Linux 3.11-rc3
[cris-mirror.git] / net / ipv4 / tcp_memcontrol.c
blobda14436c1735677f7207030cfb8d76ae15a1157f
1 #include <net/tcp.h>
2 #include <net/tcp_memcontrol.h>
3 #include <net/sock.h>
4 #include <net/ip.h>
5 #include <linux/nsproxy.h>
6 #include <linux/memcontrol.h>
7 #include <linux/module.h>
9 static inline struct tcp_memcontrol *tcp_from_cgproto(struct cg_proto *cg_proto)
11 return container_of(cg_proto, struct tcp_memcontrol, cg_proto);
14 static void memcg_tcp_enter_memory_pressure(struct sock *sk)
16 if (sk->sk_cgrp->memory_pressure)
17 *sk->sk_cgrp->memory_pressure = 1;
19 EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure);
21 int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
24 * The root cgroup does not use res_counters, but rather,
25 * rely on the data already collected by the network
26 * subsystem
28 struct res_counter *res_parent = NULL;
29 struct cg_proto *cg_proto, *parent_cg;
30 struct tcp_memcontrol *tcp;
31 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
32 struct net *net = current->nsproxy->net_ns;
34 cg_proto = tcp_prot.proto_cgroup(memcg);
35 if (!cg_proto)
36 return 0;
38 tcp = tcp_from_cgproto(cg_proto);
40 tcp->tcp_prot_mem[0] = net->ipv4.sysctl_tcp_mem[0];
41 tcp->tcp_prot_mem[1] = net->ipv4.sysctl_tcp_mem[1];
42 tcp->tcp_prot_mem[2] = net->ipv4.sysctl_tcp_mem[2];
43 tcp->tcp_memory_pressure = 0;
45 parent_cg = tcp_prot.proto_cgroup(parent);
46 if (parent_cg)
47 res_parent = parent_cg->memory_allocated;
49 res_counter_init(&tcp->tcp_memory_allocated, res_parent);
50 percpu_counter_init(&tcp->tcp_sockets_allocated, 0);
52 cg_proto->enter_memory_pressure = memcg_tcp_enter_memory_pressure;
53 cg_proto->memory_pressure = &tcp->tcp_memory_pressure;
54 cg_proto->sysctl_mem = tcp->tcp_prot_mem;
55 cg_proto->memory_allocated = &tcp->tcp_memory_allocated;
56 cg_proto->sockets_allocated = &tcp->tcp_sockets_allocated;
57 cg_proto->memcg = memcg;
59 return 0;
61 EXPORT_SYMBOL(tcp_init_cgroup);
63 void tcp_destroy_cgroup(struct mem_cgroup *memcg)
65 struct cg_proto *cg_proto;
66 struct tcp_memcontrol *tcp;
68 cg_proto = tcp_prot.proto_cgroup(memcg);
69 if (!cg_proto)
70 return;
72 tcp = tcp_from_cgproto(cg_proto);
73 percpu_counter_destroy(&tcp->tcp_sockets_allocated);
75 EXPORT_SYMBOL(tcp_destroy_cgroup);
77 static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
79 struct net *net = current->nsproxy->net_ns;
80 struct tcp_memcontrol *tcp;
81 struct cg_proto *cg_proto;
82 u64 old_lim;
83 int i;
84 int ret;
86 cg_proto = tcp_prot.proto_cgroup(memcg);
87 if (!cg_proto)
88 return -EINVAL;
90 if (val > RESOURCE_MAX)
91 val = RESOURCE_MAX;
93 tcp = tcp_from_cgproto(cg_proto);
95 old_lim = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
96 ret = res_counter_set_limit(&tcp->tcp_memory_allocated, val);
97 if (ret)
98 return ret;
100 for (i = 0; i < 3; i++)
101 tcp->tcp_prot_mem[i] = min_t(long, val >> PAGE_SHIFT,
102 net->ipv4.sysctl_tcp_mem[i]);
104 if (val == RESOURCE_MAX)
105 clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
106 else if (val != RESOURCE_MAX) {
108 * The active bit needs to be written after the static_key
109 * update. This is what guarantees that the socket activation
110 * function is the last one to run. See sock_update_memcg() for
111 * details, and note that we don't mark any socket as belonging
112 * to this memcg until that flag is up.
114 * We need to do this, because static_keys will span multiple
115 * sites, but we can't control their order. If we mark a socket
116 * as accounted, but the accounting functions are not patched in
117 * yet, we'll lose accounting.
119 * We never race with the readers in sock_update_memcg(),
120 * because when this value change, the code to process it is not
121 * patched in yet.
