Linux 3.11-rc3
[cris-mirror.git] / mm / mempolicy.c
blob74310017296ee02317b79a2c28b25ef303fc7720
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
99 #include "internal.h"
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
113 * run-time system-wide default policy => local allocation
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
123 static struct mempolicy *get_task_policy(struct task_struct *p)
125 struct mempolicy *pol = p->mempolicy;
126 int node;
128 if (!pol) {
129 node = numa_node_id();
130 if (node != NUMA_NO_NODE)
131 pol = &preferred_node_policy[node];
133 /* preferred_node_policy is not initialised early in boot */
134 if (!pol->mode)
135 pol = NULL;
138 return pol;
141 static const struct mempolicy_operations {
142 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
144 * If read-side task has no lock to protect task->mempolicy, write-side
145 * task will rebind the task->mempolicy by two step. The first step is
146 * setting all the newly nodes, and the second step is cleaning all the
147 * disallowed nodes. In this way, we can avoid finding no node to alloc
148 * page.
149 * If we have a lock to protect task->mempolicy in read-side, we do
150 * rebind directly.
152 * step:
153 * MPOL_REBIND_ONCE - do rebind work at once
154 * MPOL_REBIND_STEP1 - set all the newly nodes
155 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
157 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
158 enum mpol_rebind_step step);
159 } mpol_ops[MPOL_MAX];
161 /* Check that the nodemask contains at least one populated zone */
162 static int is_valid_nodemask(const nodemask_t *nodemask)
164 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
167 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
169 return pol->flags & MPOL_MODE_FLAGS;
172 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
173 const nodemask_t *rel)
175 nodemask_t tmp;
176 nodes_fold(tmp, *orig, nodes_weight(*rel));
177 nodes_onto(*ret, tmp, *rel);
180 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
182 if (nodes_empty(*nodes))
183 return -EINVAL;
184 pol->v.nodes = *nodes;
185 return 0;
188 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
190 if (!nodes)
191 pol->flags |= MPOL_F_LOCAL; /* local allocation */
192 else if (nodes_empty(*nodes))
193 return -EINVAL; /* no allowed nodes */
194 else
195 pol->v.preferred_node = first_node(*nodes);
196 return 0;
199 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
201 if (!is_valid_nodemask(nodes))
202 return -EINVAL;
203 pol->v.nodes = *nodes;
204 return 0;
208 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
209 * any, for the new policy. mpol_new() has already validated the nodes
210 * parameter with respect to the policy mode and flags. But, we need to
211 * handle an empty nodemask with MPOL_PREFERRED here.
213 * Must be called holding task's alloc_lock to protect task's mems_allowed
214 * and mempolicy. May also be called holding the mmap_semaphore for write.
216 static int mpol_set_nodemask(struct mempolicy *pol,
217 const nodemask_t *nodes, struct nodemask_scratch *nsc)
219 int ret;
221 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
222 if (pol == NULL)
223 return 0;
224 /* Check N_MEMORY */
225 nodes_and(nsc->mask1,
226 cpuset_current_mems_allowed, node_states[N_MEMORY]);
228 VM_BUG_ON(!nodes);
229 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
230 nodes = NULL; /* explicit local allocation */
231 else {
232 if (pol->flags & MPOL_F_RELATIVE_NODES)
233 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
234 else
235 nodes_and(nsc->mask2, *nodes, nsc->mask1);
237 if (mpol_store_user_nodemask(pol))
238 pol->w.user_nodemask = *nodes;
239 else
240 pol->w.cpuset_mems_allowed =
241 cpuset_current_mems_allowed;
244 if (nodes)
245 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
246 else
247 ret = mpol_ops[pol->mode].create(pol, NULL);
248 return ret;
252 * This function just creates a new policy, does some check and simple
253 * initialization. You must invoke mpol_set_nodemask() to set nodes.
255 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
256 nodemask_t *nodes)
258 struct mempolicy *policy;
260 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
261 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
263 if (mode == MPOL_DEFAULT) {
264 if (nodes && !nodes_empty(*nodes))
265 return ERR_PTR(-EINVAL);
266 return NULL;
268 VM_BUG_ON(!nodes);
271 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
272 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
273 * All other modes require a valid pointer to a non-empty nodemask.
275 if (mode == MPOL_PREFERRED) {
276 if (nodes_empty(*nodes)) {
277 if (((flags & MPOL_F_STATIC_NODES) ||
278 (flags & MPOL_F_RELATIVE_NODES)))
279 return ERR_PTR(-EINVAL);
281 } else if (mode == MPOL_LOCAL) {
282 if (!nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 mode = MPOL_PREFERRED;
285 } else if (nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
288 if (!policy)
289 return ERR_PTR(-ENOMEM);
290 atomic_set(&policy->refcnt, 1);
291 policy->mode = mode;
292 policy->flags = flags;
294 return policy;
297 /* Slow path of a mpol destructor. */
298 void __mpol_put(struct mempolicy *p)
300 if (!atomic_dec_and_test(&p->refcnt))
301 return;
302 kmem_cache_free(policy_cache, p);
305 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
306 enum mpol_rebind_step step)
311 * step:
312 * MPOL_REBIND_ONCE - do rebind work at once
313 * MPOL_REBIND_STEP1 - set all the newly nodes
314 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
316 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
317 enum mpol_rebind_step step)
319 nodemask_t tmp;
321 if (pol->flags & MPOL_F_STATIC_NODES)
322 nodes_and(tmp, pol->w.user_nodemask, *nodes);
323 else if (pol->flags & MPOL_F_RELATIVE_NODES)
324 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 else {
327 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
328 * result
330 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
331 nodes_remap(tmp, pol->v.nodes,
332 pol->w.cpuset_mems_allowed, *nodes);
333 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
334 } else if (step == MPOL_REBIND_STEP2) {
335 tmp = pol->w.cpuset_mems_allowed;
336 pol->w.cpuset_mems_allowed = *nodes;
337 } else
338 BUG();
341 if (nodes_empty(tmp))
342 tmp = *nodes;
344 if (step == MPOL_REBIND_STEP1)
345 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
346 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
347 pol->v.nodes = tmp;
348 else
349 BUG();
351 if (!node_isset(current->il_next, tmp)) {
352 current->il_next = next_node(current->il_next, tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = first_node(tmp);
355 if (current->il_next >= MAX_NUMNODES)
356 current->il_next = numa_node_id();
360 static void mpol_rebind_preferred(struct mempolicy *pol,
361 const nodemask_t *nodes,
362 enum mpol_rebind_step step)
364 nodemask_t tmp;
366 if (pol->flags & MPOL_F_STATIC_NODES) {
367 int node = first_node(pol->w.user_nodemask);
369 if (node_isset(node, *nodes)) {
370 pol->v.preferred_node = node;
371 pol->flags &= ~MPOL_F_LOCAL;
372 } else
373 pol->flags |= MPOL_F_LOCAL;
374 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
375 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
376 pol->v.preferred_node = first_node(tmp);
377 } else if (!(pol->flags & MPOL_F_LOCAL)) {
378 pol->v.preferred_node = node_remap(pol->v.preferred_node,
379 pol->w.cpuset_mems_allowed,
380 *nodes);
381 pol->w.cpuset_mems_allowed = *nodes;
386 * mpol_rebind_policy - Migrate a policy to a different set of nodes
388 * If read-side task has no lock to protect task->mempolicy, write-side
389 * task will rebind the task->mempolicy by two step. The first step is
390 * setting all the newly nodes, and the second step is cleaning all the
391 * disallowed nodes. In this way, we can avoid finding no node to alloc
392 * page.
393 * If we have a lock to protect task->mempolicy in read-side, we do
394 * rebind directly.
396 * step:
397 * MPOL_REBIND_ONCE - do rebind work at once
398 * MPOL_REBIND_STEP1 - set all the newly nodes
399 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
401 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
402 enum mpol_rebind_step step)
404 if (!pol)
405 return;
406 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
407 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
408 return;
410 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
411 return;
413 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
414 BUG();
416 if (step == MPOL_REBIND_STEP1)
417 pol->flags |= MPOL_F_REBINDING;
418 else if (step == MPOL_REBIND_STEP2)
419 pol->flags &= ~MPOL_F_REBINDING;
420 else if (step >= MPOL_REBIND_NSTEP)
421 BUG();
423 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 * Wrapper for mpol_rebind_policy() that just requires task
428 * pointer, and updates task mempolicy.
430 * Called with task's alloc_lock held.
433 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
434 enum mpol_rebind_step step)
436 mpol_rebind_policy(tsk->mempolicy, new, step);
440 * Rebind each vma in mm to new nodemask.
442 * Call holding a reference to mm. Takes mm->mmap_sem during call.
