xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / hv / hv_balloon.c
blobdb0e6652d7efc16b26829253668563057a5c3cf1
1 /*
2 * Copyright (c) 2012, Microsoft Corporation.
4 * Author:
5 * K. Y. Srinivasan <kys@microsoft.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
35 #include <linux/hyperv.h>
38 * We begin with definitions supporting the Dynamic Memory protocol
39 * with the host.
41 * Begin protocol definitions.
47 * Protocol versions. The low word is the minor version, the high word the major
48 * version.
50 * History:
51 * Initial version 1.0
52 * Changed to 0.1 on 2009/03/25
53 * Changes to 0.2 on 2009/05/14
54 * Changes to 0.3 on 2009/12/03
55 * Changed to 1.0 on 2011/04/05
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
62 enum {
63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
67 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
71 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
77 * Message Types
80 enum dm_message_type {
82 * Version 0.3
84 DM_ERROR = 0,
85 DM_VERSION_REQUEST = 1,
86 DM_VERSION_RESPONSE = 2,
87 DM_CAPABILITIES_REPORT = 3,
88 DM_CAPABILITIES_RESPONSE = 4,
89 DM_STATUS_REPORT = 5,
90 DM_BALLOON_REQUEST = 6,
91 DM_BALLOON_RESPONSE = 7,
92 DM_UNBALLOON_REQUEST = 8,
93 DM_UNBALLOON_RESPONSE = 9,
94 DM_MEM_HOT_ADD_REQUEST = 10,
95 DM_MEM_HOT_ADD_RESPONSE = 11,
96 DM_VERSION_03_MAX = 11,
98 * Version 1.0.
100 DM_INFO_MESSAGE = 12,
101 DM_VERSION_1_MAX = 12
106 * Structures defining the dynamic memory management
107 * protocol.
110 union dm_version {
111 struct {
112 __u16 minor_version;
113 __u16 major_version;
115 __u32 version;
116 } __packed;
119 union dm_caps {
120 struct {
121 __u64 balloon:1;
122 __u64 hot_add:1;
124 * To support guests that may have alignment
125 * limitations on hot-add, the guest can specify
126 * its alignment requirements; a value of n
127 * represents an alignment of 2^n in mega bytes.
129 __u64 hot_add_alignment:4;
130 __u64 reservedz:58;
131 } cap_bits;
132 __u64 caps;
133 } __packed;
135 union dm_mem_page_range {
136 struct {
138 * The PFN number of the first page in the range.
139 * 40 bits is the architectural limit of a PFN
140 * number for AMD64.
142 __u64 start_page:40;
144 * The number of pages in the range.
146 __u64 page_cnt:24;
147 } finfo;
148 __u64 page_range;
149 } __packed;
154 * The header for all dynamic memory messages:
156 * type: Type of the message.
157 * size: Size of the message in bytes; including the header.
158 * trans_id: The guest is responsible for manufacturing this ID.
161 struct dm_header {
162 __u16 type;
163 __u16 size;
164 __u32 trans_id;
165 } __packed;
168 * A generic message format for dynamic memory.
169 * Specific message formats are defined later in the file.
172 struct dm_message {
173 struct dm_header hdr;
174 __u8 data[]; /* enclosed message */
175 } __packed;
179 * Specific message types supporting the dynamic memory protocol.
183 * Version negotiation message. Sent from the guest to the host.
184 * The guest is free to try different versions until the host
185 * accepts the version.
187 * dm_version: The protocol version requested.
188 * is_last_attempt: If TRUE, this is the last version guest will request.
189 * reservedz: Reserved field, set to zero.
192 struct dm_version_request {
193 struct dm_header hdr;
194 union dm_version version;
195 __u32 is_last_attempt:1;
196 __u32 reservedz:31;
197 } __packed;
200 * Version response message; Host to Guest and indicates
201 * if the host has accepted the version sent by the guest.
203 * is_accepted: If TRUE, host has accepted the version and the guest
204 * should proceed to the next stage of the protocol. FALSE indicates that
205 * guest should re-try with a different version.
207 * reservedz: Reserved field, set to zero.
210 struct dm_version_response {
211 struct dm_header hdr;
212 __u64 is_accepted:1;
213 __u64 reservedz:63;
214 } __packed;
217 * Message reporting capabilities. This is sent from the guest to the
218 * host.
221 struct dm_capabilities {
222 struct dm_header hdr;
223 union dm_caps caps;
224 __u64 min_page_cnt;
225 __u64 max_page_number;
226 } __packed;
229 * Response to the capabilities message. This is sent from the host to the
230 * guest. This message notifies if the host has accepted the guest's
231 * capabilities. If the host has not accepted, the guest must shutdown
232 * the service.
234 * is_accepted: Indicates if the host has accepted guest's capabilities.
235 * reservedz: Must be 0.
238 struct dm_capabilities_resp_msg {
239 struct dm_header hdr;
240 __u64 is_accepted:1;
241 __u64 reservedz:63;
242 } __packed;
245 * This message is used to report memory pressure from the guest.
246 * This message is not part of any transaction and there is no
247 * response to this message.
249 * num_avail: Available memory in pages.
250 * num_committed: Committed memory in pages.
251 * page_file_size: The accumulated size of all page files
252 * in the system in pages.
253 * zero_free: The nunber of zero and free pages.
254 * page_file_writes: The writes to the page file in pages.
255 * io_diff: An indicator of file cache efficiency or page file activity,
256 * calculated as File Cache Page Fault Count - Page Read Count.
257 * This value is in pages.
259 * Some of these metrics are Windows specific and fortunately
260 * the algorithm on the host side that computes the guest memory
261 * pressure only uses num_committed value.
