
458 * to monitor actual idle ratio.
460 static void poll_pkg_cstate(struct work_struct *dummy);
461 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
462 static void poll_pkg_cstate(struct work_struct *dummy)
464 static u64 msr_last;
465 static u64 tsc_last;
466 static unsigned long jiffies_last;
468 u64 msr_now;
469 unsigned long jiffies_now;
470 u64 tsc_now;
471 u64 val64;
473 msr_now = pkg_state_counter();
474 rdtscll(tsc_now);
475 jiffies_now = jiffies;
477 /* calculate pkg cstate vs tsc ratio */
478 if (!msr_last || !tsc_last)
479 pkg_cstate_ratio_cur = 1;
480 else {
481 if (tsc_now - tsc_last) {
482 val64 = 100 * (msr_now - msr_last);
483 do_div(val64, (tsc_now - tsc_last));
484 pkg_cstate_ratio_cur = val64;
488 /* update record */
489 msr_last = msr_now;
490 jiffies_last = jiffies_now;
491 tsc_last = tsc_now;
493 if (true == clamping)
494 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
497 static int start_power_clamp(void)
499 unsigned long cpu;
500 struct task_struct *thread;
502 /* check if pkg cstate counter is completely 0, abort in this case */
503 if (!pkg_state_counter()) {
504 pr_err("pkg cstate counter not functional, abort\n");
505 return -EINVAL;
508 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
509 /* prevent cpu hotplug */
510 get_online_cpus();
512 /* prefer BSP */
513 control_cpu = 0;
514 if (!cpu_online(control_cpu))
515 control_cpu = smp_processor_id();
517 clamping = true;
518 schedule_delayed_work(&poll_pkg_cstate_work, 0);
520 /* start one thread per online cpu */
521 for_each_online_cpu(cpu) {
522 struct task_struct **p =
523 per_cpu_ptr(powerclamp_thread, cpu);
525 thread = kthread_create_on_node(clamp_thread,
526 (void *) cpu,
527 cpu_to_node(cpu),
528 "kidle_inject/%ld", cpu);
529 /* bind to cpu here */
530 if (likely(!IS_ERR(thread))) {
531 kthread_bind(thread, cpu);
532 wake_up_process(thread);
533 *p = thread;
537 put_online_cpus();
539 return 0;
542 static void end_power_clamp(void)
544 int i;
545 struct task_struct *thread;
547 clamping = false;
549 * make clamping visible to other cpus and give per cpu clamping threads
550 * sometime to exit, or gets killed later.
552 smp_mb();
553 msleep(20);
554 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
555 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
556 pr_debug("clamping thread for cpu %d alive, kill\n", i);
557 thread = *per_cpu_ptr(powerclamp_thread, i);
558 kthread_stop(thread);
563 static int powerclamp_cpu_callback(struct notifier_block *nfb,
564 unsigned long action, void *hcpu)
566 unsigned long cpu = (unsigned long)hcpu;
567 struct task_struct *thread;
568 struct task_struct **percpu_thread =
569 per_cpu_ptr(powerclamp_thread, cpu);
571 if (false == clamping)
572 goto exit_ok;
574 switch (action) {
575 case CPU_ONLINE:
576 thread = kthread_create_on_node(clamp_thread,
577 (void *) cpu,
578 cpu_to_node(cpu),
579 "kidle_inject/%lu", cpu);
580 if (likely(!IS_ERR(thread))) {
581 kthread_bind(thread, cpu);
582 wake_up_process(thread);
583 *percpu_thread = thread;
585 /* prefer BSP as controlling CPU */
586 if (cpu == 0) {
587 control_cpu = 0;
588 smp_mb();
590 break;
591 case CPU_DEAD:
592 if (test_bit(cpu, cpu_clamping_mask)) {
593 pr_err("cpu %lu dead but powerclamping thread is not\n",
594 cpu);
595 kthread_stop(*percpu_thread);
597 if (cpu == control_cpu) {
598 control_cpu = smp_processor_id();
599 smp_mb();
603 exit_ok:
604 return NOTIFY_OK;
607 static struct notifier_block powerclamp_cpu_notifier = {
608 .notifier_call = powerclamp_cpu_callback,
611 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
612 unsigned long *state)
614 *state = MAX_TARGET_RATIO;
616 return 0;
619 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
620 unsigned long *state)
622 if (true == clamping)
623 *state = pkg_cstate_ratio_cur;
624 else
625 /* to save power, do not poll idle ratio while not clamping */
626 *state = -1; /* indicates invalid state */
628 return 0;
631 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
632 unsigned long new_target_ratio)
634 int ret = 0;
636 new_target_ratio = clamp(new_target_ratio, 0UL,
637 (unsigned long) (MAX_TARGET_RATIO-1));
638 if (set_target_ratio == 0 && new_target_ratio > 0) {
639 pr_info("Start idle injection to reduce power\n");
