xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / hid / hid-core.c
blobc2560aae55420860430b9a5aa1a41f93aa701474
1 /*
2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
39 #include "hid-ids.h"
42 * Version Information
45 #define DRIVER_DESC "HID core driver"
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
57 * Register a new report for a device.
60 struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
62 struct hid_report_enum *report_enum = device->report_enum + type;
63 struct hid_report *report;
65 if (id >= HID_MAX_IDS)
66 return NULL;
67 if (report_enum->report_id_hash[id])
68 return report_enum->report_id_hash[id];
70 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
71 if (!report)
72 return NULL;
74 if (id != 0)
75 report_enum->numbered = 1;
77 report->id = id;
78 report->type = type;
79 report->size = 0;
80 report->device = device;
81 report_enum->report_id_hash[id] = report;
83 list_add_tail(&report->list, &report_enum->report_list);
85 return report;
87 EXPORT_SYMBOL_GPL(hid_register_report);
90 * Register a new field for this report.
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
95 struct hid_field *field;
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 values * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
114 return field;
118 * Open a collection. The type/usage is pushed on the stack.
121 static int open_collection(struct hid_parser *parser, unsigned type)
123 struct hid_collection *collection;
124 unsigned usage;
126 usage = parser->local.usage[0];
128 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
129 hid_err(parser->device, "collection stack overflow\n");
130 return -EINVAL;
133 if (parser->device->maxcollection == parser->device->collection_size) {
134 collection = kmalloc(sizeof(struct hid_collection) *
135 parser->device->collection_size * 2, GFP_KERNEL);
136 if (collection == NULL) {
137 hid_err(parser->device, "failed to reallocate collection array\n");
138 return -ENOMEM;
140 memcpy(collection, parser->device->collection,
141 sizeof(struct hid_collection) *
142 parser->device->collection_size);
143 memset(collection + parser->device->collection_size, 0,
144 sizeof(struct hid_collection) *
145 parser->device->collection_size);
146 kfree(parser->device->collection);
147 parser->device->collection = collection;
148 parser->device->collection_size *= 2;
151 parser->collection_stack[parser->collection_stack_ptr++] =
152 parser->device->maxcollection;
154 collection = parser->device->collection +
155 parser->device->maxcollection++;
156 collection->type = type;
157 collection->usage = usage;
158 collection->level = parser->collection_stack_ptr - 1;
160 if (type == HID_COLLECTION_APPLICATION)
161 parser->device->maxapplication++;
163 return 0;
167 * Close a collection.
170 static int close_collection(struct hid_parser *parser)
172 if (!parser->collection_stack_ptr) {
173 hid_err(parser->device, "collection stack underflow\n");
174 return -EINVAL;
176 parser->collection_stack_ptr--;
177 return 0;
181 * Climb up the stack, search for the specified collection type
182 * and return the usage.
185 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
187 struct hid_collection *collection = parser->device->collection;
188 int n;
190 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
191 unsigned index = parser->collection_stack[n];
192 if (collection[index].type == type)
193 return collection[index].usage;
195 return 0; /* we know nothing about this usage type */
199 * Add a usage to the temporary parser table.
202 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
204 if (parser->local.usage_index >= HID_MAX_USAGES) {
205 hid_err(parser->device, "usage index exceeded\n");
206 return -1;
208 parser->local.usage[parser->local.usage_index] = usage;
209 parser->local.collection_index[parser->local.usage_index] =
210 parser->collection_stack_ptr ?
211 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
212 parser->local.usage_index++;
213 return 0;
217 * Register a new field for this report.
220 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
222 struct hid_report *report;
223 struct hid_field *field;
224 unsigned usages;
225 unsigned offset;
226 unsigned i;
228 report = hid_register_report(parser->device, report_type, parser->global.report_id);
229 if (!report) {
230 hid_err(parser->device, "hid_register_report failed\n");
231 return -1;
234 /* Handle both signed and unsigned cases properly */
235 if ((parser->global.logical_minimum < 0 &&
236 parser->global.logical_maximum <
237 parser->global.logical_minimum) ||
238 (parser->global.logical_minimum >= 0 &&
239 (__u32)parser->global.logical_maximum <
240 (__u32)parser->global.logical_minimum)) {
241 dbg_hid("logical range invalid 0x%x 0x%x\n",
242 parser->global.logical_minimum,
243 parser->global.logical_maximum);
244 return -1;
247 offset = report->size;
248 report->size += parser->global.report_size * parser->global.report_count;
250 if (!parser->local.usage_index) /* Ignore padding fields */
251 return 0;
253 usages = max_t(unsigned, parser->local.usage_index,
254 parser->global.report_count);
256 field = hid_register_field(report, usages, parser->global.report_count);
257 if (!field)
258 return 0;
260 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
261 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
262 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
264 for (i = 0; i < usages; i++) {
265 unsigned j = i;
266 /* Duplicate the last usage we parsed if we have excess values */
267 if (i >= parser->local.usage_index)
268 j = parser->local.usage_index - 1;
269 field->usage[i].hid = parser->local.usage[j];
270 field->usage[i].collection_index =
271 parser->local.collection_index[j];
272 field->usage[i].usage_index = i;
275 field->maxusage = usages;
276 field->flags = flags;
277 field->report_offset = offset;
278 field->report_type = report_type;
279 field->report_size = parser->global.report_size;
280 field->report_count = parser->global.report_count;
281 field->logical_minimum = parser->global.logical_minimum;
282 field->logical_maximum = parser->global.logical_maximum;
283 field->physical_minimum = parser->global.physical_minimum;
284 field->physical_maximum = parser->global.physical_maximum;
285 field->unit_exponent = parser->global.unit_exponent;
286 field->unit = parser->global.unit;
288 return 0;
292 * Read data value from item.
295 static u32 item_udata(struct hid_item *item)
297 switch (item->size) {
298 case 1: return item->data.u8;
299 case 2: return item->data.u16;
300 case 4: return item->data.u32;
302 return 0;
305 static s32 item_sdata(struct hid_item *item)
307 switch (item->size) {
308 case 1: return item->data.s8;
309 case 2: return item->data.s16;
310 case 4: return item->data.s32;
312 return 0;
316 * Process a global item.
