xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / char / agp / isoch.c
blobfc8e1bc3347d10853e0bdbb47b55ec8f73e040c6
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Setup routines for AGP 3.5 compliant bridges.
4 */
6 #include <linux/list.h>
7 #include <linux/pci.h>
8 #include <linux/agp_backend.h>
9 #include <linux/module.h>
10 #include <linux/slab.h>
12 #include "agp.h"
14 /* Generic AGP 3.5 enabling routines */
16 struct agp_3_5_dev {
17 struct list_head list;
18 u8 capndx;
19 u32 maxbw;
20 struct pci_dev *dev;
23 static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
25 struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 struct list_head *pos;
28 list_for_each(pos, head) {
29 cur = list_entry(pos, struct agp_3_5_dev, list);
30 if (cur->maxbw > n->maxbw)
31 break;
33 list_add_tail(new, pos);
36 static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
38 struct agp_3_5_dev *cur;
39 struct pci_dev *dev;
40 struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 u32 nistat;
43 INIT_LIST_HEAD(head);
45 for (pos=start; pos!=head; ) {
46 cur = list_entry(pos, struct agp_3_5_dev, list);
47 dev = cur->dev;
49 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 cur->maxbw = (nistat >> 16) & 0xff;
52 tmp = pos;
53 pos = pos->next;
54 agp_3_5_dev_list_insert(head, tmp);
59 * Initialize all isochronous transfer parameters for an AGP 3.0
60 * node (i.e. a host bridge in combination with the adapters
61 * lying behind it...)
64 static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 struct agp_3_5_dev *dev_list, unsigned int ndevs)
68 * Convenience structure to make the calculations clearer
69 * here. The field names come straight from the AGP 3.0 spec.
71 struct isoch_data {
72 u32 maxbw;
73 u32 n;
74 u32 y;
75 u32 l;
76 u32 rq;
77 struct agp_3_5_dev *dev;
80 struct pci_dev *td = bridge->dev, *dev;
81 struct list_head *head = &dev_list->list, *pos;
82 struct agp_3_5_dev *cur;
83 struct isoch_data *master, target;
84 unsigned int cdev = 0;
85 u32 mnistat, tnistat, tstatus, mcmd;
86 u16 tnicmd, mnicmd;
87 u8 mcapndx;
88 u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
89 u32 step, rem, rem_isoch, rem_async;
90 int ret = 0;
93 * We'll work with an array of isoch_data's (one for each
94 * device in dev_list) throughout this function.
96 if ((master = kmalloc(ndevs * sizeof(*master), GFP_KERNEL)) == NULL) {
97 ret = -ENOMEM;
98 goto get_out;
102 * Sort the device list by maxbw. We need to do this because the
103 * spec suggests that the devices with the smallest requirements
104 * have their resources allocated first, with all remaining resources
105 * falling to the device with the largest requirement.
107 * We don't exactly do this, we divide target resources by ndevs
108 * and split them amongst the AGP 3.0 devices. The remainder of such
109 * division operations are dropped on the last device, sort of like
110 * the spec mentions it should be done.
112 * We can't do this sort when we initially construct the dev_list
113 * because we don't know until this function whether isochronous
114 * transfers are enabled and consequently whether maxbw will mean
115 * anything.
117 agp_3_5_dev_list_sort(dev_list, ndevs);
119 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
122 /* Extract power-on defaults from the target */
123 target.maxbw = (tnistat >> 16) & 0xff;
124 target.n = (tnistat >> 8) & 0xff;
125 target.y = (tnistat >> 6) & 0x3;
126 target.l = (tnistat >> 3) & 0x7;
127 target.rq = (tstatus >> 24) & 0xff;
129 y_max = target.y;
132 * Extract power-on defaults for each device in dev_list. Along
133 * the way, calculate the total isochronous bandwidth required
134 * by these devices and the largest requested payload size.
136 list_for_each(pos, head) {
137 cur = list_entry(pos, struct agp_3_5_dev, list);
138 dev = cur->dev;
140 mcapndx = cur->capndx;
142 pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
144 master[cdev].maxbw = (mnistat >> 16) & 0xff;
145 master[cdev].n = (mnistat >> 8) & 0xff;
146 master[cdev].y = (mnistat >> 6) & 0x3;
147 master[cdev].dev = cur;
149 tot_bw += master[cdev].maxbw;
150 y_max = max(y_max, master[cdev].y);
152 cdev++;
155 /* Check if this configuration has any chance of working */
156 if (tot_bw > target.maxbw) {
157 dev_err(&td->dev, "isochronous bandwidth required "
158 "by AGP 3.0 devices exceeds that which is supported by "
159 "the AGP 3.0 bridge!\n");
160 ret = -ENODEV;
161 goto free_and_exit;
164 target.y = y_max;
167 * Write the calculated payload size into the target's NICMD
168 * register. Doing this directly effects the ISOCH_N value
169 * in the target's NISTAT register, so we need to do this now
170 * to get an accurate value for ISOCH_N later.
