xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / hwtracing / coresight / coresight-etm-perf.c
blob8a0ad77574e733a0418155c733385db1ba7965f4
1 /*
2 * Copyright(C) 2015 Linaro Limited. All rights reserved.
3 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/coresight.h>
19 #include <linux/coresight-pmu.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/list.h>
23 #include <linux/mm.h>
24 #include <linux/init.h>
25 #include <linux/perf_event.h>
26 #include <linux/slab.h>
27 #include <linux/types.h>
28 #include <linux/workqueue.h>
30 #include "coresight-etm-perf.h"
31 #include "coresight-priv.h"
33 static struct pmu etm_pmu;
34 static bool etm_perf_up;
36 /**
37 * struct etm_event_data - Coresight specifics associated to an event
38 * @work: Handle to free allocated memory outside IRQ context.
39 * @mask: Hold the CPU(s) this event was set for.
40 * @snk_config: The sink configuration.
41 * @path: An array of path, each slot for one CPU.
43 struct etm_event_data {
44 struct work_struct work;
45 cpumask_t mask;
46 void *snk_config;
47 struct list_head **path;
50 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
53 /* ETMv3.5/PTM's ETMCR is 'config' */
54 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
55 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
56 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
58 static struct attribute *etm_config_formats_attr[] = {
59 &format_attr_cycacc.attr,
60 &format_attr_timestamp.attr,
61 &format_attr_retstack.attr,
62 NULL,
65 static const struct attribute_group etm_pmu_format_group = {
66 .name = "format",
67 .attrs = etm_config_formats_attr,
70 static const struct attribute_group *etm_pmu_attr_groups[] = {
71 &etm_pmu_format_group,
72 NULL,
75 static void etm_event_read(struct perf_event *event) {}
77 static int etm_addr_filters_alloc(struct perf_event *event)
79 struct etm_filters *filters;
80 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
82 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
83 if (!filters)
84 return -ENOMEM;
86 if (event->parent)
87 memcpy(filters, event->parent->hw.addr_filters,
88 sizeof(*filters));
90 event->hw.addr_filters = filters;
92 return 0;
95 static void etm_event_destroy(struct perf_event *event)
97 kfree(event->hw.addr_filters);
98 event->hw.addr_filters = NULL;
101 static int etm_event_init(struct perf_event *event)
103 int ret = 0;
105 if (event->attr.type != etm_pmu.type) {
106 ret = -ENOENT;
107 goto out;
110 ret = etm_addr_filters_alloc(event);
111 if (ret)
112 goto out;
114 event->destroy = etm_event_destroy;
115 out:
116 return ret;
119 static void free_event_data(struct work_struct *work)
121 int cpu;
122 cpumask_t *mask;
123 struct etm_event_data *event_data;
124 struct coresight_device *sink;
126 event_data = container_of(work, struct etm_event_data, work);
127 mask = &event_data->mask;
129 * First deal with the sink configuration. See comment in
130 * etm_setup_aux() about why we take the first available path.
132 if (event_data->snk_config) {
133 cpu = cpumask_first(mask);
134 sink = coresight_get_sink(event_data->path[cpu]);
135 if (sink_ops(sink)->free_buffer)
136 sink_ops(sink)->free_buffer(event_data->snk_config);
139 for_each_cpu(cpu, mask) {
140 if (!(IS_ERR_OR_NULL(event_data->path[cpu])))
141 coresight_release_path(event_data->path[cpu]);
144 kfree(event_data->path);
145 kfree(event_data);
148 static void *alloc_event_data(int cpu)
150 int size;
151 cpumask_t *mask;
152 struct etm_event_data *event_data;
154 /* First get memory for the session's data */
155 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
156 if (!event_data)
157 return NULL;
159 /* Make sure nothing disappears under us */
160 get_online_cpus();
161 size = num_online_cpus();
163 mask = &event_data->mask;
164 if (cpu != -1)
165 cpumask_set_cpu(cpu, mask);
166 else
167 cpumask_copy(mask, cpu_online_mask);
168 put_online_cpus();
171 * Each CPU has a single path between source and destination. As such
172 * allocate an array using CPU numbers as indexes. That way a path
173 * for any CPU can easily be accessed at any given time. We proceed
174 * the same way for sessions involving a single CPU. The cost of
175 * unused memory when dealing with single CPU trace scenarios is small
176 * compared to the cost of searching through an optimized array.
