xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / acpi / cppc_acpi.c
blob0afbb2658cbc0d9caf8f6accd2c8d9e50710e777
1 /*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
27 * - Platform conveys its decision back to OS
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
38 #define pr_fmt(fmt) "ACPI CPPC: " fmt
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
46 #include <acpi/cppc_acpi.h>
48 struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 bool pcc_channel_acquired;
52 ktime_t deadline;
53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
56 bool platform_owns_pcc; /* Ownership of PCC subspace */
57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
60 * Lock to provide controlled access to the PCC channel.
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
73 struct rw_semaphore pcc_lock;
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
83 /* Array to represent the PCC channel per subspace id */
84 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
86 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
95 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97 /* pcc mapped address + header size + offset within PCC subspace */
98 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
101 /* Check if a CPC register is in PCC */
102 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
106 /* Evalutes to True if reg is a NULL register descriptor */
107 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
108 (reg)->address == 0 && \
109 (reg)->bit_width == 0 && \
110 (reg)->bit_offset == 0 && \
111 (reg)->access_width == 0)
113 /* Evalutes to True if an optional cpc field is supported */
114 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
115 !!(cpc)->cpc_entry.int_value : \
116 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 * Arbitrary Retries in case the remote processor is slow to respond
119 * to PCC commands. Keeping it high enough to cover emulators where
120 * the processors run painfully slow.
122 #define NUM_RETRIES 500ULL
124 struct cppc_attr {
125 struct attribute attr;
126 ssize_t (*show)(struct kobject *kobj,
127 struct attribute *attr, char *buf);
128 ssize_t (*store)(struct kobject *kobj,
129 struct attribute *attr, const char *c, ssize_t count);
132 #define define_one_cppc_ro(_name) \
133 static struct cppc_attr _name = \
134 __ATTR(_name, 0444, show_##_name, NULL)
136 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138 #define show_cppc_data(access_fn, struct_name, member_name) \
139 static ssize_t show_##member_name(struct kobject *kobj, \
140 struct attribute *attr, char *buf) \
142 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
143 struct struct_name st_name = {0}; \
144 int ret; \
146 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
147 if (ret) \
148 return ret; \
150 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
151 (u64)st_name.member_name); \
153 define_one_cppc_ro(member_name)
155 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
159 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
162 static ssize_t show_feedback_ctrs(struct kobject *kobj,
163 struct attribute *attr, char *buf)
165 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166 struct cppc_perf_fb_ctrs fb_ctrs = {0};
167 int ret;
169 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170 if (ret)
171 return ret;
173 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174 fb_ctrs.reference, fb_ctrs.delivered);
176 define_one_cppc_ro(feedback_ctrs);
178 static struct attribute *cppc_attrs[] = {
179 &feedback_ctrs.attr,
180 &reference_perf.attr,
181 &wraparound_time.attr,
182 &highest_perf.attr,
183 &lowest_perf.attr,
184 &lowest_nonlinear_perf.attr,
185 &nominal_perf.attr,
186 NULL
189 static struct kobj_type cppc_ktype = {
190 .sysfs_ops = &kobj_sysfs_ops,
191 .default_attrs = cppc_attrs,
194 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
196 int ret = -EIO, status = 0;
197 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
198 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
199 pcc_ss_data->pcc_comm_addr;
200 ktime_t next_deadline = ktime_add(ktime_get(),
201 pcc_ss_data->deadline);
203 if (!pcc_ss_data->platform_owns_pcc)
204 return 0;
206 /* Retry in case the remote processor was too slow to catch up. */
207 while (!ktime_after(ktime_get(), next_deadline)) {
209 * Per spec, prior to boot the PCC space wil be initialized by
210 * platform and should have set the command completion bit when
211 * PCC can be used by OSPM
213 status = readw_relaxed(&generic_comm_base->status);
214 if (status & PCC_CMD_COMPLETE_MASK) {
215 ret = 0;
216 if (chk_err_bit && (status & PCC_ERROR_MASK))
217 ret = -EIO;
218 break;
221 * Reducing the bus traffic in case this loop takes longer than
222 * a few retries.