264 struct dm_status {
265 struct dm_header hdr;
266 __u64 num_avail;
267 __u64 num_committed;
268 __u64 page_file_size;
269 __u64 zero_free;
270 __u32 page_file_writes;
271 __u32 io_diff;
272 } __packed;
276 * Message to ask the guest to allocate memory - balloon up message.
277 * This message is sent from the host to the guest. The guest may not be
278 * able to allocate as much memory as requested.
280 * num_pages: number of pages to allocate.
283 struct dm_balloon {
284 struct dm_header hdr;
285 __u32 num_pages;
286 __u32 reservedz;
287 } __packed;
291 * Balloon response message; this message is sent from the guest
292 * to the host in response to the balloon message.
294 * reservedz: Reserved; must be set to zero.
295 * more_pages: If FALSE, this is the last message of the transaction.
296 * if TRUE there will atleast one more message from the guest.
298 * range_count: The number of ranges in the range array.
300 * range_array: An array of page ranges returned to the host.
304 struct dm_balloon_response {
305 struct dm_header hdr;
306 __u32 reservedz;
307 __u32 more_pages:1;
308 __u32 range_count:31;
309 union dm_mem_page_range range_array[];
310 } __packed;
313 * Un-balloon message; this message is sent from the host
314 * to the guest to give guest more memory.
316 * more_pages: If FALSE, this is the last message of the transaction.
317 * if TRUE there will atleast one more message from the guest.
319 * reservedz: Reserved; must be set to zero.
321 * range_count: The number of ranges in the range array.
323 * range_array: An array of page ranges returned to the host.
327 struct dm_unballoon_request {
328 struct dm_header hdr;
329 __u32 more_pages:1;
330 __u32 reservedz:31;
331 __u32 range_count;
332 union dm_mem_page_range range_array[];
333 } __packed;
336 * Un-balloon response message; this message is sent from the guest
337 * to the host in response to an unballoon request.
341 struct dm_unballoon_response {
342 struct dm_header hdr;
343 } __packed;
347 * Hot add request message. Message sent from the host to the guest.
349 * mem_range: Memory range to hot add.
351 * On Linux we currently don't support this since we cannot hot add
352 * arbitrary granularity of memory.
355 struct dm_hot_add {
356 struct dm_header hdr;
357 union dm_mem_page_range range;
358 } __packed;
361 * Hot add response message.
362 * This message is sent by the guest to report the status of a hot add request.
363 * If page_count is less than the requested page count, then the host should
364 * assume all further hot add requests will fail, since this indicates that
365 * the guest has hit an upper physical memory barrier.
367 * Hot adds may also fail due to low resources; in this case, the guest must
368 * not complete this message until the hot add can succeed, and the host must
369 * not send a new hot add request until the response is sent.
370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371 * times it fails the request.
374 * page_count: number of pages that were successfully hot added.
376 * result: result of the operation 1: success, 0: failure.
380 struct dm_hot_add_response {
381 struct dm_header hdr;
382 __u32 page_count;
383 __u32 result;
384 } __packed;
387 * Types of information sent from host to the guest.
390 enum dm_info_type {
391 INFO_TYPE_MAX_PAGE_CNT = 0,
392 MAX_INFO_TYPE
397 * Header for the information message.
400 struct dm_info_header {
401 enum dm_info_type type;
402 __u32 data_size;
403 } __packed;
406 * This message is sent from the host to the guest to pass
407 * some relevant information (win8 addition).
409 * reserved: no used.
410 * info_size: size of the information blob.
411 * info: information blob.
414 struct dm_info_msg {
415 struct dm_header hdr;
416 __u32 reserved;
417 __u32 info_size;
418 __u8 info[];
422 * End protocol definitions.
426 * State to manage hot adding memory into the guest.
427 * The range start_pfn : end_pfn specifies the range
428 * that the host has asked us to hot add. The range
429 * start_pfn : ha_end_pfn specifies the range that we have
430 * currently hot added. We hot add in multiples of 128M
431 * chunks; it is possible that we may not be able to bring
432 * online all the pages in the region. The range
433 * covered_start_pfn:covered_end_pfn defines the pages that can
434 * be brough online.
437 struct hv_hotadd_state {
438 struct list_head list;
439 unsigned long start_pfn;
440 unsigned long covered_start_pfn;
441 unsigned long covered_end_pfn;
442 unsigned long ha_end_pfn;
443 unsigned long end_pfn;
445 * A list of gaps.
447 struct list_head gap_list;
450 struct hv_hotadd_gap {
451 struct list_head list;
452 unsigned long start_pfn;
453 unsigned long end_pfn;
456 struct balloon_state {
457 __u32 num_pages;
458 struct work_struct wrk;
461 struct hot_add_wrk {
462 union dm_mem_page_range ha_page_range;
463 union dm_mem_page_range ha_region_range;
464 struct work_struct wrk;
467 static bool hot_add = true;
468 static bool do_hot_add;
470 * Delay reporting memory pressure by
471 * the specified number of seconds.
473 static uint pressure_report_delay = 45;
476 * The last time we posted a pressure report to host.
478 static unsigned long last_post_time;
480 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
481 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
483 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
485 static atomic_t trans_id = ATOMIC_INIT(0);
487 static int dm_ring_size = (5 * PAGE_SIZE);
490 * Driver specific state.
493 enum hv_dm_state {
494 DM_INITIALIZING = 0,
495 DM_INITIALIZED,
496 DM_BALLOON_UP,
497 DM_BALLOON_DOWN,
498 DM_HOT_ADD,
499 DM_INIT_ERROR
503 static __u8 recv_buffer[PAGE_SIZE];
504 static __u8 *send_buffer;
505 #define PAGES_IN_2M 512
506 #define HA_CHUNK (32 * 1024)
508 struct hv_dynmem_device {
509 struct hv_device *dev;
510 enum hv_dm_state state;
511 struct completion host_event;
512 struct completion config_event;
515 * Number of pages we have currently ballooned out.
