xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / dma / edma.c
blob948df1ab5f1a26bfa564f55db06b7e352d4152bb
1 /*
2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/platform_data/edma.h>
36 #include "dmaengine.h"
37 #include "virt-dma.h"
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
49 #define PARM_SIZE 0x20
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
126 #define MAX_NR_SG 20
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param {
138 u32 opt;
139 u32 src;
140 u32 a_b_cnt;
141 u32 dst;
142 u32 src_dst_bidx;
143 u32 link_bcntrld;
144 u32 src_dst_cidx;
145 u32 ccnt;
146 } __packed;
148 /* fields in edmacc_param.opt */
149 #define SAM BIT(0)
150 #define DAM BIT(1)
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
161 struct edma_pset {
162 u32 len;
163 dma_addr_t addr;
164 struct edmacc_param param;
167 struct edma_desc {
168 struct virt_dma_desc vdesc;
169 struct list_head node;
170 enum dma_transfer_direction direction;
171 int cyclic;
172 int absync;
173 int pset_nr;
174 struct edma_chan *echan;
175 int processed;
178 * The following 4 elements are used for residue accounting.
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
187 * - residue: The amount of bytes we have left to transfer for this desc
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
197 int processed_stat;
198 u32 sg_len;
199 u32 residue;
200 u32 residue_stat;
202 struct edma_pset pset[0];
205 struct edma_cc;
207 struct edma_tc {
208 struct device_node *node;
209 u16 id;
212 struct edma_chan {
213 struct virt_dma_chan vchan;
214 struct list_head node;
215 struct edma_desc *edesc;
216 struct edma_cc *ecc;
217 struct edma_tc *tc;
218 int ch_num;
219 bool alloced;
220 bool hw_triggered;
221 int slot[EDMA_MAX_SLOTS];
222 int missed;
223 struct dma_slave_config cfg;
226 struct edma_cc {
227 struct device *dev;
228 struct edma_soc_info *info;
229 void __iomem *base;
230 int id;
231 bool legacy_mode;
233 /* eDMA3 resource information */
234 unsigned num_channels;
235 unsigned num_qchannels;
236 unsigned num_region;
237 unsigned num_slots;
238 unsigned num_tc;
239 bool chmap_exist;
240 enum dma_event_q default_queue;
242 unsigned int ccint;
243 unsigned int ccerrint;
246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 * in use by Linux or if it is allocated to be used by DSP.
249 unsigned long *slot_inuse;
251 struct dma_device dma_slave;
252 struct dma_device *dma_memcpy;
253 struct edma_chan *slave_chans;
254 struct edma_tc *tc_list;
255 int dummy_slot;
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset = {
260 .link_bcntrld = 0xffff,
261 .ccnt = 1,
264 #define EDMA_BINDING_LEGACY 0
265 #define EDMA_BINDING_TPCC 1
266 static const u32 edma_binding_type[] = {
267 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
268 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
271 static const struct of_device_id edma_of_ids[] = {
273 .compatible = "ti,edma3",
274 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
277 .compatible = "ti,edma3-tpcc",
278 .data = &edma_binding_type[EDMA_BINDING_TPCC],
282 MODULE_DEVICE_TABLE(of, edma_of_ids);
284 static const struct of_device_id edma_tptc_of_ids[] = {
285 { .compatible = "ti,edma3-tptc", },
288 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
290 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
292 return (unsigned int)__raw_readl(ecc->base + offset);
295 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
297 __raw_writel(val, ecc->base + offset);
300 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
301 unsigned or)
303 unsigned val = edma_read(ecc, offset);
305 val &= and;
306 val |= or;
307 edma_write(ecc, offset, val);
310 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
312 unsigned val = edma_read(ecc, offset);
314 val &= and;
315 edma_write(ecc, offset, val);
318 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
320 unsigned val = edma_read(ecc, offset);
322 val |= or;
323 edma_write(ecc, offset, val);
326 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
327 int i)
329 return edma_read(ecc, offset + (i << 2));
332 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
333 unsigned val)
335 edma_write(ecc, offset + (i << 2), val);
338 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
339 unsigned and, unsigned or)
341 edma_modify(ecc, offset + (i << 2), and, or);
344 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
345 unsigned or)
347 edma_or(ecc, offset + (i << 2), or);
350 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
351 unsigned or)
353 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
356 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
357 int j, unsigned val)
359 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
362 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
364 return edma_read(ecc, EDMA_SHADOW0 + offset);
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
368 int offset, int i)
370 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
374 unsigned val)
376 edma_write(ecc, EDMA_SHADOW0 + offset, val);
379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
380 int i, unsigned val)
382 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
385 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
386 int param_no)
388 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
391 static inline void edma_param_write(struct edma_cc *ecc, int offset,
392 int param_no, unsigned val)
394 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
397 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
398 int param_no, unsigned and, unsigned or)
400 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
403 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
404 unsigned and)
406 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
409 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
410 unsigned or)
412 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
415 static inline void edma_set_bits(int offset, int len, unsigned long *p)
417 for (; len > 0; len--)
418 set_bit(offset + (len - 1), p);
421 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
422 int priority)
424 int bit = queue_no * 4;
426 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
429 static void edma_set_chmap(struct edma_chan *echan, int slot)
431 struct edma_cc *ecc = echan->ecc;
432 int channel = EDMA_CHAN_SLOT(echan->ch_num);
434 if (ecc->chmap_exist) {
435 slot = EDMA_CHAN_SLOT(slot);
436 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
440 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
442 struct edma_cc *ecc = echan->ecc;
443 int channel = EDMA_CHAN_SLOT(echan->ch_num);
445 if (enable) {
446 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
447 BIT(channel & 0x1f));
448 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
449 BIT(channel & 0x1f));
450 } else {
451 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
452 BIT(channel & 0x1f));
457 * paRAM slot management functions
459 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
460 const struct edmacc_param *param)
462 slot = EDMA_CHAN_SLOT(slot);
463 if (slot >= ecc->num_slots)
464 return;
465 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
468 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
469 struct edmacc_param *param)
471 slot = EDMA_CHAN_SLOT(slot);
472 if (slot >= ecc->num_slots)
473 return -EINVAL;
474 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
476 return 0;
480 * edma_alloc_slot - allocate DMA parameter RAM
481 * @ecc: pointer to edma_cc struct
482 * @slot: specific slot to allocate; negative for "any unused slot"
484 * This allocates a parameter RAM slot, initializing it to hold a
485 * dummy transfer. Slots allocated using this routine have not been
486 * mapped to a hardware DMA channel, and will normally be used by
487 * linking to them from a slot associated with a DMA channel.
489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
490 * slots may be allocated on behalf of DSP firmware.
492 * Returns the number of the slot, else negative errno.
494 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
496 if (slot >= 0) {
497 slot = EDMA_CHAN_SLOT(slot);
498 /* Requesting entry paRAM slot for a HW triggered channel. */
499 if (ecc->chmap_exist && slot < ecc->num_channels)
500 slot = EDMA_SLOT_ANY;
503 if (slot < 0) {
504 if (ecc->chmap_exist)
505 slot = 0;
506 else
507 slot = ecc->num_channels;
508 for (;;) {
509 slot = find_next_zero_bit(ecc->slot_inuse,
510 ecc->num_slots,
511 slot);
512 if (slot == ecc->num_slots)
513 return -ENOMEM;
514 if (!test_and_set_bit(slot, ecc->slot_inuse))
515 break;
517 } else if (slot >= ecc->num_slots) {
518 return -EINVAL;
519 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
520 return -EBUSY;
523 edma_write_slot(ecc, slot, &dummy_paramset);
525 return EDMA_CTLR_CHAN(ecc->id, slot);
528 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
530 slot = EDMA_CHAN_SLOT(slot);
531 if (slot >= ecc->num_slots)
532 return;
534 edma_write_slot(ecc, slot, &dummy_paramset);
535 clear_bit(slot, ecc->slot_inuse);
539 * edma_link - link one parameter RAM slot to another
540 * @ecc: pointer to edma_cc struct
541 * @from: parameter RAM slot originating the link
542 * @to: parameter RAM slot which is the link target
544 * The originating slot should not be part of any active DMA transfer.