319 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
321 __s32 raw_value;
322 switch (item->tag) {
323 case HID_GLOBAL_ITEM_TAG_PUSH:
325 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
326 hid_err(parser->device, "global environment stack overflow\n");
327 return -1;
330 memcpy(parser->global_stack + parser->global_stack_ptr++,
331 &parser->global, sizeof(struct hid_global));
332 return 0;
334 case HID_GLOBAL_ITEM_TAG_POP:
336 if (!parser->global_stack_ptr) {
337 hid_err(parser->device, "global environment stack underflow\n");
338 return -1;
341 memcpy(&parser->global, parser->global_stack +
342 --parser->global_stack_ptr, sizeof(struct hid_global));
343 return 0;
345 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
346 parser->global.usage_page = item_udata(item);
347 return 0;
349 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
350 parser->global.logical_minimum = item_sdata(item);
351 return 0;
353 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
354 if (parser->global.logical_minimum < 0)
355 parser->global.logical_maximum = item_sdata(item);
356 else
357 parser->global.logical_maximum = item_udata(item);
358 return 0;
360 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
361 parser->global.physical_minimum = item_sdata(item);
362 return 0;
364 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
365 if (parser->global.physical_minimum < 0)
366 parser->global.physical_maximum = item_sdata(item);
367 else
368 parser->global.physical_maximum = item_udata(item);
369 return 0;
371 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
372 /* Many devices provide unit exponent as a two's complement
373 * nibble due to the common misunderstanding of HID
374 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
375 * both this and the standard encoding. */
376 raw_value = item_sdata(item);
377 if (!(raw_value & 0xfffffff0))
378 parser->global.unit_exponent = hid_snto32(raw_value, 4);
379 else
380 parser->global.unit_exponent = raw_value;
381 return 0;
383 case HID_GLOBAL_ITEM_TAG_UNIT:
384 parser->global.unit = item_udata(item);
385 return 0;
387 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
388 parser->global.report_size = item_udata(item);
389 if (parser->global.report_size > 128) {
390 hid_err(parser->device, "invalid report_size %d\n",
391 parser->global.report_size);
392 return -1;
394 return 0;
396 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
397 parser->global.report_count = item_udata(item);
398 if (parser->global.report_count > HID_MAX_USAGES) {
399 hid_err(parser->device, "invalid report_count %d\n",
400 parser->global.report_count);
401 return -1;
403 return 0;
405 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
406 parser->global.report_id = item_udata(item);
407 if (parser->global.report_id == 0 ||
408 parser->global.report_id >= HID_MAX_IDS) {
409 hid_err(parser->device, "report_id %u is invalid\n",
410 parser->global.report_id);
411 return -1;
413 return 0;
415 default:
416 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
417 return -1;
422 * Process a local item.
425 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
427 __u32 data;
428 unsigned n;
429 __u32 count;
431 data = item_udata(item);
433 switch (item->tag) {
434 case HID_LOCAL_ITEM_TAG_DELIMITER:
436 if (data) {
438 * We treat items before the first delimiter
439 * as global to all usage sets (branch 0).
440 * In the moment we process only these global
441 * items and the first delimiter set.
443 if (parser->local.delimiter_depth != 0) {
444 hid_err(parser->device, "nested delimiters\n");
445 return -1;
447 parser->local.delimiter_depth++;
448 parser->local.delimiter_branch++;
449 } else {
450 if (parser->local.delimiter_depth < 1) {
451 hid_err(parser->device, "bogus close delimiter\n");
452 return -1;
454 parser->local.delimiter_depth--;
456 return 0;
458 case HID_LOCAL_ITEM_TAG_USAGE:
460 if (parser->local.delimiter_branch > 1) {
461 dbg_hid("alternative usage ignored\n");
462 return 0;
465 if (item->size <= 2)
466 data = (parser->global.usage_page << 16) + data;
468 return hid_add_usage(parser, data);
470 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
472 if (parser->local.delimiter_branch > 1) {
473 dbg_hid("alternative usage ignored\n");
474 return 0;
477 if (item->size <= 2)
478 data = (parser->global.usage_page << 16) + data;
480 parser->local.usage_minimum = data;
481 return 0;
483 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
485 if (parser->local.delimiter_branch > 1) {
486 dbg_hid("alternative usage ignored\n");
487 return 0;
490 if (item->size <= 2)
491 data = (parser->global.usage_page << 16) + data;
493 count = data - parser->local.usage_minimum;
494 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
496 * We do not warn if the name is not set, we are
497 * actually pre-scanning the device.
499 if (dev_name(&parser->device->dev))
500 hid_warn(parser->device,
501 "ignoring exceeding usage max\n");
502 data = HID_MAX_USAGES - parser->local.usage_index +
503 parser->local.usage_minimum - 1;
504 if (data <= 0) {
505 hid_err(parser->device,
506 "no more usage index available\n");
507 return -1;
511 for (n = parser->local.usage_minimum; n <= data; n++)
512 if (hid_add_usage(parser, n)) {
513 dbg_hid("hid_add_usage failed\n");
514 return -1;
516 return 0;
518 default:
520 dbg_hid("unknown local item tag 0x%x\n", item->tag);
521 return 0;
523 return 0;
527 * Process a main item.
530 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
532 __u32 data;
533 int ret;
535 data = item_udata(item);
537 switch (item->tag) {
538 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
539 ret = open_collection(parser, data & 0xff);
540 break;
541 case HID_MAIN_ITEM_TAG_END_COLLECTION:
542 ret = close_collection(parser);
543 break;
544 case HID_MAIN_ITEM_TAG_INPUT:
545 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
546 break;
547 case HID_MAIN_ITEM_TAG_OUTPUT:
548 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
549 break;
550 case HID_MAIN_ITEM_TAG_FEATURE:
551 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
552 break;
553 default:
554 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
555 ret = 0;
558 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
560 return ret;
564 * Process a reserved item.
567 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
569 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
570 return 0;
574 * Free a report and all registered fields. The field->usage and
575 * field->value table's are allocated behind the field, so we need
576 * only to free(field) itself.
579 static void hid_free_report(struct hid_report *report)
581 unsigned n;
583 for (n = 0; n < report->maxfield; n++)
584 kfree(report->field[n]);
585 kfree(report);
589 * Close report. This function returns the device
590 * state to the point prior to hid_open_report().
592 static void hid_close_report(struct hid_device *device)
594 unsigned i, j;
596 for (i = 0; i < HID_REPORT_TYPES; i++) {
597 struct hid_report_enum *report_enum = device->report_enum + i;
599 for (j = 0; j < HID_MAX_IDS; j++) {
600 struct hid_report *report = report_enum->report_id_hash[j];
601 if (report)
602 hid_free_report(report);
604 memset(report_enum, 0, sizeof(*report_enum));
605 INIT_LIST_HEAD(&report_enum->report_list);
608 kfree(device->rdesc);
609 device->rdesc = NULL;
610 device->rsize = 0;
612 kfree(device->collection);
613 device->collection = NULL;
614 device->collection_size = 0;
615 device->maxcollection = 0;
616 device->maxapplication = 0;
618 device->status &= ~HID_STAT_PARSED;
622 * Free a device structure, all reports, and all fields.
625 static void hid_device_release(struct device *dev)
627 struct hid_device *hid = to_hid_device(dev);
629 hid_close_report(hid);
630 kfree(hid->dev_rdesc);
631 kfree(hid);
635 * Fetch a report description item from the data stream. We support long
636 * items, though they are not used yet.
