xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / clk / clk-cdce925.c
blob0a7e7d5a750605c5be12d953ac912f3fb9105962
1 /*
2 * Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
5 * Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
22 /* Each chip has different number of PLLs and outputs, for example:
23 * The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
24 * Model this as 2 PLL clocks which are parents to the outputs.
27 enum {
28 CDCE913,
29 CDCE925,
30 CDCE937,
31 CDCE949,
34 struct clk_cdce925_chip_info {
35 int num_plls;
36 int num_outputs;
39 static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
40 [CDCE913] = { .num_plls = 1, .num_outputs = 3 },
41 [CDCE925] = { .num_plls = 2, .num_outputs = 5 },
42 [CDCE937] = { .num_plls = 3, .num_outputs = 7 },
43 [CDCE949] = { .num_plls = 4, .num_outputs = 9 },
46 #define MAX_NUMBER_OF_PLLS 4
47 #define MAX_NUMBER_OF_OUTPUTS 9
49 #define CDCE925_REG_GLOBAL1 0x01
50 #define CDCE925_REG_Y1SPIPDIVH 0x02
51 #define CDCE925_REG_PDIVL 0x03
52 #define CDCE925_REG_XCSEL 0x05
53 /* PLL parameters start at 0x10, steps of 0x10 */
54 #define CDCE925_OFFSET_PLL 0x10
55 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
56 #define CDCE925_PLL_MUX_OUTPUTS 0x14
57 #define CDCE925_PLL_MULDIV 0x18
59 #define CDCE925_PLL_FREQUENCY_MIN 80000000ul
60 #define CDCE925_PLL_FREQUENCY_MAX 230000000ul
61 struct clk_cdce925_chip;
63 struct clk_cdce925_output {
64 struct clk_hw hw;
65 struct clk_cdce925_chip *chip;
66 u8 index;
67 u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
69 #define to_clk_cdce925_output(_hw) \
70 container_of(_hw, struct clk_cdce925_output, hw)
72 struct clk_cdce925_pll {
73 struct clk_hw hw;
74 struct clk_cdce925_chip *chip;
75 u8 index;
76 u16 m; /* 1..511 */
77 u16 n; /* 1..4095 */
79 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
81 struct clk_cdce925_chip {
82 struct regmap *regmap;
83 struct i2c_client *i2c_client;
84 const struct clk_cdce925_chip_info *chip_info;
85 struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
86 struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
89 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
91 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
92 u16 n, u16 m)
94 if ((!m || !n) || (m == n))
95 return parent_rate; /* In bypass mode runs at same frequency */
96 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
99 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
100 unsigned long parent_rate)
102 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
103 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
105 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
108 static void cdce925_pll_find_rate(unsigned long rate,
109 unsigned long parent_rate, u16 *n, u16 *m)
111 unsigned long un;
112 unsigned long um;
113 unsigned long g;
115 if (rate <= parent_rate) {
116 /* Can always deliver parent_rate in bypass mode */
117 rate = parent_rate;
118 *n = 0;
119 *m = 0;
120 } else {
121 /* In PLL mode, need to apply min/max range */
122 if (rate < CDCE925_PLL_FREQUENCY_MIN)
123 rate = CDCE925_PLL_FREQUENCY_MIN;
124 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
125 rate = CDCE925_PLL_FREQUENCY_MAX;
127 g = gcd(rate, parent_rate);
128 um = parent_rate / g;
129 un = rate / g;
130 /* When outside hw range, reduce to fit (rounding errors) */
131 while ((un > 4095) || (um > 511)) {
132 un >>= 1;
133 um >>= 1;
135 if (un == 0)
136 un = 1;
137 if (um == 0)
138 um = 1;
140 *n = un;
141 *m = um;
145 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
146 unsigned long *parent_rate)
148 u16 n, m;
150 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
151 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
154 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
155 unsigned long parent_rate)
157 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
159 if (!rate || (rate == parent_rate)) {
160 data->m = 0; /* Bypass mode */
161 data->n = 0;
162 return 0;
165 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
166 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
167 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
168 return -EINVAL;
171 if (rate < parent_rate) {