546 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
548 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
549 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
551 from = EDMA_CHAN_SLOT(from);
552 to = EDMA_CHAN_SLOT(to);
553 if (from >= ecc->num_slots || to >= ecc->num_slots)
554 return;
556 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
557 PARM_OFFSET(to));
561 * edma_get_position - returns the current transfer point
562 * @ecc: pointer to edma_cc struct
563 * @slot: parameter RAM slot being examined
564 * @dst: true selects the dest position, false the source
566 * Returns the position of the current active slot
568 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
569 bool dst)
571 u32 offs;
573 slot = EDMA_CHAN_SLOT(slot);
574 offs = PARM_OFFSET(slot);
575 offs += dst ? PARM_DST : PARM_SRC;
577 return edma_read(ecc, offs);
581 * Channels with event associations will be triggered by their hardware
582 * events, and channels without such associations will be triggered by
583 * software. (At this writing there is no interface for using software
584 * triggers except with channels that don't support hardware triggers.)
586 static void edma_start(struct edma_chan *echan)
588 struct edma_cc *ecc = echan->ecc;
589 int channel = EDMA_CHAN_SLOT(echan->ch_num);
590 int j = (channel >> 5);
591 unsigned int mask = BIT(channel & 0x1f);
593 if (!echan->hw_triggered) {
594 /* EDMA channels without event association */
595 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
596 edma_shadow0_read_array(ecc, SH_ESR, j));
597 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
598 } else {
599 /* EDMA channel with event association */
600 dev_dbg(ecc->dev, "ER%d %08x\n", j,
601 edma_shadow0_read_array(ecc, SH_ER, j));
602 /* Clear any pending event or error */
603 edma_write_array(ecc, EDMA_ECR, j, mask);
604 edma_write_array(ecc, EDMA_EMCR, j, mask);
605 /* Clear any SER */
606 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
607 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
608 dev_dbg(ecc->dev, "EER%d %08x\n", j,
609 edma_shadow0_read_array(ecc, SH_EER, j));
613 static void edma_stop(struct edma_chan *echan)
615 struct edma_cc *ecc = echan->ecc;
616 int channel = EDMA_CHAN_SLOT(echan->ch_num);
617 int j = (channel >> 5);
618 unsigned int mask = BIT(channel & 0x1f);
620 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
621 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
622 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
623 edma_write_array(ecc, EDMA_EMCR, j, mask);
625 /* clear possibly pending completion interrupt */
626 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
628 dev_dbg(ecc->dev, "EER%d %08x\n", j,
629 edma_shadow0_read_array(ecc, SH_EER, j));
631 /* REVISIT: consider guarding against inappropriate event
632 * chaining by overwriting with dummy_paramset.
637 * Temporarily disable EDMA hardware events on the specified channel,
638 * preventing them from triggering new transfers
640 static void edma_pause(struct edma_chan *echan)
642 int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 unsigned int mask = BIT(channel & 0x1f);
645 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
648 /* Re-enable EDMA hardware events on the specified channel. */
649 static void edma_resume(struct edma_chan *echan)
651 int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 unsigned int mask = BIT(channel & 0x1f);
654 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
657 static void edma_trigger_channel(struct edma_chan *echan)
659 struct edma_cc *ecc = echan->ecc;
660 int channel = EDMA_CHAN_SLOT(echan->ch_num);
661 unsigned int mask = BIT(channel & 0x1f);
663 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
665 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
666 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
669 static void edma_clean_channel(struct edma_chan *echan)
671 struct edma_cc *ecc = echan->ecc;
672 int channel = EDMA_CHAN_SLOT(echan->ch_num);
673 int j = (channel >> 5);
674 unsigned int mask = BIT(channel & 0x1f);
676 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
677 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
678 /* Clear the corresponding EMR bits */
679 edma_write_array(ecc, EDMA_EMCR, j, mask);
680 /* Clear any SER */
681 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
682 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
685 /* Move channel to a specific event queue */
686 static void edma_assign_channel_eventq(struct edma_chan *echan,
687 enum dma_event_q eventq_no)
689 struct edma_cc *ecc = echan->ecc;
690 int channel = EDMA_CHAN_SLOT(echan->ch_num);
691 int bit = (channel & 0x7) * 4;
693 /* default to low priority queue */
694 if (eventq_no == EVENTQ_DEFAULT)
695 eventq_no = ecc->default_queue;
696 if (eventq_no >= ecc->num_tc)
697 return;
699 eventq_no &= 7;
700 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
701 eventq_no << bit);
704 static int edma_alloc_channel(struct edma_chan *echan,
705 enum dma_event_q eventq_no)
707 struct edma_cc *ecc = echan->ecc;
708 int channel = EDMA_CHAN_SLOT(echan->ch_num);
710 /* ensure access through shadow region 0 */
711 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
713 /* ensure no events are pending */
714 edma_stop(echan);
716 edma_setup_interrupt(echan, true);
718 edma_assign_channel_eventq(echan, eventq_no);
720 return 0;
723 static void edma_free_channel(struct edma_chan *echan)
725 /* ensure no events are pending */
726 edma_stop(echan);
727 /* REVISIT should probably take out of shadow region 0 */
728 edma_setup_interrupt(echan, false);
731 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
733 return container_of(d, struct edma_cc, dma_slave);
736 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
738 return container_of(c, struct edma_chan, vchan.chan);
741 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
743 return container_of(tx, struct edma_desc, vdesc.tx);
746 static void edma_desc_free(struct virt_dma_desc *vdesc)
748 kfree(container_of(vdesc, struct edma_desc, vdesc));
751 /* Dispatch a queued descriptor to the controller (caller holds lock) */
752 static void edma_execute(struct edma_chan *echan)
754 struct edma_cc *ecc = echan->ecc;
755 struct virt_dma_desc *vdesc;
756 struct edma_desc *edesc;
757 struct device *dev = echan->vchan.chan.device->dev;
758 int i, j, left, nslots;
760 if (!echan->edesc) {
761 /* Setup is needed for the first transfer */
762 vdesc = vchan_next_desc(&echan->vchan);
763 if (!vdesc)
764 return;
765 list_del(&vdesc->node);
766 echan->edesc = to_edma_desc(&vdesc->tx);
769 edesc = echan->edesc;
771 /* Find out how many left */
772 left = edesc->pset_nr - edesc->processed;
773 nslots = min(MAX_NR_SG, left);
774 edesc->sg_len = 0;
776 /* Write descriptor PaRAM set(s) */
777 for (i = 0; i < nslots; i++) {
778 j = i + edesc->processed;
779 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
780 edesc->sg_len += edesc->pset[j].len;
781 dev_vdbg(dev,
782 "\n pset[%d]:\n"
783 " chnum\t%d\n"
784 " slot\t%d\n"
785 " opt\t%08x\n"
786 " src\t%08x\n"
787 " dst\t%08x\n"
788 " abcnt\t%08x\n"
789 " ccnt\t%08x\n"
790 " bidx\t%08x\n"
791 " cidx\t%08x\n"
792 " lkrld\t%08x\n",
793 j, echan->ch_num, echan->slot[i],
794 edesc->pset[j].param.opt,
795 edesc->pset[j].param.src,
796 edesc->pset[j].param.dst,
797 edesc->pset[j].param.a_b_cnt,
798 edesc->pset[j].param.ccnt,
799 edesc->pset[j].param.src_dst_bidx,
800 edesc->pset[j].param.src_dst_cidx,
801 edesc->pset[j].param.link_bcntrld);
802 /* Link to the previous slot if not the last set */
803 if (i != (nslots - 1))
804 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
807 edesc->processed += nslots;
810 * If this is either the last set in a set of SG-list transactions
811 * then setup a link to the dummy slot, this results in all future
812 * events being absorbed and that's OK because we're done
814 if (edesc->processed == edesc->pset_nr) {
815 if (edesc->cyclic)
816 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
817 else
818 edma_link(ecc, echan->slot[nslots - 1],
819 echan->ecc->dummy_slot);
822 if (echan->missed) {
824 * This happens due to setup times between intermediate
825 * transfers in long SG lists which have to be broken up into
826 * transfers of MAX_NR_SG
828 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
829 edma_clean_channel(echan);
830 edma_stop(echan);
831 edma_start(echan);
832 edma_trigger_channel(echan);
833 echan->missed = 0;
834 } else if (edesc->processed <= MAX_NR_SG) {
835 dev_dbg(dev, "first transfer starting on channel %d\n",
836 echan->ch_num);
837 edma_start(echan);
838 } else {
839 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
840 echan->ch_num, edesc->processed);
841 edma_resume(echan);
845 static int edma_terminate_all(struct dma_chan *chan)
847 struct edma_chan *echan = to_edma_chan(chan);
848 unsigned long flags;
849 LIST_HEAD(head);
851 spin_lock_irqsave(&echan->vchan.lock, flags);
854 * Stop DMA activity: we assume the callback will not be called
855 * after edma_dma() returns (even if it does, it will see
856 * echan->edesc is NULL and exit.)