639 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
641 u8 b;
643 if ((end - start) <= 0)
644 return NULL;
646 b = *start++;
648 item->type = (b >> 2) & 3;
649 item->tag = (b >> 4) & 15;
651 if (item->tag == HID_ITEM_TAG_LONG) {
653 item->format = HID_ITEM_FORMAT_LONG;
655 if ((end - start) < 2)
656 return NULL;
658 item->size = *start++;
659 item->tag = *start++;
661 if ((end - start) < item->size)
662 return NULL;
664 item->data.longdata = start;
665 start += item->size;
666 return start;
669 item->format = HID_ITEM_FORMAT_SHORT;
670 item->size = b & 3;
672 switch (item->size) {
673 case 0:
674 return start;
676 case 1:
677 if ((end - start) < 1)
678 return NULL;
679 item->data.u8 = *start++;
680 return start;
682 case 2:
683 if ((end - start) < 2)
684 return NULL;
685 item->data.u16 = get_unaligned_le16(start);
686 start = (__u8 *)((__le16 *)start + 1);
687 return start;
689 case 3:
690 item->size++;
691 if ((end - start) < 4)
692 return NULL;
693 item->data.u32 = get_unaligned_le32(start);
694 start = (__u8 *)((__le32 *)start + 1);
695 return start;
698 return NULL;
701 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
703 struct hid_device *hid = parser->device;
705 if (usage == HID_DG_CONTACTID)
706 hid->group = HID_GROUP_MULTITOUCH;
709 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
711 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
712 parser->global.report_size == 8)
713 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
716 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
718 struct hid_device *hid = parser->device;
719 int i;
721 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
722 type == HID_COLLECTION_PHYSICAL)
723 hid->group = HID_GROUP_SENSOR_HUB;
725 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
726 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
727 hid->group == HID_GROUP_MULTITOUCH)
728 hid->group = HID_GROUP_GENERIC;
730 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
731 for (i = 0; i < parser->local.usage_index; i++)
732 if (parser->local.usage[i] == HID_GD_POINTER)
733 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
735 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
736 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
739 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
741 __u32 data;
742 int i;
744 data = item_udata(item);
746 switch (item->tag) {
747 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
748 hid_scan_collection(parser, data & 0xff);
749 break;
750 case HID_MAIN_ITEM_TAG_END_COLLECTION:
751 break;
752 case HID_MAIN_ITEM_TAG_INPUT:
753 /* ignore constant inputs, they will be ignored by hid-input */
754 if (data & HID_MAIN_ITEM_CONSTANT)
755 break;
756 for (i = 0; i < parser->local.usage_index; i++)
757 hid_scan_input_usage(parser, parser->local.usage[i]);
758 break;
759 case HID_MAIN_ITEM_TAG_OUTPUT:
760 break;
761 case HID_MAIN_ITEM_TAG_FEATURE:
762 for (i = 0; i < parser->local.usage_index; i++)
763 hid_scan_feature_usage(parser, parser->local.usage[i]);
764 break;
767 /* Reset the local parser environment */
768 memset(&parser->local, 0, sizeof(parser->local));
770 return 0;
774 * Scan a report descriptor before the device is added to the bus.
775 * Sets device groups and other properties that determine what driver
776 * to load.
778 static int hid_scan_report(struct hid_device *hid)
780 struct hid_parser *parser;
781 struct hid_item item;
782 __u8 *start = hid->dev_rdesc;
783 __u8 *end = start + hid->dev_rsize;
784 static int (*dispatch_type[])(struct hid_parser *parser,
785 struct hid_item *item) = {
786 hid_scan_main,
787 hid_parser_global,
788 hid_parser_local,
789 hid_parser_reserved
792 parser = vzalloc(sizeof(struct hid_parser));
793 if (!parser)
794 return -ENOMEM;
796 parser->device = hid;
797 hid->group = HID_GROUP_GENERIC;
800 * The parsing is simpler than the one in hid_open_report() as we should
801 * be robust against hid errors. Those errors will be raised by
802 * hid_open_report() anyway.
804 while ((start = fetch_item(start, end, &item)) != NULL)
805 dispatch_type[item.type](parser, &item);
808 * Handle special flags set during scanning.
810 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
811 (hid->group == HID_GROUP_MULTITOUCH))
812 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
815 * Vendor specific handlings
817 switch (hid->vendor) {
818 case USB_VENDOR_ID_WACOM:
819 hid->group = HID_GROUP_WACOM;
820 break;
821 case USB_VENDOR_ID_SYNAPTICS:
822 if (hid->group == HID_GROUP_GENERIC)
823 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
824 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
826 * hid-rmi should take care of them,
827 * not hid-generic
829 hid->group = HID_GROUP_RMI;
830 break;
833 vfree(parser);
834 return 0;
838 * hid_parse_report - parse device report
840 * @device: hid device
841 * @start: report start
842 * @size: report size
844 * Allocate the device report as read by the bus driver. This function should
845 * only be called from parse() in ll drivers.
847 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
849 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
850 if (!hid->dev_rdesc)
851 return -ENOMEM;
852 hid->dev_rsize = size;
853 return 0;
855 EXPORT_SYMBOL_GPL(hid_parse_report);
857 static const char * const hid_report_names[] = {
858 "HID_INPUT_REPORT",
859 "HID_OUTPUT_REPORT",
860 "HID_FEATURE_REPORT",
863 * hid_validate_values - validate existing device report's value indexes
865 * @device: hid device
866 * @type: which report type to examine
867 * @id: which report ID to examine (0 for first)
868 * @field_index: which report field to examine
869 * @report_counts: expected number of values
871 * Validate the number of values in a given field of a given report, after
872 * parsing.
874 struct hid_report *hid_validate_values(struct hid_device *hid,
875 unsigned int type, unsigned int id,
876 unsigned int field_index,
877 unsigned int report_counts)
879 struct hid_report *report;
881 if (type > HID_FEATURE_REPORT) {
882 hid_err(hid, "invalid HID report type %u\n", type);
883 return NULL;
886 if (id >= HID_MAX_IDS) {
887 hid_err(hid, "invalid HID report id %u\n", id);
888 return NULL;
892 * Explicitly not using hid_get_report() here since it depends on
893 * ->numbered being checked, which may not always be the case when
894 * drivers go to access report values.
896 if (id == 0) {
898 * Validating on id 0 means we should examine the first
899 * report in the list.
901 report = list_entry(
902 hid->report_enum[type].report_list.next,
903 struct hid_report, list);
904 } else {
905 report = hid->report_enum[type].report_id_hash[id];
907 if (!report) {
908 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
909 return NULL;
911 if (report->maxfield <= field_index) {
912 hid_err(hid, "not enough fields in %s %u\n",
913 hid_report_names[type], id);
914 return NULL;
916 if (report->field[field_index]->report_count < report_counts) {
917 hid_err(hid, "not enough values in %s %u field %u\n",
918 hid_report_names[type], id, field_index);
919 return NULL;
921 return report;
923 EXPORT_SYMBOL_GPL(hid_validate_values);
926 * hid_open_report - open a driver-specific device report
928 * @device: hid device
930 * Parse a report description into a hid_device structure. Reports are
931 * enumerated, fields are attached to these reports.
932 * 0 returned on success, otherwise nonzero error value.
934 * This function (or the equivalent hid_parse() macro) should only be
935 * called from probe() in drivers, before starting the device.