517 unsigned int num_pages_ballooned;
518 unsigned int num_pages_onlined;
519 unsigned int num_pages_added;
522 * State to manage the ballooning (up) operation.
524 struct balloon_state balloon_wrk;
527 * State to execute the "hot-add" operation.
529 struct hot_add_wrk ha_wrk;
532 * This state tracks if the host has specified a hot-add
533 * region.
535 bool host_specified_ha_region;
538 * State to synchronize hot-add.
540 struct completion ol_waitevent;
541 bool ha_waiting;
543 * This thread handles hot-add
544 * requests from the host as well as notifying
545 * the host with regards to memory pressure in
546 * the guest.
548 struct task_struct *thread;
551 * Protects ha_region_list, num_pages_onlined counter and individual
552 * regions from ha_region_list.
554 spinlock_t ha_lock;
557 * A list of hot-add regions.
559 struct list_head ha_region_list;
562 * We start with the highest version we can support
563 * and downgrade based on the host; we save here the
564 * next version to try.
566 __u32 next_version;
569 * The negotiated version agreed by host.
571 __u32 version;
574 static struct hv_dynmem_device dm_device;
576 static void post_status(struct hv_dynmem_device *dm);
578 #ifdef CONFIG_MEMORY_HOTPLUG
579 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
580 void *v)
582 struct memory_notify *mem = (struct memory_notify *)v;
583 unsigned long flags;
585 switch (val) {
586 case MEM_ONLINE:
587 case MEM_CANCEL_ONLINE:
588 if (dm_device.ha_waiting) {
589 dm_device.ha_waiting = false;
590 complete(&dm_device.ol_waitevent);
592 break;
594 case MEM_OFFLINE:
595 spin_lock_irqsave(&dm_device.ha_lock, flags);
596 dm_device.num_pages_onlined -= mem->nr_pages;
597 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
598 break;
599 case MEM_GOING_ONLINE:
600 case MEM_GOING_OFFLINE:
601 case MEM_CANCEL_OFFLINE:
602 break;
604 return NOTIFY_OK;
607 static struct notifier_block hv_memory_nb = {
608 .notifier_call = hv_memory_notifier,
609 .priority = 0
612 /* Check if the particular page is backed and can be onlined and online it. */
613 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
615 unsigned long cur_start_pgp;
616 unsigned long cur_end_pgp;
617 struct hv_hotadd_gap *gap;
619 cur_start_pgp = (unsigned long)pfn_to_page(has->covered_start_pfn);
620 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
622 /* The page is not backed. */
623 if (((unsigned long)pg < cur_start_pgp) ||
624 ((unsigned long)pg >= cur_end_pgp))
625 return;
627 /* Check for gaps. */
628 list_for_each_entry(gap, &has->gap_list, list) {
629 cur_start_pgp = (unsigned long)
630 pfn_to_page(gap->start_pfn);
631 cur_end_pgp = (unsigned long)
632 pfn_to_page(gap->end_pfn);
633 if (((unsigned long)pg >= cur_start_pgp) &&
634 ((unsigned long)pg < cur_end_pgp)) {
635 return;
639 /* This frame is currently backed; online the page. */
640 __online_page_set_limits(pg);
641 __online_page_increment_counters(pg);
642 __online_page_free(pg);
644 WARN_ON_ONCE(!spin_is_locked(&dm_device.ha_lock));
645 dm_device.num_pages_onlined++;
648 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
649 unsigned long start_pfn, unsigned long size)
651 int i;
653 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
654 for (i = 0; i < size; i++)
655 hv_page_online_one(has, pfn_to_page(start_pfn + i));
658 static void hv_mem_hot_add(unsigned long start, unsigned long size,
659 unsigned long pfn_count,
660 struct hv_hotadd_state *has)
662 int ret = 0;
663 int i, nid;
664 unsigned long start_pfn;
665 unsigned long processed_pfn;
666 unsigned long total_pfn = pfn_count;
667 unsigned long flags;
669 for (i = 0; i < (size/HA_CHUNK); i++) {
670 start_pfn = start + (i * HA_CHUNK);
672 spin_lock_irqsave(&dm_device.ha_lock, flags);
673 has->ha_end_pfn += HA_CHUNK;
675 if (total_pfn > HA_CHUNK) {
676 processed_pfn = HA_CHUNK;
677 total_pfn -= HA_CHUNK;
678 } else {
679 processed_pfn = total_pfn;
680 total_pfn = 0;
683 has->covered_end_pfn += processed_pfn;
684 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
686 init_completion(&dm_device.ol_waitevent);
687 dm_device.ha_waiting = !memhp_auto_online;
689 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
690 ret = add_memory(nid, PFN_PHYS((start_pfn)),
691 (HA_CHUNK << PAGE_SHIFT));
693 if (ret) {
694 pr_warn("hot_add memory failed error is %d\n", ret);
695 if (ret == -EEXIST) {
697 * This error indicates that the error
698 * is not a transient failure. This is the
699 * case where the guest's physical address map
700 * precludes hot adding memory. Stop all further
701 * memory hot-add.
703 do_hot_add = false;
705 spin_lock_irqsave(&dm_device.ha_lock, flags);
706 has->ha_end_pfn -= HA_CHUNK;
707 has->covered_end_pfn -= processed_pfn;
708 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
709 break;
713 * Wait for the memory block to be onlined when memory onlining
714 * is done outside of kernel (memhp_auto_online). Since the hot
715 * add has succeeded, it is ok to proceed even if the pages in
716 * the hot added region have not been "onlined" within the
717 * allowed time.