858 if (echan->edesc) {
859 edma_stop(echan);
860 /* Move the cyclic channel back to default queue */
861 if (!echan->tc && echan->edesc->cyclic)
862 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
864 vchan_terminate_vdesc(&echan->edesc->vdesc);
865 echan->edesc = NULL;
868 vchan_get_all_descriptors(&echan->vchan, &head);
869 spin_unlock_irqrestore(&echan->vchan.lock, flags);
870 vchan_dma_desc_free_list(&echan->vchan, &head);
872 return 0;
875 static void edma_synchronize(struct dma_chan *chan)
877 struct edma_chan *echan = to_edma_chan(chan);
879 vchan_synchronize(&echan->vchan);
882 static int edma_slave_config(struct dma_chan *chan,
883 struct dma_slave_config *cfg)
885 struct edma_chan *echan = to_edma_chan(chan);
887 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
888 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
889 return -EINVAL;
891 if (cfg->src_maxburst > chan->device->max_burst ||
892 cfg->dst_maxburst > chan->device->max_burst)
893 return -EINVAL;
895 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
897 return 0;
900 static int edma_dma_pause(struct dma_chan *chan)
902 struct edma_chan *echan = to_edma_chan(chan);
904 if (!echan->edesc)
905 return -EINVAL;
907 edma_pause(echan);
908 return 0;
911 static int edma_dma_resume(struct dma_chan *chan)
913 struct edma_chan *echan = to_edma_chan(chan);
915 edma_resume(echan);
916 return 0;
920 * A PaRAM set configuration abstraction used by other modes
921 * @chan: Channel who's PaRAM set we're configuring
922 * @pset: PaRAM set to initialize and setup.
923 * @src_addr: Source address of the DMA
924 * @dst_addr: Destination address of the DMA
925 * @burst: In units of dev_width, how much to send
926 * @dev_width: How much is the dev_width
927 * @dma_length: Total length of the DMA transfer
928 * @direction: Direction of the transfer
930 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
931 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
932 unsigned int acnt, unsigned int dma_length,
933 enum dma_transfer_direction direction)
935 struct edma_chan *echan = to_edma_chan(chan);
936 struct device *dev = chan->device->dev;
937 struct edmacc_param *param = &epset->param;
938 int bcnt, ccnt, cidx;
939 int src_bidx, dst_bidx, src_cidx, dst_cidx;
940 int absync;
942 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
943 if (!burst)
944 burst = 1;
946 * If the maxburst is equal to the fifo width, use
947 * A-synced transfers. This allows for large contiguous
948 * buffer transfers using only one PaRAM set.
950 if (burst == 1) {
952 * For the A-sync case, bcnt and ccnt are the remainder
953 * and quotient respectively of the division of:
954 * (dma_length / acnt) by (SZ_64K -1). This is so
955 * that in case bcnt over flows, we have ccnt to use.
956 * Note: In A-sync tranfer only, bcntrld is used, but it
957 * only applies for sg_dma_len(sg) >= SZ_64K.
958 * In this case, the best way adopted is- bccnt for the
959 * first frame will be the remainder below. Then for
960 * every successive frame, bcnt will be SZ_64K-1. This
961 * is assured as bcntrld = 0xffff in end of function.
963 absync = false;
964 ccnt = dma_length / acnt / (SZ_64K - 1);
965 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
967 * If bcnt is non-zero, we have a remainder and hence an
968 * extra frame to transfer, so increment ccnt.
970 if (bcnt)
971 ccnt++;
972 else
973 bcnt = SZ_64K - 1;
974 cidx = acnt;
975 } else {
977 * If maxburst is greater than the fifo address_width,
978 * use AB-synced transfers where A count is the fifo
979 * address_width and B count is the maxburst. In this
980 * case, we are limited to transfers of C count frames
981 * of (address_width * maxburst) where C count is limited
982 * to SZ_64K-1. This places an upper bound on the length
983 * of an SG segment that can be handled.
985 absync = true;
986 bcnt = burst;
987 ccnt = dma_length / (acnt * bcnt);
988 if (ccnt > (SZ_64K - 1)) {
989 dev_err(dev, "Exceeded max SG segment size\n");
990 return -EINVAL;
992 cidx = acnt * bcnt;
995 epset->len = dma_length;
997 if (direction == DMA_MEM_TO_DEV) {
998 src_bidx = acnt;
999 src_cidx = cidx;
1000 dst_bidx = 0;
1001 dst_cidx = 0;
1002 epset->addr = src_addr;
1003 } else if (direction == DMA_DEV_TO_MEM) {
1004 src_bidx = 0;
1005 src_cidx = 0;
1006 dst_bidx = acnt;
1007 dst_cidx = cidx;
1008 epset->addr = dst_addr;
1009 } else if (direction == DMA_MEM_TO_MEM) {
1010 src_bidx = acnt;
1011 src_cidx = cidx;
1012 dst_bidx = acnt;
1013 dst_cidx = cidx;
1014 } else {
1015 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1016 return -EINVAL;
1019 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1020 /* Configure A or AB synchronized transfers */
1021 if (absync)
1022 param->opt |= SYNCDIM;
1024 param->src = src_addr;
1025 param->dst = dst_addr;
1027 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1028 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1030 param->a_b_cnt = bcnt << 16 | acnt;
1031 param->ccnt = ccnt;
1033 * Only time when (bcntrld) auto reload is required is for
1034 * A-sync case, and in this case, a requirement of reload value
1035 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1036 * and then later will be populated by edma_execute.
1038 param->link_bcntrld = 0xffffffff;
1039 return absync;
1042 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1043 struct dma_chan *chan, struct scatterlist *sgl,
1044 unsigned int sg_len, enum dma_transfer_direction direction,
1045 unsigned long tx_flags, void *context)
1047 struct edma_chan *echan = to_edma_chan(chan);
1048 struct device *dev = chan->device->dev;
1049 struct edma_desc *edesc;
1050 dma_addr_t src_addr = 0, dst_addr = 0;
1051 enum dma_slave_buswidth dev_width;
1052 u32 burst;
1053 struct scatterlist *sg;
1054 int i, nslots, ret;
1056 if (unlikely(!echan || !sgl || !sg_len))
1057 return NULL;
1059 if (direction == DMA_DEV_TO_MEM) {
1060 src_addr = echan->cfg.src_addr;
1061 dev_width = echan->cfg.src_addr_width;
1062 burst = echan->cfg.src_maxburst;
1063 } else if (direction == DMA_MEM_TO_DEV) {
1064 dst_addr = echan->cfg.dst_addr;
1065 dev_width = echan->cfg.dst_addr_width;
1066 burst = echan->cfg.dst_maxburst;
1067 } else {
1068 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1069 return NULL;
1072 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1073 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1074 return NULL;
1077 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1078 GFP_ATOMIC);
1079 if (!edesc)
1080 return NULL;
1082 edesc->pset_nr = sg_len;
1083 edesc->residue = 0;
1084 edesc->direction = direction;
1085 edesc->echan = echan;
1087 /* Allocate a PaRAM slot, if needed */
1088 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1090 for (i = 0; i < nslots; i++) {
1091 if (echan->slot[i] < 0) {
1092 echan->slot[i] =
1093 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1094 if (echan->slot[i] < 0) {
1095 kfree(edesc);
1096 dev_err(dev, "%s: Failed to allocate slot\n",
1097 __func__);
1098 return NULL;
1103 /* Configure PaRAM sets for each SG */
1104 for_each_sg(sgl, sg, sg_len, i) {
1105 /* Get address for each SG */
1106 if (direction == DMA_DEV_TO_MEM)
1107 dst_addr = sg_dma_address(sg);
1108 else
1109 src_addr = sg_dma_address(sg);
1111 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1112 dst_addr, burst, dev_width,
1113 sg_dma_len(sg), direction);
1114 if (ret < 0) {
1115 kfree(edesc);
1116 return NULL;
1119 edesc->absync = ret;
1120 edesc->residue += sg_dma_len(sg);
1122 if (i == sg_len - 1)
1123 /* Enable completion interrupt */
1124 edesc->pset[i].param.opt |= TCINTEN;
1125 else if (!((i+1) % MAX_NR_SG))
1127 * Enable early completion interrupt for the
1128 * intermediateset. In this case the driver will be
1129 * notified when the paRAM set is submitted to TC. This
1130 * will allow more time to set up the next set of slots.