937 int hid_open_report(struct hid_device *device)
939 struct hid_parser *parser;
940 struct hid_item item;
941 unsigned int size;
942 __u8 *start;
943 __u8 *buf;
944 __u8 *end;
945 int ret;
946 static int (*dispatch_type[])(struct hid_parser *parser,
947 struct hid_item *item) = {
948 hid_parser_main,
949 hid_parser_global,
950 hid_parser_local,
951 hid_parser_reserved
954 if (WARN_ON(device->status & HID_STAT_PARSED))
955 return -EBUSY;
957 start = device->dev_rdesc;
958 if (WARN_ON(!start))
959 return -ENODEV;
960 size = device->dev_rsize;
962 buf = kmemdup(start, size, GFP_KERNEL);
963 if (buf == NULL)
964 return -ENOMEM;
966 if (device->driver->report_fixup)
967 start = device->driver->report_fixup(device, buf, &size);
968 else
969 start = buf;
971 start = kmemdup(start, size, GFP_KERNEL);
972 kfree(buf);
973 if (start == NULL)
974 return -ENOMEM;
976 device->rdesc = start;
977 device->rsize = size;
979 parser = vzalloc(sizeof(struct hid_parser));
980 if (!parser) {
981 ret = -ENOMEM;
982 goto err;
985 parser->device = device;
987 end = start + size;
989 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
990 sizeof(struct hid_collection), GFP_KERNEL);
991 if (!device->collection) {
992 ret = -ENOMEM;
993 goto err;
995 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
997 ret = -EINVAL;
998 while ((start = fetch_item(start, end, &item)) != NULL) {
1000 if (item.format != HID_ITEM_FORMAT_SHORT) {
1001 hid_err(device, "unexpected long global item\n");
1002 goto err;
1005 if (dispatch_type[item.type](parser, &item)) {
1006 hid_err(device, "item %u %u %u %u parsing failed\n",
1007 item.format, (unsigned)item.size,
1008 (unsigned)item.type, (unsigned)item.tag);
1009 goto err;
1012 if (start == end) {
1013 if (parser->collection_stack_ptr) {
1014 hid_err(device, "unbalanced collection at end of report description\n");
1015 goto err;
1017 if (parser->local.delimiter_depth) {
1018 hid_err(device, "unbalanced delimiter at end of report description\n");
1019 goto err;
1021 vfree(parser);
1022 device->status |= HID_STAT_PARSED;
1023 return 0;
1027 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1028 err:
1029 vfree(parser);
1030 hid_close_report(device);
1031 return ret;
1033 EXPORT_SYMBOL_GPL(hid_open_report);
1036 * Convert a signed n-bit integer to signed 32-bit integer. Common
1037 * cases are done through the compiler, the screwed things has to be
1038 * done by hand.
1041 static s32 snto32(__u32 value, unsigned n)
1043 switch (n) {
1044 case 8: return ((__s8)value);
1045 case 16: return ((__s16)value);
1046 case 32: return ((__s32)value);
1048 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1051 s32 hid_snto32(__u32 value, unsigned n)
1053 return snto32(value, n);
1055 EXPORT_SYMBOL_GPL(hid_snto32);
1058 * Convert a signed 32-bit integer to a signed n-bit integer.
1061 static u32 s32ton(__s32 value, unsigned n)
1063 s32 a = value >> (n - 1);
1064 if (a && a != -1)
1065 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1066 return value & ((1 << n) - 1);
1070 * Extract/implement a data field from/to a little endian report (bit array).
1072 * Code sort-of follows HID spec:
1073 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1075 * While the USB HID spec allows unlimited length bit fields in "report
1076 * descriptors", most devices never use more than 16 bits.
1077 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1078 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1081 static u32 __extract(u8 *report, unsigned offset, int n)
1083 unsigned int idx = offset / 8;
1084 unsigned int bit_nr = 0;
1085 unsigned int bit_shift = offset % 8;
1086 int bits_to_copy = 8 - bit_shift;
1087 u32 value = 0;
1088 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1090 while (n > 0) {
1091 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1092 n -= bits_to_copy;
1093 bit_nr += bits_to_copy;
1094 bits_to_copy = 8;
1095 bit_shift = 0;
1096 idx++;
1099 return value & mask;
1102 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1103 unsigned offset, unsigned n)
1105 if (n > 32) {
1106 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1107 n, current->comm);
1108 n = 32;
1111 return __extract(report, offset, n);
1113 EXPORT_SYMBOL_GPL(hid_field_extract);
1116 * "implement" : set bits in a little endian bit stream.
1117 * Same concepts as "extract" (see comments above).
1118 * The data mangled in the bit stream remains in little endian
1119 * order the whole time. It make more sense to talk about
1120 * endianness of register values by considering a register
1121 * a "cached" copy of the little endian bit stream.
1124 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1126 unsigned int idx = offset / 8;
1127 unsigned int bit_shift = offset % 8;
1128 int bits_to_set = 8 - bit_shift;
1130 while (n - bits_to_set >= 0) {
1131 report[idx] &= ~(0xff << bit_shift);
1132 report[idx] |= value << bit_shift;
1133 value >>= bits_to_set;
1134 n -= bits_to_set;
1135 bits_to_set = 8;
1136 bit_shift = 0;
1137 idx++;
1140 /* last nibble */
1141 if (n) {
1142 u8 bit_mask = ((1U << n) - 1);
1143 report[idx] &= ~(bit_mask << bit_shift);
1144 report[idx] |= value << bit_shift;
1148 static void implement(const struct hid_device *hid, u8 *report,
1149 unsigned offset, unsigned n, u32 value)
1151 if (unlikely(n > 32)) {
1152 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1153 __func__, n, current->comm);
1154 n = 32;
1155 } else if (n < 32) {
1156 u32 m = (1U << n) - 1;
1158 if (unlikely(value > m)) {
1159 hid_warn(hid,
1160 "%s() called with too large value %d (n: %d)! (%s)\n",
1161 __func__, value, n, current->comm);
1162 WARN_ON(1);
1163 value &= m;
1167 __implement(report, offset, n, value);
1171 * Search an array for a value.
1174 static int search(__s32 *array, __s32 value, unsigned n)
1176 while (n--) {
1177 if (*array++ == value)
1178 return 0;
1180 return -1;
1184 * hid_match_report - check if driver's raw_event should be called
1186 * @hid: hid device
1187 * @report_type: type to match against
1189 * compare hid->driver->report_table->report_type to report->type
1191 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1193 const struct hid_report_id *id = hid->driver->report_table;
1195 if (!id) /* NULL means all */
1196 return 1;
1198 for (; id->report_type != HID_TERMINATOR; id++)
1199 if (id->report_type == HID_ANY_ID ||
1200 id->report_type == report->type)
1201 return 1;
1202 return 0;
1206 * hid_match_usage - check if driver's event should be called
1208 * @hid: hid device
1209 * @usage: usage to match against
1211 * compare hid->driver->usage_table->usage_{type,code} to
1212 * usage->usage_{type,code}
1214 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1216 const struct hid_usage_id *id = hid->driver->usage_table;
1218 if (!id) /* NULL means all */
1219 return 1;
1221 for (; id->usage_type != HID_ANY_ID - 1; id++)
1222 if ((id->usage_hid == HID_ANY_ID ||
1223 id->usage_hid == usage->hid) &&
1224 (id->usage_type == HID_ANY_ID ||
1225 id->usage_type == usage->type) &&
1226 (id->usage_code == HID_ANY_ID ||
1227 id->usage_code == usage->code))
1228 return 1;
1229 return 0;
1232 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1233 struct hid_usage *usage, __s32 value, int interrupt)
1235 struct hid_driver *hdrv = hid->driver;
1236 int ret;
1238 if (!list_empty(&hid->debug_list))
1239 hid_dump_input(hid, usage, value);
1241 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1242 ret = hdrv->event(hid, field, usage, value);
1243 if (ret != 0) {
1244 if (ret < 0)
1245 hid_err(hid, "%s's event failed with %d\n",
1246 hdrv->name, ret);
1247 return;
1251 if (hid->claimed & HID_CLAIMED_INPUT)
1252 hidinput_hid_event(hid, field, usage, value);
1253 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1254 hid->hiddev_hid_event(hid, field, usage, value);
1258 * Analyse a received field, and fetch the data from it. The field
1259 * content is stored for next report processing (we do differential
1260 * reporting to the layer).