719 if (dm_device.ha_waiting)
720 wait_for_completion_timeout(&dm_device.ol_waitevent,
721 5*HZ);
722 post_status(&dm_device);
726 static void hv_online_page(struct page *pg)
728 struct hv_hotadd_state *has;
729 unsigned long cur_start_pgp;
730 unsigned long cur_end_pgp;
731 unsigned long flags;
733 spin_lock_irqsave(&dm_device.ha_lock, flags);
734 list_for_each_entry(has, &dm_device.ha_region_list, list) {
735 cur_start_pgp = (unsigned long)
736 pfn_to_page(has->start_pfn);
737 cur_end_pgp = (unsigned long)pfn_to_page(has->end_pfn);
739 /* The page belongs to a different HAS. */
740 if (((unsigned long)pg < cur_start_pgp) ||
741 ((unsigned long)pg >= cur_end_pgp))
742 continue;
744 hv_page_online_one(has, pg);
745 break;
747 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
750 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
752 struct hv_hotadd_state *has;
753 struct hv_hotadd_gap *gap;
754 unsigned long residual, new_inc;
755 int ret = 0;
756 unsigned long flags;
758 spin_lock_irqsave(&dm_device.ha_lock, flags);
759 list_for_each_entry(has, &dm_device.ha_region_list, list) {
761 * If the pfn range we are dealing with is not in the current
762 * "hot add block", move on.
764 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
765 continue;
768 * If the current start pfn is not where the covered_end
769 * is, create a gap and update covered_end_pfn.
771 if (has->covered_end_pfn != start_pfn) {
772 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
773 if (!gap) {
774 ret = -ENOMEM;
775 break;
778 INIT_LIST_HEAD(&gap->list);
779 gap->start_pfn = has->covered_end_pfn;
780 gap->end_pfn = start_pfn;
781 list_add_tail(&gap->list, &has->gap_list);
783 has->covered_end_pfn = start_pfn;
787 * If the current hot add-request extends beyond
788 * our current limit; extend it.
790 if ((start_pfn + pfn_cnt) > has->end_pfn) {
791 residual = (start_pfn + pfn_cnt - has->end_pfn);
793 * Extend the region by multiples of HA_CHUNK.
795 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
796 if (residual % HA_CHUNK)
797 new_inc += HA_CHUNK;
799 has->end_pfn += new_inc;
802 ret = 1;
803 break;
805 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
807 return ret;
810 static unsigned long handle_pg_range(unsigned long pg_start,
811 unsigned long pg_count)
813 unsigned long start_pfn = pg_start;
814 unsigned long pfn_cnt = pg_count;
815 unsigned long size;
816 struct hv_hotadd_state *has;
817 unsigned long pgs_ol = 0;
818 unsigned long old_covered_state;
819 unsigned long res = 0, flags;
821 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
822 pg_start);
824 spin_lock_irqsave(&dm_device.ha_lock, flags);
825 list_for_each_entry(has, &dm_device.ha_region_list, list) {
827 * If the pfn range we are dealing with is not in the current
828 * "hot add block", move on.
830 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
831 continue;
833 old_covered_state = has->covered_end_pfn;
835 if (start_pfn < has->ha_end_pfn) {
837 * This is the case where we are backing pages
838 * in an already hot added region. Bring
839 * these pages online first.
841 pgs_ol = has->ha_end_pfn - start_pfn;
842 if (pgs_ol > pfn_cnt)
843 pgs_ol = pfn_cnt;
845 has->covered_end_pfn += pgs_ol;
846 pfn_cnt -= pgs_ol;
848 * Check if the corresponding memory block is already
849 * online by checking its last previously backed page.
850 * In case it is we need to bring rest (which was not
851 * backed previously) online too.
853 if (start_pfn > has->start_pfn &&
854 !PageReserved(pfn_to_page(start_pfn - 1)))
855 hv_bring_pgs_online(has, start_pfn, pgs_ol);
859 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
861 * We have some residual hot add range
862 * that needs to be hot added; hot add
863 * it now. Hot add a multiple of
864 * of HA_CHUNK that fully covers the pages
865 * we have.
867 size = (has->end_pfn - has->ha_end_pfn);
868 if (pfn_cnt <= size) {
869 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
870 if (pfn_cnt % HA_CHUNK)
871 size += HA_CHUNK;
872 } else {
873 pfn_cnt = size;
875 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
876 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
877 spin_lock_irqsave(&dm_device.ha_lock, flags);
880 * If we managed to online any pages that were given to us,
881 * we declare success.
883 res = has->covered_end_pfn - old_covered_state;
884 break;
886 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
888 return res;
891 static unsigned long process_hot_add(unsigned long pg_start,
892 unsigned long pfn_cnt,
893 unsigned long rg_start,
894 unsigned long rg_size)
896 struct hv_hotadd_state *ha_region = NULL;
897 int covered;
898 unsigned long flags;
900 if (pfn_cnt == 0)
901 return 0;
903 if (!dm_device.host_specified_ha_region) {
904 covered = pfn_covered(pg_start, pfn_cnt);
905 if (covered < 0)
906 return 0;
908 if (covered)
909 goto do_pg_range;
913 * If the host has specified a hot-add range; deal with it first.
916 if (rg_size != 0) {
917 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
918 if (!ha_region)
919 return 0;
921 INIT_LIST_HEAD(&ha_region->list);
922 INIT_LIST_HEAD(&ha_region->gap_list);
924 ha_region->start_pfn = rg_start;
925 ha_region->ha_end_pfn = rg_start;
926 ha_region->covered_start_pfn = pg_start;
927 ha_region->covered_end_pfn = pg_start;
928 ha_region->end_pfn = rg_start + rg_size;
930 spin_lock_irqsave(&dm_device.ha_lock, flags);
931 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
932 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
935 do_pg_range:
937 * Process the page range specified; bringing them
938 * online if possible.