445 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
447 struct vm_area_struct *vma;
449 down_write(&mm->mmap_sem);
450 for (vma = mm->mmap; vma; vma = vma->vm_next)
451 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
452 up_write(&mm->mmap_sem);
455 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
456 [MPOL_DEFAULT] = {
457 .rebind = mpol_rebind_default,
459 [MPOL_INTERLEAVE] = {
460 .create = mpol_new_interleave,
461 .rebind = mpol_rebind_nodemask,
463 [MPOL_PREFERRED] = {
464 .create = mpol_new_preferred,
465 .rebind = mpol_rebind_preferred,
467 [MPOL_BIND] = {
468 .create = mpol_new_bind,
469 .rebind = mpol_rebind_nodemask,
473 static void migrate_page_add(struct page *page, struct list_head *pagelist,
474 unsigned long flags);
476 /* Scan through pages checking if pages follow certain conditions. */
477 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
478 unsigned long addr, unsigned long end,
479 const nodemask_t *nodes, unsigned long flags,
480 void *private)
482 pte_t *orig_pte;
483 pte_t *pte;
484 spinlock_t *ptl;
486 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
487 do {
488 struct page *page;
489 int nid;
491 if (!pte_present(*pte))
492 continue;
493 page = vm_normal_page(vma, addr, *pte);
494 if (!page)
495 continue;
497 * vm_normal_page() filters out zero pages, but there might
498 * still be PageReserved pages to skip, perhaps in a VDSO.
500 if (PageReserved(page))
501 continue;
502 nid = page_to_nid(page);
503 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
504 continue;
506 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
507 migrate_page_add(page, private, flags);
508 else
509 break;
510 } while (pte++, addr += PAGE_SIZE, addr != end);
511 pte_unmap_unlock(orig_pte, ptl);
512 return addr != end;
515 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
516 unsigned long addr, unsigned long end,
517 const nodemask_t *nodes, unsigned long flags,
518 void *private)
520 pmd_t *pmd;
521 unsigned long next;
523 pmd = pmd_offset(pud, addr);
524 do {
525 next = pmd_addr_end(addr, end);
526 split_huge_page_pmd(vma, addr, pmd);
527 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
528 continue;
529 if (check_pte_range(vma, pmd, addr, next, nodes,
530 flags, private))
531 return -EIO;
532 } while (pmd++, addr = next, addr != end);
533 return 0;
536 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
537 unsigned long addr, unsigned long end,
538 const nodemask_t *nodes, unsigned long flags,
539 void *private)
541 pud_t *pud;
542 unsigned long next;
544 pud = pud_offset(pgd, addr);
545 do {
546 next = pud_addr_end(addr, end);
547 if (pud_none_or_clear_bad(pud))
548 continue;
549 if (check_pmd_range(vma, pud, addr, next, nodes,
550 flags, private))
551 return -EIO;
552 } while (pud++, addr = next, addr != end);
553 return 0;
556 static inline int check_pgd_range(struct vm_area_struct *vma,
557 unsigned long addr, unsigned long end,
558 const nodemask_t *nodes, unsigned long flags,
559 void *private)
561 pgd_t *pgd;
562 unsigned long next;
564 pgd = pgd_offset(vma->vm_mm, addr);
565 do {
566 next = pgd_addr_end(addr, end);
567 if (pgd_none_or_clear_bad(pgd))
568 continue;
569 if (check_pud_range(vma, pgd, addr, next, nodes,
570 flags, private))
571 return -EIO;
572 } while (pgd++, addr = next, addr != end);
573 return 0;
576 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
578 * This is used to mark a range of virtual addresses to be inaccessible.
579 * These are later cleared by a NUMA hinting fault. Depending on these
580 * faults, pages may be migrated for better NUMA placement.
582 * This is assuming that NUMA faults are handled using PROT_NONE. If
583 * an architecture makes a different choice, it will need further
584 * changes to the core.
586 unsigned long change_prot_numa(struct vm_area_struct *vma,
587 unsigned long addr, unsigned long end)
589 int nr_updated;
590 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
592 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
593 if (nr_updated)
594 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
596 return nr_updated;
598 #else
599 static unsigned long change_prot_numa(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long end)
602 return 0;
604 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
607 * Check if all pages in a range are on a set of nodes.
608 * If pagelist != NULL then isolate pages from the LRU and
609 * put them on the pagelist.
611 static struct vm_area_struct *
612 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
613 const nodemask_t *nodes, unsigned long flags, void *private)
615 int err;
616 struct vm_area_struct *first, *vma, *prev;
619 first = find_vma(mm, start);
620 if (!first)
621 return ERR_PTR(-EFAULT);
622 prev = NULL;
623 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
624 unsigned long endvma = vma->vm_end;
626 if (endvma > end)
627 endvma = end;
628 if (vma->vm_start > start)
629 start = vma->vm_start;
631 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
632 if (!vma->vm_next && vma->vm_end < end)
633 return ERR_PTR(-EFAULT);
634 if (prev && prev->vm_end < vma->vm_start)
635 return ERR_PTR(-EFAULT);
638 if (is_vm_hugetlb_page(vma))
639 goto next;
641 if (flags & MPOL_MF_LAZY) {
642 change_prot_numa(vma, start, endvma);
643 goto next;
646 if ((flags & MPOL_MF_STRICT) ||
647 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
648 vma_migratable(vma))) {
650 err = check_pgd_range(vma, start, endvma, nodes,
651 flags, private);
652 if (err) {
653 first = ERR_PTR(err);
654 break;
657 next:
658 prev = vma;
660 return first;
664 * Apply policy to a single VMA
665 * This must be called with the mmap_sem held for writing.
667 static int vma_replace_policy(struct vm_area_struct *vma,
668 struct mempolicy *pol)
670 int err;
671 struct mempolicy *old;
672 struct mempolicy *new;
674 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
675 vma->vm_start, vma->vm_end, vma->vm_pgoff,
676 vma->vm_ops, vma->vm_file,
677 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
679 new = mpol_dup(pol);
680 if (IS_ERR(new))
681 return PTR_ERR(new);
683 if (vma->vm_ops && vma->vm_ops->set_policy) {
684 err = vma->vm_ops->set_policy(vma, new);
685 if (err)
686 goto err_out;
689 old = vma->vm_policy;
690 vma->vm_policy = new; /* protected by mmap_sem */
691 mpol_put(old);
693 return 0;
694 err_out:
695 mpol_put(new);
696 return err;
699 /* Step 2: apply policy to a range and do splits. */
700 static int mbind_range(struct mm_struct *mm, unsigned long start,
701 unsigned long end, struct mempolicy *new_pol)
703 struct vm_area_struct *next;
704 struct vm_area_struct *prev;
705 struct vm_area_struct *vma;
706 int err = 0;
707 pgoff_t pgoff;
708 unsigned long vmstart;
709 unsigned long vmend;
711 vma = find_vma(mm, start);
712 if (!vma || vma->vm_start > start)
713 return -EFAULT;
715 prev = vma->vm_prev;
716 if (start > vma->vm_start)
717 prev = vma;
719 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
720 next = vma->vm_next;
721 vmstart = max(start, vma->vm_start);
722 vmend = min(end, vma->vm_end);
724 if (mpol_equal(vma_policy(vma), new_pol))
725 continue;
727 pgoff = vma->vm_pgoff +
728 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
729 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
730 vma->anon_vma, vma->vm_file, pgoff,
731 new_pol);
732 if (prev) {
733 vma = prev;
734 next = vma->vm_next;
735 continue;
737 if (vma->vm_start != vmstart) {
738 err = split_vma(vma->vm_mm, vma, vmstart, 1);
739 if (err)
740 goto out;
742 if (vma->vm_end != vmend) {
743 err = split_vma(vma->vm_mm, vma, vmend, 0);
744 if (err)
745 goto out;
747 err = vma_replace_policy(vma, new_pol);
748 if (err)
749 goto out;
752 out:
753 return err;
757 * Update task->flags PF_MEMPOLICY bit: set iff non-default
758 * mempolicy. Allows more rapid checking of this (combined perhaps
759 * with other PF_* flag bits) on memory allocation hot code paths.
761 * If called from outside this file, the task 'p' should -only- be
762 * a newly forked child not yet visible on the task list, because
763 * manipulating the task flags of a visible task is not safe.
765 * The above limitation is why this routine has the funny name
766 * mpol_fix_fork_child_flag().
768 * It is also safe to call this with a task pointer of current,
769 * which the static wrapper mpol_set_task_struct_flag() does,
770 * for use within this file.
773 void mpol_fix_fork_child_flag(struct task_struct *p)
775 if (p->mempolicy)
776 p->flags |= PF_MEMPOLICY;
777 else
778 p->flags &= ~PF_MEMPOLICY;
781 static void mpol_set_task_struct_flag(void)
783 mpol_fix_fork_child_flag(current);
786 /* Set the process memory policy */
787 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
788 nodemask_t *nodes)
790 struct mempolicy *new, *old;
791 struct mm_struct *mm = current->mm;
792 NODEMASK_SCRATCH(scratch);
793 int ret;
795 if (!scratch)
796 return -ENOMEM;
798 new = mpol_new(mode, flags, nodes);
799 if (IS_ERR(new)) {
800 ret = PTR_ERR(new);
801 goto out;
804 * prevent changing our mempolicy while show_numa_maps()
805 * is using it.
806 * Note: do_set_mempolicy() can be called at init time
807 * with no 'mm'.