224 udelay(3);
227 if (likely(!ret))
228 pcc_ss_data->platform_owns_pcc = false;
229 else
230 pr_err("PCC check channel failed. Status=%x\n", status);
232 return ret;
236 * This function transfers the ownership of the PCC to the platform
237 * So it must be called while holding write_lock(pcc_lock)
239 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
241 int ret = -EIO, i;
242 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
243 struct acpi_pcct_shared_memory *generic_comm_base =
244 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
245 unsigned int time_delta;
248 * For CMD_WRITE we know for a fact the caller should have checked
249 * the channel before writing to PCC space
251 if (cmd == CMD_READ) {
253 * If there are pending cpc_writes, then we stole the channel
254 * before write completion, so first send a WRITE command to
255 * platform
257 if (pcc_ss_data->pending_pcc_write_cmd)
258 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
260 ret = check_pcc_chan(pcc_ss_id, false);
261 if (ret)
262 goto end;
263 } else /* CMD_WRITE */
264 pcc_ss_data->pending_pcc_write_cmd = FALSE;
267 * Handle the Minimum Request Turnaround Time(MRTT)
268 * "The minimum amount of time that OSPM must wait after the completion
269 * of a command before issuing the next command, in microseconds"
271 if (pcc_ss_data->pcc_mrtt) {
272 time_delta = ktime_us_delta(ktime_get(),
273 pcc_ss_data->last_cmd_cmpl_time);
274 if (pcc_ss_data->pcc_mrtt > time_delta)
275 udelay(pcc_ss_data->pcc_mrtt - time_delta);
279 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280 * "The maximum number of periodic requests that the subspace channel can
281 * support, reported in commands per minute. 0 indicates no limitation."
283 * This parameter should be ideally zero or large enough so that it can
284 * handle maximum number of requests that all the cores in the system can
285 * collectively generate. If it is not, we will follow the spec and just
286 * not send the request to the platform after hitting the MPAR limit in
287 * any 60s window
289 if (pcc_ss_data->pcc_mpar) {
290 if (pcc_ss_data->mpar_count == 0) {
291 time_delta = ktime_ms_delta(ktime_get(),
292 pcc_ss_data->last_mpar_reset);
293 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
294 pr_debug("PCC cmd not sent due to MPAR limit");
295 ret = -EIO;
296 goto end;
298 pcc_ss_data->last_mpar_reset = ktime_get();
299 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
301 pcc_ss_data->mpar_count--;
304 /* Write to the shared comm region. */
305 writew_relaxed(cmd, &generic_comm_base->command);
307 /* Flip CMD COMPLETE bit */
308 writew_relaxed(0, &generic_comm_base->status);
310 pcc_ss_data->platform_owns_pcc = true;
312 /* Ring doorbell */
313 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
314 if (ret < 0) {
315 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
316 cmd, ret);
317 goto end;
320 /* wait for completion and check for PCC errro bit */
321 ret = check_pcc_chan(pcc_ss_id, true);
323 if (pcc_ss_data->pcc_mrtt)
324 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
326 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
327 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
328 else
329 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
331 end:
332 if (cmd == CMD_WRITE) {
333 if (unlikely(ret)) {
334 for_each_possible_cpu(i) {
335 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
336 if (!desc)
337 continue;
339 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
340 desc->write_cmd_status = ret;
343 pcc_ss_data->pcc_write_cnt++;
344 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
347 return ret;
350 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
352 if (ret < 0)
353 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
354 *(u16 *)msg, ret);
355 else
356 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
357 *(u16 *)msg, ret);
360 struct mbox_client cppc_mbox_cl = {
361 .tx_done = cppc_chan_tx_done,
362 .knows_txdone = true,
365 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
367 int result = -EFAULT;
368 acpi_status status = AE_OK;
369 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
370 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
371 struct acpi_buffer state = {0, NULL};
372 union acpi_object *psd = NULL;
373 struct acpi_psd_package *pdomain;
375 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
376 ACPI_TYPE_PACKAGE);
377 if (ACPI_FAILURE(status))
378 return -ENODEV;
380 psd = buffer.pointer;
381 if (!psd || psd->package.count != 1) {
382 pr_debug("Invalid _PSD data\n");
383 goto end;
386 pdomain = &(cpc_ptr->domain_info);
388 state.length = sizeof(struct acpi_psd_package);
389 state.pointer = pdomain;
391 status = acpi_extract_package(&(psd->package.elements[0]),
392 &format, &state);
393 if (ACPI_FAILURE(status)) {
394 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
395 goto end;
398 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
399 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
400 goto end;
403 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
404 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
405 goto end;
408 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
409 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
410 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
411 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
412 goto end;
415 result = 0;
416 end:
417 kfree(buffer.pointer);
418 return result;
422 * acpi_get_psd_map - Map the CPUs in a common freq domain.
