xtensa: support DMA buffers in high memory
[cris-mirror.git] / arch / x86 / kernel / machine_kexec_64.c
blob1f790cf9d38fe0e10e46eaf9b5bef945d25a9370
1 /*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
9 #define pr_fmt(fmt) "kexec: " fmt
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
32 #ifdef CONFIG_KEXEC_FILE
33 static struct kexec_file_ops *kexec_file_loaders[] = {
34 &kexec_bzImage64_ops,
36 #endif
38 static void free_transition_pgtable(struct kimage *image)
40 free_page((unsigned long)image->arch.p4d);
41 free_page((unsigned long)image->arch.pud);
42 free_page((unsigned long)image->arch.pmd);
43 free_page((unsigned long)image->arch.pte);
46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
48 p4d_t *p4d;
49 pud_t *pud;
50 pmd_t *pmd;
51 pte_t *pte;
52 unsigned long vaddr, paddr;
53 int result = -ENOMEM;
55 vaddr = (unsigned long)relocate_kernel;
56 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
57 pgd += pgd_index(vaddr);
58 if (!pgd_present(*pgd)) {
59 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
60 if (!p4d)
61 goto err;
62 image->arch.p4d = p4d;
63 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
65 p4d = p4d_offset(pgd, vaddr);
66 if (!p4d_present(*p4d)) {
67 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
68 if (!pud)
69 goto err;
70 image->arch.pud = pud;
71 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
73 pud = pud_offset(p4d, vaddr);
74 if (!pud_present(*pud)) {
75 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
76 if (!pmd)
77 goto err;
78 image->arch.pmd = pmd;
79 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
81 pmd = pmd_offset(pud, vaddr);
82 if (!pmd_present(*pmd)) {
83 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
84 if (!pte)
85 goto err;
86 image->arch.pte = pte;
87 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
89 pte = pte_offset_kernel(pmd, vaddr);
90 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
91 return 0;
92 err:
93 free_transition_pgtable(image);
94 return result;
97 static void *alloc_pgt_page(void *data)
99 struct kimage *image = (struct kimage *)data;
100 struct page *page;
101 void *p = NULL;
103 page = kimage_alloc_control_pages(image, 0);
104 if (page) {
105 p = page_address(page);
106 clear_page(p);
109 return p;
112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
114 struct x86_mapping_info info = {
115 .alloc_pgt_page = alloc_pgt_page,
116 .context = image,
117 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
118 .kernpg_flag = _KERNPG_TABLE_NOENC,
120 unsigned long mstart, mend;
121 pgd_t *level4p;
122 int result;
123 int i;
125 level4p = (pgd_t *)__va(start_pgtable);
126 clear_page(level4p);
128 if (direct_gbpages)
129 info.direct_gbpages = true;
131 for (i = 0; i < nr_pfn_mapped; i++) {
132 mstart = pfn_mapped[i].start << PAGE_SHIFT;
133 mend = pfn_mapped[i].end << PAGE_SHIFT;
135 result = kernel_ident_mapping_init(&info,
136 level4p, mstart, mend);
137 if (result)
138 return result;
142 * segments's mem ranges could be outside 0 ~ max_pfn,
143 * for example when jump back to original kernel from kexeced kernel.
144 * or first kernel is booted with user mem map, and second kernel
145 * could be loaded out of that range.