172 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
173 rate, parent_rate);
174 return -EINVAL;
177 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
178 return 0;
182 /* calculate p = max(0, 4 - int(log2 (n/m))) */
183 static u8 cdce925_pll_calc_p(u16 n, u16 m)
185 u8 p;
186 u16 r = n / m;
188 if (r >= 16)
189 return 0;
190 p = 4;
191 while (r > 1) {
192 r >>= 1;
193 --p;
195 return p;
198 /* Returns VCO range bits for VCO1_0_RANGE */
199 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
201 struct clk *parent = clk_get_parent(hw->clk);
202 unsigned long rate = clk_get_rate(parent);
204 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
205 if (rate >= 175000000)
206 return 0x3;
207 if (rate >= 150000000)
208 return 0x02;
209 if (rate >= 125000000)
210 return 0x01;
211 return 0x00;
214 /* I2C clock, hence everything must happen in (un)prepare because this
215 * may sleep */
216 static int cdce925_pll_prepare(struct clk_hw *hw)
218 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
219 u16 n = data->n;
220 u16 m = data->m;
221 u16 r;
222 u8 q;
223 u8 p;
224 u16 nn;
225 u8 pll[4]; /* Bits are spread out over 4 byte registers */
226 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
227 unsigned i;
229 if ((!m || !n) || (m == n)) {
230 /* Set PLL mux to bypass mode, leave the rest as is */
231 regmap_update_bits(data->chip->regmap,
232 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
233 } else {
234 /* According to data sheet: */
235 /* p = max(0, 4 - int(log2 (n/m))) */
236 p = cdce925_pll_calc_p(n, m);
237 /* nn = n * 2^p */
238 nn = n * BIT(p);
239 /* q = int(nn/m) */
240 q = nn / m;
241 if ((q < 16) || (q > 63)) {
242 pr_debug("%s invalid q=%d\n", __func__, q);
243 return -EINVAL;
245 r = nn - (m*q);
246 if (r > 511) {
247 pr_debug("%s invalid r=%d\n", __func__, r);
248 return -EINVAL;
250 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
251 n, m, p, q, r);
252 /* encode into register bits */
253 pll[0] = n >> 4;
254 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
255 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
256 pll[3] = ((q & 0x07) << 5) | (p << 2) |
257 cdce925_pll_calc_range_bits(hw, n, m);
258 /* Write to registers */
259 for (i = 0; i < ARRAY_SIZE(pll); ++i)
260 regmap_write(data->chip->regmap,
261 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
262 /* Enable PLL */
263 regmap_update_bits(data->chip->regmap,
264 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
267 return 0;
270 static void cdce925_pll_unprepare(struct clk_hw *hw)
272 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
273 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
275 regmap_update_bits(data->chip->regmap,
276 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
279 static const struct clk_ops cdce925_pll_ops = {
280 .prepare = cdce925_pll_prepare,
281 .unprepare = cdce925_pll_unprepare,
282 .recalc_rate = cdce925_pll_recalc_rate,
283 .round_rate = cdce925_pll_round_rate,
284 .set_rate = cdce925_pll_set_rate,
288 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
290 switch (data->index) {
291 case 0:
292 regmap_update_bits(data->chip->regmap,
293 CDCE925_REG_Y1SPIPDIVH,
294 0x03, (pdiv >> 8) & 0x03);
295 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
296 break;
297 case 1:
298 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
299 break;
300 case 2:
301 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
302 break;
303 case 3:
304 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
305 break;
306 case 4:
307 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
308 break;
309 case 5:
310 regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
311 break;
312 case 6:
313 regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
314 break;
315 case 7:
316 regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
317 break;
318 case 8:
319 regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
320 break;
324 static void cdce925_clk_activate(struct clk_cdce925_output *data)
326 switch (data->index) {
327 case 0:
328 regmap_update_bits(data->chip->regmap,
329 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
330 break;
331 case 1:
332 case 2:
333 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