423 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
425 * Return: 0 for success or negative value for err.
427 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
429 int count_target;
430 int retval = 0;
431 unsigned int i, j;
432 cpumask_var_t covered_cpus;
433 struct cppc_cpudata *pr, *match_pr;
434 struct acpi_psd_package *pdomain;
435 struct acpi_psd_package *match_pdomain;
436 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
438 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
439 return -ENOMEM;
442 * Now that we have _PSD data from all CPUs, lets setup P-state
443 * domain info.
445 for_each_possible_cpu(i) {
446 pr = all_cpu_data[i];
447 if (!pr)
448 continue;
450 if (cpumask_test_cpu(i, covered_cpus))
451 continue;
453 cpc_ptr = per_cpu(cpc_desc_ptr, i);
454 if (!cpc_ptr) {
455 retval = -EFAULT;
456 goto err_ret;
459 pdomain = &(cpc_ptr->domain_info);
460 cpumask_set_cpu(i, pr->shared_cpu_map);
461 cpumask_set_cpu(i, covered_cpus);
462 if (pdomain->num_processors <= 1)
463 continue;
465 /* Validate the Domain info */
466 count_target = pdomain->num_processors;
467 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
468 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
469 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
470 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
471 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
472 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
474 for_each_possible_cpu(j) {
475 if (i == j)
476 continue;
478 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
479 if (!match_cpc_ptr) {
480 retval = -EFAULT;
481 goto err_ret;
484 match_pdomain = &(match_cpc_ptr->domain_info);
485 if (match_pdomain->domain != pdomain->domain)
486 continue;
488 /* Here i and j are in the same domain */
489 if (match_pdomain->num_processors != count_target) {
490 retval = -EFAULT;
491 goto err_ret;
494 if (pdomain->coord_type != match_pdomain->coord_type) {
495 retval = -EFAULT;
496 goto err_ret;
499 cpumask_set_cpu(j, covered_cpus);
500 cpumask_set_cpu(j, pr->shared_cpu_map);
503 for_each_possible_cpu(j) {
504 if (i == j)
505 continue;
507 match_pr = all_cpu_data[j];
508 if (!match_pr)
509 continue;
511 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
512 if (!match_cpc_ptr) {
513 retval = -EFAULT;
514 goto err_ret;
517 match_pdomain = &(match_cpc_ptr->domain_info);
518 if (match_pdomain->domain != pdomain->domain)
519 continue;
521 match_pr->shared_type = pr->shared_type;
522 cpumask_copy(match_pr->shared_cpu_map,
523 pr->shared_cpu_map);
527 err_ret:
528 for_each_possible_cpu(i) {
529 pr = all_cpu_data[i];
530 if (!pr)
531 continue;
533 /* Assume no coordination on any error parsing domain info */
534 if (retval) {
535 cpumask_clear(pr->shared_cpu_map);
536 cpumask_set_cpu(i, pr->shared_cpu_map);
537 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
541 free_cpumask_var(covered_cpus);
542 return retval;
544 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
546 static int register_pcc_channel(int pcc_ss_idx)
548 struct acpi_pcct_hw_reduced *cppc_ss;
549 u64 usecs_lat;
551 if (pcc_ss_idx >= 0) {
552 pcc_data[pcc_ss_idx]->pcc_channel =
553 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
555 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
556 pr_err("Failed to find PCC communication channel\n");
557 return -ENODEV;
561 * The PCC mailbox controller driver should
562 * have parsed the PCCT (global table of all
563 * PCC channels) and stored pointers to the
564 * subspace communication region in con_priv.