809 if (mm)
810 down_write(&mm->mmap_sem);
811 task_lock(current);
812 ret = mpol_set_nodemask(new, nodes, scratch);
813 if (ret) {
814 task_unlock(current);
815 if (mm)
816 up_write(&mm->mmap_sem);
817 mpol_put(new);
818 goto out;
820 old = current->mempolicy;
821 current->mempolicy = new;
822 mpol_set_task_struct_flag();
823 if (new && new->mode == MPOL_INTERLEAVE &&
824 nodes_weight(new->v.nodes))
825 current->il_next = first_node(new->v.nodes);
826 task_unlock(current);
827 if (mm)
828 up_write(&mm->mmap_sem);
830 mpol_put(old);
831 ret = 0;
832 out:
833 NODEMASK_SCRATCH_FREE(scratch);
834 return ret;
838 * Return nodemask for policy for get_mempolicy() query
840 * Called with task's alloc_lock held
842 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
844 nodes_clear(*nodes);
845 if (p == &default_policy)
846 return;
848 switch (p->mode) {
849 case MPOL_BIND:
850 /* Fall through */
851 case MPOL_INTERLEAVE:
852 *nodes = p->v.nodes;
853 break;
854 case MPOL_PREFERRED:
855 if (!(p->flags & MPOL_F_LOCAL))
856 node_set(p->v.preferred_node, *nodes);
857 /* else return empty node mask for local allocation */
858 break;
859 default:
860 BUG();
864 static int lookup_node(struct mm_struct *mm, unsigned long addr)
866 struct page *p;
867 int err;
869 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
870 if (err >= 0) {
871 err = page_to_nid(p);
872 put_page(p);
874 return err;
877 /* Retrieve NUMA policy */
878 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
879 unsigned long addr, unsigned long flags)
881 int err;
882 struct mm_struct *mm = current->mm;
883 struct vm_area_struct *vma = NULL;
884 struct mempolicy *pol = current->mempolicy;
886 if (flags &
887 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
888 return -EINVAL;
890 if (flags & MPOL_F_MEMS_ALLOWED) {
891 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
892 return -EINVAL;
893 *policy = 0; /* just so it's initialized */
894 task_lock(current);
895 *nmask = cpuset_current_mems_allowed;
896 task_unlock(current);
897 return 0;
900 if (flags & MPOL_F_ADDR) {
902 * Do NOT fall back to task policy if the
903 * vma/shared policy at addr is NULL. We
904 * want to return MPOL_DEFAULT in this case.
906 down_read(&mm->mmap_sem);
907 vma = find_vma_intersection(mm, addr, addr+1);
908 if (!vma) {
909 up_read(&mm->mmap_sem);
910 return -EFAULT;
912 if (vma->vm_ops && vma->vm_ops->get_policy)
913 pol = vma->vm_ops->get_policy(vma, addr);
914 else
915 pol = vma->vm_policy;
916 } else if (addr)
917 return -EINVAL;
919 if (!pol)
920 pol = &default_policy; /* indicates default behavior */
922 if (flags & MPOL_F_NODE) {
923 if (flags & MPOL_F_ADDR) {
924 err = lookup_node(mm, addr);
925 if (err < 0)
926 goto out;
927 *policy = err;
928 } else if (pol == current->mempolicy &&
929 pol->mode == MPOL_INTERLEAVE) {
930 *policy = current->il_next;
931 } else {
932 err = -EINVAL;
933 goto out;
935 } else {
936 *policy = pol == &default_policy ? MPOL_DEFAULT :
937 pol->mode;
939 * Internal mempolicy flags must be masked off before exposing
940 * the policy to userspace.
942 *policy |= (pol->flags & MPOL_MODE_FLAGS);
945 if (vma) {
946 up_read(&current->mm->mmap_sem);
947 vma = NULL;
950 err = 0;
951 if (nmask) {
952 if (mpol_store_user_nodemask(pol)) {
953 *nmask = pol->w.user_nodemask;
954 } else {
955 task_lock(current);
956 get_policy_nodemask(pol, nmask);
957 task_unlock(current);
961 out:
962 mpol_cond_put(pol);
963 if (vma)
964 up_read(&current->mm->mmap_sem);
965 return err;
968 #ifdef CONFIG_MIGRATION
970 * page migration
972 static void migrate_page_add(struct page *page, struct list_head *pagelist,
973 unsigned long flags)
976 * Avoid migrating a page that is shared with others.
978 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
979 if (!isolate_lru_page(page)) {
980 list_add_tail(&page->lru, pagelist);
981 inc_zone_page_state(page, NR_ISOLATED_ANON +
982 page_is_file_cache(page));
987 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
989 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
993 * Migrate pages from one node to a target node.
994 * Returns error or the number of pages not migrated.
996 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
997 int flags)
999 nodemask_t nmask;
1000 LIST_HEAD(pagelist);
1001 int err = 0;
1003 nodes_clear(nmask);
1004 node_set(source, nmask);
1007 * This does not "check" the range but isolates all pages that
1008 * need migration. Between passing in the full user address
1009 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1011 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1012 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1013 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1015 if (!list_empty(&pagelist)) {
1016 err = migrate_pages(&pagelist, new_node_page, dest,
1017 MIGRATE_SYNC, MR_SYSCALL);
1018 if (err)
1019 putback_lru_pages(&pagelist);
1022 return err;
1026 * Move pages between the two nodesets so as to preserve the physical
1027 * layout as much as possible.
1029 * Returns the number of page that could not be moved.
1031 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1032 const nodemask_t *to, int flags)
1034 int busy = 0;
1035 int err;
1036 nodemask_t tmp;
1038 err = migrate_prep();
1039 if (err)
1040 return err;
1042 down_read(&mm->mmap_sem);
1044 err = migrate_vmas(mm, from, to, flags);
1045 if (err)
1046 goto out;
1049 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1050 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1051 * bit in 'tmp', and return that <source, dest> pair for migration.
1052 * The pair of nodemasks 'to' and 'from' define the map.
1054 * If no pair of bits is found that way, fallback to picking some
1055 * pair of 'source' and 'dest' bits that are not the same. If the
1056 * 'source' and 'dest' bits are the same, this represents a node
1057 * that will be migrating to itself, so no pages need move.
1059 * If no bits are left in 'tmp', or if all remaining bits left
1060 * in 'tmp' correspond to the same bit in 'to', return false
1061 * (nothing left to migrate).
1063 * This lets us pick a pair of nodes to migrate between, such that
1064 * if possible the dest node is not already occupied by some other
1065 * source node, minimizing the risk of overloading the memory on a
1066 * node that would happen if we migrated incoming memory to a node
1067 * before migrating outgoing memory source that same node.
1069 * A single scan of tmp is sufficient. As we go, we remember the
1070 * most recent <s, d> pair that moved (s != d). If we find a pair
1071 * that not only moved, but what's better, moved to an empty slot
1072 * (d is not set in tmp), then we break out then, with that pair.
1073 * Otherwise when we finish scanning from_tmp, we at least have the
1074 * most recent <s, d> pair that moved. If we get all the way through
1075 * the scan of tmp without finding any node that moved, much less
1076 * moved to an empty node, then there is nothing left worth migrating.
1079 tmp = *from;
1080 while (!nodes_empty(tmp)) {
1081 int s,d;
1082 int source = -1;
1083 int dest = 0;
1085 for_each_node_mask(s, tmp) {
1088 * do_migrate_pages() tries to maintain the relative
1089 * node relationship of the pages established between
1090 * threads and memory areas.
1092 * However if the number of source nodes is not equal to
1093 * the number of destination nodes we can not preserve
1094 * this node relative relationship. In that case, skip
1095 * copying memory from a node that is in the destination
1096 * mask.
1098 * Example: [2,3,4] -> [3,4,5] moves everything.
1099 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1102 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1103 (node_isset(s, *to)))
1104 continue;
1106 d = node_remap(s, *from, *to);
1107 if (s == d)
1108 continue;
1110 source = s; /* Node moved. Memorize */
1111 dest = d;
1113 /* dest not in remaining from nodes? */
1114 if (!node_isset(dest, tmp))
1115 break;
1117 if (source == -1)
1118 break;
1120 node_clear(source, tmp);
1121 err = migrate_to_node(mm, source, dest, flags);
1122 if (err > 0)
1123 busy += err;
1124 if (err < 0)
1125 break;
1127 out:
1128 up_read(&mm->mmap_sem);
1129 if (err < 0)
1130 return err;
1131 return busy;
1136 * Allocate a new page for page migration based on vma policy.
1137 * Start assuming that page is mapped by vma pointed to by @private.
1138 * Search forward from there, if not. N.B., this assumes that the
1139 * list of pages handed to migrate_pages()--which is how we get here--
1140 * is in virtual address order.