1263 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1264 __u8 *data, int interrupt)
1266 unsigned n;
1267 unsigned count = field->report_count;
1268 unsigned offset = field->report_offset;
1269 unsigned size = field->report_size;
1270 __s32 min = field->logical_minimum;
1271 __s32 max = field->logical_maximum;
1272 __s32 *value;
1274 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1275 if (!value)
1276 return;
1278 for (n = 0; n < count; n++) {
1280 value[n] = min < 0 ?
1281 snto32(hid_field_extract(hid, data, offset + n * size,
1282 size), size) :
1283 hid_field_extract(hid, data, offset + n * size, size);
1285 /* Ignore report if ErrorRollOver */
1286 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1287 value[n] >= min && value[n] <= max &&
1288 value[n] - min < field->maxusage &&
1289 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1290 goto exit;
1293 for (n = 0; n < count; n++) {
1295 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1296 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1297 continue;
1300 if (field->value[n] >= min && field->value[n] <= max
1301 && field->value[n] - min < field->maxusage
1302 && field->usage[field->value[n] - min].hid
1303 && search(value, field->value[n], count))
1304 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1306 if (value[n] >= min && value[n] <= max
1307 && value[n] - min < field->maxusage
1308 && field->usage[value[n] - min].hid
1309 && search(field->value, value[n], count))
1310 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1313 memcpy(field->value, value, count * sizeof(__s32));
1314 exit:
1315 kfree(value);
1319 * Output the field into the report.
1322 static void hid_output_field(const struct hid_device *hid,
1323 struct hid_field *field, __u8 *data)
1325 unsigned count = field->report_count;
1326 unsigned offset = field->report_offset;
1327 unsigned size = field->report_size;
1328 unsigned n;
1330 for (n = 0; n < count; n++) {
1331 if (field->logical_minimum < 0) /* signed values */
1332 implement(hid, data, offset + n * size, size,
1333 s32ton(field->value[n], size));
1334 else /* unsigned values */
1335 implement(hid, data, offset + n * size, size,
1336 field->value[n]);
1341 * Create a report. 'data' has to be allocated using
1342 * hid_alloc_report_buf() so that it has proper size.
1345 void hid_output_report(struct hid_report *report, __u8 *data)
1347 unsigned n;
1349 if (report->id > 0)
1350 *data++ = report->id;
1352 memset(data, 0, ((report->size - 1) >> 3) + 1);
1353 for (n = 0; n < report->maxfield; n++)
1354 hid_output_field(report->device, report->field[n], data);
1356 EXPORT_SYMBOL_GPL(hid_output_report);
1359 * Allocator for buffer that is going to be passed to hid_output_report()
1361 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1364 * 7 extra bytes are necessary to achieve proper functionality
1365 * of implement() working on 8 byte chunks
1368 int len = hid_report_len(report) + 7;
1370 return kmalloc(len, flags);
1372 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1375 * Set a field value. The report this field belongs to has to be
1376 * created and transferred to the device, to set this value in the
1377 * device.
1380 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1382 unsigned size;
1384 if (!field)
1385 return -1;
1387 size = field->report_size;
1389 hid_dump_input(field->report->device, field->usage + offset, value);
1391 if (offset >= field->report_count) {
1392 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1393 offset, field->report_count);
1394 return -1;
1396 if (field->logical_minimum < 0) {
1397 if (value != snto32(s32ton(value, size), size)) {
1398 hid_err(field->report->device, "value %d is out of range\n", value);
1399 return -1;
1402 field->value[offset] = value;
1403 return 0;
1405 EXPORT_SYMBOL_GPL(hid_set_field);
1407 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1408 const u8 *data)
1410 struct hid_report *report;
1411 unsigned int n = 0; /* Normally report number is 0 */
1413 /* Device uses numbered reports, data[0] is report number */
1414 if (report_enum->numbered)
1415 n = *data;
1417 report = report_enum->report_id_hash[n];
1418 if (report == NULL)
1419 dbg_hid("undefined report_id %u received\n", n);
1421 return report;
1425 * Implement a generic .request() callback, using .raw_request()
1426 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1428 void __hid_request(struct hid_device *hid, struct hid_report *report,
1429 int reqtype)
1431 char *buf;
1432 int ret;
1433 int len;
1435 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1436 if (!buf)
1437 return;
1439 len = hid_report_len(report);
1441 if (reqtype == HID_REQ_SET_REPORT)
1442 hid_output_report(report, buf);
1444 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1445 report->type, reqtype);
1446 if (ret < 0) {
1447 dbg_hid("unable to complete request: %d\n", ret);
1448 goto out;
1451 if (reqtype == HID_REQ_GET_REPORT)
1452 hid_input_report(hid, report->type, buf, ret, 0);
1454 out:
1455 kfree(buf);
1457 EXPORT_SYMBOL_GPL(__hid_request);
1459 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1460 int interrupt)
1462 struct hid_report_enum *report_enum = hid->report_enum + type;
1463 struct hid_report *report;
1464 struct hid_driver *hdrv;
1465 unsigned int a;
1466 int rsize, csize = size;
1467 u8 *cdata = data;
1468 int ret = 0;
1470 report = hid_get_report(report_enum, data);
1471 if (!report)
1472 goto out;
1474 if (report_enum->numbered) {
1475 cdata++;
1476 csize--;
1479 rsize = ((report->size - 1) >> 3) + 1;
1481 if (rsize > HID_MAX_BUFFER_SIZE)
1482 rsize = HID_MAX_BUFFER_SIZE;
1484 if (csize < rsize) {
1485 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1486 csize, rsize);
1487 memset(cdata + csize, 0, rsize - csize);
1490 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1491 hid->hiddev_report_event(hid, report);
1492 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1493 ret = hidraw_report_event(hid, data, size);
1494 if (ret)
1495 goto out;
1498 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1499 for (a = 0; a < report->maxfield; a++)
1500 hid_input_field(hid, report->field[a], cdata, interrupt);
1501 hdrv = hid->driver;
1502 if (hdrv && hdrv->report)
1503 hdrv->report(hid, report);
1506 if (hid->claimed & HID_CLAIMED_INPUT)
1507 hidinput_report_event(hid, report);
1508 out:
1509 return ret;
1511 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1514 * hid_input_report - report data from lower layer (usb, bt...)