566 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
568 if (!cppc_ss) {
569 pr_err("No PCC subspace found for CPPC\n");
570 return -ENODEV;
574 * cppc_ss->latency is just a Nominal value. In reality
575 * the remote processor could be much slower to reply.
576 * So add an arbitrary amount of wait on top of Nominal.
578 usecs_lat = NUM_RETRIES * cppc_ss->latency;
579 pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
580 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
581 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
582 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
584 pcc_data[pcc_ss_idx]->pcc_comm_addr =
585 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
586 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
587 pr_err("Failed to ioremap PCC comm region mem\n");
588 return -ENOMEM;
591 /* Set flag so that we dont come here for each CPU. */
592 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
595 return 0;
599 * cpc_ffh_supported() - check if FFH reading supported
601 * Check if the architecture has support for functional fixed hardware
602 * read/write capability.
604 * Return: true for supported, false for not supported
606 bool __weak cpc_ffh_supported(void)
608 return false;
613 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
615 * Check and allocate the cppc_pcc_data memory.
616 * In some processor configurations it is possible that same subspace
617 * is shared between multiple CPU's. This is seen especially in CPU's
618 * with hardware multi-threading support.
620 * Return: 0 for success, errno for failure
622 int pcc_data_alloc(int pcc_ss_id)
624 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
625 return -EINVAL;
627 if (pcc_data[pcc_ss_id]) {
628 pcc_data[pcc_ss_id]->refcount++;
629 } else {
630 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
631 GFP_KERNEL);
632 if (!pcc_data[pcc_ss_id])
633 return -ENOMEM;
634 pcc_data[pcc_ss_id]->refcount++;
637 return 0;
640 * An example CPC table looks like the following.
642 * Name(_CPC, Package()
644 * 17,
645 * NumEntries
646 * 1,
647 * // Revision
648 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
649 * // Highest Performance
650 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
651 * // Nominal Performance
652 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
653 * // Lowest Nonlinear Performance
654 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
655 * // Lowest Performance
656 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
657 * // Guaranteed Performance Register
658 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
659 * // Desired Performance Register
660 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
661 * ..
662 * ..
663 * ..
666 * Each Register() encodes how to access that specific register.
667 * e.g. a sample PCC entry has the following encoding:
669 * Register (
670 * PCC,
671 * AddressSpaceKeyword
672 * 8,
673 * //RegisterBitWidth
674 * 8,
675 * //RegisterBitOffset
676 * 0x30,
677 * //RegisterAddress
679 * //AccessSize (subspace ID)
686 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
687 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
689 * Return: 0 for success or negative value for err.