172 pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
173 tnicmd &= ~(0x3 << 6);
174 tnicmd |= target.y << 6;
175 pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
177 /* Reread the target's ISOCH_N */
178 pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
179 target.n = (tnistat >> 8) & 0xff;
181 /* Calculate the minimum ISOCH_N needed by each master */
182 for (cdev=0; cdev<ndevs; cdev++) {
183 master[cdev].y = target.y;
184 master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
186 tot_n += master[cdev].n;
189 /* Exit if the minimal ISOCH_N allocation among the masters is more
190 * than the target can handle. */
191 if (tot_n > target.n) {
192 dev_err(&td->dev, "number of isochronous "
193 "transactions per period required by AGP 3.0 devices "
194 "exceeds that which is supported by the AGP 3.0 "
195 "bridge!\n");
196 ret = -ENODEV;
197 goto free_and_exit;
200 /* Calculate left over ISOCH_N capability in the target. We'll give
201 * this to the hungriest device (as per the spec) */
202 rem = target.n - tot_n;
205 * Calculate the minimum isochronous RQ depth needed by each master.
206 * Along the way, distribute the extra ISOCH_N capability calculated
207 * above.
209 for (cdev=0; cdev<ndevs; cdev++) {
211 * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
212 * byte isochronous writes will be broken into 64B pieces.
213 * This means we need to budget more RQ depth to account for
214 * these kind of writes (each isochronous write is actually
215 * many writes on the AGP bus).
217 master[cdev].rq = master[cdev].n;
218 if (master[cdev].y > 0x1)
219 master[cdev].rq *= (1 << (master[cdev].y - 1));
221 tot_rq += master[cdev].rq;
223 master[ndevs-1].n += rem;
225 /* Figure the number of isochronous and asynchronous RQ slots the
226 * target is providing. */
227 rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
228 rq_async = target.rq - rq_isoch;
230 /* Exit if the minimal RQ needs of the masters exceeds what the target
231 * can provide. */
232 if (tot_rq > rq_isoch) {
233 dev_err(&td->dev, "number of request queue slots "
234 "required by the isochronous bandwidth requested by "
235 "AGP 3.0 devices exceeds the number provided by the "
236 "AGP 3.0 bridge!\n");
237 ret = -ENODEV;
238 goto free_and_exit;
241 /* Calculate asynchronous RQ capability in the target (per master) as
242 * well as the total number of leftover isochronous RQ slots. */
243 step = rq_async / ndevs;
244 rem_async = step + (rq_async % ndevs);
245 rem_isoch = rq_isoch - tot_rq;
247 /* Distribute the extra RQ slots calculated above and write our
248 * isochronous settings out to the actual devices. */
249 for (cdev=0; cdev<ndevs; cdev++) {
250 cur = master[cdev].dev;
251 dev = cur->dev;
253 mcapndx = cur->capndx;
255 master[cdev].rq += (cdev == ndevs - 1)
256 ? (rem_async + rem_isoch) : step;
258 pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
259 pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
261 mnicmd &= ~(0xff << 8);
262 mnicmd &= ~(0x3 << 6);
263 mcmd &= ~(0xff << 24);
265 mnicmd |= master[cdev].n << 8;
266 mnicmd |= master[cdev].y << 6;
267 mcmd |= master[cdev].rq << 24;
269 pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
270 pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
273 free_and_exit:
274 kfree(master);
276 get_out:
277 return ret;
281 * This function basically allocates request queue slots among the
282 * AGP 3.0 systems in nonisochronous nodes. The algorithm is
283 * pretty stupid, divide the total number of RQ slots provided by the
284 * target by ndevs. Distribute this many slots to each AGP 3.0 device,
285 * giving any left over slots to the last device in dev_list.
287 static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
288 struct agp_3_5_dev *dev_list, unsigned int ndevs)
290 struct agp_3_5_dev *cur;
291 struct list_head *head = &dev_list->list, *pos;
292 u32 tstatus, mcmd;
293 u32 trq, mrq, rem;
294 unsigned int cdev = 0;
296 pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
298 trq = (tstatus >> 24) & 0xff;
299 mrq = trq / ndevs;
301 rem = mrq + (trq % ndevs);
303 for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
304 cur = list_entry(pos, struct agp_3_5_dev, list);
306 pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
307 mcmd &= ~(0xff << 24);
308 mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
309 pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
314 * Fully configure and enable an AGP 3.0 host bridge and all the devices
315 * lying behind it.