1516 * @hid: hid device
1517 * @type: HID report type (HID_*_REPORT)
1518 * @data: report contents
1519 * @size: size of data parameter
1520 * @interrupt: distinguish between interrupt and control transfers
1522 * This is data entry for lower layers.
1524 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1526 struct hid_report_enum *report_enum;
1527 struct hid_driver *hdrv;
1528 struct hid_report *report;
1529 int ret = 0;
1531 if (!hid)
1532 return -ENODEV;
1534 if (down_trylock(&hid->driver_input_lock))
1535 return -EBUSY;
1537 if (!hid->driver) {
1538 ret = -ENODEV;
1539 goto unlock;
1541 report_enum = hid->report_enum + type;
1542 hdrv = hid->driver;
1544 if (!size) {
1545 dbg_hid("empty report\n");
1546 ret = -1;
1547 goto unlock;
1550 /* Avoid unnecessary overhead if debugfs is disabled */
1551 if (!list_empty(&hid->debug_list))
1552 hid_dump_report(hid, type, data, size);
1554 report = hid_get_report(report_enum, data);
1556 if (!report) {
1557 ret = -1;
1558 goto unlock;
1561 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1562 ret = hdrv->raw_event(hid, report, data, size);
1563 if (ret < 0)
1564 goto unlock;
1567 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1569 unlock:
1570 up(&hid->driver_input_lock);
1571 return ret;
1573 EXPORT_SYMBOL_GPL(hid_input_report);
1575 bool hid_match_one_id(const struct hid_device *hdev,
1576 const struct hid_device_id *id)
1578 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1579 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1580 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1581 (id->product == HID_ANY_ID || id->product == hdev->product);
1584 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1585 const struct hid_device_id *id)
1587 for (; id->bus; id++)
1588 if (hid_match_one_id(hdev, id))
1589 return id;
1591 return NULL;
1594 static const struct hid_device_id hid_hiddev_list[] = {
1595 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1596 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1600 static bool hid_hiddev(struct hid_device *hdev)
1602 return !!hid_match_id(hdev, hid_hiddev_list);
1606 static ssize_t
1607 read_report_descriptor(struct file *filp, struct kobject *kobj,
1608 struct bin_attribute *attr,
1609 char *buf, loff_t off, size_t count)
1611 struct device *dev = kobj_to_dev(kobj);
1612 struct hid_device *hdev = to_hid_device(dev);
1614 if (off >= hdev->rsize)
1615 return 0;
1617 if (off + count > hdev->rsize)
1618 count = hdev->rsize - off;
1620 memcpy(buf, hdev->rdesc + off, count);
1622 return count;
1625 static ssize_t
1626 show_country(struct device *dev, struct device_attribute *attr,
1627 char *buf)
1629 struct hid_device *hdev = to_hid_device(dev);
1631 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1634 static struct bin_attribute dev_bin_attr_report_desc = {
1635 .attr = { .name = "report_descriptor", .mode = 0444 },
1636 .read = read_report_descriptor,
1637 .size = HID_MAX_DESCRIPTOR_SIZE,
1640 static const struct device_attribute dev_attr_country = {
1641 .attr = { .name = "country", .mode = 0444 },
1642 .show = show_country,
1645 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1647 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1648 "Joystick", "Gamepad", "Keyboard", "Keypad",
1649 "Multi-Axis Controller"
1651 const char *type, *bus;
1652 char buf[64] = "";
1653 unsigned int i;
1654 int len;
1655 int ret;
1657 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1658 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1659 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1660 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1661 if (hdev->bus != BUS_USB)
1662 connect_mask &= ~HID_CONNECT_HIDDEV;
1663 if (hid_hiddev(hdev))
1664 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1666 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1667 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1668 hdev->claimed |= HID_CLAIMED_INPUT;
1670 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1671 !hdev->hiddev_connect(hdev,
1672 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1673 hdev->claimed |= HID_CLAIMED_HIDDEV;
1674 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1675 hdev->claimed |= HID_CLAIMED_HIDRAW;
1677 if (connect_mask & HID_CONNECT_DRIVER)
1678 hdev->claimed |= HID_CLAIMED_DRIVER;
1680 /* Drivers with the ->raw_event callback set are not required to connect
1681 * to any other listener. */
1682 if (!hdev->claimed && !hdev->driver->raw_event) {
1683 hid_err(hdev, "device has no listeners, quitting\n");
1684 return -ENODEV;
1687 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1688 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1689 hdev->ff_init(hdev);
1691 len = 0;
1692 if (hdev->claimed & HID_CLAIMED_INPUT)
1693 len += sprintf(buf + len, "input");
1694 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1695 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1696 ((struct hiddev *)hdev->hiddev)->minor);
1697 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1698 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1699 ((struct hidraw *)hdev->hidraw)->minor);
1701 type = "Device";
1702 for (i = 0; i < hdev->maxcollection; i++) {
1703 struct hid_collection *col = &hdev->collection[i];
1704 if (col->type == HID_COLLECTION_APPLICATION &&
1705 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1706 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1707 type = types[col->usage & 0xffff];
1708 break;
1712 switch (hdev->bus) {
1713 case BUS_USB:
1714 bus = "USB";
1715 break;
1716 case BUS_BLUETOOTH:
1717 bus = "BLUETOOTH";
1718 break;
1719 case BUS_I2C:
1720 bus = "I2C";
1721 break;
1722 default:
1723 bus = "<UNKNOWN>";
1726 ret = device_create_file(&hdev->dev, &dev_attr_country);
1727 if (ret)
1728 hid_warn(hdev,
1729 "can't create sysfs country code attribute err: %d\n", ret);
1731 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1732 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1733 type, hdev->name, hdev->phys);
1735 return 0;
1737 EXPORT_SYMBOL_GPL(hid_connect);
1739 void hid_disconnect(struct hid_device *hdev)
1741 device_remove_file(&hdev->dev, &dev_attr_country);
1742 if (hdev->claimed & HID_CLAIMED_INPUT)
1743 hidinput_disconnect(hdev);
1744 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1745 hdev->hiddev_disconnect(hdev);
1746 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1747 hidraw_disconnect(hdev);
1748 hdev->claimed = 0;
1750 EXPORT_SYMBOL_GPL(hid_disconnect);
1753 * hid_hw_start - start underlying HW
1754 * @hdev: hid device
1755 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1757 * Call this in probe function *after* hid_parse. This will setup HW
1758 * buffers and start the device (if not defeirred to device open).
1759 * hid_hw_stop must be called if this was successful.
1761 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1763 int error;
1765 error = hdev->ll_driver->start(hdev);
1766 if (error)
1767 return error;
1769 if (connect_mask) {
1770 error = hid_connect(hdev, connect_mask);
1771 if (error) {
1772 hdev->ll_driver->stop(hdev);
1773 return error;
1777 return 0;
1779 EXPORT_SYMBOL_GPL(hid_hw_start);
1782 * hid_hw_stop - stop underlying HW
1783 * @hdev: hid device
1785 * This is usually called from remove function or from probe when something
1786 * failed and hid_hw_start was called already.
