xtensa: support DMA buffers in high memory
[cris-mirror.git] / arch / powerpc / net / bpf_jit_comp.c
blob872d1f6dd11e179793c4394e48313649028820e1
1 /* bpf_jit_comp.c: BPF JIT compiler
3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
6 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; version 2
11 * of the License.
13 #include <linux/moduleloader.h>
14 #include <asm/cacheflush.h>
15 #include <linux/netdevice.h>
16 #include <linux/filter.h>
17 #include <linux/if_vlan.h>
19 #include "bpf_jit32.h"
21 static inline void bpf_flush_icache(void *start, void *end)
23 smp_wmb();
24 flush_icache_range((unsigned long)start, (unsigned long)end);
27 static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
28 struct codegen_context *ctx)
30 int i;
31 const struct sock_filter *filter = fp->insns;
33 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
34 /* Make stackframe */
35 if (ctx->seen & SEEN_DATAREF) {
36 /* If we call any helpers (for loads), save LR */
37 EMIT(PPC_INST_MFLR | __PPC_RT(R0));
38 PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
40 /* Back up non-volatile regs. */
41 PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
42 PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
44 if (ctx->seen & SEEN_MEM) {
46 * Conditionally save regs r15-r31 as some will be used
47 * for M[] data.
49 for (i = r_M; i < (r_M+16); i++) {
50 if (ctx->seen & (1 << (i-r_M)))
51 PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
54 PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
57 if (ctx->seen & SEEN_DATAREF) {
59 * If this filter needs to access skb data,
60 * prepare r_D and r_HL:
61 * r_HL = skb->len - skb->data_len
62 * r_D = skb->data
64 PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
65 data_len));
66 PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
67 PPC_SUB(r_HL, r_HL, r_scratch1);
68 PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
71 if (ctx->seen & SEEN_XREG) {
73 * TODO: Could also detect whether first instr. sets X and
74 * avoid this (as below, with A).
76 PPC_LI(r_X, 0);
79 /* make sure we dont leak kernel information to user */
80 if (bpf_needs_clear_a(&filter[0]))
81 PPC_LI(r_A, 0);
84 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
86 int i;
88 if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
89 PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
90 if (ctx->seen & SEEN_DATAREF) {
91 PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
92 PPC_MTLR(0);
93 PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
94 PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
96 if (ctx->seen & SEEN_MEM) {
97 /* Restore any saved non-vol registers */
98 for (i = r_M; i < (r_M+16); i++) {
99 if (ctx->seen & (1 << (i-r_M)))
100 PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
104 /* The RETs have left a return value in R3. */
106 PPC_BLR();
109 #define CHOOSE_LOAD_FUNC(K, func) \
110 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
112 /* Assemble the body code between the prologue & epilogue. */
113 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
114 struct codegen_context *ctx,
115 unsigned int *addrs)
117 const struct sock_filter *filter = fp->insns;
118 int flen = fp->len;
119 u8 *func;
120 unsigned int true_cond;
121 int i;
123 /* Start of epilogue code */
124 unsigned int exit_addr = addrs[flen];
126 for (i = 0; i < flen; i++) {
127 unsigned int K = filter[i].k;
128 u16 code = bpf_anc_helper(&filter[i]);
131 * addrs[] maps a BPF bytecode address into a real offset from
132 * the start of the body code.