940 return handle_pg_range(pg_start, pfn_cnt);
943 #endif
945 static void hot_add_req(struct work_struct *dummy)
947 struct dm_hot_add_response resp;
948 #ifdef CONFIG_MEMORY_HOTPLUG
949 unsigned long pg_start, pfn_cnt;
950 unsigned long rg_start, rg_sz;
951 #endif
952 struct hv_dynmem_device *dm = &dm_device;
954 memset(&resp, 0, sizeof(struct dm_hot_add_response));
955 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
956 resp.hdr.size = sizeof(struct dm_hot_add_response);
958 #ifdef CONFIG_MEMORY_HOTPLUG
959 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
960 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
962 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
963 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
965 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
966 unsigned long region_size;
967 unsigned long region_start;
970 * The host has not specified the hot-add region.
971 * Based on the hot-add page range being specified,
972 * compute a hot-add region that can cover the pages
973 * that need to be hot-added while ensuring the alignment
974 * and size requirements of Linux as it relates to hot-add.
976 region_start = pg_start;
977 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
978 if (pfn_cnt % HA_CHUNK)
979 region_size += HA_CHUNK;
981 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
983 rg_start = region_start;
984 rg_sz = region_size;
987 if (do_hot_add)
988 resp.page_count = process_hot_add(pg_start, pfn_cnt,
989 rg_start, rg_sz);
991 dm->num_pages_added += resp.page_count;
992 #endif
994 * The result field of the response structure has the
995 * following semantics:
997 * 1. If all or some pages hot-added: Guest should return success.
999 * 2. If no pages could be hot-added:
1001 * If the guest returns success, then the host
1002 * will not attempt any further hot-add operations. This
1003 * signifies a permanent failure.
1005 * If the guest returns failure, then this failure will be
1006 * treated as a transient failure and the host may retry the
1007 * hot-add operation after some delay.
1009 if (resp.page_count > 0)
1010 resp.result = 1;
1011 else if (!do_hot_add)
1012 resp.result = 1;
1013 else
1014 resp.result = 0;
1016 if (!do_hot_add || (resp.page_count == 0))
1017 pr_info("Memory hot add failed\n");
1019 dm->state = DM_INITIALIZED;
1020 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1021 vmbus_sendpacket(dm->dev->channel, &resp,
1022 sizeof(struct dm_hot_add_response),
1023 (unsigned long)NULL,
1024 VM_PKT_DATA_INBAND, 0);
1027 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1029 struct dm_info_header *info_hdr;
1031 info_hdr = (struct dm_info_header *)msg->info;
1033 switch (info_hdr->type) {
1034 case INFO_TYPE_MAX_PAGE_CNT:
1035 if (info_hdr->data_size == sizeof(__u64)) {
1036 __u64 *max_page_count = (__u64 *)&info_hdr[1];
1038 pr_info("Max. dynamic memory size: %llu MB\n",
1039 (*max_page_count) >> (20 - PAGE_SHIFT));
1042 break;
1043 default:
1044 pr_info("Received Unknown type: %d\n", info_hdr->type);
1048 static unsigned long compute_balloon_floor(void)
1050 unsigned long min_pages;
1051 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1052 /* Simple continuous piecewiese linear function:
1053 * max MiB -> min MiB gradient
1054 * 0 0
1055 * 16 16
1056 * 32 24
1057 * 128 72 (1/2)
1058 * 512 168 (1/4)
1059 * 2048 360 (1/8)
1060 * 8192 744 (1/16)
1061 * 32768 1512 (1/32)
1063 if (totalram_pages < MB2PAGES(128))
1064 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1065 else if (totalram_pages < MB2PAGES(512))
1066 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1067 else if (totalram_pages < MB2PAGES(2048))
1068 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1069 else if (totalram_pages < MB2PAGES(8192))
1070 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1071 else
1072 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1073 #undef MB2PAGES
1074 return min_pages;
1078 * Post our status as it relates memory pressure to the
1079 * host. Host expects the guests to post this status
1080 * periodically at 1 second intervals.
1082 * The metrics specified in this protocol are very Windows
1083 * specific and so we cook up numbers here to convey our memory
1084 * pressure.
1087 static void post_status(struct hv_dynmem_device *dm)
1089 struct dm_status status;
1090 unsigned long now = jiffies;
1091 unsigned long last_post = last_post_time;
1093 if (pressure_report_delay > 0) {
1094 --pressure_report_delay;
1095 return;
1098 if (!time_after(now, (last_post_time + HZ)))
1099 return;
1101 memset(&status, 0, sizeof(struct dm_status));
1102 status.hdr.type = DM_STATUS_REPORT;
1103 status.hdr.size = sizeof(struct dm_status);
1104 status.hdr.trans_id = atomic_inc_return(&trans_id);
1107 * The host expects the guest to report free and committed memory.
1108 * Furthermore, the host expects the pressure information to include
1109 * the ballooned out pages. For a given amount of memory that we are
1110 * managing we need to compute a floor below which we should not
1111 * balloon. Compute this and add it to the pressure report.
1112 * We also need to report all offline pages (num_pages_added -
1113 * num_pages_onlined) as committed to the host, otherwise it can try
1114 * asking us to balloon them out.
1116 status.num_avail = si_mem_available();
1117 status.num_committed = vm_memory_committed() +
1118 dm->num_pages_ballooned +
1119 (dm->num_pages_added > dm->num_pages_onlined ?
1120 dm->num_pages_added - dm->num_pages_onlined : 0) +
1121 compute_balloon_floor();
1124 * If our transaction ID is no longer current, just don't
1125 * send the status. This can happen if we were interrupted
1126 * after we picked our transaction ID.
