xtensa: support DMA buffers in high memory
[cris-mirror.git] / arch / arc / kernel / kgdb.c
blob9a3c34af2ae8104e3a6735aa00cdedd8b1904371
1 /*
2 * kgdb support for ARC
4 * Copyright (C) 2012 Synopsys, Inc. (www.synopsys.com)
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/kgdb.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task_stack.h>
14 #include <asm/disasm.h>
15 #include <asm/cacheflush.h>
17 static void to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs,
18 struct callee_regs *cregs)
20 int regno;
22 for (regno = 0; regno <= 26; regno++)
23 gdb_regs[_R0 + regno] = get_reg(regno, kernel_regs, cregs);
25 for (regno = 27; regno < GDB_MAX_REGS; regno++)
26 gdb_regs[regno] = 0;
28 gdb_regs[_FP] = kernel_regs->fp;
29 gdb_regs[__SP] = kernel_regs->sp;
30 gdb_regs[_BLINK] = kernel_regs->blink;
31 gdb_regs[_RET] = kernel_regs->ret;
32 gdb_regs[_STATUS32] = kernel_regs->status32;
33 gdb_regs[_LP_COUNT] = kernel_regs->lp_count;
34 gdb_regs[_LP_END] = kernel_regs->lp_end;
35 gdb_regs[_LP_START] = kernel_regs->lp_start;
36 gdb_regs[_BTA] = kernel_regs->bta;
37 gdb_regs[_STOP_PC] = kernel_regs->ret;
40 static void from_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs,
41 struct callee_regs *cregs)
43 int regno;
45 for (regno = 0; regno <= 26; regno++)
46 set_reg(regno, gdb_regs[regno + _R0], kernel_regs, cregs);
48 kernel_regs->fp = gdb_regs[_FP];
49 kernel_regs->sp = gdb_regs[__SP];
50 kernel_regs->blink = gdb_regs[_BLINK];
51 kernel_regs->ret = gdb_regs[_RET];
52 kernel_regs->status32 = gdb_regs[_STATUS32];
53 kernel_regs->lp_count = gdb_regs[_LP_COUNT];
54 kernel_regs->lp_end = gdb_regs[_LP_END];
55 kernel_regs->lp_start = gdb_regs[_LP_START];
56 kernel_regs->bta = gdb_regs[_BTA];
60 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs)
62 to_gdb_regs(gdb_regs, kernel_regs, (struct callee_regs *)
63 current->thread.callee_reg);
66 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *kernel_regs)
68 from_gdb_regs(gdb_regs, kernel_regs, (struct callee_regs *)
69 current->thread.callee_reg);
72 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs,
73 struct task_struct *task)
75 if (task)
76 to_gdb_regs(gdb_regs, task_pt_regs(task),
77 (struct callee_regs *) task->thread.callee_reg);
80 struct single_step_data_t {
81 uint16_t opcode[2];
82 unsigned long address[2];
83 int is_branch;
84 int armed;
85 } single_step_data;
87 static void undo_single_step(struct pt_regs *regs)
89 if (single_step_data.armed) {
90 int i;
92 for (i = 0; i < (single_step_data.is_branch ? 2 : 1); i++) {
93 memcpy((void *) single_step_data.address[i],
94 &single_step_data.opcode[i],
95 BREAK_INSTR_SIZE);
97 flush_icache_range(single_step_data.address[i],
98 single_step_data.address[i] +
99 BREAK_INSTR_SIZE);
101 single_step_data.armed = 0;
105 static void place_trap(unsigned long address, void *save)
107 memcpy(save, (void *) address, BREAK_INSTR_SIZE);
108 memcpy((void *) address, &arch_kgdb_ops.gdb_bpt_instr,
109 BREAK_INSTR_SIZE);
110 flush_icache_range(address, address + BREAK_INSTR_SIZE);
113 static void do_single_step(struct pt_regs *regs)
115 single_step_data.is_branch = disasm_next_pc((unsigned long)
116 regs->ret, regs, (struct callee_regs *)
117 current->thread.callee_reg,
118 &single_step_data.address[0],
119 &single_step_data.address[1]);
121 place_trap(single_step_data.address[0], &single_step_data.opcode[0]);
123 if (single_step_data.is_branch) {
124 place_trap(single_step_data.address[1],
125 &single_step_data.opcode[1]);
128 single_step_data.armed++;
131 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
132 char *remcomInBuffer, char *remcomOutBuffer,
133 struct pt_regs *regs)
135 unsigned long addr;
136 char *ptr;
138 undo_single_step(regs);
140 switch (remcomInBuffer[0]) {
141 case 's':
142 case 'c':
143 ptr = &remcomInBuffer[1];
144 if (kgdb_hex2long(&ptr, &addr))
145 regs->ret = addr;
147 case 'D':
148 case 'k':
149 atomic_set(&kgdb_cpu_doing_single_step, -1);
151 if (remcomInBuffer[0] == 's') {
152 do_single_step(regs);
153 atomic_set(&kgdb_cpu_doing_single_step,
154 smp_processor_id());
157 return 0;
159 return -1;
162 int kgdb_arch_init(void)
164 single_step_data.armed = 0;
165 return 0;
168 void kgdb_trap(struct pt_regs *regs)
170 /* trap_s 3 is used for breakpoints that overwrite existing
171 * instructions, while trap_s 4 is used for compiled breakpoints.
173 * with trap_s 3 breakpoints the original instruction needs to be
174 * restored and continuation needs to start at the location of the
175 * breakpoint.
177 * with trap_s 4 (compiled) breakpoints, continuation needs to
178 * start after the breakpoint.
180 if (regs->ecr_param == 3)
181 instruction_pointer(regs) -= BREAK_INSTR_SIZE;
183 kgdb_handle_exception(1, SIGTRAP, 0, regs);
186 void kgdb_arch_exit(void)
190 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
192 instruction_pointer(regs) = ip;
195 static void kgdb_call_nmi_hook(void *ignored)
197 kgdb_nmicallback(raw_smp_processor_id(), NULL);
200 void kgdb_roundup_cpus(unsigned long flags)
202 local_irq_enable();
203 smp_call_function(kgdb_call_nmi_hook, NULL, 0);
204 local_irq_disable();
207 struct kgdb_arch arch_kgdb_ops = {
208 /* breakpoint instruction: TRAP_S 0x3 */
209 #ifdef CONFIG_CPU_BIG_ENDIAN
210 .gdb_bpt_instr = {0x78, 0x7e},
211 #else
212 .gdb_bpt_instr = {0x7e, 0x78},
213 #endif