147 for (i = 0; i < image->nr_segments; i++) {
148 mstart = image->segment[i].mem;
149 mend = mstart + image->segment[i].memsz;
151 result = kernel_ident_mapping_init(&info,
152 level4p, mstart, mend);
154 if (result)
155 return result;
158 return init_transition_pgtable(image, level4p);
161 static void set_idt(void *newidt, u16 limit)
163 struct desc_ptr curidt;
165 /* x86-64 supports unaliged loads & stores */
166 curidt.size = limit;
167 curidt.address = (unsigned long)newidt;
169 __asm__ __volatile__ (
170 "lidtq %0\n"
171 : : "m" (curidt)
176 static void set_gdt(void *newgdt, u16 limit)
178 struct desc_ptr curgdt;
180 /* x86-64 supports unaligned loads & stores */
181 curgdt.size = limit;
182 curgdt.address = (unsigned long)newgdt;
184 __asm__ __volatile__ (
185 "lgdtq %0\n"
186 : : "m" (curgdt)
190 static void load_segments(void)
192 __asm__ __volatile__ (
193 "\tmovl %0,%%ds\n"
194 "\tmovl %0,%%es\n"
195 "\tmovl %0,%%ss\n"
196 "\tmovl %0,%%fs\n"
197 "\tmovl %0,%%gs\n"
198 : : "a" (__KERNEL_DS) : "memory"
202 #ifdef CONFIG_KEXEC_FILE
203 /* Update purgatory as needed after various image segments have been prepared */
204 static int arch_update_purgatory(struct kimage *image)
206 int ret = 0;
208 if (!image->file_mode)
209 return 0;
211 /* Setup copying of backup region */
212 if (image->type == KEXEC_TYPE_CRASH) {
213 ret = kexec_purgatory_get_set_symbol(image,
214 "purgatory_backup_dest",
215 &image->arch.backup_load_addr,
216 sizeof(image->arch.backup_load_addr), 0);
217 if (ret)
218 return ret;
220 ret = kexec_purgatory_get_set_symbol(image,
221 "purgatory_backup_src",
222 &image->arch.backup_src_start,
223 sizeof(image->arch.backup_src_start), 0);
224 if (ret)
225 return ret;
227 ret = kexec_purgatory_get_set_symbol(image,
228 "purgatory_backup_sz",
229 &image->arch.backup_src_sz,
230 sizeof(image->arch.backup_src_sz), 0);
231 if (ret)
232 return ret;
235 return ret;
237 #else /* !CONFIG_KEXEC_FILE */
238 static inline int arch_update_purgatory(struct kimage *image)
240 return 0;
242 #endif /* CONFIG_KEXEC_FILE */
244 int machine_kexec_prepare(struct kimage *image)
246 unsigned long start_pgtable;
247 int result;
249 /* Calculate the offsets */
250 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
252 /* Setup the identity mapped 64bit page table */
253 result = init_pgtable(image, start_pgtable);
254 if (result)
255 return result;
257 /* update purgatory as needed */
258 result = arch_update_purgatory(image);
259 if (result)
260 return result;
262 return 0;
265 void machine_kexec_cleanup(struct kimage *image)
267 free_transition_pgtable(image);
271 * Do not allocate memory (or fail in any way) in machine_kexec().
272 * We are past the point of no return, committed to rebooting now.
274 void machine_kexec(struct kimage *image)
276 unsigned long page_list[PAGES_NR];
277 void *control_page;
278 int save_ftrace_enabled;
280 #ifdef CONFIG_KEXEC_JUMP
281 if (image->preserve_context)
282 save_processor_state();
283 #endif
285 save_ftrace_enabled = __ftrace_enabled_save();
287 /* Interrupts aren't acceptable while we reboot */
288 local_irq_disable();
289 hw_breakpoint_disable();
291 if (image->preserve_context) {
292 #ifdef CONFIG_X86_IO_APIC
294 * We need to put APICs in legacy mode so that we can
295 * get timer interrupts in second kernel. kexec/kdump
296 * paths already have calls to disable_IO_APIC() in
297 * one form or other. kexec jump path also need
298 * one.
300 disable_IO_APIC();
301 #endif
304 control_page = page_address(image->control_code_page) + PAGE_SIZE;
305 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
307 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
308 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
309 page_list[PA_TABLE_PAGE] =
310 (unsigned long)__pa(page_address(image->control_code_page));
312 if (image->type == KEXEC_TYPE_DEFAULT)
313 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
314 << PAGE_SHIFT);
317 * The segment registers are funny things, they have both a
318 * visible and an invisible part. Whenever the visible part is
319 * set to a specific selector, the invisible part is loaded
320 * with from a table in memory. At no other time is the
321 * descriptor table in memory accessed.