1128 if (status.hdr.trans_id != atomic_read(&trans_id))
1129 return;
1132 * If the last post time that we sampled has changed,
1133 * we have raced, don't post the status.
1135 if (last_post != last_post_time)
1136 return;
1138 last_post_time = jiffies;
1139 vmbus_sendpacket(dm->dev->channel, &status,
1140 sizeof(struct dm_status),
1141 (unsigned long)NULL,
1142 VM_PKT_DATA_INBAND, 0);
1146 static void free_balloon_pages(struct hv_dynmem_device *dm,
1147 union dm_mem_page_range *range_array)
1149 int num_pages = range_array->finfo.page_cnt;
1150 __u64 start_frame = range_array->finfo.start_page;
1151 struct page *pg;
1152 int i;
1154 for (i = 0; i < num_pages; i++) {
1155 pg = pfn_to_page(i + start_frame);
1156 __free_page(pg);
1157 dm->num_pages_ballooned--;
1163 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1164 unsigned int num_pages,
1165 struct dm_balloon_response *bl_resp,
1166 int alloc_unit)
1168 unsigned int i = 0;
1169 struct page *pg;
1171 if (num_pages < alloc_unit)
1172 return 0;
1174 for (i = 0; (i * alloc_unit) < num_pages; i++) {
1175 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1176 PAGE_SIZE)
1177 return i * alloc_unit;
1180 * We execute this code in a thread context. Furthermore,
1181 * we don't want the kernel to try too hard.
1183 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1184 __GFP_NOMEMALLOC | __GFP_NOWARN,
1185 get_order(alloc_unit << PAGE_SHIFT));
1187 if (!pg)
1188 return i * alloc_unit;
1190 dm->num_pages_ballooned += alloc_unit;
1193 * If we allocatted 2M pages; split them so we
1194 * can free them in any order we get.
1197 if (alloc_unit != 1)
1198 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1200 bl_resp->range_count++;
1201 bl_resp->range_array[i].finfo.start_page =
1202 page_to_pfn(pg);
1203 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1204 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1208 return num_pages;
1211 static void balloon_up(struct work_struct *dummy)
1213 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1214 unsigned int num_ballooned = 0;
1215 struct dm_balloon_response *bl_resp;
1216 int alloc_unit;
1217 int ret;
1218 bool done = false;
1219 int i;
1220 long avail_pages;
1221 unsigned long floor;
1223 /* The host balloons pages in 2M granularity. */
1224 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1227 * We will attempt 2M allocations. However, if we fail to
1228 * allocate 2M chunks, we will go back to 4k allocations.
1230 alloc_unit = 512;
1232 avail_pages = si_mem_available();
1233 floor = compute_balloon_floor();
1235 /* Refuse to balloon below the floor, keep the 2M granularity. */
1236 if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1237 pr_warn("Balloon request will be partially fulfilled. %s\n",
1238 avail_pages < num_pages ? "Not enough memory." :
1239 "Balloon floor reached.");
1241 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1242 num_pages -= num_pages % PAGES_IN_2M;
1245 while (!done) {
1246 bl_resp = (struct dm_balloon_response *)send_buffer;
1247 memset(send_buffer, 0, PAGE_SIZE);
1248 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1249 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1250 bl_resp->more_pages = 1;
1252 num_pages -= num_ballooned;
1253 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1254 bl_resp, alloc_unit);
1256 if (alloc_unit != 1 && num_ballooned == 0) {
1257 alloc_unit = 1;
1258 continue;
1261 if (num_ballooned == 0 || num_ballooned == num_pages) {
1262 pr_debug("Ballooned %u out of %u requested pages.\n",
1263 num_pages, dm_device.balloon_wrk.num_pages);
1265 bl_resp->more_pages = 0;
1266 done = true;
1267 dm_device.state = DM_INITIALIZED;
1271 * We are pushing a lot of data through the channel;
1272 * deal with transient failures caused because of the
1273 * lack of space in the ring buffer.
1276 do {
1277 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1278 ret = vmbus_sendpacket(dm_device.dev->channel,
1279 bl_resp,
1280 bl_resp->hdr.size,
1281 (unsigned long)NULL,
1282 VM_PKT_DATA_INBAND, 0);
1284 if (ret == -EAGAIN)
1285 msleep(20);
1286 post_status(&dm_device);
1287 } while (ret == -EAGAIN);
1289 if (ret) {
1291 * Free up the memory we allocatted.
1293 pr_info("Balloon response failed\n");
1295 for (i = 0; i < bl_resp->range_count; i++)
1296 free_balloon_pages(&dm_device,
1297 &bl_resp->range_array[i]);
1299 done = true;
1305 static void balloon_down(struct hv_dynmem_device *dm,
1306 struct dm_unballoon_request *req)
1308 union dm_mem_page_range *range_array = req->range_array;
1309 int range_count = req->range_count;
1310 struct dm_unballoon_response resp;
1311 int i;
1312 unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1314 for (i = 0; i < range_count; i++) {
1315 free_balloon_pages(dm, &range_array[i]);
1316 complete(&dm_device.config_event);
1319 pr_debug("Freed %u ballooned pages.\n",
1320 prev_pages_ballooned - dm->num_pages_ballooned);
1322 if (req->more_pages == 1)
1323 return;
1325 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1326 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1327 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1328 resp.hdr.size = sizeof(struct dm_unballoon_response);
1330 vmbus_sendpacket(dm_device.dev->channel, &resp,
1331 sizeof(struct dm_unballoon_response),
1332 (unsigned long)NULL,
1333 VM_PKT_DATA_INBAND, 0);
1335 dm->state = DM_INITIALIZED;
1338 static void balloon_onchannelcallback(void *context);
1340 static int dm_thread_func(void *dm_dev)
1342 struct hv_dynmem_device *dm = dm_dev;
1344 while (!kthread_should_stop()) {
1345 wait_for_completion_interruptible_timeout(
1346 &dm_device.config_event, 1*HZ);
1348 * The host expects us to post information on the memory
1349 * pressure every second.
