2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data
{
103 u32 limit
; /* Maximal length of backlog: bytes */
104 s64 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
107 struct psched_ratecfg rate
;
108 struct psched_ratecfg peak
;
112 s64 tokens
; /* Current number of B tokens */
113 s64 ptokens
; /* Current number of P tokens */
114 s64 t_c
; /* Time check-point */
115 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
116 struct qdisc_watchdog watchdog
; /* Watchdog timer */
120 /* GSO packet is too big, segment it so that tbf can transmit
121 * each segment in time
123 static int tbf_segment(struct sk_buff
*skb
, struct Qdisc
*sch
)
125 struct tbf_sched_data
*q
= qdisc_priv(sch
);
126 struct sk_buff
*segs
, *nskb
;
127 netdev_features_t features
= netif_skb_features(skb
);
130 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
132 if (IS_ERR_OR_NULL(segs
))
133 return qdisc_reshape_fail(skb
, sch
);
139 if (likely(segs
->len
<= q
->max_size
)) {
140 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
141 ret
= qdisc_enqueue(segs
, q
->qdisc
);
143 ret
= qdisc_reshape_fail(skb
, sch
);
145 if (ret
!= NET_XMIT_SUCCESS
) {
146 if (net_xmit_drop_count(ret
))
155 qdisc_tree_decrease_qlen(sch
, 1 - nb
);
157 return nb
> 0 ? NET_XMIT_SUCCESS
: NET_XMIT_DROP
;
160 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
162 struct tbf_sched_data
*q
= qdisc_priv(sch
);
165 if (qdisc_pkt_len(skb
) > q
->max_size
) {
167 return tbf_segment(skb
, sch
);
168 return qdisc_reshape_fail(skb
, sch
);
170 ret
= qdisc_enqueue(skb
, q
->qdisc
);
171 if (ret
!= NET_XMIT_SUCCESS
) {
172 if (net_xmit_drop_count(ret
))
178 return NET_XMIT_SUCCESS
;
181 static unsigned int tbf_drop(struct Qdisc
*sch
)
183 struct tbf_sched_data
*q
= qdisc_priv(sch
);
184 unsigned int len
= 0;
186 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
193 static struct sk_buff
*tbf_dequeue(struct Qdisc
*sch
)
195 struct tbf_sched_data
*q
= qdisc_priv(sch
);
198 skb
= q
->qdisc
->ops
->peek(q
->qdisc
);
204 unsigned int len
= qdisc_pkt_len(skb
);
206 now
= ktime_to_ns(ktime_get());
207 toks
= min_t(s64
, now
- q
->t_c
, q
->buffer
);
209 if (q
->peak_present
) {
210 ptoks
= toks
+ q
->ptokens
;
213 ptoks
-= (s64
) psched_l2t_ns(&q
->peak
, len
);
216 if (toks
> q
->buffer
)
218 toks
-= (s64
) psched_l2t_ns(&q
->rate
, len
);
220 if ((toks
|ptoks
) >= 0) {
221 skb
= qdisc_dequeue_peeked(q
->qdisc
);
229 qdisc_unthrottled(sch
);
230 qdisc_bstats_update(sch
, skb
);
234 qdisc_watchdog_schedule_ns(&q
->watchdog
,
235 now
+ max_t(long, -toks
, -ptoks
));
237 /* Maybe we have a shorter packet in the queue,
238 which can be sent now. It sounds cool,
239 but, however, this is wrong in principle.
240 We MUST NOT reorder packets under these circumstances.
242 Really, if we split the flow into independent
243 subflows, it would be a very good solution.
244 This is the main idea of all FQ algorithms
245 (cf. CSZ, HPFQ, HFSC)
248 sch
->qstats
.overlimits
++;
253 static void tbf_reset(struct Qdisc
*sch
)
255 struct tbf_sched_data
*q
= qdisc_priv(sch
);
257 qdisc_reset(q
->qdisc
);
259 q
->t_c
= ktime_to_ns(ktime_get());
260 q
->tokens
= q
->buffer
;
262 qdisc_watchdog_cancel(&q
->watchdog
);
265 static const struct nla_policy tbf_policy
[TCA_TBF_MAX
+ 1] = {
266 [TCA_TBF_PARMS
] = { .len
= sizeof(struct tc_tbf_qopt
) },
267 [TCA_TBF_RTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
268 [TCA_TBF_PTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
271 static int tbf_change(struct Qdisc
*sch
, struct nlattr
*opt
)
274 struct tbf_sched_data
*q
= qdisc_priv(sch
);
275 struct nlattr
*tb
[TCA_TBF_PTAB
+ 1];
276 struct tc_tbf_qopt
*qopt
;
277 struct qdisc_rate_table
*rtab
= NULL
;
278 struct qdisc_rate_table
*ptab
= NULL
;
279 struct Qdisc
*child
= NULL
;
282 err
= nla_parse_nested(tb
, TCA_TBF_PTAB
, opt
, tbf_policy
);
287 if (tb
[TCA_TBF_PARMS
] == NULL
)