1142 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1144 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1145 unsigned long uninitialized_var(address);
1147 while (vma) {
1148 address = page_address_in_vma(page, vma);
1149 if (address != -EFAULT)
1150 break;
1151 vma = vma->vm_next;
1155 * if !vma, alloc_page_vma() will use task or system default policy
1157 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1159 #else
1161 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1162 unsigned long flags)
1166 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1167 const nodemask_t *to, int flags)
1169 return -ENOSYS;
1172 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1174 return NULL;
1176 #endif
1178 static long do_mbind(unsigned long start, unsigned long len,
1179 unsigned short mode, unsigned short mode_flags,
1180 nodemask_t *nmask, unsigned long flags)
1182 struct vm_area_struct *vma;
1183 struct mm_struct *mm = current->mm;
1184 struct mempolicy *new;
1185 unsigned long end;
1186 int err;
1187 LIST_HEAD(pagelist);
1189 if (flags & ~(unsigned long)MPOL_MF_VALID)
1190 return -EINVAL;
1191 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1192 return -EPERM;
1194 if (start & ~PAGE_MASK)
1195 return -EINVAL;
1197 if (mode == MPOL_DEFAULT)
1198 flags &= ~MPOL_MF_STRICT;
1200 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1201 end = start + len;
1203 if (end < start)
1204 return -EINVAL;
1205 if (end == start)
1206 return 0;
1208 new = mpol_new(mode, mode_flags, nmask);
1209 if (IS_ERR(new))
1210 return PTR_ERR(new);
1212 if (flags & MPOL_MF_LAZY)
1213 new->flags |= MPOL_F_MOF;
1216 * If we are using the default policy then operation
1217 * on discontinuous address spaces is okay after all
1219 if (!new)
1220 flags |= MPOL_MF_DISCONTIG_OK;
1222 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1223 start, start + len, mode, mode_flags,
1224 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1226 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1228 err = migrate_prep();
1229 if (err)
1230 goto mpol_out;
1233 NODEMASK_SCRATCH(scratch);
1234 if (scratch) {
1235 down_write(&mm->mmap_sem);
1236 task_lock(current);
1237 err = mpol_set_nodemask(new, nmask, scratch);
1238 task_unlock(current);
1239 if (err)
1240 up_write(&mm->mmap_sem);
1241 } else
1242 err = -ENOMEM;
1243 NODEMASK_SCRATCH_FREE(scratch);
1245 if (err)
1246 goto mpol_out;
1248 vma = check_range(mm, start, end, nmask,
1249 flags | MPOL_MF_INVERT, &pagelist);
1251 err = PTR_ERR(vma); /* maybe ... */
1252 if (!IS_ERR(vma))
1253 err = mbind_range(mm, start, end, new);
1255 if (!err) {
1256 int nr_failed = 0;
1258 if (!list_empty(&pagelist)) {
1259 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1260 nr_failed = migrate_pages(&pagelist, new_vma_page,
1261 (unsigned long)vma,
1262 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1263 if (nr_failed)
1264 putback_lru_pages(&pagelist);
1267 if (nr_failed && (flags & MPOL_MF_STRICT))
1268 err = -EIO;
1269 } else
1270 putback_lru_pages(&pagelist);
1272 up_write(&mm->mmap_sem);
1273 mpol_out:
1274 mpol_put(new);
1275 return err;
1279 * User space interface with variable sized bitmaps for nodelists.
1282 /* Copy a node mask from user space. */
1283 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1284 unsigned long maxnode)
1286 unsigned long k;
1287 unsigned long nlongs;
1288 unsigned long endmask;
1290 --maxnode;
1291 nodes_clear(*nodes);
1292 if (maxnode == 0 || !nmask)
1293 return 0;
1294 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1295 return -EINVAL;
1297 nlongs = BITS_TO_LONGS(maxnode);
1298 if ((maxnode % BITS_PER_LONG) == 0)
1299 endmask = ~0UL;
1300 else
1301 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1303 /* When the user specified more nodes than supported just check
1304 if the non supported part is all zero. */
1305 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1306 if (nlongs > PAGE_SIZE/sizeof(long))
1307 return -EINVAL;
1308 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1309 unsigned long t;
1310 if (get_user(t, nmask + k))
1311 return -EFAULT;
1312 if (k == nlongs - 1) {
1313 if (t & endmask)
1314 return -EINVAL;
1315 } else if (t)
1316 return -EINVAL;
1318 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1319 endmask = ~0UL;
1322 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1323 return -EFAULT;
1324 nodes_addr(*nodes)[nlongs-1] &= endmask;
1325 return 0;
1328 /* Copy a kernel node mask to user space */
1329 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1330 nodemask_t *nodes)
1332 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1333 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1335 if (copy > nbytes) {
1336 if (copy > PAGE_SIZE)
1337 return -EINVAL;
1338 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1339 return -EFAULT;
1340 copy = nbytes;
1342 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1345 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1346 unsigned long, mode, unsigned long __user *, nmask,
1347 unsigned long, maxnode, unsigned, flags)
1349 nodemask_t nodes;
1350 int err;
1351 unsigned short mode_flags;
1353 mode_flags = mode & MPOL_MODE_FLAGS;
1354 mode &= ~MPOL_MODE_FLAGS;
1355 if (mode >= MPOL_MAX)
1356 return -EINVAL;
1357 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1358 (mode_flags & MPOL_F_RELATIVE_NODES))
1359 return -EINVAL;
1360 err = get_nodes(&nodes, nmask, maxnode);
1361 if (err)
1362 return err;
1363 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1366 /* Set the process memory policy */
1367 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1368 unsigned long, maxnode)
1370 int err;
1371 nodemask_t nodes;
1372 unsigned short flags;
1374 flags = mode & MPOL_MODE_FLAGS;
1375 mode &= ~MPOL_MODE_FLAGS;
1376 if ((unsigned int)mode >= MPOL_MAX)
1377 return -EINVAL;
1378 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1379 return -EINVAL;
1380 err = get_nodes(&nodes, nmask, maxnode);
1381 if (err)
1382 return err;
1383 return do_set_mempolicy(mode, flags, &nodes);
1386 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1387 const unsigned long __user *, old_nodes,
1388 const unsigned long __user *, new_nodes)
1390 const struct cred *cred = current_cred(), *tcred;
1391 struct mm_struct *mm = NULL;
1392 struct task_struct *task;
1393 nodemask_t task_nodes;
1394 int err;
1395 nodemask_t *old;
1396 nodemask_t *new;
1397 NODEMASK_SCRATCH(scratch);
1399 if (!scratch)
1400 return -ENOMEM;
1402 old = &scratch->mask1;
1403 new = &scratch->mask2;
1405 err = get_nodes(old, old_nodes, maxnode);
1406 if (err)
1407 goto out;
1409 err = get_nodes(new, new_nodes, maxnode);
1410 if (err)
1411 goto out;
1413 /* Find the mm_struct */
1414 rcu_read_lock();
1415 task = pid ? find_task_by_vpid(pid) : current;
1416 if (!task) {
1417 rcu_read_unlock();
1418 err = -ESRCH;
1419 goto out;
1421 get_task_struct(task);
1423 err = -EINVAL;
1426 * Check if this process has the right to modify the specified
1427 * process. The right exists if the process has administrative
1428 * capabilities, superuser privileges or the same
1429 * userid as the target process.
1431 tcred = __task_cred(task);
1432 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1433 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1434 !capable(CAP_SYS_NICE)) {
1435 rcu_read_unlock();
1436 err = -EPERM;
1437 goto out_put;
1439 rcu_read_unlock();
1441 task_nodes = cpuset_mems_allowed(task);
1442 /* Is the user allowed to access the target nodes? */
1443 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1444 err = -EPERM;
1445 goto out_put;
1448 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1449 err = -EINVAL;
1450 goto out_put;
1453 err = security_task_movememory(task);
1454 if (err)
1455 goto out_put;
1457 mm = get_task_mm(task);
1458 put_task_struct(task);
1460 if (!mm) {
1461 err = -EINVAL;
1462 goto out;
1465 err = do_migrate_pages(mm, old, new,
1466 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1468 mmput(mm);
1469 out:
1470 NODEMASK_SCRATCH_FREE(scratch);
1472 return err;
1474 out_put:
1475 put_task_struct(task);
1476 goto out;
1481 /* Retrieve NUMA policy */
1482 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1483 unsigned long __user *, nmask, unsigned long, maxnode,
1484 unsigned long, addr, unsigned long, flags)
1486 int err;
1487 int uninitialized_var(pval);
1488 nodemask_t nodes;
1490 if (nmask != NULL && maxnode < MAX_NUMNODES)
1491 return -EINVAL;
1493 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1495 if (err)
1496 return err;
1498 if (policy && put_user(pval, policy))
1499 return -EFAULT;
1501 if (nmask)
1502 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1504 return err;
1507 #ifdef CONFIG_COMPAT
1509 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1510 compat_ulong_t __user *nmask,
1511 compat_ulong_t maxnode,
1512 compat_ulong_t addr, compat_ulong_t flags)
1514 long err;
1515 unsigned long __user *nm = NULL;
1516 unsigned long nr_bits, alloc_size;
1517 DECLARE_BITMAP(bm, MAX_NUMNODES);
1519 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1520 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1522 if (nmask)
1523 nm = compat_alloc_user_space(alloc_size);
1525 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1527 if (!err && nmask) {
1528 unsigned long copy_size;
1529 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1530 err = copy_from_user(bm, nm, copy_size);
1531 /* ensure entire bitmap is zeroed */
1532 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1533 err |= compat_put_bitmap(nmask, bm, nr_bits);
1536 return err;
1539 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1540 compat_ulong_t maxnode)
1542 long err = 0;
1543 unsigned long __user *nm = NULL;
1544 unsigned long nr_bits, alloc_size;
1545 DECLARE_BITMAP(bm, MAX_NUMNODES);
1547 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1548 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1550 if (nmask) {
1551 err = compat_get_bitmap(bm, nmask, nr_bits);
1552 nm = compat_alloc_user_space(alloc_size);
1553 err |= copy_to_user(nm, bm, alloc_size);
1556 if (err)
1557 return -EFAULT;
1559 return sys_set_mempolicy(mode, nm, nr_bits+1);
1562 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1563 compat_ulong_t mode, compat_ulong_t __user *nmask,
1564 compat_ulong_t maxnode, compat_ulong_t flags)
1566 long err = 0;
1567 unsigned long __user *nm = NULL;
1568 unsigned long nr_bits, alloc_size;
1569 nodemask_t bm;
1571 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1572 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1574 if (nmask) {
1575 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1576 nm = compat_alloc_user_space(alloc_size);
1577 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1580 if (err)
1581 return -EFAULT;
1583 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1586 #endif
1589 * get_vma_policy(@task, @vma, @addr)
1590 * @task - task for fallback if vma policy == default
1591 * @vma - virtual memory area whose policy is sought
1592 * @addr - address in @vma for shared policy lookup
1594 * Returns effective policy for a VMA at specified address.