1132 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1134 edesc->residue_stat = edesc->residue;
1136 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1139 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1140 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1141 size_t len, unsigned long tx_flags)
1143 int ret, nslots;
1144 struct edma_desc *edesc;
1145 struct device *dev = chan->device->dev;
1146 struct edma_chan *echan = to_edma_chan(chan);
1147 unsigned int width, pset_len, array_size;
1149 if (unlikely(!echan || !len))
1150 return NULL;
1152 /* Align the array size (acnt block) with the transfer properties */
1153 switch (__ffs((src | dest | len))) {
1154 case 0:
1155 array_size = SZ_32K - 1;
1156 break;
1157 case 1:
1158 array_size = SZ_32K - 2;
1159 break;
1160 default:
1161 array_size = SZ_32K - 4;
1162 break;
1165 if (len < SZ_64K) {
1167 * Transfer size less than 64K can be handled with one paRAM
1168 * slot and with one burst.
1169 * ACNT = length
1171 width = len;
1172 pset_len = len;
1173 nslots = 1;
1174 } else {
1176 * Transfer size bigger than 64K will be handled with maximum of
1177 * two paRAM slots.
1178 * slot1: (full_length / 32767) times 32767 bytes bursts.
1179 * ACNT = 32767, length1: (full_length / 32767) * 32767
1180 * slot2: the remaining amount of data after slot1.
1181 * ACNT = full_length - length1, length2 = ACNT
1183 * When the full_length is multibple of 32767 one slot can be
1184 * used to complete the transfer.
1186 width = array_size;
1187 pset_len = rounddown(len, width);
1188 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1189 if (unlikely(pset_len == len))
1190 nslots = 1;
1191 else
1192 nslots = 2;
1195 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1196 GFP_ATOMIC);
1197 if (!edesc)
1198 return NULL;
1200 edesc->pset_nr = nslots;
1201 edesc->residue = edesc->residue_stat = len;
1202 edesc->direction = DMA_MEM_TO_MEM;
1203 edesc->echan = echan;
1205 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1206 width, pset_len, DMA_MEM_TO_MEM);
1207 if (ret < 0) {
1208 kfree(edesc);
1209 return NULL;
1212 edesc->absync = ret;
1214 edesc->pset[0].param.opt |= ITCCHEN;
1215 if (nslots == 1) {
1216 /* Enable transfer complete interrupt */
1217 edesc->pset[0].param.opt |= TCINTEN;
1218 } else {
1219 /* Enable transfer complete chaining for the first slot */
1220 edesc->pset[0].param.opt |= TCCHEN;
1222 if (echan->slot[1] < 0) {
1223 echan->slot[1] = edma_alloc_slot(echan->ecc,
1224 EDMA_SLOT_ANY);
1225 if (echan->slot[1] < 0) {
1226 kfree(edesc);
1227 dev_err(dev, "%s: Failed to allocate slot\n",
1228 __func__);
1229 return NULL;
1232 dest += pset_len;
1233 src += pset_len;
1234 pset_len = width = len % array_size;
1236 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1237 width, pset_len, DMA_MEM_TO_MEM);
1238 if (ret < 0) {
1239 kfree(edesc);
1240 return NULL;
1243 edesc->pset[1].param.opt |= ITCCHEN;
1244 edesc->pset[1].param.opt |= TCINTEN;
1247 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1250 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1251 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1252 size_t period_len, enum dma_transfer_direction direction,
1253 unsigned long tx_flags)
1255 struct edma_chan *echan = to_edma_chan(chan);
1256 struct device *dev = chan->device->dev;
1257 struct edma_desc *edesc;
1258 dma_addr_t src_addr, dst_addr;
1259 enum dma_slave_buswidth dev_width;
1260 bool use_intermediate = false;
1261 u32 burst;
1262 int i, ret, nslots;
1264 if (unlikely(!echan || !buf_len || !period_len))
1265 return NULL;
1267 if (direction == DMA_DEV_TO_MEM) {
1268 src_addr = echan->cfg.src_addr;
1269 dst_addr = buf_addr;
1270 dev_width = echan->cfg.src_addr_width;
1271 burst = echan->cfg.src_maxburst;
1272 } else if (direction == DMA_MEM_TO_DEV) {
1273 src_addr = buf_addr;
1274 dst_addr = echan->cfg.dst_addr;
1275 dev_width = echan->cfg.dst_addr_width;
1276 burst = echan->cfg.dst_maxburst;
1277 } else {
1278 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1279 return NULL;
1282 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1283 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1284 return NULL;
1287 if (unlikely(buf_len % period_len)) {
1288 dev_err(dev, "Period should be multiple of Buffer length\n");
1289 return NULL;
1292 nslots = (buf_len / period_len) + 1;
1295 * Cyclic DMA users such as audio cannot tolerate delays introduced
1296 * by cases where the number of periods is more than the maximum
1297 * number of SGs the EDMA driver can handle at a time. For DMA types
1298 * such as Slave SGs, such delays are tolerable and synchronized,
1299 * but the synchronization is difficult to achieve with Cyclic and
1300 * cannot be guaranteed, so we error out early.
1302 if (nslots > MAX_NR_SG) {
1304 * If the burst and period sizes are the same, we can put
1305 * the full buffer into a single period and activate
1306 * intermediate interrupts. This will produce interrupts
1307 * after each burst, which is also after each desired period.