334 break;
335 case 3:
336 case 4:
337 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
338 break;
339 case 5:
340 case 6:
341 regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
342 break;
343 case 7:
344 case 8:
345 regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
346 break;
350 static int cdce925_clk_prepare(struct clk_hw *hw)
352 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
354 cdce925_clk_set_pdiv(data, data->pdiv);
355 cdce925_clk_activate(data);
356 return 0;
359 static void cdce925_clk_unprepare(struct clk_hw *hw)
361 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
363 /* Disable clock by setting divider to "0" */
364 cdce925_clk_set_pdiv(data, 0);
367 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
368 unsigned long parent_rate)
370 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
372 if (data->pdiv)
373 return parent_rate / data->pdiv;
374 return 0;
377 static u16 cdce925_calc_divider(unsigned long rate,
378 unsigned long parent_rate)
380 unsigned long divider;
382 if (!rate)
383 return 0;
384 if (rate >= parent_rate)
385 return 1;
387 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
388 if (divider > 0x7F)
389 divider = 0x7F;
391 return (u16)divider;
394 static unsigned long cdce925_clk_best_parent_rate(
395 struct clk_hw *hw, unsigned long rate)
397 struct clk *pll = clk_get_parent(hw->clk);
398 struct clk *root = clk_get_parent(pll);
399 unsigned long root_rate = clk_get_rate(root);
400 unsigned long best_rate_error = rate;
401 u16 pdiv_min;
402 u16 pdiv_max;
403 u16 pdiv_best;
404 u16 pdiv_now;
406 if (root_rate % rate == 0)
407 return root_rate; /* Don't need the PLL, use bypass */
409 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
410 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
412 if (pdiv_min > pdiv_max)
413 return 0; /* No can do? */
415 pdiv_best = pdiv_min;
416 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
417 unsigned long target_rate = rate * pdiv_now;
418 long pll_rate = clk_round_rate(pll, target_rate);
419 unsigned long actual_rate;
420 unsigned long rate_error;
422 if (pll_rate <= 0)
423 continue;
424 actual_rate = pll_rate / pdiv_now;
425 rate_error = abs((long)actual_rate - (long)rate);
426 if (rate_error < best_rate_error) {
427 pdiv_best = pdiv_now;
428 best_rate_error = rate_error;
430 /* TODO: Consider PLL frequency based on smaller n/m values
431 * and pick the better one if the error is equal */
434 return rate * pdiv_best;
437 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
438 unsigned long *parent_rate)
440 unsigned long l_parent_rate = *parent_rate;
441 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
443 if (l_parent_rate / divider != rate) {
444 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
445 divider = cdce925_calc_divider(rate, l_parent_rate);
446 *parent_rate = l_parent_rate;
449 if (divider)
450 return (long)(l_parent_rate / divider);
451 return 0;
454 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
455 unsigned long parent_rate)
457 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
459 data->pdiv = cdce925_calc_divider(rate, parent_rate);
461 return 0;
464 static const struct clk_ops cdce925_clk_ops = {
465 .prepare = cdce925_clk_prepare,
466 .unprepare = cdce925_clk_unprepare,
467 .recalc_rate = cdce925_clk_recalc_rate,
468 .round_rate = cdce925_clk_round_rate,
469 .set_rate = cdce925_clk_set_rate,
473 static u16 cdce925_y1_calc_divider(unsigned long rate,
474 unsigned long parent_rate)
476 unsigned long divider;
478 if (!rate)
479 return 0;
480 if (rate >= parent_rate)
481 return 1;
483 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
484 if (divider > 0x3FF) /* Y1 has 10-bit divider */
485 divider = 0x3FF;
487 return (u16)divider;
490 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
491 unsigned long *parent_rate)
493 unsigned long l_parent_rate = *parent_rate;
494 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
496 if (divider)
497 return (long)(l_parent_rate / divider);
498 return 0;
501 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
502 unsigned long parent_rate)
504 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
506 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