178 event_data->path = kcalloc(size,
179 sizeof(struct list_head *), GFP_KERNEL);
180 if (!event_data->path) {
181 kfree(event_data);
182 return NULL;
185 return event_data;
188 static void etm_free_aux(void *data)
190 struct etm_event_data *event_data = data;
192 schedule_work(&event_data->work);
195 static void *etm_setup_aux(int event_cpu, void **pages,
196 int nr_pages, bool overwrite)
198 int cpu;
199 cpumask_t *mask;
200 struct coresight_device *sink;
201 struct etm_event_data *event_data = NULL;
203 event_data = alloc_event_data(event_cpu);
204 if (!event_data)
205 return NULL;
206 INIT_WORK(&event_data->work, free_event_data);
209 * In theory nothing prevent tracers in a trace session from being
210 * associated with different sinks, nor having a sink per tracer. But
211 * until we have HW with this kind of topology we need to assume tracers
212 * in a trace session are using the same sink. Therefore go through
213 * the coresight bus and pick the first enabled sink.
215 * When operated from sysFS users are responsible to enable the sink
216 * while from perf, the perf tools will do it based on the choice made
217 * on the cmd line. As such the "enable_sink" flag in sysFS is reset.
219 sink = coresight_get_enabled_sink(true);
220 if (!sink)
221 goto err;
223 mask = &event_data->mask;
225 /* Setup the path for each CPU in a trace session */
226 for_each_cpu(cpu, mask) {
227 struct coresight_device *csdev;
229 csdev = per_cpu(csdev_src, cpu);
230 if (!csdev)
231 goto err;
234 * Building a path doesn't enable it, it simply builds a
235 * list of devices from source to sink that can be
236 * referenced later when the path is actually needed.
238 event_data->path[cpu] = coresight_build_path(csdev, sink);
239 if (IS_ERR(event_data->path[cpu]))
240 goto err;
243 if (!sink_ops(sink)->alloc_buffer)
244 goto err;
246 cpu = cpumask_first(mask);
247 /* Get the AUX specific data from the sink buffer */
248 event_data->snk_config =
249 sink_ops(sink)->alloc_buffer(sink, cpu, pages,
250 nr_pages, overwrite);
251 if (!event_data->snk_config)
252 goto err;
254 out:
255 return event_data;
257 err:
258 etm_free_aux(event_data);
259 event_data = NULL;
260 goto out;
263 static void etm_event_start(struct perf_event *event, int flags)
265 int cpu = smp_processor_id();
266 struct etm_event_data *event_data;
267 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
268 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
270 if (!csdev)
271 goto fail;
274 * Deal with the ring buffer API and get a handle on the
275 * session's information.
277 event_data = perf_aux_output_begin(handle, event);
278 if (!event_data)
279 goto fail;
281 /* We need a sink, no need to continue without one */
282 sink = coresight_get_sink(event_data->path[cpu]);
283 if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
284 goto fail_end_stop;
286 /* Configure the sink */
287 if (sink_ops(sink)->set_buffer(sink, handle,
288 event_data->snk_config))
289 goto fail_end_stop;
291 /* Nothing will happen without a path */
292 if (coresight_enable_path(event_data->path[cpu], CS_MODE_PERF))
293 goto fail_end_stop;
295 /* Tell the perf core the event is alive */
296 event->hw.state = 0;
298 /* Finally enable the tracer */
299 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
300 goto fail_end_stop;
302 out:
303 return;
305 fail_end_stop:
306 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
307 perf_aux_output_end(handle, 0);
308 fail:
309 event->hw.state = PERF_HES_STOPPED;
310 goto out;
313 static void etm_event_stop(struct perf_event *event, int mode)
315 int cpu = smp_processor_id();
316 unsigned long size;
317 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
318 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
319 struct etm_event_data *event_data = perf_get_aux(handle);
321 if (event->hw.state == PERF_HES_STOPPED)
322 return;
324 if (!csdev)
325 return;
327 sink = coresight_get_sink(event_data->path[cpu]);
328 if (!sink)
329 return;
331 /* stop tracer */
332 source_ops(csdev)->disable(csdev, event);
334 /* tell the core */
335 event->hw.state = PERF_HES_STOPPED;
337 if (mode & PERF_EF_UPDATE) {
338 if (WARN_ON_ONCE(handle->event != event))
339 return;
341 /* update trace information */
342 if (!sink_ops(sink)->update_buffer)
343 return;
345 sink_ops(sink)->update_buffer(sink, handle,
346 event_data->snk_config);
348 if (!sink_ops(sink)->reset_buffer)
349 return;
351 size = sink_ops(sink)->reset_buffer(sink, handle,
352 event_data->snk_config);
354 perf_aux_output_end(handle, size);
357 /* Disabling the path make its elements available to other sessions */
358 coresight_disable_path(event_data->path[cpu]);
361 static int etm_event_add(struct perf_event *event, int mode)
363 int ret = 0;
364 struct hw_perf_event *hwc = &event->hw;
366 if (mode & PERF_EF_START) {
367 etm_event_start(event, 0);
368 if (hwc->state & PERF_HES_STOPPED)
369 ret = -EINVAL;
370 } else {
371 hwc->state = PERF_HES_STOPPED;
374 return ret;
377 static void etm_event_del(struct perf_event *event, int mode)
379 etm_event_stop(event, PERF_EF_UPDATE);
382 static int etm_addr_filters_validate(struct list_head *filters)
384 bool range = false, address = false;
385 int index = 0;
386 struct perf_addr_filter *filter;
388 list_for_each_entry(filter, filters, entry) {
390 * No need to go further if there's no more
391 * room for filters.