1309 if (burst == period_len) {
1310 period_len = buf_len;
1311 nslots = 2;
1312 use_intermediate = true;
1313 } else {
1314 return NULL;
1318 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1319 GFP_ATOMIC);
1320 if (!edesc)
1321 return NULL;
1323 edesc->cyclic = 1;
1324 edesc->pset_nr = nslots;
1325 edesc->residue = edesc->residue_stat = buf_len;
1326 edesc->direction = direction;
1327 edesc->echan = echan;
1329 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1330 __func__, echan->ch_num, nslots, period_len, buf_len);
1332 for (i = 0; i < nslots; i++) {
1333 /* Allocate a PaRAM slot, if needed */
1334 if (echan->slot[i] < 0) {
1335 echan->slot[i] =
1336 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1337 if (echan->slot[i] < 0) {
1338 kfree(edesc);
1339 dev_err(dev, "%s: Failed to allocate slot\n",
1340 __func__);
1341 return NULL;
1345 if (i == nslots - 1) {
1346 memcpy(&edesc->pset[i], &edesc->pset[0],
1347 sizeof(edesc->pset[0]));
1348 break;
1351 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1352 dst_addr, burst, dev_width, period_len,
1353 direction);
1354 if (ret < 0) {
1355 kfree(edesc);
1356 return NULL;
1359 if (direction == DMA_DEV_TO_MEM)
1360 dst_addr += period_len;
1361 else
1362 src_addr += period_len;
1364 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1365 dev_vdbg(dev,
1366 "\n pset[%d]:\n"
1367 " chnum\t%d\n"
1368 " slot\t%d\n"
1369 " opt\t%08x\n"
1370 " src\t%08x\n"
1371 " dst\t%08x\n"
1372 " abcnt\t%08x\n"
1373 " ccnt\t%08x\n"
1374 " bidx\t%08x\n"
1375 " cidx\t%08x\n"
1376 " lkrld\t%08x\n",
1377 i, echan->ch_num, echan->slot[i],
1378 edesc->pset[i].param.opt,
1379 edesc->pset[i].param.src,
1380 edesc->pset[i].param.dst,
1381 edesc->pset[i].param.a_b_cnt,
1382 edesc->pset[i].param.ccnt,
1383 edesc->pset[i].param.src_dst_bidx,
1384 edesc->pset[i].param.src_dst_cidx,
1385 edesc->pset[i].param.link_bcntrld);
1387 edesc->absync = ret;
1390 * Enable period interrupt only if it is requested
1392 if (tx_flags & DMA_PREP_INTERRUPT) {
1393 edesc->pset[i].param.opt |= TCINTEN;
1395 /* Also enable intermediate interrupts if necessary */
1396 if (use_intermediate)
1397 edesc->pset[i].param.opt |= ITCINTEN;
1401 /* Place the cyclic channel to highest priority queue */
1402 if (!echan->tc)
1403 edma_assign_channel_eventq(echan, EVENTQ_0);
1405 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1408 static void edma_completion_handler(struct edma_chan *echan)
1410 struct device *dev = echan->vchan.chan.device->dev;
1411 struct edma_desc *edesc;
1413 spin_lock(&echan->vchan.lock);
1414 edesc = echan->edesc;
1415 if (edesc) {
1416 if (edesc->cyclic) {
1417 vchan_cyclic_callback(&edesc->vdesc);
1418 spin_unlock(&echan->vchan.lock);
1419 return;
1420 } else if (edesc->processed == edesc->pset_nr) {
1421 edesc->residue = 0;
1422 edma_stop(echan);
1423 vchan_cookie_complete(&edesc->vdesc);
1424 echan->edesc = NULL;
1426 dev_dbg(dev, "Transfer completed on channel %d\n",
1427 echan->ch_num);
1428 } else {
1429 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1430 echan->ch_num);
1432 edma_pause(echan);
1434 /* Update statistics for tx_status */
1435 edesc->residue -= edesc->sg_len;
1436 edesc->residue_stat = edesc->residue;
1437 edesc->processed_stat = edesc->processed;
1439 edma_execute(echan);
1442 spin_unlock(&echan->vchan.lock);
1445 /* eDMA interrupt handler */
1446 static irqreturn_t dma_irq_handler(int irq, void *data)
1448 struct edma_cc *ecc = data;
1449 int ctlr;
1450 u32 sh_ier;
1451 u32 sh_ipr;
1452 u32 bank;
1454 ctlr = ecc->id;
1455 if (ctlr < 0)
1456 return IRQ_NONE;
1458 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1460 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1461 if (!sh_ipr) {
1462 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1463 if (!sh_ipr)
1464 return IRQ_NONE;
1465 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1466 bank = 1;
1467 } else {
1468 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1469 bank = 0;
1472 do {
1473 u32 slot;
1474 u32 channel;
1476 slot = __ffs(sh_ipr);
1477 sh_ipr &= ~(BIT(slot));
1479 if (sh_ier & BIT(slot)) {
1480 channel = (bank << 5) | slot;
1481 /* Clear the corresponding IPR bits */
1482 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1483 edma_completion_handler(&ecc->slave_chans[channel]);
1485 } while (sh_ipr);
1487 edma_shadow0_write(ecc, SH_IEVAL, 1);
1488 return IRQ_HANDLED;
1491 static void edma_error_handler(struct edma_chan *echan)
1493 struct edma_cc *ecc = echan->ecc;
1494 struct device *dev = echan->vchan.chan.device->dev;
1495 struct edmacc_param p;
1496 int err;
1498 if (!echan->edesc)
1499 return;
1501 spin_lock(&echan->vchan.lock);
1503 err = edma_read_slot(ecc, echan->slot[0], &p);
1506 * Issue later based on missed flag which will be sure
1507 * to happen as:
1508 * (1) we finished transmitting an intermediate slot and
1509 * edma_execute is coming up.
1510 * (2) or we finished current transfer and issue will
1511 * call edma_execute.
1513 * Important note: issuing can be dangerous here and
1514 * lead to some nasty recursion when we are in a NULL
1515 * slot. So we avoid doing so and set the missed flag.
1517 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1518 dev_dbg(dev, "Error on null slot, setting miss\n");
1519 echan->missed = 1;
1520 } else {
1522 * The slot is already programmed but the event got
1523 * missed, so its safe to issue it here.
1525 dev_dbg(dev, "Missed event, TRIGGERING\n");
1526 edma_clean_channel(echan);
1527 edma_stop(echan);
1528 edma_start(echan);
1529 edma_trigger_channel(echan);
1531 spin_unlock(&echan->vchan.lock);
1534 static inline bool edma_error_pending(struct edma_cc *ecc)
1536 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1537 edma_read_array(ecc, EDMA_EMR, 1) ||
1538 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1539 return true;
1541 return false;
1544 /* eDMA error interrupt handler */
1545 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1547 struct edma_cc *ecc = data;
1548 int i, j;
1549 int ctlr;
1550 unsigned int cnt = 0;
1551 unsigned int val;
1553 ctlr = ecc->id;
1554 if (ctlr < 0)
1555 return IRQ_NONE;
1557 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1559 if (!edma_error_pending(ecc)) {
1561 * The registers indicate no pending error event but the irq
1562 * handler has been called.
1563 * Ask eDMA to re-evaluate the error registers.
1565 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1566 __func__);
1567 edma_write(ecc, EDMA_EEVAL, 1);
1568 return IRQ_NONE;
1571 while (1) {
1572 /* Event missed register(s) */
1573 for (j = 0; j < 2; j++) {
1574 unsigned long emr;
1576 val = edma_read_array(ecc, EDMA_EMR, j);
1577 if (!val)
1578 continue;
1580 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1581 emr = val;
1582 for (i = find_next_bit(&emr, 32, 0); i < 32;
1583 i = find_next_bit(&emr, 32, i + 1)) {
1584 int k = (j << 5) + i;
1586 /* Clear the corresponding EMR bits */
1587 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1588 /* Clear any SER */
1589 edma_shadow0_write_array(ecc, SH_SECR, j,
1590 BIT(i));
1591 edma_error_handler(&ecc->slave_chans[k]);
1595 val = edma_read(ecc, EDMA_QEMR);
1596 if (val) {
1597 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1598 /* Not reported, just clear the interrupt reason. */
1599 edma_write(ecc, EDMA_QEMCR, val);
1600 edma_shadow0_write(ecc, SH_QSECR, val);
1603 val = edma_read(ecc, EDMA_CCERR);
1604 if (val) {
1605 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1606 /* Not reported, just clear the interrupt reason. */
1607 edma_write(ecc, EDMA_CCERRCLR, val);
1610 if (!edma_error_pending(ecc))
1611 break;
1612 cnt++;
1613 if (cnt > 10)
1614 break;
1616 edma_write(ecc, EDMA_EEVAL, 1);
1617 return IRQ_HANDLED;
1620 /* Alloc channel resources */
1621 static int edma_alloc_chan_resources(struct dma_chan *chan)
1623 struct edma_chan *echan = to_edma_chan(chan);
1624 struct edma_cc *ecc = echan->ecc;
1625 struct device *dev = ecc->dev;
1626 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1627 int ret;
1629 if (echan->tc) {
1630 eventq_no = echan->tc->id;
1631 } else if (ecc->tc_list) {
1632 /* memcpy channel */
1633 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1634 eventq_no = echan->tc->id;
1637 ret = edma_alloc_channel(echan, eventq_no);
1638 if (ret)
1639 return ret;
1641 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1642 if (echan->slot[0] < 0) {
1643 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1644 EDMA_CHAN_SLOT(echan->ch_num));
1645 ret = echan->slot[0];
1646 goto err_slot;
1649 /* Set up channel -> slot mapping for the entry slot */
1650 edma_set_chmap(echan, echan->slot[0]);
1651 echan->alloced = true;
1653 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1654 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1655 echan->hw_triggered ? "HW" : "SW");
1657 return 0;
1659 err_slot:
1660 edma_free_channel(echan);
1661 return ret;
1664 /* Free channel resources */
1665 static void edma_free_chan_resources(struct dma_chan *chan)
1667 struct edma_chan *echan = to_edma_chan(chan);
1668 struct device *dev = echan->ecc->dev;
1669 int i;
1671 /* Terminate transfers */
1672 edma_stop(echan);
1674 vchan_free_chan_resources(&echan->vchan);
1676 /* Free EDMA PaRAM slots */
1677 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1678 if (echan->slot[i] >= 0) {
1679 edma_free_slot(echan->ecc, echan->slot[i]);
1680 echan->slot[i] = -1;
1684 /* Set entry slot to the dummy slot */
1685 edma_set_chmap(echan, echan->ecc->dummy_slot);
1687 /* Free EDMA channel */
1688 if (echan->alloced) {
1689 edma_free_channel(echan);
1690 echan->alloced = false;
1693 echan->tc = NULL;
1694 echan->hw_triggered = false;
1696 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1697 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1700 /* Send pending descriptor to hardware */
1701 static void edma_issue_pending(struct dma_chan *chan)
1703 struct edma_chan *echan = to_edma_chan(chan);
1704 unsigned long flags;
1706 spin_lock_irqsave(&echan->vchan.lock, flags);
1707 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1708 edma_execute(echan);
1709 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1713 * This limit exists to avoid a possible infinite loop when waiting for proof
1714 * that a particular transfer is completed. This limit can be hit if there
1715 * are large bursts to/from slow devices or the CPU is never able to catch
1716 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1717 * RX-FIFO, as many as 55 loops have been seen.