691 int acpi_cppc_processor_probe(struct acpi_processor *pr)
693 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
694 union acpi_object *out_obj, *cpc_obj;
695 struct cpc_desc *cpc_ptr;
696 struct cpc_reg *gas_t;
697 struct device *cpu_dev;
698 acpi_handle handle = pr->handle;
699 unsigned int num_ent, i, cpc_rev;
700 int pcc_subspace_id = -1;
701 acpi_status status;
702 int ret = -EFAULT;
704 /* Parse the ACPI _CPC table for this cpu. */
705 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
706 ACPI_TYPE_PACKAGE);
707 if (ACPI_FAILURE(status)) {
708 ret = -ENODEV;
709 goto out_buf_free;
712 out_obj = (union acpi_object *) output.pointer;
714 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
715 if (!cpc_ptr) {
716 ret = -ENOMEM;
717 goto out_buf_free;
720 /* First entry is NumEntries. */
721 cpc_obj = &out_obj->package.elements[0];
722 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
723 num_ent = cpc_obj->integer.value;
724 } else {
725 pr_debug("Unexpected entry type(%d) for NumEntries\n",
726 cpc_obj->type);
727 goto out_free;
730 /* Only support CPPCv2. Bail otherwise. */
731 if (num_ent != CPPC_NUM_ENT) {
732 pr_debug("Firmware exports %d entries. Expected: %d\n",
733 num_ent, CPPC_NUM_ENT);
734 goto out_free;
737 cpc_ptr->num_entries = num_ent;
739 /* Second entry should be revision. */
740 cpc_obj = &out_obj->package.elements[1];
741 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
742 cpc_rev = cpc_obj->integer.value;
743 } else {
744 pr_debug("Unexpected entry type(%d) for Revision\n",
745 cpc_obj->type);
746 goto out_free;
749 if (cpc_rev != CPPC_REV) {
750 pr_debug("Firmware exports revision:%d. Expected:%d\n",
751 cpc_rev, CPPC_REV);
752 goto out_free;
755 /* Iterate through remaining entries in _CPC */
756 for (i = 2; i < num_ent; i++) {
757 cpc_obj = &out_obj->package.elements[i];
759 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
760 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
761 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
762 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
763 gas_t = (struct cpc_reg *)
764 cpc_obj->buffer.pointer;
767 * The PCC Subspace index is encoded inside
768 * the CPC table entries. The same PCC index
769 * will be used for all the PCC entries,
770 * so extract it only once.
772 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
773 if (pcc_subspace_id < 0) {
774 pcc_subspace_id = gas_t->access_width;
775 if (pcc_data_alloc(pcc_subspace_id))
776 goto out_free;
777 } else if (pcc_subspace_id != gas_t->access_width) {
778 pr_debug("Mismatched PCC ids.\n");
779 goto out_free;
781 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
782 if (gas_t->address) {
783 void __iomem *addr;
785 addr = ioremap(gas_t->address, gas_t->bit_width/8);
786 if (!addr)
787 goto out_free;
788 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
790 } else {
791 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
792 /* Support only PCC ,SYS MEM and FFH type regs */
793 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
794 goto out_free;
798 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
799 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
800 } else {
801 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
802 goto out_free;
805 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
806 /* Store CPU Logical ID */
807 cpc_ptr->cpu_id = pr->id;
809 /* Parse PSD data for this CPU */
810 ret = acpi_get_psd(cpc_ptr, handle);
811 if (ret)
812 goto out_free;
814 /* Register PCC channel once for all PCC subspace id. */
815 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
816 ret = register_pcc_channel(pcc_subspace_id);
817 if (ret)
818 goto out_free;
820 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
821 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
824 /* Everything looks okay */
825 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
827 /* Add per logical CPU nodes for reading its feedback counters. */
828 cpu_dev = get_cpu_device(pr->id);
829 if (!cpu_dev) {
830 ret = -EINVAL;
831 goto out_free;
834 /* Plug PSD data into this CPUs CPC descriptor. */
835 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
837 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
838 "acpi_cppc");
839 if (ret) {
840 per_cpu(cpc_desc_ptr, pr->id) = NULL;
841 goto out_free;
844 kfree(output.pointer);
845 return 0;
847 out_free:
848 /* Free all the mapped sys mem areas for this CPU */
849 for (i = 2; i < cpc_ptr->num_entries; i++) {
850 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
852 if (addr)
853 iounmap(addr);
855 kfree(cpc_ptr);
857 out_buf_free:
858 kfree(output.pointer);
859 return ret;
861 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
864 * acpi_cppc_processor_exit - Cleanup CPC structs.