393 if (++index > ETM_ADDR_CMP_MAX)
394 return -EOPNOTSUPP;
397 * As taken from the struct perf_addr_filter documentation:
398 * @range: 1: range, 0: address
400 * At this time we don't allow range and start/stop filtering
401 * to cohabitate, they have to be mutually exclusive.
403 if ((filter->range == 1) && address)
404 return -EOPNOTSUPP;
406 if ((filter->range == 0) && range)
407 return -EOPNOTSUPP;
410 * For range filtering, the second address in the address
411 * range comparator needs to be higher than the first.
412 * Invalid otherwise.
414 if (filter->range && filter->size == 0)
415 return -EINVAL;
418 * Everything checks out with this filter, record what we've
419 * received before moving on to the next one.
421 if (filter->range)
422 range = true;
423 else
424 address = true;
427 return 0;
430 static void etm_addr_filters_sync(struct perf_event *event)
432 struct perf_addr_filters_head *head = perf_event_addr_filters(event);
433 unsigned long start, stop, *offs = event->addr_filters_offs;
434 struct etm_filters *filters = event->hw.addr_filters;
435 struct etm_filter *etm_filter;
436 struct perf_addr_filter *filter;
437 int i = 0;
439 list_for_each_entry(filter, &head->list, entry) {
440 start = filter->offset + offs[i];
441 stop = start + filter->size;
442 etm_filter = &filters->etm_filter[i];
444 if (filter->range == 1) {
445 etm_filter->start_addr = start;
446 etm_filter->stop_addr = stop;
447 etm_filter->type = ETM_ADDR_TYPE_RANGE;
448 } else {
449 if (filter->filter == 1) {
450 etm_filter->start_addr = start;
451 etm_filter->type = ETM_ADDR_TYPE_START;
452 } else {
453 etm_filter->stop_addr = stop;
454 etm_filter->type = ETM_ADDR_TYPE_STOP;
457 i++;
460 filters->nr_filters = i;
463 int etm_perf_symlink(struct coresight_device *csdev, bool link)
465 char entry[sizeof("cpu9999999")];
466 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
467 struct device *pmu_dev = etm_pmu.dev;
468 struct device *cs_dev = &csdev->dev;
470 sprintf(entry, "cpu%d", cpu);
472 if (!etm_perf_up)
473 return -EPROBE_DEFER;
475 if (link) {
476 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
477 if (ret)
478 return ret;
479 per_cpu(csdev_src, cpu) = csdev;
480 } else {
481 sysfs_remove_link(&pmu_dev->kobj, entry);
482 per_cpu(csdev_src, cpu) = NULL;
485 return 0;
488 static int __init etm_perf_init(void)
490 int ret;
492 etm_pmu.capabilities = PERF_PMU_CAP_EXCLUSIVE;
494 etm_pmu.attr_groups = etm_pmu_attr_groups;
495 etm_pmu.task_ctx_nr = perf_sw_context;
496 etm_pmu.read = etm_event_read;
497 etm_pmu.event_init = etm_event_init;
498 etm_pmu.setup_aux = etm_setup_aux;
499 etm_pmu.free_aux = etm_free_aux;
500 etm_pmu.start = etm_event_start;
501 etm_pmu.stop = etm_event_stop;
502 etm_pmu.add = etm_event_add;
503 etm_pmu.del = etm_event_del;
504 etm_pmu.addr_filters_sync = etm_addr_filters_sync;
505 etm_pmu.addr_filters_validate = etm_addr_filters_validate;
506 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
508 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
509 if (ret == 0)
510 etm_perf_up = true;
512 return ret;
514 device_initcall(etm_perf_init);