134 addrs[i] = ctx->idx * 4;
136 switch (code) {
137 /*** ALU ops ***/
138 case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
139 ctx->seen |= SEEN_XREG;
140 PPC_ADD(r_A, r_A, r_X);
141 break;
142 case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
143 if (!K)
144 break;
145 PPC_ADDI(r_A, r_A, IMM_L(K));
146 if (K >= 32768)
147 PPC_ADDIS(r_A, r_A, IMM_HA(K));
148 break;
149 case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
150 ctx->seen |= SEEN_XREG;
151 PPC_SUB(r_A, r_A, r_X);
152 break;
153 case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
154 if (!K)
155 break;
156 PPC_ADDI(r_A, r_A, IMM_L(-K));
157 if (K >= 32768)
158 PPC_ADDIS(r_A, r_A, IMM_HA(-K));
159 break;
160 case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
161 ctx->seen |= SEEN_XREG;
162 PPC_MULW(r_A, r_A, r_X);
163 break;
164 case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
165 if (K < 32768)
166 PPC_MULI(r_A, r_A, K);
167 else {
168 PPC_LI32(r_scratch1, K);
169 PPC_MULW(r_A, r_A, r_scratch1);
171 break;
172 case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
173 case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
174 ctx->seen |= SEEN_XREG;
175 PPC_CMPWI(r_X, 0);
176 if (ctx->pc_ret0 != -1) {
177 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
178 } else {
179 PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
180 PPC_LI(r_ret, 0);
181 PPC_JMP(exit_addr);
183 if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
184 PPC_DIVWU(r_scratch1, r_A, r_X);
185 PPC_MULW(r_scratch1, r_X, r_scratch1);
186 PPC_SUB(r_A, r_A, r_scratch1);
187 } else {
188 PPC_DIVWU(r_A, r_A, r_X);
190 break;
191 case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
192 PPC_LI32(r_scratch2, K);
193 PPC_DIVWU(r_scratch1, r_A, r_scratch2);
194 PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
195 PPC_SUB(r_A, r_A, r_scratch1);
196 break;
197 case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
198 if (K == 1)
199 break;
200 PPC_LI32(r_scratch1, K);
201 PPC_DIVWU(r_A, r_A, r_scratch1);
202 break;
203 case BPF_ALU | BPF_AND | BPF_X:
204 ctx->seen |= SEEN_XREG;
205 PPC_AND(r_A, r_A, r_X);
206 break;
207 case BPF_ALU | BPF_AND | BPF_K:
208 if (!IMM_H(K))
209 PPC_ANDI(r_A, r_A, K);
210 else {
211 PPC_LI32(r_scratch1, K);
212 PPC_AND(r_A, r_A, r_scratch1);
214 break;
215 case BPF_ALU | BPF_OR | BPF_X:
216 ctx->seen |= SEEN_XREG;
217 PPC_OR(r_A, r_A, r_X);
218 break;
219 case BPF_ALU | BPF_OR | BPF_K:
220 if (IMM_L(K))
221 PPC_ORI(r_A, r_A, IMM_L(K));
222 if (K >= 65536)
223 PPC_ORIS(r_A, r_A, IMM_H(K));
224 break;
225 case BPF_ANC | SKF_AD_ALU_XOR_X:
226 case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
227 ctx->seen |= SEEN_XREG;
228 PPC_XOR(r_A, r_A, r_X);
229 break;
230 case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
231 if (IMM_L(K))
232 PPC_XORI(r_A, r_A, IMM_L(K));
233 if (K >= 65536)
234 PPC_XORIS(r_A, r_A, IMM_H(K));
235 break;
236 case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
237 ctx->seen |= SEEN_XREG;
238 PPC_SLW(r_A, r_A, r_X);
239 break;
240 case BPF_ALU | BPF_LSH | BPF_K:
241 if (K == 0)
242 break;
243 else
244 PPC_SLWI(r_A, r_A, K);
245 break;
246 case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
247 ctx->seen |= SEEN_XREG;
248 PPC_SRW(r_A, r_A, r_X);
249 break;
250 case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
251 if (K == 0)
252 break;
253 else
254 PPC_SRWI(r_A, r_A, K);
255 break;
256 case BPF_ALU | BPF_NEG:
257 PPC_NEG(r_A, r_A);
258 break;
259 case BPF_RET | BPF_K:
260 PPC_LI32(r_ret, K);
261 if (!K) {
262 if (ctx->pc_ret0 == -1)
263 ctx->pc_ret0 = i;
266 * If this isn't the very last instruction, branch to
267 * the epilogue if we've stuff to clean up. Otherwise,
268 * if there's nothing to tidy, just return. If we /are/
269 * the last instruction, we're about to fall through to
270 * the epilogue to return.
272 if (i != flen - 1) {
274 * Note: 'seen' is properly valid only on pass
275 * #2. Both parts of this conditional are the
276 * same instruction size though, meaning the
277 * first pass will still correctly determine the
278 * code size/addresses.