640 set_target_ratio = new_target_ratio;
641 ret = start_power_clamp();
642 goto exit_set;
643 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
644 pr_info("Stop forced idle injection\n");
645 set_target_ratio = 0;
646 end_power_clamp();
647 } else /* adjust currently running */ {
648 set_target_ratio = new_target_ratio;
649 /* make new set_target_ratio visible to other cpus */
650 smp_mb();
653 exit_set:
654 return ret;
657 /* bind to generic thermal layer as cooling device*/
658 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
659 .get_max_state = powerclamp_get_max_state,
660 .get_cur_state = powerclamp_get_cur_state,
661 .set_cur_state = powerclamp_set_cur_state,
664 /* runs on Nehalem and later */
665 static const struct x86_cpu_id intel_powerclamp_ids[] = {
666 { X86_VENDOR_INTEL, 6, 0x1a},
667 { X86_VENDOR_INTEL, 6, 0x1c},
668 { X86_VENDOR_INTEL, 6, 0x1e},
669 { X86_VENDOR_INTEL, 6, 0x1f},
670 { X86_VENDOR_INTEL, 6, 0x25},
671 { X86_VENDOR_INTEL, 6, 0x26},
672 { X86_VENDOR_INTEL, 6, 0x2a},
673 { X86_VENDOR_INTEL, 6, 0x2c},
674 { X86_VENDOR_INTEL, 6, 0x2d},
675 { X86_VENDOR_INTEL, 6, 0x2e},
676 { X86_VENDOR_INTEL, 6, 0x2f},
677 { X86_VENDOR_INTEL, 6, 0x3a},
680 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
682 static int powerclamp_probe(void)
684 if (!x86_match_cpu(intel_powerclamp_ids)) {
685 pr_err("Intel powerclamp does not run on family %d model %d\n",
686 boot_cpu_data.x86, boot_cpu_data.x86_model);
687 return -ENODEV;
689 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
690 !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
691 !boot_cpu_has(X86_FEATURE_MWAIT) ||
692 !boot_cpu_has(X86_FEATURE_ARAT))
693 return -ENODEV;
695 /* find the deepest mwait value */
696 find_target_mwait();
698 return 0;
701 static int powerclamp_debug_show(struct seq_file *m, void *unused)
703 int i = 0;
705 seq_printf(m, "controlling cpu: %d\n", control_cpu);
706 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
707 for (i = 0; i < MAX_TARGET_RATIO; i++) {
708 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
710 cal_data[i].confidence,
711 cal_data[i].steady_comp,
712 cal_data[i].dynamic_comp);
715 return 0;
718 static int powerclamp_debug_open(struct inode *inode,
719 struct file *file)
721 return single_open(file, powerclamp_debug_show, inode->i_private);
724 static const struct file_operations powerclamp_debug_fops = {
725 .open = powerclamp_debug_open,
726 .read = seq_read,
727 .llseek = seq_lseek,
728 .release = single_release,
729 .owner = THIS_MODULE,
732 static inline void powerclamp_create_debug_files(void)
734 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
735 if (!debug_dir)
736 return;
738 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
739 cal_data, &powerclamp_debug_fops))
740 goto file_error;
742 return;
744 file_error:
745 debugfs_remove_recursive(debug_dir);
748 static int powerclamp_init(void)
750 int retval;
751 int bitmap_size;
753 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
754 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
755 if (!cpu_clamping_mask)
756 return -ENOMEM;
758 /* probe cpu features and ids here */
759 retval = powerclamp_probe();
760 if (retval)
761 return retval;
762 /* set default limit, maybe adjusted during runtime based on feedback */
763 window_size = 2;
764 register_hotcpu_notifier(&powerclamp_cpu_notifier);
765 powerclamp_thread = alloc_percpu(struct task_struct *);
766 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
767 &powerclamp_cooling_ops);
768 if (IS_ERR(cooling_dev))
769 return -ENODEV;
771 if (!duration)
772 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
773 powerclamp_create_debug_files();
775 return 0;
777 module_init(powerclamp_init);
779 static void powerclamp_exit(void)
781 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
782 end_power_clamp();
783 free_percpu(powerclamp_thread);
784 thermal_cooling_device_unregister(cooling_dev);
785 kfree(cpu_clamping_mask);
787 cancel_delayed_work_sync(&poll_pkg_cstate_work);
788 debugfs_remove_recursive(debug_dir);
790 module_exit(powerclamp_exit);
792 MODULE_LICENSE("GPL");
793 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
794 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
795 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");