1595 * Falls back to @task or system default policy, as necessary.
1596 * Current or other task's task mempolicy and non-shared vma policies must be
1597 * protected by task_lock(task) by the caller.
1598 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1599 * count--added by the get_policy() vm_op, as appropriate--to protect against
1600 * freeing by another task. It is the caller's responsibility to free the
1601 * extra reference for shared policies.
1603 struct mempolicy *get_vma_policy(struct task_struct *task,
1604 struct vm_area_struct *vma, unsigned long addr)
1606 struct mempolicy *pol = get_task_policy(task);
1608 if (vma) {
1609 if (vma->vm_ops && vma->vm_ops->get_policy) {
1610 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1611 addr);
1612 if (vpol)
1613 pol = vpol;
1614 } else if (vma->vm_policy) {
1615 pol = vma->vm_policy;
1618 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1619 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1620 * count on these policies which will be dropped by
1621 * mpol_cond_put() later
1623 if (mpol_needs_cond_ref(pol))
1624 mpol_get(pol);
1627 if (!pol)
1628 pol = &default_policy;
1629 return pol;
1632 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1634 enum zone_type dynamic_policy_zone = policy_zone;
1636 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1639 * if policy->v.nodes has movable memory only,
1640 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1642 * policy->v.nodes is intersect with node_states[N_MEMORY].
1643 * so if the following test faile, it implies
1644 * policy->v.nodes has movable memory only.
1646 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1647 dynamic_policy_zone = ZONE_MOVABLE;
1649 return zone >= dynamic_policy_zone;
1653 * Return a nodemask representing a mempolicy for filtering nodes for
1654 * page allocation
1656 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1658 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1659 if (unlikely(policy->mode == MPOL_BIND) &&
1660 apply_policy_zone(policy, gfp_zone(gfp)) &&
1661 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1662 return &policy->v.nodes;
1664 return NULL;
1667 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1668 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1669 int nd)
1671 switch (policy->mode) {
1672 case MPOL_PREFERRED:
1673 if (!(policy->flags & MPOL_F_LOCAL))
1674 nd = policy->v.preferred_node;
1675 break;
1676 case MPOL_BIND:
1678 * Normally, MPOL_BIND allocations are node-local within the
1679 * allowed nodemask. However, if __GFP_THISNODE is set and the
1680 * current node isn't part of the mask, we use the zonelist for
1681 * the first node in the mask instead.
1683 if (unlikely(gfp & __GFP_THISNODE) &&
1684 unlikely(!node_isset(nd, policy->v.nodes)))
1685 nd = first_node(policy->v.nodes);
1686 break;
1687 default:
1688 BUG();
1690 return node_zonelist(nd, gfp);
1693 /* Do dynamic interleaving for a process */
1694 static unsigned interleave_nodes(struct mempolicy *policy)
1696 unsigned nid, next;
1697 struct task_struct *me = current;
1699 nid = me->il_next;
1700 next = next_node(nid, policy->v.nodes);
1701 if (next >= MAX_NUMNODES)
1702 next = first_node(policy->v.nodes);
1703 if (next < MAX_NUMNODES)
1704 me->il_next = next;
1705 return nid;
1709 * Depending on the memory policy provide a node from which to allocate the
1710 * next slab entry.
1711 * @policy must be protected by freeing by the caller. If @policy is
1712 * the current task's mempolicy, this protection is implicit, as only the
1713 * task can change it's policy. The system default policy requires no
1714 * such protection.
1716 unsigned slab_node(void)
1718 struct mempolicy *policy;
1720 if (in_interrupt())
1721 return numa_node_id();
1723 policy = current->mempolicy;
1724 if (!policy || policy->flags & MPOL_F_LOCAL)
1725 return numa_node_id();
1727 switch (policy->mode) {
1728 case MPOL_PREFERRED:
1730 * handled MPOL_F_LOCAL above
1732 return policy->v.preferred_node;
1734 case MPOL_INTERLEAVE:
1735 return interleave_nodes(policy);
1737 case MPOL_BIND: {
1739 * Follow bind policy behavior and start allocation at the
1740 * first node.
1742 struct zonelist *zonelist;
1743 struct zone *zone;
1744 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1745 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1746 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1747 &policy->v.nodes,
1748 &zone);
1749 return zone ? zone->node : numa_node_id();
1752 default:
1753 BUG();
1757 /* Do static interleaving for a VMA with known offset. */
1758 static unsigned offset_il_node(struct mempolicy *pol,
1759 struct vm_area_struct *vma, unsigned long off)
1761 unsigned nnodes = nodes_weight(pol->v.nodes);
1762 unsigned target;
1763 int c;
1764 int nid = -1;
1766 if (!nnodes)
1767 return numa_node_id();
1768 target = (unsigned int)off % nnodes;
1769 c = 0;
1770 do {
1771 nid = next_node(nid, pol->v.nodes);
1772 c++;
1773 } while (c <= target);
1774 return nid;
1777 /* Determine a node number for interleave */
1778 static inline unsigned interleave_nid(struct mempolicy *pol,
1779 struct vm_area_struct *vma, unsigned long addr, int shift)
1781 if (vma) {
1782 unsigned long off;
1785 * for small pages, there is no difference between
1786 * shift and PAGE_SHIFT, so the bit-shift is safe.
1787 * for huge pages, since vm_pgoff is in units of small
1788 * pages, we need to shift off the always 0 bits to get
1789 * a useful offset.
1791 BUG_ON(shift < PAGE_SHIFT);
1792 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1793 off += (addr - vma->vm_start) >> shift;
1794 return offset_il_node(pol, vma, off);
1795 } else
1796 return interleave_nodes(pol);
1800 * Return the bit number of a random bit set in the nodemask.
1801 * (returns -1 if nodemask is empty)
1803 int node_random(const nodemask_t *maskp)
1805 int w, bit = -1;
1807 w = nodes_weight(*maskp);
1808 if (w)
1809 bit = bitmap_ord_to_pos(maskp->bits,
1810 get_random_int() % w, MAX_NUMNODES);
1811 return bit;
1814 #ifdef CONFIG_HUGETLBFS
1816 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1817 * @vma = virtual memory area whose policy is sought
1818 * @addr = address in @vma for shared policy lookup and interleave policy
1819 * @gfp_flags = for requested zone
1820 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1821 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1823 * Returns a zonelist suitable for a huge page allocation and a pointer
1824 * to the struct mempolicy for conditional unref after allocation.
1825 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1826 * @nodemask for filtering the zonelist.
1828 * Must be protected by get_mems_allowed()
1830 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1831 gfp_t gfp_flags, struct mempolicy **mpol,
1832 nodemask_t **nodemask)
1834 struct zonelist *zl;
1836 *mpol = get_vma_policy(current, vma, addr);
1837 *nodemask = NULL; /* assume !MPOL_BIND */
1839 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1840 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1841 huge_page_shift(hstate_vma(vma))), gfp_flags);
1842 } else {
1843 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1844 if ((*mpol)->mode == MPOL_BIND)
1845 *nodemask = &(*mpol)->v.nodes;
1847 return zl;
1851 * init_nodemask_of_mempolicy
1853 * If the current task's mempolicy is "default" [NULL], return 'false'
1854 * to indicate default policy. Otherwise, extract the policy nodemask
1855 * for 'bind' or 'interleave' policy into the argument nodemask, or
1856 * initialize the argument nodemask to contain the single node for
1857 * 'preferred' or 'local' policy and return 'true' to indicate presence
1858 * of non-default mempolicy.