1788 void hid_hw_stop(struct hid_device *hdev)
1790 hid_disconnect(hdev);
1791 hdev->ll_driver->stop(hdev);
1793 EXPORT_SYMBOL_GPL(hid_hw_stop);
1796 * hid_hw_open - signal underlying HW to start delivering events
1797 * @hdev: hid device
1799 * Tell underlying HW to start delivering events from the device.
1800 * This function should be called sometime after successful call
1801 * to hid_hiw_start().
1803 int hid_hw_open(struct hid_device *hdev)
1805 int ret;
1807 ret = mutex_lock_killable(&hdev->ll_open_lock);
1808 if (ret)
1809 return ret;
1811 if (!hdev->ll_open_count++) {
1812 ret = hdev->ll_driver->open(hdev);
1813 if (ret)
1814 hdev->ll_open_count--;
1817 mutex_unlock(&hdev->ll_open_lock);
1818 return ret;
1820 EXPORT_SYMBOL_GPL(hid_hw_open);
1823 * hid_hw_close - signal underlaying HW to stop delivering events
1825 * @hdev: hid device
1827 * This function indicates that we are not interested in the events
1828 * from this device anymore. Delivery of events may or may not stop,
1829 * depending on the number of users still outstanding.
1831 void hid_hw_close(struct hid_device *hdev)
1833 mutex_lock(&hdev->ll_open_lock);
1834 if (!--hdev->ll_open_count)
1835 hdev->ll_driver->close(hdev);
1836 mutex_unlock(&hdev->ll_open_lock);
1838 EXPORT_SYMBOL_GPL(hid_hw_close);
1840 struct hid_dynid {
1841 struct list_head list;
1842 struct hid_device_id id;
1846 * store_new_id - add a new HID device ID to this driver and re-probe devices
1847 * @driver: target device driver
1848 * @buf: buffer for scanning device ID data
1849 * @count: input size
1851 * Adds a new dynamic hid device ID to this driver,
1852 * and causes the driver to probe for all devices again.
1854 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1855 size_t count)
1857 struct hid_driver *hdrv = to_hid_driver(drv);
1858 struct hid_dynid *dynid;
1859 __u32 bus, vendor, product;
1860 unsigned long driver_data = 0;
1861 int ret;
1863 ret = sscanf(buf, "%x %x %x %lx",
1864 &bus, &vendor, &product, &driver_data);
1865 if (ret < 3)
1866 return -EINVAL;
1868 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1869 if (!dynid)
1870 return -ENOMEM;
1872 dynid->id.bus = bus;
1873 dynid->id.group = HID_GROUP_ANY;
1874 dynid->id.vendor = vendor;
1875 dynid->id.product = product;
1876 dynid->id.driver_data = driver_data;
1878 spin_lock(&hdrv->dyn_lock);
1879 list_add_tail(&dynid->list, &hdrv->dyn_list);
1880 spin_unlock(&hdrv->dyn_lock);
1882 ret = driver_attach(&hdrv->driver);
1884 return ret ? : count;
1886 static DRIVER_ATTR_WO(new_id);
1888 static struct attribute *hid_drv_attrs[] = {
1889 &driver_attr_new_id.attr,
1890 NULL,
1892 ATTRIBUTE_GROUPS(hid_drv);
1894 static void hid_free_dynids(struct hid_driver *hdrv)
1896 struct hid_dynid *dynid, *n;
1898 spin_lock(&hdrv->dyn_lock);
1899 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1900 list_del(&dynid->list);
1901 kfree(dynid);
1903 spin_unlock(&hdrv->dyn_lock);
1906 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1907 struct hid_driver *hdrv)
1909 struct hid_dynid *dynid;
1911 spin_lock(&hdrv->dyn_lock);
1912 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1913 if (hid_match_one_id(hdev, &dynid->id)) {
1914 spin_unlock(&hdrv->dyn_lock);
1915 return &dynid->id;
1918 spin_unlock(&hdrv->dyn_lock);
1920 return hid_match_id(hdev, hdrv->id_table);
1922 EXPORT_SYMBOL_GPL(hid_match_device);
1924 static int hid_bus_match(struct device *dev, struct device_driver *drv)
1926 struct hid_driver *hdrv = to_hid_driver(drv);
1927 struct hid_device *hdev = to_hid_device(dev);
1929 return hid_match_device(hdev, hdrv) != NULL;
1932 static int hid_device_probe(struct device *dev)
1934 struct hid_driver *hdrv = to_hid_driver(dev->driver);
1935 struct hid_device *hdev = to_hid_device(dev);
1936 const struct hid_device_id *id;
1937 int ret = 0;
1939 if (down_interruptible(&hdev->driver_input_lock)) {
1940 ret = -EINTR;
1941 goto end;
1943 hdev->io_started = false;
1945 if (!hdev->driver) {
1946 id = hid_match_device(hdev, hdrv);
1947 if (id == NULL) {
1948 ret = -ENODEV;
1949 goto unlock;
1952 if (hdrv->match) {
1953 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
1954 ret = -ENODEV;
1955 goto unlock;
1957 } else {
1959 * hid-generic implements .match(), so if
1960 * hid_ignore_special_drivers is set, we can safely
1961 * return.
1963 if (hid_ignore_special_drivers) {
1964 ret = -ENODEV;
1965 goto unlock;
1969 hdev->driver = hdrv;
1970 if (hdrv->probe) {
1971 ret = hdrv->probe(hdev, id);
1972 } else { /* default probe */
1973 ret = hid_open_report(hdev);
1974 if (!ret)
1975 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1977 if (ret) {
1978 hid_close_report(hdev);
1979 hdev->driver = NULL;
1982 unlock:
1983 if (!hdev->io_started)
1984 up(&hdev->driver_input_lock);
1985 end:
1986 return ret;
1989 static int hid_device_remove(struct device *dev)
1991 struct hid_device *hdev = to_hid_device(dev);
1992 struct hid_driver *hdrv;
1993 int ret = 0;
1995 if (down_interruptible(&hdev->driver_input_lock)) {
1996 ret = -EINTR;
1997 goto end;
1999 hdev->io_started = false;
2001 hdrv = hdev->driver;
2002 if (hdrv) {
2003 if (hdrv->remove)
2004 hdrv->remove(hdev);
2005 else /* default remove */
2006 hid_hw_stop(hdev);
2007 hid_close_report(hdev);
2008 hdev->driver = NULL;
2011 if (!hdev->io_started)
2012 up(&hdev->driver_input_lock);
2013 end:
2014 return ret;
2017 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2018 char *buf)
2020 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2022 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2023 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2025 static DEVICE_ATTR_RO(modalias);
2027 static struct attribute *hid_dev_attrs[] = {
2028 &dev_attr_modalias.attr,
2029 NULL,
2031 static struct bin_attribute *hid_dev_bin_attrs[] = {
2032 &dev_bin_attr_report_desc,
2033 NULL
2035 static const struct attribute_group hid_dev_group = {
2036 .attrs = hid_dev_attrs,
2037 .bin_attrs = hid_dev_bin_attrs,
2039 __ATTRIBUTE_GROUPS(hid_dev);
2041 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2043 struct hid_device *hdev = to_hid_device(dev);
2045 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2046 hdev->bus, hdev->vendor, hdev->product))
2047 return -ENOMEM;
2049 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2050 return -ENOMEM;
2052 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2053 return -ENOMEM;
2055 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2056 return -ENOMEM;
2058 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2059 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2060 return -ENOMEM;
2062 return 0;
2065 struct bus_type hid_bus_type = {
2066 .name = "hid",
2067 .dev_groups = hid_dev_groups,
2068 .drv_groups = hid_drv_groups,
2069 .match = hid_bus_match,
2070 .probe = hid_device_probe,
2071 .remove = hid_device_remove,
2072 .uevent = hid_uevent,
2074 EXPORT_SYMBOL(hid_bus_type);
2076 int hid_add_device(struct hid_device *hdev)
2078 static atomic_t id = ATOMIC_INIT(0);
2079 int ret;
2081 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2082 return -EBUSY;
2084 hdev->quirks = hid_lookup_quirk(hdev);
2086 /* we need to kill them here, otherwise they will stay allocated to
2087 * wait for coming driver */
2088 if (hid_ignore(hdev))
2089 return -ENODEV;
2092 * Check for the mandatory transport channel.