1351 reinit_completion(&dm_device.config_event);
1352 post_status(dm);
1355 return 0;
1359 static void version_resp(struct hv_dynmem_device *dm,
1360 struct dm_version_response *vresp)
1362 struct dm_version_request version_req;
1363 int ret;
1365 if (vresp->is_accepted) {
1367 * We are done; wakeup the
1368 * context waiting for version
1369 * negotiation.
1371 complete(&dm->host_event);
1372 return;
1375 * If there are more versions to try, continue
1376 * with negotiations; if not
1377 * shutdown the service since we are not able
1378 * to negotiate a suitable version number
1379 * with the host.
1381 if (dm->next_version == 0)
1382 goto version_error;
1384 memset(&version_req, 0, sizeof(struct dm_version_request));
1385 version_req.hdr.type = DM_VERSION_REQUEST;
1386 version_req.hdr.size = sizeof(struct dm_version_request);
1387 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1388 version_req.version.version = dm->next_version;
1389 dm->version = version_req.version.version;
1392 * Set the next version to try in case current version fails.
1393 * Win7 protocol ought to be the last one to try.
1395 switch (version_req.version.version) {
1396 case DYNMEM_PROTOCOL_VERSION_WIN8:
1397 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1398 version_req.is_last_attempt = 0;
1399 break;
1400 default:
1401 dm->next_version = 0;
1402 version_req.is_last_attempt = 1;
1405 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1406 sizeof(struct dm_version_request),
1407 (unsigned long)NULL,
1408 VM_PKT_DATA_INBAND, 0);
1410 if (ret)
1411 goto version_error;
1413 return;
1415 version_error:
1416 dm->state = DM_INIT_ERROR;
1417 complete(&dm->host_event);
1420 static void cap_resp(struct hv_dynmem_device *dm,
1421 struct dm_capabilities_resp_msg *cap_resp)
1423 if (!cap_resp->is_accepted) {
1424 pr_info("Capabilities not accepted by host\n");
1425 dm->state = DM_INIT_ERROR;
1427 complete(&dm->host_event);
1430 static void balloon_onchannelcallback(void *context)
1432 struct hv_device *dev = context;
1433 u32 recvlen;
1434 u64 requestid;
1435 struct dm_message *dm_msg;
1436 struct dm_header *dm_hdr;
1437 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1438 struct dm_balloon *bal_msg;
1439 struct dm_hot_add *ha_msg;
1440 union dm_mem_page_range *ha_pg_range;
1441 union dm_mem_page_range *ha_region;
1443 memset(recv_buffer, 0, sizeof(recv_buffer));
1444 vmbus_recvpacket(dev->channel, recv_buffer,
1445 PAGE_SIZE, &recvlen, &requestid);
1447 if (recvlen > 0) {
1448 dm_msg = (struct dm_message *)recv_buffer;
1449 dm_hdr = &dm_msg->hdr;
1451 switch (dm_hdr->type) {
1452 case DM_VERSION_RESPONSE:
1453 version_resp(dm,
1454 (struct dm_version_response *)dm_msg);
1455 break;
1457 case DM_CAPABILITIES_RESPONSE:
1458 cap_resp(dm,
1459 (struct dm_capabilities_resp_msg *)dm_msg);
1460 break;
1462 case DM_BALLOON_REQUEST:
1463 if (dm->state == DM_BALLOON_UP)
1464 pr_warn("Currently ballooning\n");
1465 bal_msg = (struct dm_balloon *)recv_buffer;
1466 dm->state = DM_BALLOON_UP;
1467 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1468 schedule_work(&dm_device.balloon_wrk.wrk);
1469 break;
1471 case DM_UNBALLOON_REQUEST:
1472 dm->state = DM_BALLOON_DOWN;
1473 balloon_down(dm,
1474 (struct dm_unballoon_request *)recv_buffer);
1475 break;
1477 case DM_MEM_HOT_ADD_REQUEST:
1478 if (dm->state == DM_HOT_ADD)
1479 pr_warn("Currently hot-adding\n");
1480 dm->state = DM_HOT_ADD;
1481 ha_msg = (struct dm_hot_add *)recv_buffer;
1482 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1484 * This is a normal hot-add request specifying
1485 * hot-add memory.
1487 dm->host_specified_ha_region = false;
1488 ha_pg_range = &ha_msg->range;
1489 dm->ha_wrk.ha_page_range = *ha_pg_range;
1490 dm->ha_wrk.ha_region_range.page_range = 0;
1491 } else {
1493 * Host is specifying that we first hot-add
1494 * a region and then partially populate this
1495 * region.
1497 dm->host_specified_ha_region = true;
1498 ha_pg_range = &ha_msg->range;
1499 ha_region = &ha_pg_range[1];
1500 dm->ha_wrk.ha_page_range = *ha_pg_range;
1501 dm->ha_wrk.ha_region_range = *ha_region;
1503 schedule_work(&dm_device.ha_wrk.wrk);
1504 break;
1506 case DM_INFO_MESSAGE:
1507 process_info(dm, (struct dm_info_msg *)dm_msg);
1508 break;
1510 default:
1511 pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1518 static int balloon_probe(struct hv_device *dev,
1519 const struct hv_vmbus_device_id *dev_id)
1521 int ret;
1522 unsigned long t;
1523 struct dm_version_request version_req;
1524 struct dm_capabilities cap_msg;
1526 #ifdef CONFIG_MEMORY_HOTPLUG
1527 do_hot_add = hot_add;
1528 #else
1529 do_hot_add = false;
1530 #endif
1533 * First allocate a send buffer.