508 return 0;
511 static const struct clk_ops cdce925_clk_y1_ops = {
512 .prepare = cdce925_clk_prepare,
513 .unprepare = cdce925_clk_unprepare,
514 .recalc_rate = cdce925_clk_recalc_rate,
515 .round_rate = cdce925_clk_y1_round_rate,
516 .set_rate = cdce925_clk_y1_set_rate,
519 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
520 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
522 static int cdce925_regmap_i2c_write(
523 void *context, const void *data, size_t count)
525 struct device *dev = context;
526 struct i2c_client *i2c = to_i2c_client(dev);
527 int ret;
528 u8 reg_data[2];
530 if (count != 2)
531 return -ENOTSUPP;
533 /* First byte is command code */
534 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
535 reg_data[1] = ((u8 *)data)[1];
537 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
538 reg_data[0], reg_data[1]);
540 ret = i2c_master_send(i2c, reg_data, count);
541 if (likely(ret == count))
542 return 0;
543 else if (ret < 0)
544 return ret;
545 else
546 return -EIO;
549 static int cdce925_regmap_i2c_read(void *context,
550 const void *reg, size_t reg_size, void *val, size_t val_size)
552 struct device *dev = context;
553 struct i2c_client *i2c = to_i2c_client(dev);
554 struct i2c_msg xfer[2];
555 int ret;
556 u8 reg_data[2];
558 if (reg_size != 1)
559 return -ENOTSUPP;
561 xfer[0].addr = i2c->addr;
562 xfer[0].flags = 0;
563 xfer[0].buf = reg_data;
564 if (val_size == 1) {
565 reg_data[0] =
566 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
567 xfer[0].len = 1;
568 } else {
569 reg_data[0] =
570 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
571 reg_data[1] = val_size;
572 xfer[0].len = 2;
575 xfer[1].addr = i2c->addr;
576 xfer[1].flags = I2C_M_RD;
577 xfer[1].len = val_size;
578 xfer[1].buf = val;
580 ret = i2c_transfer(i2c->adapter, xfer, 2);
581 if (likely(ret == 2)) {
582 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
583 reg_size, val_size, reg_data[0], *((u8 *)val));
584 return 0;
585 } else if (ret < 0)
586 return ret;
587 else
588 return -EIO;
591 static struct clk_hw *
592 of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
594 struct clk_cdce925_chip *data = _data;
595 unsigned int idx = clkspec->args[0];
597 if (idx >= ARRAY_SIZE(data->clk)) {
598 pr_err("%s: invalid index %u\n", __func__, idx);
599 return ERR_PTR(-EINVAL);
602 return &data->clk[idx].hw;
605 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
606 * just weird, so just use the single byte mode exclusively. */
607 static struct regmap_bus regmap_cdce925_bus = {
608 .write = cdce925_regmap_i2c_write,
609 .read = cdce925_regmap_i2c_read,
612 static int cdce925_probe(struct i2c_client *client,
613 const struct i2c_device_id *id)
615 struct clk_cdce925_chip *data;
616 struct device_node *node = client->dev.of_node;
617 const char *parent_name;
618 const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
619 struct clk_init_data init;
620 u32 value;
621 int i;
622 int err;
623 struct device_node *np_output;
624 char child_name[6];
625 struct regmap_config config = {
626 .name = "configuration0",
627 .reg_bits = 8,
628 .val_bits = 8,
629 .cache_type = REGCACHE_RBTREE,
632 dev_dbg(&client->dev, "%s\n", __func__);
633 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
634 if (!data)
635 return -ENOMEM;
637 data->i2c_client = client;
638 data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
639 config.max_register = CDCE925_OFFSET_PLL +
640 data->chip_info->num_plls * 0x10 - 1;
641 data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
642 &client->dev, &config);
643 if (IS_ERR(data->regmap)) {
644 dev_err(&client->dev, "failed to allocate register map\n");
645 return PTR_ERR(data->regmap);
647 i2c_set_clientdata(client, data);
649 parent_name = of_clk_get_parent_name(node, 0);
650 if (!parent_name) {
651 dev_err(&client->dev, "missing parent clock\n");
652 return -ENODEV;
654 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
656 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
657 regmap_write(data->regmap,
658 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
659 /* PWDN bit */
660 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