280 if (ctx->seen)
281 PPC_JMP(exit_addr);
282 else
283 PPC_BLR();
285 break;
286 case BPF_RET | BPF_A:
287 PPC_MR(r_ret, r_A);
288 if (i != flen - 1) {
289 if (ctx->seen)
290 PPC_JMP(exit_addr);
291 else
292 PPC_BLR();
294 break;
295 case BPF_MISC | BPF_TAX: /* X = A */
296 PPC_MR(r_X, r_A);
297 break;
298 case BPF_MISC | BPF_TXA: /* A = X */
299 ctx->seen |= SEEN_XREG;
300 PPC_MR(r_A, r_X);
301 break;
303 /*** Constant loads/M[] access ***/
304 case BPF_LD | BPF_IMM: /* A = K */
305 PPC_LI32(r_A, K);
306 break;
307 case BPF_LDX | BPF_IMM: /* X = K */
308 PPC_LI32(r_X, K);
309 break;
310 case BPF_LD | BPF_MEM: /* A = mem[K] */
311 PPC_MR(r_A, r_M + (K & 0xf));
312 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313 break;
314 case BPF_LDX | BPF_MEM: /* X = mem[K] */
315 PPC_MR(r_X, r_M + (K & 0xf));
316 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317 break;
318 case BPF_ST: /* mem[K] = A */
319 PPC_MR(r_M + (K & 0xf), r_A);
320 ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
321 break;
322 case BPF_STX: /* mem[K] = X */
323 PPC_MR(r_M + (K & 0xf), r_X);
324 ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
325 break;
326 case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */
327 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
328 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
329 break;
330 case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
331 PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
332 break;
334 /*** Ancillary info loads ***/
335 case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
336 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
337 protocol) != 2);
338 PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
339 protocol));
340 break;
341 case BPF_ANC | SKF_AD_IFINDEX:
342 case BPF_ANC | SKF_AD_HATYPE:
343 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
344 ifindex) != 4);
345 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
346 type) != 2);
347 PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
348 dev));
349 PPC_CMPDI(r_scratch1, 0);
350 if (ctx->pc_ret0 != -1) {
351 PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
352 } else {
353 /* Exit, returning 0; first pass hits here. */
354 PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
355 PPC_LI(r_ret, 0);
356 PPC_JMP(exit_addr);
358 if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
359 PPC_LWZ_OFFS(r_A, r_scratch1,
360 offsetof(struct net_device, ifindex));
361 } else {
362 PPC_LHZ_OFFS(r_A, r_scratch1,
363 offsetof(struct net_device, type));
366 break;
367 case BPF_ANC | SKF_AD_MARK:
368 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
369 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
370 mark));
371 break;
372 case BPF_ANC | SKF_AD_RXHASH:
373 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
374 PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
375 hash));
376 break;
377 case BPF_ANC | SKF_AD_VLAN_TAG:
378 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
379 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
380 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
382 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
383 vlan_tci));
384 if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
385 PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
386 } else {
387 PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
388 PPC_SRWI(r_A, r_A, 12);
390 break;
391 case BPF_ANC | SKF_AD_QUEUE:
392 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
393 queue_mapping) != 2);
394 PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
395 queue_mapping));
396 break;
397 case BPF_ANC | SKF_AD_PKTTYPE:
398 PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
399 PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
400 PPC_SRWI(r_A, r_A, 5);
401 break;
402 case BPF_ANC | SKF_AD_CPU:
403 PPC_BPF_LOAD_CPU(r_A);
404 break;
405 /*** Absolute loads from packet header/data ***/
406 case BPF_LD | BPF_W | BPF_ABS:
407 func = CHOOSE_LOAD_FUNC(K, sk_load_word);
408 goto common_load;
409 case BPF_LD | BPF_H | BPF_ABS:
410 func = CHOOSE_LOAD_FUNC(K, sk_load_half);
411 goto common_load;
412 case BPF_LD | BPF_B | BPF_ABS:
413 func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
414 common_load:
415 /* Load from [K]. */
416 ctx->seen |= SEEN_DATAREF;
417 PPC_FUNC_ADDR(r_scratch1, func);
418 PPC_MTLR(r_scratch1);
419 PPC_LI32(r_addr, K);
420 PPC_BLRL();
422 * Helper returns 'lt' condition on error, and an
423 * appropriate return value in r3
425 PPC_BCC(COND_LT, exit_addr);
426 break;
428 /*** Indirect loads from packet header/data ***/
429 case BPF_LD | BPF_W | BPF_IND:
430 func = sk_load_word;
431 goto common_load_ind;
432 case BPF_LD | BPF_H | BPF_IND:
433 func = sk_load_half;
434 goto common_load_ind;
435 case BPF_LD | BPF_B | BPF_IND:
436 func = sk_load_byte;
437 common_load_ind:
439 * Load from [X + K]. Negative offsets are tested for
440 * in the helper functions.