1536 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1537 if (!send_buffer)
1538 return -ENOMEM;
1540 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1541 balloon_onchannelcallback, dev);
1543 if (ret)
1544 goto probe_error0;
1546 dm_device.dev = dev;
1547 dm_device.state = DM_INITIALIZING;
1548 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1549 init_completion(&dm_device.host_event);
1550 init_completion(&dm_device.config_event);
1551 INIT_LIST_HEAD(&dm_device.ha_region_list);
1552 spin_lock_init(&dm_device.ha_lock);
1553 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1554 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1555 dm_device.host_specified_ha_region = false;
1557 dm_device.thread =
1558 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1559 if (IS_ERR(dm_device.thread)) {
1560 ret = PTR_ERR(dm_device.thread);
1561 goto probe_error1;
1564 #ifdef CONFIG_MEMORY_HOTPLUG
1565 set_online_page_callback(&hv_online_page);
1566 register_memory_notifier(&hv_memory_nb);
1567 #endif
1569 hv_set_drvdata(dev, &dm_device);
1571 * Initiate the hand shake with the host and negotiate
1572 * a version that the host can support. We start with the
1573 * highest version number and go down if the host cannot
1574 * support it.
1576 memset(&version_req, 0, sizeof(struct dm_version_request));
1577 version_req.hdr.type = DM_VERSION_REQUEST;
1578 version_req.hdr.size = sizeof(struct dm_version_request);
1579 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1580 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1581 version_req.is_last_attempt = 0;
1582 dm_device.version = version_req.version.version;
1584 ret = vmbus_sendpacket(dev->channel, &version_req,
1585 sizeof(struct dm_version_request),
1586 (unsigned long)NULL,
1587 VM_PKT_DATA_INBAND, 0);
1588 if (ret)
1589 goto probe_error2;
1591 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1592 if (t == 0) {
1593 ret = -ETIMEDOUT;
1594 goto probe_error2;
1598 * If we could not negotiate a compatible version with the host
1599 * fail the probe function.
1601 if (dm_device.state == DM_INIT_ERROR) {
1602 ret = -ETIMEDOUT;
1603 goto probe_error2;
1606 pr_info("Using Dynamic Memory protocol version %u.%u\n",
1607 DYNMEM_MAJOR_VERSION(dm_device.version),
1608 DYNMEM_MINOR_VERSION(dm_device.version));
1611 * Now submit our capabilities to the host.
1613 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1614 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1615 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1616 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1618 cap_msg.caps.cap_bits.balloon = 1;
1619 cap_msg.caps.cap_bits.hot_add = 1;
1622 * Specify our alignment requirements as it relates
1623 * memory hot-add. Specify 128MB alignment.
1625 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1628 * Currently the host does not use these
1629 * values and we set them to what is done in the
1630 * Windows driver.
1632 cap_msg.min_page_cnt = 0;
1633 cap_msg.max_page_number = -1;
1635 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1636 sizeof(struct dm_capabilities),
1637 (unsigned long)NULL,
1638 VM_PKT_DATA_INBAND, 0);
1639 if (ret)
1640 goto probe_error2;
1642 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1643 if (t == 0) {
1644 ret = -ETIMEDOUT;
1645 goto probe_error2;
1649 * If the host does not like our capabilities,
1650 * fail the probe function.
1652 if (dm_device.state == DM_INIT_ERROR) {
1653 ret = -ETIMEDOUT;
1654 goto probe_error2;
1657 dm_device.state = DM_INITIALIZED;
1658 last_post_time = jiffies;
1660 return 0;
1662 probe_error2:
1663 #ifdef CONFIG_MEMORY_HOTPLUG
1664 restore_online_page_callback(&hv_online_page);
1665 #endif
1666 kthread_stop(dm_device.thread);
1668 probe_error1:
1669 vmbus_close(dev->channel);
1670 probe_error0:
1671 kfree(send_buffer);
1672 return ret;
1675 static int balloon_remove(struct hv_device *dev)
1677 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1678 struct hv_hotadd_state *has, *tmp;
1679 struct hv_hotadd_gap *gap, *tmp_gap;
1680 unsigned long flags;
1682 if (dm->num_pages_ballooned != 0)
1683 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1685 cancel_work_sync(&dm->balloon_wrk.wrk);
1686 cancel_work_sync(&dm->ha_wrk.wrk);
1688 vmbus_close(dev->channel);
1689 kthread_stop(dm->thread);
1690 kfree(send_buffer);
1691 #ifdef CONFIG_MEMORY_HOTPLUG
1692 restore_online_page_callback(&hv_online_page);
1693 unregister_memory_notifier(&hv_memory_nb);
1694 #endif
1695 spin_lock_irqsave(&dm_device.ha_lock, flags);
1696 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1697 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1698 list_del(&gap->list);
1699 kfree(gap);
1701 list_del(&has->list);
1702 kfree(has);
1704 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1706 return 0;
1709 static const struct hv_vmbus_device_id id_table[] = {
1710 /* Dynamic Memory Class ID */
1711 /* 525074DC-8985-46e2-8057-A307DC18A502 */
1712 { HV_DM_GUID, },
1713 { },
1716 MODULE_DEVICE_TABLE(vmbus, id_table);
1718 static struct hv_driver balloon_drv = {
1719 .name = "hv_balloon",
1720 .id_table = id_table,
1721 .probe = balloon_probe,
1722 .remove = balloon_remove,
1725 static int __init init_balloon_drv(void)
1728 return vmbus_driver_register(&balloon_drv);
1731 module_init(init_balloon_drv);
1733 MODULE_DESCRIPTION("Hyper-V Balloon");
1734 MODULE_LICENSE("GPL");