1719 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1721 static u32 edma_residue(struct edma_desc *edesc)
1723 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1724 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1725 struct edma_chan *echan = edesc->echan;
1726 struct edma_pset *pset = edesc->pset;
1727 dma_addr_t done, pos;
1728 int i;
1731 * We always read the dst/src position from the first RamPar
1732 * pset. That's the one which is active now.
1734 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1737 * "pos" may represent a transfer request that is still being
1738 * processed by the EDMACC or EDMATC. We will busy wait until
1739 * any one of the situations occurs:
1740 * 1. the DMA hardware is idle
1741 * 2. a new transfer request is setup
1742 * 3. we hit the loop limit
1744 while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1745 /* check if a new transfer request is setup */
1746 if (edma_get_position(echan->ecc,
1747 echan->slot[0], dst) != pos) {
1748 break;
1751 if (!--loop_count) {
1752 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1753 "%s: timeout waiting for PaRAM update\n",
1754 __func__);
1755 break;
1758 cpu_relax();
1762 * Cyclic is simple. Just subtract pset[0].addr from pos.
1764 * We never update edesc->residue in the cyclic case, so we
1765 * can tell the remaining room to the end of the circular
1766 * buffer.
1768 if (edesc->cyclic) {
1769 done = pos - pset->addr;
1770 edesc->residue_stat = edesc->residue - done;
1771 return edesc->residue_stat;
1775 * For SG operation we catch up with the last processed
1776 * status.
1778 pset += edesc->processed_stat;
1780 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1782 * If we are inside this pset address range, we know
1783 * this is the active one. Get the current delta and
1784 * stop walking the psets.
1786 if (pos >= pset->addr && pos < pset->addr + pset->len)
1787 return edesc->residue_stat - (pos - pset->addr);
1789 /* Otherwise mark it done and update residue_stat. */
1790 edesc->processed_stat++;
1791 edesc->residue_stat -= pset->len;
1793 return edesc->residue_stat;
1796 /* Check request completion status */
1797 static enum dma_status edma_tx_status(struct dma_chan *chan,
1798 dma_cookie_t cookie,
1799 struct dma_tx_state *txstate)
1801 struct edma_chan *echan = to_edma_chan(chan);
1802 struct virt_dma_desc *vdesc;
1803 enum dma_status ret;
1804 unsigned long flags;
1806 ret = dma_cookie_status(chan, cookie, txstate);
1807 if (ret == DMA_COMPLETE || !txstate)
1808 return ret;
1810 spin_lock_irqsave(&echan->vchan.lock, flags);
1811 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1812 txstate->residue = edma_residue(echan->edesc);
1813 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1814 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1815 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1817 return ret;
1820 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1822 if (!memcpy_channels)
1823 return false;
1824 while (*memcpy_channels != -1) {
1825 if (*memcpy_channels == ch_num)
1826 return true;
1827 memcpy_channels++;
1829 return false;
1832 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1833 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1834 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1835 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1837 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1839 struct dma_device *s_ddev = &ecc->dma_slave;
1840 struct dma_device *m_ddev = NULL;
1841 s32 *memcpy_channels = ecc->info->memcpy_channels;
1842 int i, j;
1844 dma_cap_zero(s_ddev->cap_mask);
1845 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1846 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1847 if (ecc->legacy_mode && !memcpy_channels) {
1848 dev_warn(ecc->dev,
1849 "Legacy memcpy is enabled, things might not work\n");
1851 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1852 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1853 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1856 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1857 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1858 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1859 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1860 s_ddev->device_issue_pending = edma_issue_pending;
1861 s_ddev->device_tx_status = edma_tx_status;
1862 s_ddev->device_config = edma_slave_config;
1863 s_ddev->device_pause = edma_dma_pause;
1864 s_ddev->device_resume = edma_dma_resume;
1865 s_ddev->device_terminate_all = edma_terminate_all;
1866 s_ddev->device_synchronize = edma_synchronize;
1868 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1869 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1870 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1871 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1872 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1874 s_ddev->dev = ecc->dev;
1875 INIT_LIST_HEAD(&s_ddev->channels);
1877 if (memcpy_channels) {
1878 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1879 ecc->dma_memcpy = m_ddev;
1881 dma_cap_zero(m_ddev->cap_mask);
1882 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1884 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1885 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1886 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1887 m_ddev->device_issue_pending = edma_issue_pending;
1888 m_ddev->device_tx_status = edma_tx_status;
1889 m_ddev->device_config = edma_slave_config;
1890 m_ddev->device_pause = edma_dma_pause;
1891 m_ddev->device_resume = edma_dma_resume;
1892 m_ddev->device_terminate_all = edma_terminate_all;
1893 m_ddev->device_synchronize = edma_synchronize;
1895 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1896 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1897 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1898 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1900 m_ddev->dev = ecc->dev;
1901 INIT_LIST_HEAD(&m_ddev->channels);
1902 } else if (!ecc->legacy_mode) {
1903 dev_info(ecc->dev, "memcpy is disabled\n");
1906 for (i = 0; i < ecc->num_channels; i++) {
1907 struct edma_chan *echan = &ecc->slave_chans[i];
1908 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1909 echan->ecc = ecc;
1910 echan->vchan.desc_free = edma_desc_free;
1912 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1913 vchan_init(&echan->vchan, m_ddev);
1914 else
1915 vchan_init(&echan->vchan, s_ddev);
1917 INIT_LIST_HEAD(&echan->node);
1918 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1919 echan->slot[j] = -1;
1923 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1924 struct edma_cc *ecc)
1926 int i;
1927 u32 value, cccfg;
1928 s8 (*queue_priority_map)[2];
1930 /* Decode the eDMA3 configuration from CCCFG register */
1931 cccfg = edma_read(ecc, EDMA_CCCFG);
1933 value = GET_NUM_REGN(cccfg);
1934 ecc->num_region = BIT(value);
1936 value = GET_NUM_DMACH(cccfg);
1937 ecc->num_channels = BIT(value + 1);
1939 value = GET_NUM_QDMACH(cccfg);
1940 ecc->num_qchannels = value * 2;
1942 value = GET_NUM_PAENTRY(cccfg);
1943 ecc->num_slots = BIT(value + 4);
1945 value = GET_NUM_EVQUE(cccfg);
1946 ecc->num_tc = value + 1;
1948 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1950 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1951 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1952 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1953 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1954 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1955 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1956 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1958 /* Nothing need to be done if queue priority is provided */
1959 if (pdata->queue_priority_mapping)
1960 return 0;
1963 * Configure TC/queue priority as follows:
1964 * Q0 - priority 0
1965 * Q1 - priority 1
1966 * Q2 - priority 2
1967 * ...
