xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / clk / meson / gxbb-aoclk-32k.c
blob491634dbc985ee810f57e9aa70c60fe13ba13485
1 /*
2 * Copyright (c) 2017 BayLibre, SAS.
3 * Author: Neil Armstrong <narmstrong@baylibre.com>
5 * SPDX-License-Identifier: GPL-2.0+
6 */
8 #include <linux/clk-provider.h>
9 #include <linux/bitfield.h>
10 #include <linux/regmap.h>
11 #include "gxbb-aoclk.h"
14 * The AO Domain embeds a dual/divider to generate a more precise
15 * 32,768KHz clock for low-power suspend mode and CEC.
16 * ______ ______
17 * | | | |
18 * ______ | Div1 |-| Cnt1 | ______
19 * | | /|______| |______|\ | |
20 * Xtal-->| Gate |---| ______ ______ X-X--| Gate |-->
21 * |______| | \| | | |/ | |______|
22 * | | Div2 |-| Cnt2 | |
23 * | |______| |______| |
24 * |_______________________|
26 * The dividing can be switched to single or dual, with a counter
27 * for each divider to set when the switching is done.
28 * The entire dividing mechanism can be also bypassed.
31 #define CLK_CNTL0_N1_MASK GENMASK(11, 0)
32 #define CLK_CNTL0_N2_MASK GENMASK(23, 12)
33 #define CLK_CNTL0_DUALDIV_EN BIT(28)
34 #define CLK_CNTL0_OUT_GATE_EN BIT(30)
35 #define CLK_CNTL0_IN_GATE_EN BIT(31)
37 #define CLK_CNTL1_M1_MASK GENMASK(11, 0)
38 #define CLK_CNTL1_M2_MASK GENMASK(23, 12)
39 #define CLK_CNTL1_BYPASS_EN BIT(24)
40 #define CLK_CNTL1_SELECT_OSC BIT(27)
42 #define PWR_CNTL_ALT_32K_SEL GENMASK(13, 10)
44 struct cec_32k_freq_table {
45 unsigned long parent_rate;
46 unsigned long target_rate;
47 bool dualdiv;
48 unsigned int n1;
49 unsigned int n2;
50 unsigned int m1;
51 unsigned int m2;
54 static const struct cec_32k_freq_table aoclk_cec_32k_table[] = {
55 [0] = {
56 .parent_rate = 24000000,
57 .target_rate = 32768,
58 .dualdiv = true,
59 .n1 = 733,
60 .n2 = 732,
61 .m1 = 8,
62 .m2 = 11,
67 * If CLK_CNTL0_DUALDIV_EN == 0
68 * - will use N1 divider only
69 * If CLK_CNTL0_DUALDIV_EN == 1
70 * - hold M1 cycles of N1 divider then changes to N2
71 * - hold M2 cycles of N2 divider then changes to N1
72 * Then we can get more accurate division.
74 static unsigned long aoclk_cec_32k_recalc_rate(struct clk_hw *hw,
75 unsigned long parent_rate)
77 struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw);
78 unsigned long n1;
79 u32 reg0, reg1;
81 regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, &reg0);
82 regmap_read(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, &reg1);
84 if (reg1 & CLK_CNTL1_BYPASS_EN)
85 return parent_rate;
87 if (reg0 & CLK_CNTL0_DUALDIV_EN) {
88 unsigned long n2, m1, m2, f1, f2, p1, p2;
90 n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1;
91 n2 = FIELD_GET(CLK_CNTL0_N2_MASK, reg0) + 1;
93 m1 = FIELD_GET(CLK_CNTL1_M1_MASK, reg1) + 1;
94 m2 = FIELD_GET(CLK_CNTL1_M2_MASK, reg1) + 1;
96 f1 = DIV_ROUND_CLOSEST(parent_rate, n1);
97 f2 = DIV_ROUND_CLOSEST(parent_rate, n2);
99 p1 = DIV_ROUND_CLOSEST(100000000 * m1, f1 * (m1 + m2));
100 p2 = DIV_ROUND_CLOSEST(100000000 * m2, f2 * (m1 + m2));
102 return DIV_ROUND_UP(100000000, p1 + p2);
105 n1 = FIELD_GET(CLK_CNTL0_N1_MASK, reg0) + 1;
107 return DIV_ROUND_CLOSEST(parent_rate, n1);
110 static const struct cec_32k_freq_table *find_cec_32k_freq(unsigned long rate,
111 unsigned long prate)
113 int i;
115 for (i = 0 ; i < ARRAY_SIZE(aoclk_cec_32k_table) ; ++i)
116 if (aoclk_cec_32k_table[i].parent_rate == prate &&
117 aoclk_cec_32k_table[i].target_rate == rate)
118 return &aoclk_cec_32k_table[i];
120 return NULL;
123 static long aoclk_cec_32k_round_rate(struct clk_hw *hw, unsigned long rate,
124 unsigned long *prate)
126 const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate,
127 *prate);
129 /* If invalid return first one */
130 if (!freq)
131 return aoclk_cec_32k_table[0].target_rate;
133 return freq->target_rate;
137 * From the Amlogic init procedure, the IN and OUT gates needs to be handled
138 * in the init procedure to avoid any glitches.
141 static int aoclk_cec_32k_set_rate(struct clk_hw *hw, unsigned long rate,
142 unsigned long parent_rate)
144 const struct cec_32k_freq_table *freq = find_cec_32k_freq(rate,
145 parent_rate);
146 struct aoclk_cec_32k *cec_32k = to_aoclk_cec_32k(hw);
147 u32 reg = 0;
149 if (!freq)
150 return -EINVAL;
152 /* Disable clock */
153 regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
154 CLK_CNTL0_IN_GATE_EN | CLK_CNTL0_OUT_GATE_EN, 0);
156 reg = FIELD_PREP(CLK_CNTL0_N1_MASK, freq->n1 - 1);
157 if (freq->dualdiv)
158 reg |= CLK_CNTL0_DUALDIV_EN |
159 FIELD_PREP(CLK_CNTL0_N2_MASK, freq->n2 - 1);
161 regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0, reg);
163 reg = FIELD_PREP(CLK_CNTL1_M1_MASK, freq->m1 - 1);
164 if (freq->dualdiv)
165 reg |= FIELD_PREP(CLK_CNTL1_M2_MASK, freq->m2 - 1);
167 regmap_write(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL1, reg);
169 /* Enable clock */
170 regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
171 CLK_CNTL0_IN_GATE_EN, CLK_CNTL0_IN_GATE_EN);
173 udelay(200);
175 regmap_update_bits(cec_32k->regmap, AO_RTC_ALT_CLK_CNTL0,
176 CLK_CNTL0_OUT_GATE_EN, CLK_CNTL0_OUT_GATE_EN);
178 regmap_update_bits(cec_32k->regmap, AO_CRT_CLK_CNTL1,
179 CLK_CNTL1_SELECT_OSC, CLK_CNTL1_SELECT_OSC);
181 /* Select 32k from XTAL */
182 regmap_update_bits(cec_32k->regmap,
183 AO_RTI_PWR_CNTL_REG0,
184 PWR_CNTL_ALT_32K_SEL,
185 FIELD_PREP(PWR_CNTL_ALT_32K_SEL, 4));
187 return 0;
190 const struct clk_ops meson_aoclk_cec_32k_ops = {
191 .recalc_rate = aoclk_cec_32k_recalc_rate,
192 .round_rate = aoclk_cec_32k_round_rate,
193 .set_rate = aoclk_cec_32k_set_rate,