323 * I take advantage of this here by force loading the
324 * segments, before I zap the gdt with an invalid value.
326 load_segments();
328 * The gdt & idt are now invalid.
329 * If you want to load them you must set up your own idt & gdt.
331 set_gdt(phys_to_virt(0), 0);
332 set_idt(phys_to_virt(0), 0);
334 /* now call it */
335 image->start = relocate_kernel((unsigned long)image->head,
336 (unsigned long)page_list,
337 image->start,
338 image->preserve_context,
339 sme_active());
341 #ifdef CONFIG_KEXEC_JUMP
342 if (image->preserve_context)
343 restore_processor_state();
344 #endif
346 __ftrace_enabled_restore(save_ftrace_enabled);
349 void arch_crash_save_vmcoreinfo(void)
351 VMCOREINFO_NUMBER(phys_base);
352 VMCOREINFO_SYMBOL(init_top_pgt);
354 #ifdef CONFIG_NUMA
355 VMCOREINFO_SYMBOL(node_data);
356 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
357 #endif
358 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
359 kaslr_offset());
360 VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
363 /* arch-dependent functionality related to kexec file-based syscall */
365 #ifdef CONFIG_KEXEC_FILE
366 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
367 unsigned long buf_len)
369 int i, ret = -ENOEXEC;
370 struct kexec_file_ops *fops;
372 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
373 fops = kexec_file_loaders[i];
374 if (!fops || !fops->probe)
375 continue;
377 ret = fops->probe(buf, buf_len);
378 if (!ret) {
379 image->fops = fops;
380 return ret;
384 return ret;
387 void *arch_kexec_kernel_image_load(struct kimage *image)
389 vfree(image->arch.elf_headers);
390 image->arch.elf_headers = NULL;
392 if (!image->fops || !image->fops->load)
393 return ERR_PTR(-ENOEXEC);
395 return image->fops->load(image, image->kernel_buf,
396 image->kernel_buf_len, image->initrd_buf,
397 image->initrd_buf_len, image->cmdline_buf,
398 image->cmdline_buf_len);
401 int arch_kimage_file_post_load_cleanup(struct kimage *image)
403 if (!image->fops || !image->fops->cleanup)
404 return 0;
406 return image->fops->cleanup(image->image_loader_data);
409 #ifdef CONFIG_KEXEC_VERIFY_SIG
410 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
411 unsigned long kernel_len)
413 if (!image->fops || !image->fops->verify_sig) {
414 pr_debug("kernel loader does not support signature verification.");
415 return -EKEYREJECTED;
418 return image->fops->verify_sig(kernel, kernel_len);
420 #endif
423 * Apply purgatory relocations.
425 * ehdr: Pointer to elf headers
426 * sechdrs: Pointer to section headers.
427 * relsec: section index of SHT_RELA section.
429 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
431 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
432 Elf64_Shdr *sechdrs, unsigned int relsec)
434 unsigned int i;
435 Elf64_Rela *rel;
436 Elf64_Sym *sym;
437 void *location;
438 Elf64_Shdr *section, *symtabsec;
439 unsigned long address, sec_base, value;
440 const char *strtab, *name, *shstrtab;
443 * ->sh_offset has been modified to keep the pointer to section
444 * contents in memory
446 rel = (void *)sechdrs[relsec].sh_offset;
448 /* Section to which relocations apply */
449 section = &sechdrs[sechdrs[relsec].sh_info];
451 pr_debug("Applying relocate section %u to %u\n", relsec,
452 sechdrs[relsec].sh_info);
454 /* Associated symbol table */
455 symtabsec = &sechdrs[sechdrs[relsec].sh_link];
457 /* String table */
458 if (symtabsec->sh_link >= ehdr->e_shnum) {
459 /* Invalid strtab section number */
460 pr_err("Invalid string table section index %d\n",
461 symtabsec->sh_link);
462 return -ENOEXEC;
465 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
467 /* section header string table */
468 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
470 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
473 * rel[i].r_offset contains byte offset from beginning
474 * of section to the storage unit affected.