1968 * The meaning of priority numbers: 0 highest priority, 7 lowest
1969 * priority. So Q0 is the highest priority queue and the last queue has
1970 * the lowest priority.
1972 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1973 GFP_KERNEL);
1974 if (!queue_priority_map)
1975 return -ENOMEM;
1977 for (i = 0; i < ecc->num_tc; i++) {
1978 queue_priority_map[i][0] = i;
1979 queue_priority_map[i][1] = i;
1981 queue_priority_map[i][0] = -1;
1982 queue_priority_map[i][1] = -1;
1984 pdata->queue_priority_mapping = queue_priority_map;
1985 /* Default queue has the lowest priority */
1986 pdata->default_queue = i - 1;
1988 return 0;
1991 #if IS_ENABLED(CONFIG_OF)
1992 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1993 size_t sz)
1995 const char pname[] = "ti,edma-xbar-event-map";
1996 struct resource res;
1997 void __iomem *xbar;
1998 s16 (*xbar_chans)[2];
1999 size_t nelm = sz / sizeof(s16);
2000 u32 shift, offset, mux;
2001 int ret, i;
2003 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2004 if (!xbar_chans)
2005 return -ENOMEM;
2007 ret = of_address_to_resource(dev->of_node, 1, &res);
2008 if (ret)
2009 return -ENOMEM;
2011 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2012 if (!xbar)
2013 return -ENOMEM;
2015 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2016 nelm);
2017 if (ret)
2018 return -EIO;
2020 /* Invalidate last entry for the other user of this mess */
2021 nelm >>= 1;
2022 xbar_chans[nelm][0] = -1;
2023 xbar_chans[nelm][1] = -1;
2025 for (i = 0; i < nelm; i++) {
2026 shift = (xbar_chans[i][1] & 0x03) << 3;
2027 offset = xbar_chans[i][1] & 0xfffffffc;
2028 mux = readl(xbar + offset);
2029 mux &= ~(0xff << shift);
2030 mux |= xbar_chans[i][0] << shift;
2031 writel(mux, (xbar + offset));
2034 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2035 return 0;
2038 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2039 bool legacy_mode)
2041 struct edma_soc_info *info;
2042 struct property *prop;
2043 int sz, ret;
2045 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2046 if (!info)
2047 return ERR_PTR(-ENOMEM);
2049 if (legacy_mode) {
2050 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2051 &sz);
2052 if (prop) {
2053 ret = edma_xbar_event_map(dev, info, sz);
2054 if (ret)
2055 return ERR_PTR(ret);
2057 return info;
2060 /* Get the list of channels allocated to be used for memcpy */
2061 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2062 if (prop) {
2063 const char pname[] = "ti,edma-memcpy-channels";
2064 size_t nelm = sz / sizeof(s32);
2065 s32 *memcpy_ch;
2067 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2068 GFP_KERNEL);
2069 if (!memcpy_ch)
2070 return ERR_PTR(-ENOMEM);
2072 ret = of_property_read_u32_array(dev->of_node, pname,
2073 (u32 *)memcpy_ch, nelm);
2074 if (ret)
2075 return ERR_PTR(ret);
2077 memcpy_ch[nelm] = -1;
2078 info->memcpy_channels = memcpy_ch;
2081 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2082 &sz);
2083 if (prop) {
2084 const char pname[] = "ti,edma-reserved-slot-ranges";
2085 u32 (*tmp)[2];
2086 s16 (*rsv_slots)[2];
2087 size_t nelm = sz / sizeof(*tmp);
2088 struct edma_rsv_info *rsv_info;
2089 int i;
2091 if (!nelm)
2092 return info;
2094 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2095 if (!tmp)
2096 return ERR_PTR(-ENOMEM);
2098 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2099 if (!rsv_info) {
2100 kfree(tmp);
2101 return ERR_PTR(-ENOMEM);
2104 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2105 GFP_KERNEL);
2106 if (!rsv_slots) {
2107 kfree(tmp);
2108 return ERR_PTR(-ENOMEM);
2111 ret = of_property_read_u32_array(dev->of_node, pname,
2112 (u32 *)tmp, nelm * 2);
2113 if (ret) {
2114 kfree(tmp);
2115 return ERR_PTR(ret);
2118 for (i = 0; i < nelm; i++) {
2119 rsv_slots[i][0] = tmp[i][0];
2120 rsv_slots[i][1] = tmp[i][1];
2122 rsv_slots[nelm][0] = -1;
2123 rsv_slots[nelm][1] = -1;
2125 info->rsv = rsv_info;
2126 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2128 kfree(tmp);
2131 return info;
2134 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2135 struct of_dma *ofdma)
2137 struct edma_cc *ecc = ofdma->of_dma_data;
2138 struct dma_chan *chan = NULL;
2139 struct edma_chan *echan;
2140 int i;
2142 if (!ecc || dma_spec->args_count < 1)
2143 return NULL;
2145 for (i = 0; i < ecc->num_channels; i++) {
2146 echan = &ecc->slave_chans[i];
2147 if (echan->ch_num == dma_spec->args[0]) {
2148 chan = &echan->vchan.chan;
2149 break;
2153 if (!chan)
2154 return NULL;
2156 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2157 goto out;
2159 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2160 dma_spec->args[1] < echan->ecc->num_tc) {
2161 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2162 goto out;
2165 return NULL;
2166 out:
2167 /* The channel is going to be used as HW synchronized */
2168 echan->hw_triggered = true;
2169 return dma_get_slave_channel(chan);
2171 #else
2172 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2173 bool legacy_mode)
2175 return ERR_PTR(-EINVAL);
2178 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2179 struct of_dma *ofdma)
2181 return NULL;
2183 #endif
2185 static int edma_probe(struct platform_device *pdev)
2187 struct edma_soc_info *info = pdev->dev.platform_data;
2188 s8 (*queue_priority_mapping)[2];
2189 int i, off, ln;
2190 const s16 (*rsv_slots)[2];
2191 const s16 (*xbar_chans)[2];
2192 int irq;
2193 char *irq_name;
2194 struct resource *mem;
2195 struct device_node *node = pdev->dev.of_node;
2196 struct device *dev = &pdev->dev;
2197 struct edma_cc *ecc;
2198 bool legacy_mode = true;
2199 int ret;
2201 if (node) {
2202 const struct of_device_id *match;
2204 match = of_match_node(edma_of_ids, node);
2205 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2206 legacy_mode = false;
2208 info = edma_setup_info_from_dt(dev, legacy_mode);
2209 if (IS_ERR(info)) {
2210 dev_err(dev, "failed to get DT data\n");
2211 return PTR_ERR(info);
2215 if (!info)
2216 return -ENODEV;
2218 pm_runtime_enable(dev);
2219 ret = pm_runtime_get_sync(dev);
2220 if (ret < 0) {
2221 dev_err(dev, "pm_runtime_get_sync() failed\n");
2222 return ret;
2225 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2226 if (ret)
2227 return ret;
2229 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2230 if (!ecc)
2231 return -ENOMEM;
2233 ecc->dev = dev;
2234 ecc->id = pdev->id;
2235 ecc->legacy_mode = legacy_mode;
2236 /* When booting with DT the pdev->id is -1 */
2237 if (ecc->id < 0)
2238 ecc->id = 0;
2240 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2241 if (!mem) {
2242 dev_dbg(dev, "mem resource not found, using index 0\n");
2243 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2244 if (!mem) {
2245 dev_err(dev, "no mem resource?\n");
2246 return -ENODEV;
2249 ecc->base = devm_ioremap_resource(dev, mem);
2250 if (IS_ERR(ecc->base))
2251 return PTR_ERR(ecc->base);
2253 platform_set_drvdata(pdev, ecc);
2255 /* Get eDMA3 configuration from IP */
2256 ret = edma_setup_from_hw(dev, info, ecc);
2257 if (ret)
2258 return ret;
2260 /* Allocate memory based on the information we got from the IP */
2261 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2262 sizeof(*ecc->slave_chans), GFP_KERNEL);
2263 if (!ecc->slave_chans)
2264 return -ENOMEM;
2266 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2267 sizeof(unsigned long), GFP_KERNEL);
2268 if (!ecc->slot_inuse)
2269 return -ENOMEM;
2271 ecc->default_queue = info->default_queue;
2273 for (i = 0; i < ecc->num_slots; i++)