317 int agp_3_5_enable(struct agp_bridge_data *bridge)
319 struct pci_dev *td = bridge->dev, *dev = NULL;
320 u8 mcapndx;
321 u32 isoch, arqsz;
322 u32 tstatus, mstatus, ncapid;
323 u32 mmajor;
324 u16 mpstat;
325 struct agp_3_5_dev *dev_list, *cur;
326 struct list_head *head, *pos;
327 unsigned int ndevs = 0;
328 int ret = 0;
330 /* Extract some power-on defaults from the target */
331 pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
332 isoch = (tstatus >> 17) & 0x1;
333 if (isoch == 0) /* isoch xfers not available, bail out. */
334 return -ENODEV;
336 arqsz = (tstatus >> 13) & 0x7;
339 * Allocate a head for our AGP 3.5 device list
340 * (multiple AGP v3 devices are allowed behind a single bridge).
342 if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
343 ret = -ENOMEM;
344 goto get_out;
346 head = &dev_list->list;
347 INIT_LIST_HEAD(head);
349 /* Find all AGP devices, and add them to dev_list. */
350 for_each_pci_dev(dev) {
351 mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
352 if (mcapndx == 0)
353 continue;
355 switch ((dev->class >>8) & 0xff00) {
356 case 0x0600: /* Bridge */
357 /* Skip bridges. We should call this function for each one. */
358 continue;
360 case 0x0001: /* Unclassified device */
361 /* Don't know what this is, but log it for investigation. */
362 if (mcapndx != 0) {
363 dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
364 pci_name(dev),
365 dev->vendor, dev->device);
367 continue;
369 case 0x0300: /* Display controller */
370 case 0x0400: /* Multimedia controller */
371 if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
372 ret = -ENOMEM;
373 goto free_and_exit;
375 cur->dev = dev;
377 pos = &cur->list;
378 list_add(pos, head);
379 ndevs++;
380 continue;
382 default:
383 continue;
388 * Take an initial pass through the devices lying behind our host
389 * bridge. Make sure each one is actually an AGP 3.0 device, otherwise
390 * exit with an error message. Along the way store the AGP 3.0
391 * cap_ptr for each device
393 list_for_each(pos, head) {
394 cur = list_entry(pos, struct agp_3_5_dev, list);
395 dev = cur->dev;
397 pci_read_config_word(dev, PCI_STATUS, &mpstat);
398 if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
399 continue;
401 pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
402 if (mcapndx != 0) {
403 do {
404 pci_read_config_dword(dev, mcapndx, &ncapid);
405 if ((ncapid & 0xff) != 2)
406 mcapndx = (ncapid >> 8) & 0xff;
408 while (((ncapid & 0xff) != 2) && (mcapndx != 0));
411 if (mcapndx == 0) {
412 dev_err(&td->dev, "woah! Non-AGP device %s on "
413 "secondary bus of AGP 3.5 bridge!\n",
414 pci_name(dev));
415 ret = -ENODEV;
416 goto free_and_exit;
419 mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
420 if (mmajor < 3) {
421 dev_err(&td->dev, "woah! AGP 2.0 device %s on "
422 "secondary bus of AGP 3.5 bridge operating "
423 "with AGP 3.0 electricals!\n", pci_name(dev));
424 ret = -ENODEV;
425 goto free_and_exit;
428 cur->capndx = mcapndx;
430 pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
432 if (((mstatus >> 3) & 0x1) == 0) {
433 dev_err(&td->dev, "woah! AGP 3.x device %s not "
434 "operating in AGP 3.x mode on secondary bus "
435 "of AGP 3.5 bridge operating with AGP 3.0 "
436 "electricals!\n", pci_name(dev));
437 ret = -ENODEV;
438 goto free_and_exit;
443 * Call functions to divide target resources amongst the AGP 3.0
444 * masters. This process is dramatically different depending on
445 * whether isochronous transfers are supported.
447 if (isoch) {
448 ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
449 if (ret) {
450 dev_info(&td->dev, "something bad happened setting "
451 "up isochronous xfers; falling back to "
452 "non-isochronous xfer mode\n");
453 } else {
454 goto free_and_exit;
457 agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
459 free_and_exit:
460 /* Be sure to free the dev_list */
461 for (pos=head->next; pos!=head; ) {
462 cur = list_entry(pos, struct agp_3_5_dev, list);
464 pos = pos->next;
465 kfree(cur);
467 kfree(dev_list);
469 get_out:
470 return ret;