865 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
867 * Return: Void
869 void acpi_cppc_processor_exit(struct acpi_processor *pr)
871 struct cpc_desc *cpc_ptr;
872 unsigned int i;
873 void __iomem *addr;
874 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
876 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
877 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
878 pcc_data[pcc_ss_id]->refcount--;
879 if (!pcc_data[pcc_ss_id]->refcount) {
880 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
881 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
882 kfree(pcc_data[pcc_ss_id]);
887 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
888 if (!cpc_ptr)
889 return;
891 /* Free all the mapped sys mem areas for this CPU */
892 for (i = 2; i < cpc_ptr->num_entries; i++) {
893 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
894 if (addr)
895 iounmap(addr);
898 kobject_put(&cpc_ptr->kobj);
899 kfree(cpc_ptr);
901 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
904 * cpc_read_ffh() - Read FFH register
905 * @cpunum: cpu number to read
906 * @reg: cppc register information
907 * @val: place holder for return value
909 * Read bit_width bits from a specified address and bit_offset
911 * Return: 0 for success and error code
913 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
915 return -ENOTSUPP;
919 * cpc_write_ffh() - Write FFH register
920 * @cpunum: cpu number to write
921 * @reg: cppc register information
922 * @val: value to write
924 * Write value of bit_width bits to a specified address and bit_offset
926 * Return: 0 for success and error code
928 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
930 return -ENOTSUPP;
934 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
935 * as fast as possible. We have already mapped the PCC subspace during init, so
936 * we can directly write to it.
939 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
941 int ret_val = 0;
942 void __iomem *vaddr = 0;
943 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
944 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
946 if (reg_res->type == ACPI_TYPE_INTEGER) {
947 *val = reg_res->cpc_entry.int_value;
948 return ret_val;
951 *val = 0;
952 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
953 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
954 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
955 vaddr = reg_res->sys_mem_vaddr;
956 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
957 return cpc_read_ffh(cpu, reg, val);
958 else
959 return acpi_os_read_memory((acpi_physical_address)reg->address,
960 val, reg->bit_width);
962 switch (reg->bit_width) {
963 case 8:
964 *val = readb_relaxed(vaddr);
965 break;
966 case 16:
967 *val = readw_relaxed(vaddr);
968 break;
969 case 32:
970 *val = readl_relaxed(vaddr);
971 break;
972 case 64:
973 *val = readq_relaxed(vaddr);
974 break;
975 default:
976 pr_debug("Error: Cannot read %u bit width from PCC\n",
977 reg->bit_width);
978 ret_val = -EFAULT;
981 return ret_val;
984 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
986 int ret_val = 0;
987 void __iomem *vaddr = 0;
988 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
989 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
991 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
992 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
993 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
994 vaddr = reg_res->sys_mem_vaddr;
995 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
996 return cpc_write_ffh(cpu, reg, val);
997 else
998 return acpi_os_write_memory((acpi_physical_address)reg->address,
999 val, reg->bit_width);
1001 switch (reg->bit_width) {
1002 case 8:
1003 writeb_relaxed(val, vaddr);
1004 break;
1005 case 16:
1006 writew_relaxed(val, vaddr);
1007 break;
1008 case 32:
1009 writel_relaxed(val, vaddr);
1010 break;
1011 case 64:
1012 writeq_relaxed(val, vaddr);
1013 break;
1014 default:
1015 pr_debug("Error: Cannot write %u bit width to PCC\n",
1016 reg->bit_width);
1017 ret_val = -EFAULT;
1018 break;
1021 return ret_val;
1025 * cppc_get_perf_caps - Get a CPUs performance capabilities.
1026 * @cpunum: CPU from which to get capabilities info.
1027 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1029 * Return: 0 for success with perf_caps populated else -ERRNO.
1031 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1033 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1034 struct cpc_register_resource *highest_reg, *lowest_reg,
1035 *lowest_non_linear_reg, *nominal_reg;
1036 u64 high, low, nom, min_nonlinear;
1037 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1038 struct cppc_pcc_data *pcc_ss_data;
1039 int ret = 0, regs_in_pcc = 0;
1041 if (!cpc_desc || pcc_ss_id < 0) {
1042 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1043 return -ENODEV;
1046 pcc_ss_data = pcc_data[pcc_ss_id];
1047 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1048 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1049 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1050 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1052 /* Are any of the regs PCC ?*/
1053 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1054 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
1055 regs_in_pcc = 1;
1056 down_write(&pcc_ss_data->pcc_lock);
1057 /* Ring doorbell once to update PCC subspace */
1058 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1059 ret = -EIO;
1060 goto out_err;
1064 cpc_read(cpunum, highest_reg, &high);
1065 perf_caps->highest_perf = high;
1067 cpc_read(cpunum, lowest_reg, &low);
1068 perf_caps->lowest_perf = low;
1070 cpc_read(cpunum, nominal_reg, &nom);
1071 perf_caps->nominal_perf = nom;
1073 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1074 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1076 if (!high || !low || !nom || !min_nonlinear)
1077 ret = -EFAULT;
1079 out_err:
1080 if (regs_in_pcc)
1081 up_write(&pcc_ss_data->pcc_lock);
1082 return ret;
1084 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1087 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1088 * @cpunum: CPU from which to read counters.