123 * The activated bit is used to guarantee that no two writers
124 * will do the update in the same memcg. Without that, we can't
125 * properly shutdown the static key.
127 if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
128 static_key_slow_inc(&memcg_socket_limit_enabled);
129 set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
132 return 0;
135 static int tcp_cgroup_write(struct cgroup *cont, struct cftype *cft,
136 const char *buffer)
138 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
139 unsigned long long val;
140 int ret = 0;
142 switch (cft->private) {
143 case RES_LIMIT:
144 /* see memcontrol.c */
145 ret = res_counter_memparse_write_strategy(buffer, &val);
146 if (ret)
147 break;
148 ret = tcp_update_limit(memcg, val);
149 break;
150 default:
151 ret = -EINVAL;
152 break;
154 return ret;
157 static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
159 struct tcp_memcontrol *tcp;
160 struct cg_proto *cg_proto;
162 cg_proto = tcp_prot.proto_cgroup(memcg);
163 if (!cg_proto)
164 return default_val;
166 tcp = tcp_from_cgproto(cg_proto);
167 return res_counter_read_u64(&tcp->tcp_memory_allocated, type);
170 static u64 tcp_read_usage(struct mem_cgroup *memcg)
172 struct tcp_memcontrol *tcp;
173 struct cg_proto *cg_proto;
175 cg_proto = tcp_prot.proto_cgroup(memcg);
176 if (!cg_proto)
177 return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
179 tcp = tcp_from_cgproto(cg_proto);
180 return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE);
183 static u64 tcp_cgroup_read(struct cgroup *cont, struct cftype *cft)
185 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
186 u64 val;
188 switch (cft->private) {
189 case RES_LIMIT:
190 val = tcp_read_stat(memcg, RES_LIMIT, RESOURCE_MAX);
191 break;
192 case RES_USAGE:
193 val = tcp_read_usage(memcg);
194 break;
195 case RES_FAILCNT:
196 case RES_MAX_USAGE:
197 val = tcp_read_stat(memcg, cft->private, 0);
198 break;
199 default:
200 BUG();
202 return val;
205 static int tcp_cgroup_reset(struct cgroup *cont, unsigned int event)
207 struct mem_cgroup *memcg;
208 struct tcp_memcontrol *tcp;
209 struct cg_proto *cg_proto;
211 memcg = mem_cgroup_from_cont(cont);
212 cg_proto = tcp_prot.proto_cgroup(memcg);
213 if (!cg_proto)
214 return 0;
215 tcp = tcp_from_cgproto(cg_proto);
217 switch (event) {
218 case RES_MAX_USAGE:
219 res_counter_reset_max(&tcp->tcp_memory_allocated);
220 break;
221 case RES_FAILCNT:
222 res_counter_reset_failcnt(&tcp->tcp_memory_allocated);
223 break;
226 return 0;
229 unsigned long long tcp_max_memory(const struct mem_cgroup *memcg)
231 struct tcp_memcontrol *tcp;
232 struct cg_proto *cg_proto;
234 cg_proto = tcp_prot.proto_cgroup((struct mem_cgroup *)memcg);
235 if (!cg_proto)
236 return 0;
238 tcp = tcp_from_cgproto(cg_proto);
239 return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
242 void tcp_prot_mem(struct mem_cgroup *memcg, long val, int idx)
244 struct tcp_memcontrol *tcp;
245 struct cg_proto *cg_proto;
247 cg_proto = tcp_prot.proto_cgroup(memcg);
248 if (!cg_proto)
249 return;
251 tcp = tcp_from_cgproto(cg_proto);
253 tcp->tcp_prot_mem[idx] = val;
256 static struct cftype tcp_files[] = {
258 .name = "kmem.tcp.limit_in_bytes",
259 .write_string = tcp_cgroup_write,
260 .read_u64 = tcp_cgroup_read,
261 .private = RES_LIMIT,
264 .name = "kmem.tcp.usage_in_bytes",
265 .read_u64 = tcp_cgroup_read,
266 .private = RES_USAGE,
269 .name = "kmem.tcp.failcnt",
270 .private = RES_FAILCNT,
271 .trigger = tcp_cgroup_reset,
272 .read_u64 = tcp_cgroup_read,
275 .name = "kmem.tcp.max_usage_in_bytes",
276 .private = RES_MAX_USAGE,
277 .trigger = tcp_cgroup_reset,
278 .read_u64 = tcp_cgroup_read,
280 { } /* terminate */
283 static int __init tcp_memcontrol_init(void)
285 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
286 return 0;
288 __initcall(tcp_memcontrol_init);