1860 * We don't bother with reference counting the mempolicy [mpol_get/put]
1861 * because the current task is examining it's own mempolicy and a task's
1862 * mempolicy is only ever changed by the task itself.
1864 * N.B., it is the caller's responsibility to free a returned nodemask.
1866 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1868 struct mempolicy *mempolicy;
1869 int nid;
1871 if (!(mask && current->mempolicy))
1872 return false;
1874 task_lock(current);
1875 mempolicy = current->mempolicy;
1876 switch (mempolicy->mode) {
1877 case MPOL_PREFERRED:
1878 if (mempolicy->flags & MPOL_F_LOCAL)
1879 nid = numa_node_id();
1880 else
1881 nid = mempolicy->v.preferred_node;
1882 init_nodemask_of_node(mask, nid);
1883 break;
1885 case MPOL_BIND:
1886 /* Fall through */
1887 case MPOL_INTERLEAVE:
1888 *mask = mempolicy->v.nodes;
1889 break;
1891 default:
1892 BUG();
1894 task_unlock(current);
1896 return true;
1898 #endif
1901 * mempolicy_nodemask_intersects
1903 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1904 * policy. Otherwise, check for intersection between mask and the policy
1905 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1906 * policy, always return true since it may allocate elsewhere on fallback.
1908 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1910 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1911 const nodemask_t *mask)
1913 struct mempolicy *mempolicy;
1914 bool ret = true;
1916 if (!mask)
1917 return ret;
1918 task_lock(tsk);
1919 mempolicy = tsk->mempolicy;
1920 if (!mempolicy)
1921 goto out;
1923 switch (mempolicy->mode) {
1924 case MPOL_PREFERRED:
1926 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1927 * allocate from, they may fallback to other nodes when oom.
1928 * Thus, it's possible for tsk to have allocated memory from
1929 * nodes in mask.
1931 break;
1932 case MPOL_BIND:
1933 case MPOL_INTERLEAVE:
1934 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1935 break;
1936 default:
1937 BUG();
1939 out:
1940 task_unlock(tsk);
1941 return ret;
1944 /* Allocate a page in interleaved policy.
1945 Own path because it needs to do special accounting. */
1946 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1947 unsigned nid)
1949 struct zonelist *zl;
1950 struct page *page;
1952 zl = node_zonelist(nid, gfp);
1953 page = __alloc_pages(gfp, order, zl);
1954 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1955 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1956 return page;
1960 * alloc_pages_vma - Allocate a page for a VMA.
1962 * @gfp:
1963 * %GFP_USER user allocation.
1964 * %GFP_KERNEL kernel allocations,
1965 * %GFP_HIGHMEM highmem/user allocations,
1966 * %GFP_FS allocation should not call back into a file system.
1967 * %GFP_ATOMIC don't sleep.
1969 * @order:Order of the GFP allocation.
1970 * @vma: Pointer to VMA or NULL if not available.
1971 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1973 * This function allocates a page from the kernel page pool and applies
1974 * a NUMA policy associated with the VMA or the current process.
1975 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1976 * mm_struct of the VMA to prevent it from going away. Should be used for
1977 * all allocations for pages that will be mapped into
1978 * user space. Returns NULL when no page can be allocated.
1980 * Should be called with the mm_sem of the vma hold.
1982 struct page *
1983 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1984 unsigned long addr, int node)
1986 struct mempolicy *pol;
1987 struct page *page;
1988 unsigned int cpuset_mems_cookie;
1990 retry_cpuset:
1991 pol = get_vma_policy(current, vma, addr);
1992 cpuset_mems_cookie = get_mems_allowed();
1994 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1995 unsigned nid;
1997 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1998 mpol_cond_put(pol);
1999 page = alloc_page_interleave(gfp, order, nid);
2000 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2001 goto retry_cpuset;
2003 return page;
2005 page = __alloc_pages_nodemask(gfp, order,
2006 policy_zonelist(gfp, pol, node),
2007 policy_nodemask(gfp, pol));
2008 if (unlikely(mpol_needs_cond_ref(pol)))
2009 __mpol_put(pol);
2010 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2011 goto retry_cpuset;
2012 return page;
2016 * alloc_pages_current - Allocate pages.
2018 * @gfp:
2019 * %GFP_USER user allocation,
2020 * %GFP_KERNEL kernel allocation,
2021 * %GFP_HIGHMEM highmem allocation,
2022 * %GFP_FS don't call back into a file system.
2023 * %GFP_ATOMIC don't sleep.
2024 * @order: Power of two of allocation size in pages. 0 is a single page.
2026 * Allocate a page from the kernel page pool. When not in
2027 * interrupt context and apply the current process NUMA policy.
2028 * Returns NULL when no page can be allocated.
2030 * Don't call cpuset_update_task_memory_state() unless
2031 * 1) it's ok to take cpuset_sem (can WAIT), and
2032 * 2) allocating for current task (not interrupt).
2034 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2036 struct mempolicy *pol = get_task_policy(current);
2037 struct page *page;
2038 unsigned int cpuset_mems_cookie;
2040 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2041 pol = &default_policy;
2043 retry_cpuset:
2044 cpuset_mems_cookie = get_mems_allowed();
2047 * No reference counting needed for current->mempolicy
2048 * nor system default_policy
2050 if (pol->mode == MPOL_INTERLEAVE)
2051 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2052 else
2053 page = __alloc_pages_nodemask(gfp, order,
2054 policy_zonelist(gfp, pol, numa_node_id()),
2055 policy_nodemask(gfp, pol));
2057 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2058 goto retry_cpuset;
2060 return page;
2062 EXPORT_SYMBOL(alloc_pages_current);
2065 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2066 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2067 * with the mems_allowed returned by cpuset_mems_allowed(). This
2068 * keeps mempolicies cpuset relative after its cpuset moves. See
2069 * further kernel/cpuset.c update_nodemask().
2071 * current's mempolicy may be rebinded by the other task(the task that changes
2072 * cpuset's mems), so we needn't do rebind work for current task.
2075 /* Slow path of a mempolicy duplicate */
2076 struct mempolicy *__mpol_dup(struct mempolicy *old)
2078 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2080 if (!new)
2081 return ERR_PTR(-ENOMEM);
2083 /* task's mempolicy is protected by alloc_lock */
2084 if (old == current->mempolicy) {
2085 task_lock(current);
2086 *new = *old;
2087 task_unlock(current);
2088 } else
2089 *new = *old;
2091 rcu_read_lock();
2092 if (current_cpuset_is_being_rebound()) {
2093 nodemask_t mems = cpuset_mems_allowed(current);
2094 if (new->flags & MPOL_F_REBINDING)
2095 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2096 else
2097 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2099 rcu_read_unlock();
2100 atomic_set(&new->refcnt, 1);
2101 return new;
2104 /* Slow path of a mempolicy comparison */
2105 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2107 if (!a || !b)
2108 return false;
2109 if (a->mode != b->mode)
2110 return false;
2111 if (a->flags != b->flags)
2112 return false;
2113 if (mpol_store_user_nodemask(a))
2114 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2115 return false;
2117 switch (a->mode) {
2118 case MPOL_BIND:
2119 /* Fall through */
2120 case MPOL_INTERLEAVE:
2121 return !!nodes_equal(a->v.nodes, b->v.nodes);
2122 case MPOL_PREFERRED:
2123 return a->v.preferred_node == b->v.preferred_node;
2124 default:
2125 BUG();
2126 return false;
2131 * Shared memory backing store policy support.
2133 * Remember policies even when nobody has shared memory mapped.
2134 * The policies are kept in Red-Black tree linked from the inode.
2135 * They are protected by the sp->lock spinlock, which should be held
2136 * for any accesses to the tree.
2139 /* lookup first element intersecting start-end */
2140 /* Caller holds sp->lock */
2141 static struct sp_node *
2142 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2144 struct rb_node *n = sp->root.rb_node;
2146 while (n) {
2147 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2149 if (start >= p->end)
2150 n = n->rb_right;
2151 else if (end <= p->start)
2152 n = n->rb_left;
2153 else
2154 break;
2156 if (!n)
2157 return NULL;
2158 for (;;) {
2159 struct sp_node *w = NULL;
2160 struct rb_node *prev = rb_prev(n);
2161 if (!prev)
2162 break;
2163 w = rb_entry(prev, struct sp_node, nd);
2164 if (w->end <= start)
2165 break;
2166 n = prev;
2168 return rb_entry(n, struct sp_node, nd);
2171 /* Insert a new shared policy into the list. */
2172 /* Caller holds sp->lock */
2173 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2175 struct rb_node **p = &sp->root.rb_node;
2176 struct rb_node *parent = NULL;
2177 struct sp_node *nd;
2179 while (*p) {
2180 parent = *p;
2181 nd = rb_entry(parent, struct sp_node, nd);
2182 if (new->start < nd->start)
2183 p = &(*p)->rb_left;
2184 else if (new->end > nd->end)
2185 p = &(*p)->rb_right;
2186 else
2187 BUG();
2189 rb_link_node(&new->nd, parent, p);
2190 rb_insert_color(&new->nd, &sp->root);
2191 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2192 new->policy ? new->policy->mode : 0);
2195 /* Find shared policy intersecting idx */
2196 struct mempolicy *
2197 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2199 struct mempolicy *pol = NULL;
2200 struct sp_node *sn;
2202 if (!sp->root.rb_node)
2203 return NULL;
2204 spin_lock(&sp->lock);
2205 sn = sp_lookup(sp, idx, idx+1);
2206 if (sn) {
2207 mpol_get(sn->policy);
2208 pol = sn->policy;
2210 spin_unlock(&sp->lock);
2211 return pol;
2214 static void sp_free(struct sp_node *n)
2216 mpol_put(n->policy);
2217 kmem_cache_free(sn_cache, n);
2221 * mpol_misplaced - check whether current page node is valid in policy
2223 * @page - page to be checked
2224 * @vma - vm area where page mapped
2225 * @addr - virtual address where page mapped
2227 * Lookup current policy node id for vma,addr and "compare to" page's
2228 * node id.