442 ctx->seen |= SEEN_DATAREF | SEEN_XREG;
443 PPC_FUNC_ADDR(r_scratch1, func);
444 PPC_MTLR(r_scratch1);
445 PPC_ADDI(r_addr, r_X, IMM_L(K));
446 if (K >= 32768)
447 PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
448 PPC_BLRL();
449 /* If error, cr0.LT set */
450 PPC_BCC(COND_LT, exit_addr);
451 break;
453 case BPF_LDX | BPF_B | BPF_MSH:
454 func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
455 goto common_load;
456 break;
458 /*** Jump and branches ***/
459 case BPF_JMP | BPF_JA:
460 if (K != 0)
461 PPC_JMP(addrs[i + 1 + K]);
462 break;
464 case BPF_JMP | BPF_JGT | BPF_K:
465 case BPF_JMP | BPF_JGT | BPF_X:
466 true_cond = COND_GT;
467 goto cond_branch;
468 case BPF_JMP | BPF_JGE | BPF_K:
469 case BPF_JMP | BPF_JGE | BPF_X:
470 true_cond = COND_GE;
471 goto cond_branch;
472 case BPF_JMP | BPF_JEQ | BPF_K:
473 case BPF_JMP | BPF_JEQ | BPF_X:
474 true_cond = COND_EQ;
475 goto cond_branch;
476 case BPF_JMP | BPF_JSET | BPF_K:
477 case BPF_JMP | BPF_JSET | BPF_X:
478 true_cond = COND_NE;
479 /* Fall through */
480 cond_branch:
481 /* same targets, can avoid doing the test :) */
482 if (filter[i].jt == filter[i].jf) {
483 if (filter[i].jt > 0)
484 PPC_JMP(addrs[i + 1 + filter[i].jt]);
485 break;
488 switch (code) {
489 case BPF_JMP | BPF_JGT | BPF_X:
490 case BPF_JMP | BPF_JGE | BPF_X:
491 case BPF_JMP | BPF_JEQ | BPF_X:
492 ctx->seen |= SEEN_XREG;
493 PPC_CMPLW(r_A, r_X);
494 break;
495 case BPF_JMP | BPF_JSET | BPF_X:
496 ctx->seen |= SEEN_XREG;
497 PPC_AND_DOT(r_scratch1, r_A, r_X);
498 break;
499 case BPF_JMP | BPF_JEQ | BPF_K:
500 case BPF_JMP | BPF_JGT | BPF_K:
501 case BPF_JMP | BPF_JGE | BPF_K:
502 if (K < 32768)
503 PPC_CMPLWI(r_A, K);
504 else {
505 PPC_LI32(r_scratch1, K);
506 PPC_CMPLW(r_A, r_scratch1);
508 break;
509 case BPF_JMP | BPF_JSET | BPF_K:
510 if (K < 32768)
511 /* PPC_ANDI is /only/ dot-form */
512 PPC_ANDI(r_scratch1, r_A, K);
513 else {
514 PPC_LI32(r_scratch1, K);
515 PPC_AND_DOT(r_scratch1, r_A,
516 r_scratch1);
518 break;
520 /* Sometimes branches are constructed "backward", with
521 * the false path being the branch and true path being
522 * a fallthrough to the next instruction.
524 if (filter[i].jt == 0)
525 /* Swap the sense of the branch */
526 PPC_BCC(true_cond ^ COND_CMP_TRUE,
527 addrs[i + 1 + filter[i].jf]);
528 else {
529 PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
530 if (filter[i].jf != 0)
531 PPC_JMP(addrs[i + 1 + filter[i].jf]);
533 break;
534 default:
535 /* The filter contains something cruel & unusual.
536 * We don't handle it, but also there shouldn't be
537 * anything missing from our list.
539 if (printk_ratelimit())
540 pr_err("BPF filter opcode %04x (@%d) unsupported\n",
541 filter[i].code, i);
542 return -ENOTSUPP;
546 /* Set end-of-body-code address for exit. */
547 addrs[i] = ctx->idx * 4;
549 return 0;
552 void bpf_jit_compile(struct bpf_prog *fp)
554 unsigned int proglen;
555 unsigned int alloclen;
556 u32 *image = NULL;
557 u32 *code_base;
558 unsigned int *addrs;
559 struct codegen_context cgctx;
560 int pass;
561 int flen = fp->len;
563 if (!bpf_jit_enable)
564 return;
566 addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
567 if (addrs == NULL)
568 return;
571 * There are multiple assembly passes as the generated code will change
572 * size as it settles down, figuring out the max branch offsets/exit
573 * paths required.