1089 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1091 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1093 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1095 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1096 struct cpc_register_resource *delivered_reg, *reference_reg,
1097 *ref_perf_reg, *ctr_wrap_reg;
1098 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1099 struct cppc_pcc_data *pcc_ss_data;
1100 u64 delivered, reference, ref_perf, ctr_wrap_time;
1101 int ret = 0, regs_in_pcc = 0;
1103 if (!cpc_desc || pcc_ss_id < 0) {
1104 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1105 return -ENODEV;
1108 pcc_ss_data = pcc_data[pcc_ss_id];
1109 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1110 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1111 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1112 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1115 * If refernce perf register is not supported then we should
1116 * use the nominal perf value
1118 if (!CPC_SUPPORTED(ref_perf_reg))
1119 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1121 /* Are any of the regs PCC ?*/
1122 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1123 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1124 down_write(&pcc_ss_data->pcc_lock);
1125 regs_in_pcc = 1;
1126 /* Ring doorbell once to update PCC subspace */
1127 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1128 ret = -EIO;
1129 goto out_err;
1133 cpc_read(cpunum, delivered_reg, &delivered);
1134 cpc_read(cpunum, reference_reg, &reference);
1135 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1138 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1139 * performance counters are assumed to never wrap during the lifetime of
1140 * platform
1142 ctr_wrap_time = (u64)(~((u64)0));
1143 if (CPC_SUPPORTED(ctr_wrap_reg))
1144 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1146 if (!delivered || !reference || !ref_perf) {
1147 ret = -EFAULT;
1148 goto out_err;
1151 perf_fb_ctrs->delivered = delivered;
1152 perf_fb_ctrs->reference = reference;
1153 perf_fb_ctrs->reference_perf = ref_perf;
1154 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1155 out_err:
1156 if (regs_in_pcc)
1157 up_write(&pcc_ss_data->pcc_lock);
1158 return ret;
1160 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1163 * cppc_set_perf - Set a CPUs performance controls.
1164 * @cpu: CPU for which to set performance controls.
1165 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1167 * Return: 0 for success, -ERRNO otherwise.
1169 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1171 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1172 struct cpc_register_resource *desired_reg;
1173 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1174 struct cppc_pcc_data *pcc_ss_data;
1175 int ret = 0;
1177 if (!cpc_desc || pcc_ss_id < 0) {
1178 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1179 return -ENODEV;
1182 pcc_ss_data = pcc_data[pcc_ss_id];
1183 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1186 * This is Phase-I where we want to write to CPC registers
1187 * -> We want all CPUs to be able to execute this phase in parallel
1189 * Since read_lock can be acquired by multiple CPUs simultaneously we
1190 * achieve that goal here
1192 if (CPC_IN_PCC(desired_reg)) {
1193 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1194 if (pcc_ss_data->platform_owns_pcc) {
1195 ret = check_pcc_chan(pcc_ss_id, false);
1196 if (ret) {
1197 up_read(&pcc_ss_data->pcc_lock);
1198 return ret;
1202 * Update the pending_write to make sure a PCC CMD_READ will not
1203 * arrive and steal the channel during the switch to write lock
1205 pcc_ss_data->pending_pcc_write_cmd = true;
1206 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1207 cpc_desc->write_cmd_status = 0;
1211 * Skip writing MIN/MAX until Linux knows how to come up with
1212 * useful values.