2274 edma_write_slot(ecc, i, &dummy_paramset);
2276 if (info->rsv) {
2277 /* Set the reserved slots in inuse list */
2278 rsv_slots = info->rsv->rsv_slots;
2279 if (rsv_slots) {
2280 for (i = 0; rsv_slots[i][0] != -1; i++) {
2281 off = rsv_slots[i][0];
2282 ln = rsv_slots[i][1];
2283 edma_set_bits(off, ln, ecc->slot_inuse);
2288 /* Clear the xbar mapped channels in unused list */
2289 xbar_chans = info->xbar_chans;
2290 if (xbar_chans) {
2291 for (i = 0; xbar_chans[i][1] != -1; i++) {
2292 off = xbar_chans[i][1];
2296 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2297 if (irq < 0 && node)
2298 irq = irq_of_parse_and_map(node, 0);
2300 if (irq >= 0) {
2301 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2302 dev_name(dev));
2303 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2304 ecc);
2305 if (ret) {
2306 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2307 return ret;
2309 ecc->ccint = irq;
2312 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2313 if (irq < 0 && node)
2314 irq = irq_of_parse_and_map(node, 2);
2316 if (irq >= 0) {
2317 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2318 dev_name(dev));
2319 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2320 ecc);
2321 if (ret) {
2322 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2323 return ret;
2325 ecc->ccerrint = irq;
2328 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2329 if (ecc->dummy_slot < 0) {
2330 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2331 return ecc->dummy_slot;
2334 queue_priority_mapping = info->queue_priority_mapping;
2336 if (!ecc->legacy_mode) {
2337 int lowest_priority = 0;
2338 struct of_phandle_args tc_args;
2340 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2341 sizeof(*ecc->tc_list), GFP_KERNEL);
2342 if (!ecc->tc_list)
2343 return -ENOMEM;
2345 for (i = 0;; i++) {
2346 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2347 1, i, &tc_args);
2348 if (ret || i == ecc->num_tc)
2349 break;
2351 ecc->tc_list[i].node = tc_args.np;
2352 ecc->tc_list[i].id = i;
2353 queue_priority_mapping[i][1] = tc_args.args[0];
2354 if (queue_priority_mapping[i][1] > lowest_priority) {
2355 lowest_priority = queue_priority_mapping[i][1];
2356 info->default_queue = i;
2361 /* Event queue priority mapping */
2362 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2363 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2364 queue_priority_mapping[i][1]);
2366 for (i = 0; i < ecc->num_region; i++) {
2367 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2368 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2369 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2371 ecc->info = info;
2373 /* Init the dma device and channels */
2374 edma_dma_init(ecc, legacy_mode);
2376 for (i = 0; i < ecc->num_channels; i++) {
2377 /* Assign all channels to the default queue */
2378 edma_assign_channel_eventq(&ecc->slave_chans[i],
2379 info->default_queue);
2380 /* Set entry slot to the dummy slot */
2381 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2384 ecc->dma_slave.filter.map = info->slave_map;
2385 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2386 ecc->dma_slave.filter.fn = edma_filter_fn;
2388 ret = dma_async_device_register(&ecc->dma_slave);
2389 if (ret) {
2390 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2391 goto err_reg1;
2394 if (ecc->dma_memcpy) {
2395 ret = dma_async_device_register(ecc->dma_memcpy);
2396 if (ret) {
2397 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2398 ret);
2399 dma_async_device_unregister(&ecc->dma_slave);
2400 goto err_reg1;
2404 if (node)
2405 of_dma_controller_register(node, of_edma_xlate, ecc);
2407 dev_info(dev, "TI EDMA DMA engine driver\n");
2409 return 0;
2411 err_reg1:
2412 edma_free_slot(ecc, ecc->dummy_slot);
2413 return ret;
2416 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2418 struct edma_chan *echan, *_echan;
2420 list_for_each_entry_safe(echan, _echan,
2421 &dmadev->channels, vchan.chan.device_node) {
2422 list_del(&echan->vchan.chan.device_node);
2423 tasklet_kill(&echan->vchan.task);
2427 static int edma_remove(struct platform_device *pdev)
2429 struct device *dev = &pdev->dev;
2430 struct edma_cc *ecc = dev_get_drvdata(dev);
2432 devm_free_irq(dev, ecc->ccint, ecc);
2433 devm_free_irq(dev, ecc->ccerrint, ecc);
2435 edma_cleanupp_vchan(&ecc->dma_slave);
2437 if (dev->of_node)
2438 of_dma_controller_free(dev->of_node);
2439 dma_async_device_unregister(&ecc->dma_slave);
2440 if (ecc->dma_memcpy)
2441 dma_async_device_unregister(ecc->dma_memcpy);
2442 edma_free_slot(ecc, ecc->dummy_slot);
2444 return 0;
2447 #ifdef CONFIG_PM_SLEEP
2448 static int edma_pm_suspend(struct device *dev)
2450 struct edma_cc *ecc = dev_get_drvdata(dev);
2451 struct edma_chan *echan = ecc->slave_chans;
2452 int i;
2454 for (i = 0; i < ecc->num_channels; i++) {
2455 if (echan[i].alloced)
2456 edma_setup_interrupt(&echan[i], false);
2459 return 0;
2462 static int edma_pm_resume(struct device *dev)
2464 struct edma_cc *ecc = dev_get_drvdata(dev);
2465 struct edma_chan *echan = ecc->slave_chans;
2466 int i;
2467 s8 (*queue_priority_mapping)[2];
2469 /* re initialize dummy slot to dummy param set */
2470 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2472 queue_priority_mapping = ecc->info->queue_priority_mapping;
2474 /* Event queue priority mapping */
2475 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2476 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2477 queue_priority_mapping[i][1]);
2479 for (i = 0; i < ecc->num_channels; i++) {
2480 if (echan[i].alloced) {
2481 /* ensure access through shadow region 0 */
2482 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2483 BIT(i & 0x1f));
2485 edma_setup_interrupt(&echan[i], true);
2487 /* Set up channel -> slot mapping for the entry slot */
2488 edma_set_chmap(&echan[i], echan[i].slot[0]);
2492 return 0;
2494 #endif
2496 static const struct dev_pm_ops edma_pm_ops = {
2497 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2500 static struct platform_driver edma_driver = {
2501 .probe = edma_probe,
2502 .remove = edma_remove,
2503 .driver = {
2504 .name = "edma",
2505 .pm = &edma_pm_ops,
2506 .of_match_table = edma_of_ids,
2510 static int edma_tptc_probe(struct platform_device *pdev)
2512 pm_runtime_enable(&pdev->dev);
2513 return pm_runtime_get_sync(&pdev->dev);
2516 static struct platform_driver edma_tptc_driver = {
2517 .probe = edma_tptc_probe,
2518 .driver = {
2519 .name = "edma3-tptc",
2520 .of_match_table = edma_tptc_of_ids,
2524 bool edma_filter_fn(struct dma_chan *chan, void *param)
2526 bool match = false;
2528 if (chan->device->dev->driver == &edma_driver.driver) {
2529 struct edma_chan *echan = to_edma_chan(chan);
2530 unsigned ch_req = *(unsigned *)param;
2531 if (ch_req == echan->ch_num) {
2532 /* The channel is going to be used as HW synchronized */
2533 echan->hw_triggered = true;
2534 match = true;
2537 return match;
2539 EXPORT_SYMBOL(edma_filter_fn);
2541 static int edma_init(void)
2543 int ret;
2545 ret = platform_driver_register(&edma_tptc_driver);
2546 if (ret)
2547 return ret;
2549 return platform_driver_register(&edma_driver);
2551 subsys_initcall(edma_init);
2553 static void __exit edma_exit(void)
2555 platform_driver_unregister(&edma_driver);
2556 platform_driver_unregister(&edma_tptc_driver);
2558 module_exit(edma_exit);
2560 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2561 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2562 MODULE_LICENSE("GPL v2");