290 qopt
= nla_data(tb
[TCA_TBF_PARMS
]);
291 rtab
= qdisc_get_rtab(&qopt
->rate
, tb
[TCA_TBF_RTAB
]);
295 if (qopt
->peakrate
.rate
) {
296 if (qopt
->peakrate
.rate
> qopt
->rate
.rate
)
297 ptab
= qdisc_get_rtab(&qopt
->peakrate
, tb
[TCA_TBF_PTAB
]);
302 for (n
= 0; n
< 256; n
++)
303 if (rtab
->data
[n
] > qopt
->buffer
)
305 max_size
= (n
<< qopt
->rate
.cell_log
) - 1;
309 for (n
= 0; n
< 256; n
++)
310 if (ptab
->data
[n
] > qopt
->mtu
)
312 size
= (n
<< qopt
->peakrate
.cell_log
) - 1;
319 if (q
->qdisc
!= &noop_qdisc
) {
320 err
= fifo_set_limit(q
->qdisc
, qopt
->limit
);
323 } else if (qopt
->limit
> 0) {
324 child
= fifo_create_dflt(sch
, &bfifo_qdisc_ops
, qopt
->limit
);
326 err
= PTR_ERR(child
);
333 qdisc_tree_decrease_qlen(q
->qdisc
, q
->qdisc
->q
.qlen
);
334 qdisc_destroy(q
->qdisc
);
337 q
->limit
= qopt
->limit
;
338 q
->mtu
= PSCHED_TICKS2NS(qopt
->mtu
);
339 q
->max_size
= max_size
;
340 q
->buffer
= PSCHED_TICKS2NS(qopt
->buffer
);
341 q
->tokens
= q
->buffer
;
344 psched_ratecfg_precompute(&q
->rate
, &rtab
->rate
);
346 psched_ratecfg_precompute(&q
->peak
, &ptab
->rate
);
347 q
->peak_present
= true;
349 q
->peak_present
= false;
352 sch_tree_unlock(sch
);
356 qdisc_put_rtab(rtab
);
358 qdisc_put_rtab(ptab
);
362 static int tbf_init(struct Qdisc
*sch
, struct nlattr
*opt
)
364 struct tbf_sched_data
*q
= qdisc_priv(sch
);
369 q
->t_c
= ktime_to_ns(ktime_get());
370 qdisc_watchdog_init(&q
->watchdog
, sch
);
371 q
->qdisc
= &noop_qdisc
;
373 return tbf_change(sch
, opt
);
376 static void tbf_destroy(struct Qdisc
*sch
)
378 struct tbf_sched_data
*q
= qdisc_priv(sch
);
380 qdisc_watchdog_cancel(&q
->watchdog
);
381 qdisc_destroy(q
->qdisc
);
384 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
386 struct tbf_sched_data
*q
= qdisc_priv(sch
);
388 struct tc_tbf_qopt opt
;
390 sch
->qstats
.backlog
= q
->qdisc
->qstats
.backlog
;
391 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
393 goto nla_put_failure
;
395 opt
.limit
= q
->limit
;
396 psched_ratecfg_getrate(&opt
.rate
, &q
->rate
);
398 psched_ratecfg_getrate(&opt
.peakrate
, &q
->peak
);
400 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
401 opt
.mtu
= PSCHED_NS2TICKS(q
->mtu
);
402 opt
.buffer
= PSCHED_NS2TICKS(q
->buffer
);
403 if (nla_put(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
))
404 goto nla_put_failure
;
406 nla_nest_end(skb
, nest
);
410 nla_nest_cancel(skb
, nest
);
414 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
415 struct sk_buff
*skb
, struct tcmsg
*tcm
)
417 struct tbf_sched_data
*q
= qdisc_priv(sch
);
419 tcm
->tcm_handle
|= TC_H_MIN(1);
420 tcm
->tcm_info
= q
->qdisc
->handle
;
425 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
428 struct tbf_sched_data
*q
= qdisc_priv(sch
);
436 qdisc_tree_decrease_qlen(*old
, (*old
)->q
.qlen
);
438 sch_tree_unlock(sch
);
443 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
445 struct tbf_sched_data
*q
= qdisc_priv(sch
);
449 static unsigned long tbf_get(struct Qdisc
*sch
, u32 classid
)
454 static void tbf_put(struct Qdisc
*sch
, unsigned long arg
)
458 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
461 if (walker
->count
>= walker
->skip
)
462 if (walker
->fn(sch
, 1, walker
) < 0) {
470 static const struct Qdisc_class_ops tbf_class_ops
= {
476 .dump
= tbf_dump_class
,
479 static struct Qdisc_ops tbf_qdisc_ops __read_mostly
= {
481 .cl_ops
= &tbf_class_ops
,
483 .priv_size
= sizeof(struct tbf_sched_data
),
484 .enqueue
= tbf_enqueue
,
485 .dequeue
= tbf_dequeue
,
486 .peek
= qdisc_peek_dequeued
,
490 .destroy
= tbf_destroy
,
491 .change
= tbf_change
,
493 .owner
= THIS_MODULE
,
496 static int __init
tbf_module_init(void)
498 return register_qdisc(&tbf_qdisc_ops
);
501 static void __exit
tbf_module_exit(void)
503 unregister_qdisc(&tbf_qdisc_ops
);
505 module_init(tbf_module_init
)
506 module_exit(tbf_module_exit
)
507 MODULE_LICENSE("GPL");