1214 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1216 if (CPC_IN_PCC(desired_reg))
1217 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1219 * This is Phase-II where we transfer the ownership of PCC to Platform
1221 * Short Summary: Basically if we think of a group of cppc_set_perf
1222 * requests that happened in short overlapping interval. The last CPU to
1223 * come out of Phase-I will enter Phase-II and ring the doorbell.
1225 * We have the following requirements for Phase-II:
1226 * 1. We want to execute Phase-II only when there are no CPUs
1227 * currently executing in Phase-I
1228 * 2. Once we start Phase-II we want to avoid all other CPUs from
1229 * entering Phase-I.
1230 * 3. We want only one CPU among all those who went through Phase-I
1231 * to run phase-II
1233 * If write_trylock fails to get the lock and doesn't transfer the
1234 * PCC ownership to the platform, then one of the following will be TRUE
1235 * 1. There is at-least one CPU in Phase-I which will later execute
1236 * write_trylock, so the CPUs in Phase-I will be responsible for
1237 * executing the Phase-II.
1238 * 2. Some other CPU has beaten this CPU to successfully execute the
1239 * write_trylock and has already acquired the write_lock. We know for a
1240 * fact it(other CPU acquiring the write_lock) couldn't have happened
1241 * before this CPU's Phase-I as we held the read_lock.
1242 * 3. Some other CPU executing pcc CMD_READ has stolen the
1243 * down_write, in which case, send_pcc_cmd will check for pending
1244 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1245 * So this CPU can be certain that its request will be delivered
1246 * So in all cases, this CPU knows that its request will be delivered
1247 * by another CPU and can return
1249 * After getting the down_write we still need to check for
1250 * pending_pcc_write_cmd to take care of the following scenario
1251 * The thread running this code could be scheduled out between
1252 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1253 * could have delivered the request to Platform by triggering the
1254 * doorbell and transferred the ownership of PCC to platform. So this
1255 * avoids triggering an unnecessary doorbell and more importantly before
1256 * triggering the doorbell it makes sure that the PCC channel ownership
1257 * is still with OSPM.
1258 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1259 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1260 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1261 * case during a CMD_READ and if there are pending writes it delivers
1262 * the write command before servicing the read command
1264 if (CPC_IN_PCC(desired_reg)) {
1265 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1266 /* Update only if there are pending write commands */
1267 if (pcc_ss_data->pending_pcc_write_cmd)
1268 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1269 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1270 } else
1271 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1272 wait_event(pcc_ss_data->pcc_write_wait_q,
1273 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1275 /* send_pcc_cmd updates the status in case of failure */
1276 ret = cpc_desc->write_cmd_status;
1278 return ret;
1280 EXPORT_SYMBOL_GPL(cppc_set_perf);
1283 * cppc_get_transition_latency - returns frequency transition latency in ns
1285 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1286 * transition latency for perfromance change requests. The closest we have
1287 * is the timing information from the PCCT tables which provides the info
1288 * on the number and frequency of PCC commands the platform can handle.
1290 unsigned int cppc_get_transition_latency(int cpu_num)
1293 * Expected transition latency is based on the PCCT timing values
1294 * Below are definition from ACPI spec:
1295 * pcc_nominal- Expected latency to process a command, in microseconds
1296 * pcc_mpar - The maximum number of periodic requests that the subspace
1297 * channel can support, reported in commands per minute. 0
1298 * indicates no limitation.
1299 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1300 * completion of a command before issuing the next command,
1301 * in microseconds.
1303 unsigned int latency_ns = 0;
1304 struct cpc_desc *cpc_desc;
1305 struct cpc_register_resource *desired_reg;
1306 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1307 struct cppc_pcc_data *pcc_ss_data;
1309 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1310 if (!cpc_desc)
1311 return CPUFREQ_ETERNAL;
1313 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1314 if (!CPC_IN_PCC(desired_reg))
1315 return CPUFREQ_ETERNAL;
1317 if (pcc_ss_id < 0)
1318 return CPUFREQ_ETERNAL;
1320 pcc_ss_data = pcc_data[pcc_ss_id];
1321 if (pcc_ss_data->pcc_mpar)
1322 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1324 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1325 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1327 return latency_ns;
1329 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);