662 /* Set input source for Y1 to be the XTAL */
663 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
665 init.ops = &cdce925_pll_ops;
666 init.flags = 0;
667 init.parent_names = &parent_name;
668 init.num_parents = 1;
670 /* Register PLL clocks */
671 for (i = 0; i < data->chip_info->num_plls; ++i) {
672 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
673 client->dev.of_node->name, i);
674 init.name = pll_clk_name[i];
675 data->pll[i].chip = data;
676 data->pll[i].hw.init = &init;
677 data->pll[i].index = i;
678 err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
679 if (err) {
680 dev_err(&client->dev, "Failed register PLL %d\n", i);
681 goto error;
683 sprintf(child_name, "PLL%d", i+1);
684 np_output = of_get_child_by_name(node, child_name);
685 if (!np_output)
686 continue;
687 if (!of_property_read_u32(np_output,
688 "clock-frequency", &value)) {
689 err = clk_set_rate(data->pll[i].hw.clk, value);
690 if (err)
691 dev_err(&client->dev,
692 "unable to set PLL frequency %ud\n",
693 value);
695 if (!of_property_read_u32(np_output,
696 "spread-spectrum", &value)) {
697 u8 flag = of_property_read_bool(np_output,
698 "spread-spectrum-center") ? 0x80 : 0x00;
699 regmap_update_bits(data->regmap,
700 0x16 + (i*CDCE925_OFFSET_PLL),
701 0x80, flag);
702 regmap_update_bits(data->regmap,
703 0x12 + (i*CDCE925_OFFSET_PLL),
704 0x07, value & 0x07);
708 /* Register output clock Y1 */
709 init.ops = &cdce925_clk_y1_ops;
710 init.flags = 0;
711 init.num_parents = 1;
712 init.parent_names = &parent_name; /* Mux Y1 to input */
713 init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
714 data->clk[0].chip = data;
715 data->clk[0].hw.init = &init;
716 data->clk[0].index = 0;
717 data->clk[0].pdiv = 1;
718 err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
719 kfree(init.name); /* clock framework made a copy of the name */
720 if (err) {
721 dev_err(&client->dev, "clock registration Y1 failed\n");
722 goto error;
725 /* Register output clocks Y2 .. Y5*/
726 init.ops = &cdce925_clk_ops;
727 init.flags = CLK_SET_RATE_PARENT;
728 init.num_parents = 1;
729 for (i = 1; i < data->chip_info->num_outputs; ++i) {
730 init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
731 client->dev.of_node->name, i+1);
732 data->clk[i].chip = data;
733 data->clk[i].hw.init = &init;
734 data->clk[i].index = i;
735 data->clk[i].pdiv = 1;
736 switch (i) {
737 case 1:
738 case 2:
739 /* Mux Y2/3 to PLL1 */
740 init.parent_names = &pll_clk_name[0];
741 break;
742 case 3:
743 case 4:
744 /* Mux Y4/5 to PLL2 */
745 init.parent_names = &pll_clk_name[1];
746 break;
747 case 5:
748 case 6:
749 /* Mux Y6/7 to PLL3 */
750 init.parent_names = &pll_clk_name[2];
751 break;
752 case 7:
753 case 8:
754 /* Mux Y8/9 to PLL4 */
755 init.parent_names = &pll_clk_name[3];
756 break;
758 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
759 kfree(init.name); /* clock framework made a copy of the name */
760 if (err) {
761 dev_err(&client->dev, "clock registration failed\n");
762 goto error;
766 /* Register the output clocks */
767 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
768 data);
769 if (err)
770 dev_err(&client->dev, "unable to add OF clock provider\n");
772 err = 0;
774 error:
775 for (i = 0; i < data->chip_info->num_plls; ++i)
776 /* clock framework made a copy of the name */
777 kfree(pll_clk_name[i]);
779 return err;
782 static const struct i2c_device_id cdce925_id[] = {
783 { "cdce913", CDCE913 },
784 { "cdce925", CDCE925 },
785 { "cdce937", CDCE937 },
786 { "cdce949", CDCE949 },
789 MODULE_DEVICE_TABLE(i2c, cdce925_id);
791 static const struct of_device_id clk_cdce925_of_match[] = {
792 { .compatible = "ti,cdce913" },
793 { .compatible = "ti,cdce925" },
794 { .compatible = "ti,cdce937" },
795 { .compatible = "ti,cdce949" },
796 { },
798 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
800 static struct i2c_driver cdce925_driver = {
801 .driver = {
802 .name = "cdce925",
803 .of_match_table = of_match_ptr(clk_cdce925_of_match),
805 .probe = cdce925_probe,
806 .id_table = cdce925_id,
808 module_i2c_driver(cdce925_driver);
810 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
811 MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
812 MODULE_LICENSE("GPL");