476 * This is location to update (->sh_offset). This is temporary
477 * buffer where section is currently loaded. This will finally
478 * be loaded to a different address later, pointed to by
479 * ->sh_addr. kexec takes care of moving it
480 * (kexec_load_segment()).
482 location = (void *)(section->sh_offset + rel[i].r_offset);
484 /* Final address of the location */
485 address = section->sh_addr + rel[i].r_offset;
488 * rel[i].r_info contains information about symbol table index
489 * w.r.t which relocation must be made and type of relocation
490 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
491 * these respectively.
493 sym = (Elf64_Sym *)symtabsec->sh_offset +
494 ELF64_R_SYM(rel[i].r_info);
496 if (sym->st_name)
497 name = strtab + sym->st_name;
498 else
499 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
501 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
502 name, sym->st_info, sym->st_shndx, sym->st_value,
503 sym->st_size);
505 if (sym->st_shndx == SHN_UNDEF) {
506 pr_err("Undefined symbol: %s\n", name);
507 return -ENOEXEC;
510 if (sym->st_shndx == SHN_COMMON) {
511 pr_err("symbol '%s' in common section\n", name);
512 return -ENOEXEC;
515 if (sym->st_shndx == SHN_ABS)
516 sec_base = 0;
517 else if (sym->st_shndx >= ehdr->e_shnum) {
518 pr_err("Invalid section %d for symbol %s\n",
519 sym->st_shndx, name);
520 return -ENOEXEC;
521 } else
522 sec_base = sechdrs[sym->st_shndx].sh_addr;
524 value = sym->st_value;
525 value += sec_base;
526 value += rel[i].r_addend;
528 switch (ELF64_R_TYPE(rel[i].r_info)) {
529 case R_X86_64_NONE:
530 break;
531 case R_X86_64_64:
532 *(u64 *)location = value;
533 break;
534 case R_X86_64_32:
535 *(u32 *)location = value;
536 if (value != *(u32 *)location)
537 goto overflow;
538 break;
539 case R_X86_64_32S:
540 *(s32 *)location = value;
541 if ((s64)value != *(s32 *)location)
542 goto overflow;
543 break;
544 case R_X86_64_PC32:
545 value -= (u64)address;
546 *(u32 *)location = value;
547 break;
548 default:
549 pr_err("Unknown rela relocation: %llu\n",
550 ELF64_R_TYPE(rel[i].r_info));
551 return -ENOEXEC;
554 return 0;
556 overflow:
557 pr_err("Overflow in relocation type %d value 0x%lx\n",
558 (int)ELF64_R_TYPE(rel[i].r_info), value);
559 return -ENOEXEC;
561 #endif /* CONFIG_KEXEC_FILE */
563 static int
564 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
566 struct page *page;
567 unsigned int nr_pages;
570 * For physical range: [start, end]. We must skip the unassigned
571 * crashk resource with zero-valued "end" member.
573 if (!end || start > end)
574 return 0;
576 page = pfn_to_page(start >> PAGE_SHIFT);
577 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
578 if (protect)
579 return set_pages_ro(page, nr_pages);
580 else
581 return set_pages_rw(page, nr_pages);
584 static void kexec_mark_crashkres(bool protect)
586 unsigned long control;
588 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
590 /* Don't touch the control code page used in crash_kexec().*/
591 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
592 /* Control code page is located in the 2nd page. */
593 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
594 control += KEXEC_CONTROL_PAGE_SIZE;
595 kexec_mark_range(control, crashk_res.end, protect);
598 void arch_kexec_protect_crashkres(void)
600 kexec_mark_crashkres(true);
603 void arch_kexec_unprotect_crashkres(void)
605 kexec_mark_crashkres(false);
608 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
611 * If SME is active we need to be sure that kexec pages are
612 * not encrypted because when we boot to the new kernel the
613 * pages won't be accessed encrypted (initially).
615 return set_memory_decrypted((unsigned long)vaddr, pages);
618 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
621 * If SME is active we need to reset the pages back to being
622 * an encrypted mapping before freeing them.
624 set_memory_encrypted((unsigned long)vaddr, pages);