575 * The range of standard conditional branches is +/- 32Kbytes. Since
576 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
577 * finish with 8 bytes/instruction. Not feasible, so long jumps are
578 * used, distinct from short branches.
580 * Current:
582 * For now, both branch types assemble to 2 words (short branches padded
583 * with a NOP); this is less efficient, but assembly will always complete
584 * after exactly 3 passes:
586 * First pass: No code buffer; Program is "faux-generated" -- no code
587 * emitted but maximum size of output determined (and addrs[] filled
588 * in). Also, we note whether we use M[], whether we use skb data, etc.
589 * All generation choices assumed to be 'worst-case', e.g. branches all
590 * far (2 instructions), return path code reduction not available, etc.
592 * Second pass: Code buffer allocated with size determined previously.
593 * Prologue generated to support features we have seen used. Exit paths
594 * determined and addrs[] is filled in again, as code may be slightly
595 * smaller as a result.
597 * Third pass: Code generated 'for real', and branch destinations
598 * determined from now-accurate addrs[] map.
600 * Ideal:
602 * If we optimise this, near branches will be shorter. On the
603 * first assembly pass, we should err on the side of caution and
604 * generate the biggest code. On subsequent passes, branches will be
605 * generated short or long and code size will reduce. With smaller
606 * code, more branches may fall into the short category, and code will
607 * reduce more.
609 * Finally, if we see one pass generate code the same size as the
610 * previous pass we have converged and should now generate code for
611 * real. Allocating at the end will also save the memory that would
612 * otherwise be wasted by the (small) current code shrinkage.
613 * Preferably, we should do a small number of passes (e.g. 5) and if we
614 * haven't converged by then, get impatient and force code to generate
615 * as-is, even if the odd branch would be left long. The chances of a
616 * long jump are tiny with all but the most enormous of BPF filter
617 * inputs, so we should usually converge on the third pass.
620 cgctx.idx = 0;
621 cgctx.seen = 0;
622 cgctx.pc_ret0 = -1;
623 /* Scouting faux-generate pass 0 */
624 if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
625 /* We hit something illegal or unsupported. */
626 goto out;
629 * Pretend to build prologue, given the features we've seen. This will
630 * update ctgtx.idx as it pretends to output instructions, then we can
631 * calculate total size from idx.
633 bpf_jit_build_prologue(fp, 0, &cgctx);
634 bpf_jit_build_epilogue(0, &cgctx);
636 proglen = cgctx.idx * 4;
637 alloclen = proglen + FUNCTION_DESCR_SIZE;
638 image = module_alloc(alloclen);
639 if (!image)
640 goto out;
642 code_base = image + (FUNCTION_DESCR_SIZE/4);
644 /* Code generation passes 1-2 */
645 for (pass = 1; pass < 3; pass++) {
646 /* Now build the prologue, body code & epilogue for real. */
647 cgctx.idx = 0;
648 bpf_jit_build_prologue(fp, code_base, &cgctx);
649 bpf_jit_build_body(fp, code_base, &cgctx, addrs);
650 bpf_jit_build_epilogue(code_base, &cgctx);
652 if (bpf_jit_enable > 1)
653 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
654 proglen - (cgctx.idx * 4), cgctx.seen);
657 if (bpf_jit_enable > 1)
658 /* Note that we output the base address of the code_base
659 * rather than image, since opcodes are in code_base.
661 bpf_jit_dump(flen, proglen, pass, code_base);
663 bpf_flush_icache(code_base, code_base + (proglen/4));
665 #ifdef CONFIG_PPC64
666 /* Function descriptor nastiness: Address + TOC */
667 ((u64 *)image)[0] = (u64)code_base;
668 ((u64 *)image)[1] = local_paca->kernel_toc;
669 #endif
671 fp->bpf_func = (void *)image;
672 fp->jited = 1;
674 out:
675 kfree(addrs);
676 return;
679 void bpf_jit_free(struct bpf_prog *fp)
681 if (fp->jited)
682 module_memfree(fp->bpf_func);
684 bpf_prog_unlock_free(fp);