2230 * Returns:
2231 * -1 - not misplaced, page is in the right node
2232 * node - node id where the page should be
2234 * Policy determination "mimics" alloc_page_vma().
2235 * Called from fault path where we know the vma and faulting address.
2237 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2239 struct mempolicy *pol;
2240 struct zone *zone;
2241 int curnid = page_to_nid(page);
2242 unsigned long pgoff;
2243 int polnid = -1;
2244 int ret = -1;
2246 BUG_ON(!vma);
2248 pol = get_vma_policy(current, vma, addr);
2249 if (!(pol->flags & MPOL_F_MOF))
2250 goto out;
2252 switch (pol->mode) {
2253 case MPOL_INTERLEAVE:
2254 BUG_ON(addr >= vma->vm_end);
2255 BUG_ON(addr < vma->vm_start);
2257 pgoff = vma->vm_pgoff;
2258 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2259 polnid = offset_il_node(pol, vma, pgoff);
2260 break;
2262 case MPOL_PREFERRED:
2263 if (pol->flags & MPOL_F_LOCAL)
2264 polnid = numa_node_id();
2265 else
2266 polnid = pol->v.preferred_node;
2267 break;
2269 case MPOL_BIND:
2271 * allows binding to multiple nodes.
2272 * use current page if in policy nodemask,
2273 * else select nearest allowed node, if any.
2274 * If no allowed nodes, use current [!misplaced].
2276 if (node_isset(curnid, pol->v.nodes))
2277 goto out;
2278 (void)first_zones_zonelist(
2279 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2280 gfp_zone(GFP_HIGHUSER),
2281 &pol->v.nodes, &zone);
2282 polnid = zone->node;
2283 break;
2285 default:
2286 BUG();
2289 /* Migrate the page towards the node whose CPU is referencing it */
2290 if (pol->flags & MPOL_F_MORON) {
2291 int last_nid;
2293 polnid = numa_node_id();
2296 * Multi-stage node selection is used in conjunction
2297 * with a periodic migration fault to build a temporal
2298 * task<->page relation. By using a two-stage filter we
2299 * remove short/unlikely relations.
2301 * Using P(p) ~ n_p / n_t as per frequentist
2302 * probability, we can equate a task's usage of a
2303 * particular page (n_p) per total usage of this
2304 * page (n_t) (in a given time-span) to a probability.
2306 * Our periodic faults will sample this probability and
2307 * getting the same result twice in a row, given these
2308 * samples are fully independent, is then given by
2309 * P(n)^2, provided our sample period is sufficiently
2310 * short compared to the usage pattern.
2312 * This quadric squishes small probabilities, making
2313 * it less likely we act on an unlikely task<->page
2314 * relation.
2316 last_nid = page_nid_xchg_last(page, polnid);
2317 if (last_nid != polnid)
2318 goto out;
2321 if (curnid != polnid)
2322 ret = polnid;
2323 out:
2324 mpol_cond_put(pol);
2326 return ret;
2329 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2331 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2332 rb_erase(&n->nd, &sp->root);
2333 sp_free(n);
2336 static void sp_node_init(struct sp_node *node, unsigned long start,
2337 unsigned long end, struct mempolicy *pol)
2339 node->start = start;
2340 node->end = end;
2341 node->policy = pol;
2344 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2345 struct mempolicy *pol)
2347 struct sp_node *n;
2348 struct mempolicy *newpol;
2350 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2351 if (!n)
2352 return NULL;
2354 newpol = mpol_dup(pol);
2355 if (IS_ERR(newpol)) {
2356 kmem_cache_free(sn_cache, n);
2357 return NULL;
2359 newpol->flags |= MPOL_F_SHARED;
2360 sp_node_init(n, start, end, newpol);
2362 return n;
2365 /* Replace a policy range. */
2366 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2367 unsigned long end, struct sp_node *new)
2369 struct sp_node *n;
2370 struct sp_node *n_new = NULL;
2371 struct mempolicy *mpol_new = NULL;
2372 int ret = 0;
2374 restart:
2375 spin_lock(&sp->lock);
2376 n = sp_lookup(sp, start, end);
2377 /* Take care of old policies in the same range. */
2378 while (n && n->start < end) {
2379 struct rb_node *next = rb_next(&n->nd);
2380 if (n->start >= start) {
2381 if (n->end <= end)
2382 sp_delete(sp, n);
2383 else
2384 n->start = end;
2385 } else {
2386 /* Old policy spanning whole new range. */
2387 if (n->end > end) {
2388 if (!n_new)
2389 goto alloc_new;
2391 *mpol_new = *n->policy;
2392 atomic_set(&mpol_new->refcnt, 1);
2393 sp_node_init(n_new, end, n->end, mpol_new);
2394 n->end = start;
2395 sp_insert(sp, n_new);
2396 n_new = NULL;
2397 mpol_new = NULL;
2398 break;
2399 } else
2400 n->end = start;
2402 if (!next)
2403 break;
2404 n = rb_entry(next, struct sp_node, nd);
2406 if (new)
2407 sp_insert(sp, new);
2408 spin_unlock(&sp->lock);
2409 ret = 0;
2411 err_out:
2412 if (mpol_new)
2413 mpol_put(mpol_new);
2414 if (n_new)
2415 kmem_cache_free(sn_cache, n_new);
2417 return ret;
2419 alloc_new:
2420 spin_unlock(&sp->lock);
2421 ret = -ENOMEM;
2422 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2423 if (!n_new)
2424 goto err_out;
2425 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2426 if (!mpol_new)
2427 goto err_out;
2428 goto restart;
2432 * mpol_shared_policy_init - initialize shared policy for inode
2433 * @sp: pointer to inode shared policy
2434 * @mpol: struct mempolicy to install
2436 * Install non-NULL @mpol in inode's shared policy rb-tree.
2437 * On entry, the current task has a reference on a non-NULL @mpol.
2438 * This must be released on exit.
2439 * This is called at get_inode() calls and we can use GFP_KERNEL.