2094 if (!hdev->ll_driver->raw_request) {
2095 hid_err(hdev, "transport driver missing .raw_request()\n");
2096 return -EINVAL;
2100 * Read the device report descriptor once and use as template
2101 * for the driver-specific modifications.
2103 ret = hdev->ll_driver->parse(hdev);
2104 if (ret)
2105 return ret;
2106 if (!hdev->dev_rdesc)
2107 return -ENODEV;
2110 * Scan generic devices for group information
2112 if (hid_ignore_special_drivers) {
2113 hdev->group = HID_GROUP_GENERIC;
2114 } else if (!hdev->group &&
2115 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2116 ret = hid_scan_report(hdev);
2117 if (ret)
2118 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2121 /* XXX hack, any other cleaner solution after the driver core
2122 * is converted to allow more than 20 bytes as the device name? */
2123 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2124 hdev->vendor, hdev->product, atomic_inc_return(&id));
2126 hid_debug_register(hdev, dev_name(&hdev->dev));
2127 ret = device_add(&hdev->dev);
2128 if (!ret)
2129 hdev->status |= HID_STAT_ADDED;
2130 else
2131 hid_debug_unregister(hdev);
2133 return ret;
2135 EXPORT_SYMBOL_GPL(hid_add_device);
2138 * hid_allocate_device - allocate new hid device descriptor
2140 * Allocate and initialize hid device, so that hid_destroy_device might be
2141 * used to free it.
2143 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2144 * error value.
2146 struct hid_device *hid_allocate_device(void)
2148 struct hid_device *hdev;
2149 int ret = -ENOMEM;
2151 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2152 if (hdev == NULL)
2153 return ERR_PTR(ret);
2155 device_initialize(&hdev->dev);
2156 hdev->dev.release = hid_device_release;
2157 hdev->dev.bus = &hid_bus_type;
2158 device_enable_async_suspend(&hdev->dev);
2160 hid_close_report(hdev);
2162 init_waitqueue_head(&hdev->debug_wait);
2163 INIT_LIST_HEAD(&hdev->debug_list);
2164 spin_lock_init(&hdev->debug_list_lock);
2165 sema_init(&hdev->driver_input_lock, 1);
2166 mutex_init(&hdev->ll_open_lock);
2168 return hdev;
2170 EXPORT_SYMBOL_GPL(hid_allocate_device);
2172 static void hid_remove_device(struct hid_device *hdev)
2174 if (hdev->status & HID_STAT_ADDED) {
2175 device_del(&hdev->dev);
2176 hid_debug_unregister(hdev);
2177 hdev->status &= ~HID_STAT_ADDED;
2179 kfree(hdev->dev_rdesc);
2180 hdev->dev_rdesc = NULL;
2181 hdev->dev_rsize = 0;
2185 * hid_destroy_device - free previously allocated device
2187 * @hdev: hid device
2189 * If you allocate hid_device through hid_allocate_device, you should ever
2190 * free by this function.
2192 void hid_destroy_device(struct hid_device *hdev)
2194 hid_remove_device(hdev);
2195 put_device(&hdev->dev);
2197 EXPORT_SYMBOL_GPL(hid_destroy_device);
2200 static int __bus_add_driver(struct device_driver *drv, void *data)
2202 struct hid_driver *added_hdrv = data;
2203 struct hid_driver *hdrv = to_hid_driver(drv);
2205 if (hdrv->bus_add_driver)
2206 hdrv->bus_add_driver(added_hdrv);
2208 return 0;
2211 static int __bus_removed_driver(struct device_driver *drv, void *data)
2213 struct hid_driver *removed_hdrv = data;
2214 struct hid_driver *hdrv = to_hid_driver(drv);
2216 if (hdrv->bus_removed_driver)
2217 hdrv->bus_removed_driver(removed_hdrv);
2219 return 0;
2222 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2223 const char *mod_name)
2225 hdrv->driver.name = hdrv->name;
2226 hdrv->driver.bus = &hid_bus_type;
2227 hdrv->driver.owner = owner;
2228 hdrv->driver.mod_name = mod_name;
2230 INIT_LIST_HEAD(&hdrv->dyn_list);
2231 spin_lock_init(&hdrv->dyn_lock);
2233 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_add_driver);
2235 return driver_register(&hdrv->driver);
2237 EXPORT_SYMBOL_GPL(__hid_register_driver);
2239 void hid_unregister_driver(struct hid_driver *hdrv)
2241 driver_unregister(&hdrv->driver);
2242 hid_free_dynids(hdrv);
2244 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2246 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2248 int hid_check_keys_pressed(struct hid_device *hid)
2250 struct hid_input *hidinput;
2251 int i;
2253 if (!(hid->claimed & HID_CLAIMED_INPUT))
2254 return 0;
2256 list_for_each_entry(hidinput, &hid->inputs, list) {
2257 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2258 if (hidinput->input->key[i])
2259 return 1;
2262 return 0;
2265 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2267 static int __init hid_init(void)
2269 int ret;
2271 if (hid_debug)
2272 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2273 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2275 ret = bus_register(&hid_bus_type);
2276 if (ret) {
2277 pr_err("can't register hid bus\n");
2278 goto err;
2281 ret = hidraw_init();
2282 if (ret)
2283 goto err_bus;
2285 hid_debug_init();
2287 return 0;
2288 err_bus:
2289 bus_unregister(&hid_bus_type);
2290 err:
2291 return ret;
2294 static void __exit hid_exit(void)
2296 hid_debug_exit();
2297 hidraw_exit();
2298 bus_unregister(&hid_bus_type);
2299 hid_quirks_exit(HID_BUS_ANY);
2302 module_init(hid_init);
2303 module_exit(hid_exit);
2305 MODULE_AUTHOR("Andreas Gal");
2306 MODULE_AUTHOR("Vojtech Pavlik");
2307 MODULE_AUTHOR("Jiri Kosina");
2308 MODULE_LICENSE("GPL");