2441 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2443 int ret;
2445 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2446 spin_lock_init(&sp->lock);
2448 if (mpol) {
2449 struct vm_area_struct pvma;
2450 struct mempolicy *new;
2451 NODEMASK_SCRATCH(scratch);
2453 if (!scratch)
2454 goto put_mpol;
2455 /* contextualize the tmpfs mount point mempolicy */
2456 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2457 if (IS_ERR(new))
2458 goto free_scratch; /* no valid nodemask intersection */
2460 task_lock(current);
2461 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2462 task_unlock(current);
2463 if (ret)
2464 goto put_new;
2466 /* Create pseudo-vma that contains just the policy */
2467 memset(&pvma, 0, sizeof(struct vm_area_struct));
2468 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2469 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2471 put_new:
2472 mpol_put(new); /* drop initial ref */
2473 free_scratch:
2474 NODEMASK_SCRATCH_FREE(scratch);
2475 put_mpol:
2476 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2480 int mpol_set_shared_policy(struct shared_policy *info,
2481 struct vm_area_struct *vma, struct mempolicy *npol)
2483 int err;
2484 struct sp_node *new = NULL;
2485 unsigned long sz = vma_pages(vma);
2487 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2488 vma->vm_pgoff,
2489 sz, npol ? npol->mode : -1,
2490 npol ? npol->flags : -1,
2491 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2493 if (npol) {
2494 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2495 if (!new)
2496 return -ENOMEM;
2498 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2499 if (err && new)
2500 sp_free(new);
2501 return err;
2504 /* Free a backing policy store on inode delete. */
2505 void mpol_free_shared_policy(struct shared_policy *p)
2507 struct sp_node *n;
2508 struct rb_node *next;
2510 if (!p->root.rb_node)
2511 return;
2512 spin_lock(&p->lock);
2513 next = rb_first(&p->root);
2514 while (next) {
2515 n = rb_entry(next, struct sp_node, nd);
2516 next = rb_next(&n->nd);
2517 sp_delete(p, n);
2519 spin_unlock(&p->lock);
2522 #ifdef CONFIG_NUMA_BALANCING
2523 static bool __initdata numabalancing_override;
2525 static void __init check_numabalancing_enable(void)
2527 bool numabalancing_default = false;
2529 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2530 numabalancing_default = true;
2532 if (nr_node_ids > 1 && !numabalancing_override) {
2533 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2534 "Configure with numa_balancing= or sysctl");
2535 set_numabalancing_state(numabalancing_default);
2539 static int __init setup_numabalancing(char *str)
2541 int ret = 0;
2542 if (!str)
2543 goto out;
2544 numabalancing_override = true;
2546 if (!strcmp(str, "enable")) {
2547 set_numabalancing_state(true);
2548 ret = 1;
2549 } else if (!strcmp(str, "disable")) {
2550 set_numabalancing_state(false);
2551 ret = 1;
2553 out:
2554 if (!ret)
2555 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2557 return ret;
2559 __setup("numa_balancing=", setup_numabalancing);
2560 #else
2561 static inline void __init check_numabalancing_enable(void)
2564 #endif /* CONFIG_NUMA_BALANCING */
2566 /* assumes fs == KERNEL_DS */
2567 void __init numa_policy_init(void)
2569 nodemask_t interleave_nodes;
2570 unsigned long largest = 0;
2571 int nid, prefer = 0;
2573 policy_cache = kmem_cache_create("numa_policy",
2574 sizeof(struct mempolicy),
2575 0, SLAB_PANIC, NULL);
2577 sn_cache = kmem_cache_create("shared_policy_node",
2578 sizeof(struct sp_node),
2579 0, SLAB_PANIC, NULL);
2581 for_each_node(nid) {
2582 preferred_node_policy[nid] = (struct mempolicy) {
2583 .refcnt = ATOMIC_INIT(1),
2584 .mode = MPOL_PREFERRED,
2585 .flags = MPOL_F_MOF | MPOL_F_MORON,
2586 .v = { .preferred_node = nid, },
2591 * Set interleaving policy for system init. Interleaving is only
2592 * enabled across suitably sized nodes (default is >= 16MB), or
2593 * fall back to the largest node if they're all smaller.
2595 nodes_clear(interleave_nodes);
2596 for_each_node_state(nid, N_MEMORY) {
2597 unsigned long total_pages = node_present_pages(nid);
2599 /* Preserve the largest node */
2600 if (largest < total_pages) {
2601 largest = total_pages;
2602 prefer = nid;
2605 /* Interleave this node? */
2606 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2607 node_set(nid, interleave_nodes);
2610 /* All too small, use the largest */
2611 if (unlikely(nodes_empty(interleave_nodes)))
2612 node_set(prefer, interleave_nodes);
2614 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2615 printk("numa_policy_init: interleaving failed\n");
2617 check_numabalancing_enable();
2620 /* Reset policy of current process to default */
2621 void numa_default_policy(void)
2623 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2627 * Parse and format mempolicy from/to strings
2631 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2633 static const char * const policy_modes[] =
2635 [MPOL_DEFAULT] = "default",
2636 [MPOL_PREFERRED] = "prefer",
2637 [MPOL_BIND] = "bind",
2638 [MPOL_INTERLEAVE] = "interleave",
2639 [MPOL_LOCAL] = "local",
2643 #ifdef CONFIG_TMPFS
2645 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2646 * @str: string containing mempolicy to parse
2647 * @mpol: pointer to struct mempolicy pointer, returned on success.
2649 * Format of input:
2650 * <mode>[=<flags>][:<nodelist>]
2652 * On success, returns 0, else 1
2654 int mpol_parse_str(char *str, struct mempolicy **mpol)
2656 struct mempolicy *new = NULL;
2657 unsigned short mode;
2658 unsigned short mode_flags;
2659 nodemask_t nodes;
2660 char *nodelist = strchr(str, ':');
2661 char *flags = strchr(str, '=');
2662 int err = 1;
2664 if (nodelist) {
2665 /* NUL-terminate mode or flags string */
2666 *nodelist++ = '\0';
2667 if (nodelist_parse(nodelist, nodes))
2668 goto out;
2669 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2670 goto out;
2671 } else
2672 nodes_clear(nodes);
2674 if (flags)
2675 *flags++ = '\0'; /* terminate mode string */
2677 for (mode = 0; mode < MPOL_MAX; mode++) {
2678 if (!strcmp(str, policy_modes[mode])) {
2679 break;
2682 if (mode >= MPOL_MAX)
2683 goto out;
2685 switch (mode) {
2686 case MPOL_PREFERRED:
2688 * Insist on a nodelist of one node only
2690 if (nodelist) {
2691 char *rest = nodelist;
2692 while (isdigit(*rest))
2693 rest++;
2694 if (*rest)
2695 goto out;
2697 break;
2698 case MPOL_INTERLEAVE:
2700 * Default to online nodes with memory if no nodelist
2702 if (!nodelist)
2703 nodes = node_states[N_MEMORY];
2704 break;
2705 case MPOL_LOCAL:
2707 * Don't allow a nodelist; mpol_new() checks flags
2709 if (nodelist)
2710 goto out;
2711 mode = MPOL_PREFERRED;
2712 break;
2713 case MPOL_DEFAULT:
2715 * Insist on a empty nodelist
2717 if (!nodelist)
2718 err = 0;
2719 goto out;
2720 case MPOL_BIND:
2722 * Insist on a nodelist
2724 if (!nodelist)
2725 goto out;
2728 mode_flags = 0;
2729 if (flags) {
2731 * Currently, we only support two mutually exclusive
2732 * mode flags.
2734 if (!strcmp(flags, "static"))
2735 mode_flags |= MPOL_F_STATIC_NODES;
2736 else if (!strcmp(flags, "relative"))
2737 mode_flags |= MPOL_F_RELATIVE_NODES;
2738 else
2739 goto out;
2742 new = mpol_new(mode, mode_flags, &nodes);
2743 if (IS_ERR(new))
2744 goto out;
2747 * Save nodes for mpol_to_str() to show the tmpfs mount options
2748 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2750 if (mode != MPOL_PREFERRED)
2751 new->v.nodes = nodes;
2752 else if (nodelist)
2753 new->v.preferred_node = first_node(nodes);
2754 else
2755 new->flags |= MPOL_F_LOCAL;
2758 * Save nodes for contextualization: this will be used to "clone"
2759 * the mempolicy in a specific context [cpuset] at a later time.
2761 new->w.user_nodemask = nodes;
2763 err = 0;
2765 out:
2766 /* Restore string for error message */
2767 if (nodelist)
2768 *--nodelist = ':';
2769 if (flags)
2770 *--flags = '=';
2771 if (!err)
2772 *mpol = new;
2773 return err;
2775 #endif /* CONFIG_TMPFS */
2778 * mpol_to_str - format a mempolicy structure for printing
2779 * @buffer: to contain formatted mempolicy string
2780 * @maxlen: length of @buffer
2781 * @pol: pointer to mempolicy to be formatted
2783 * Convert a mempolicy into a string.
2784 * Returns the number of characters in buffer (if positive)
2785 * or an error (negative)
2787 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2789 char *p = buffer;
2790 int l;
2791 nodemask_t nodes;
2792 unsigned short mode;
2793 unsigned short flags = pol ? pol->flags : 0;
2796 * Sanity check: room for longest mode, flag and some nodes
2798 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2800 if (!pol || pol == &default_policy)
2801 mode = MPOL_DEFAULT;
2802 else
2803 mode = pol->mode;
2805 switch (mode) {
2806 case MPOL_DEFAULT:
2807 nodes_clear(nodes);
2808 break;
2810 case MPOL_PREFERRED:
2811 nodes_clear(nodes);
2812 if (flags & MPOL_F_LOCAL)
2813 mode = MPOL_LOCAL;
2814 else
2815 node_set(pol->v.preferred_node, nodes);
2816 break;
2818 case MPOL_BIND:
2819 /* Fall through */
2820 case MPOL_INTERLEAVE:
2821 nodes = pol->v.nodes;
2822 break;
2824 default:
2825 return -EINVAL;
2828 l = strlen(policy_modes[mode]);
2829 if (buffer + maxlen < p + l + 1)
2830 return -ENOSPC;
2832 strcpy(p, policy_modes[mode]);
2833 p += l;
2835 if (flags & MPOL_MODE_FLAGS) {
2836 if (buffer + maxlen < p + 2)
2837 return -ENOSPC;
2838 *p++ = '=';
2841 * Currently, the only defined flags are mutually exclusive
2843 if (flags & MPOL_F_STATIC_NODES)
2844 p += snprintf(p, buffer + maxlen - p, "static");
2845 else if (flags & MPOL_F_RELATIVE_NODES)
2846 p += snprintf(p, buffer + maxlen - p, "relative");
2849 if (!nodes_empty(nodes)) {
2850 if (buffer + maxlen < p + 2)
2851 return -ENOSPC;
2852 *p++ = ':';
2853 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2855 return p - buffer;