xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / iio / adc / nau7802.c
blob8997e74a8847be9bde6c87730d233c7c39222069
1 /*
2 * Driver for the Nuvoton NAU7802 ADC
4 * Copyright 2013 Free Electrons
6 * Licensed under the GPLv2 or later.
7 */
9 #include <linux/delay.h>
10 #include <linux/i2c.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/wait.h>
14 #include <linux/log2.h>
15 #include <linux/of.h>
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
20 #define NAU7802_REG_PUCTRL 0x00
21 #define NAU7802_PUCTRL_RR(x) (x << 0)
22 #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1)
23 #define NAU7802_PUCTRL_PUD(x) (x << 1)
24 #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1)
25 #define NAU7802_PUCTRL_PUA(x) (x << 2)
26 #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1)
27 #define NAU7802_PUCTRL_PUR(x) (x << 3)
28 #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1)
29 #define NAU7802_PUCTRL_CS(x) (x << 4)
30 #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1)
31 #define NAU7802_PUCTRL_CR(x) (x << 5)
32 #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1)
33 #define NAU7802_PUCTRL_AVDDS(x) (x << 7)
34 #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1)
35 #define NAU7802_REG_CTRL1 0x01
36 #define NAU7802_CTRL1_VLDO(x) (x << 3)
37 #define NAU7802_CTRL1_GAINS(x) (x)
38 #define NAU7802_CTRL1_GAINS_BITS 0x07
39 #define NAU7802_REG_CTRL2 0x02
40 #define NAU7802_CTRL2_CHS(x) (x << 7)
41 #define NAU7802_CTRL2_CRS(x) (x << 4)
42 #define NAU7802_SAMP_FREQ_320 0x07
43 #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1)
44 #define NAU7802_REG_ADC_B2 0x12
45 #define NAU7802_REG_ADC_B1 0x13
46 #define NAU7802_REG_ADC_B0 0x14
47 #define NAU7802_REG_ADC_CTRL 0x15
49 #define NAU7802_MIN_CONVERSIONS 6
51 struct nau7802_state {
52 struct i2c_client *client;
53 s32 last_value;
54 struct mutex lock;
55 struct mutex data_lock;
56 u32 vref_mv;
57 u32 conversion_count;
58 u32 min_conversions;
59 u8 sample_rate;
60 u32 scale_avail[8];
61 struct completion value_ok;
64 #define NAU7802_CHANNEL(chan) { \
65 .type = IIO_VOLTAGE, \
66 .indexed = 1, \
67 .channel = (chan), \
68 .scan_index = (chan), \
69 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
70 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
71 BIT(IIO_CHAN_INFO_SAMP_FREQ) \
74 static const struct iio_chan_spec nau7802_chan_array[] = {
75 NAU7802_CHANNEL(0),
76 NAU7802_CHANNEL(1),
79 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
80 10, 10, 10, 320};
82 static ssize_t nau7802_show_scales(struct device *dev,
83 struct device_attribute *attr, char *buf)
85 struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
86 int i, len = 0;
88 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
89 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
90 st->scale_avail[i]);
92 buf[len-1] = '\n';
94 return len;
97 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
99 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
100 NULL, 0);
102 static struct attribute *nau7802_attributes[] = {
103 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
104 &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
105 NULL
108 static const struct attribute_group nau7802_attribute_group = {
109 .attrs = nau7802_attributes,
112 static int nau7802_set_gain(struct nau7802_state *st, int gain)
114 int ret;
116 mutex_lock(&st->lock);
117 st->conversion_count = 0;
119 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
120 if (ret < 0)
121 goto nau7802_sysfs_set_gain_out;
122 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
123 (ret & (~NAU7802_CTRL1_GAINS_BITS)) |
124 gain);
126 nau7802_sysfs_set_gain_out:
127 mutex_unlock(&st->lock);
129 return ret;
132 static int nau7802_read_conversion(struct nau7802_state *st)
134 int data;
136 mutex_lock(&st->data_lock);
137 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
138 if (data < 0)
139 goto nau7802_read_conversion_out;
140 st->last_value = data << 16;
142 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
143 if (data < 0)
144 goto nau7802_read_conversion_out;
145 st->last_value |= data << 8;
147 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
148 if (data < 0)
149 goto nau7802_read_conversion_out;
150 st->last_value |= data;
152 st->last_value = sign_extend32(st->last_value, 23);
154 nau7802_read_conversion_out:
155 mutex_unlock(&st->data_lock);
157 return data;
161 * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
163 static int nau7802_sync(struct nau7802_state *st)
165 int ret;
167 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
168 if (ret < 0)
169 return ret;
170 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
171 ret | NAU7802_PUCTRL_CS_BIT);
173 return ret;
176 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
178 struct iio_dev *indio_dev = private;
179 struct nau7802_state *st = iio_priv(indio_dev);
180 int status;
182 status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
183 if (status < 0)
184 return IRQ_HANDLED;
186 if (!(status & NAU7802_PUCTRL_CR_BIT))
187 return IRQ_NONE;
189 if (nau7802_read_conversion(st) < 0)
190 return IRQ_HANDLED;
193 * Because there is actually only one ADC for both channels, we have to
194 * wait for enough conversions to happen before getting a significant
195 * value when changing channels and the values are far apart.
197 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
198 st->conversion_count++;
199 if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
200 complete(&st->value_ok);
202 return IRQ_HANDLED;
205 static int nau7802_read_irq(struct iio_dev *indio_dev,
206 struct iio_chan_spec const *chan,
207 int *val)
209 struct nau7802_state *st = iio_priv(indio_dev);
210 int ret;
212 reinit_completion(&st->value_ok);
213 enable_irq(st->client->irq);
215 nau7802_sync(st);
217 /* read registers to ensure we flush everything */
218 ret = nau7802_read_conversion(st);
219 if (ret < 0)
220 goto read_chan_info_failure;
222 /* Wait for a conversion to finish */
223 ret = wait_for_completion_interruptible_timeout(&st->value_ok,
224 msecs_to_jiffies(1000));
225 if (ret == 0)
226 ret = -ETIMEDOUT;
228 if (ret < 0)
229 goto read_chan_info_failure;
231 disable_irq(st->client->irq);
233 *val = st->last_value;
235 return IIO_VAL_INT;
237 read_chan_info_failure:
238 disable_irq(st->client->irq);
240 return ret;
243 static int nau7802_read_poll(struct iio_dev *indio_dev,
244 struct iio_chan_spec const *chan,
245 int *val)
247 struct nau7802_state *st = iio_priv(indio_dev);
248 int ret;
250 nau7802_sync(st);
252 /* read registers to ensure we flush everything */
253 ret = nau7802_read_conversion(st);
254 if (ret < 0)
255 return ret;
258 * Because there is actually only one ADC for both channels, we have to
259 * wait for enough conversions to happen before getting a significant
260 * value when changing channels and the values are far appart.
262 do {
263 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
264 if (ret < 0)
265 return ret;
267 while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
268 if (st->sample_rate != NAU7802_SAMP_FREQ_320)
269 msleep(20);
270 else
271 mdelay(4);
272 ret = i2c_smbus_read_byte_data(st->client,
273 NAU7802_REG_PUCTRL);
274 if (ret < 0)
275 return ret;
278 ret = nau7802_read_conversion(st);
279 if (ret < 0)
280 return ret;
281 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
282 st->conversion_count++;
283 } while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
285 *val = st->last_value;
287 return IIO_VAL_INT;
290 static int nau7802_read_raw(struct iio_dev *indio_dev,
291 struct iio_chan_spec const *chan,
292 int *val, int *val2, long mask)
294 struct nau7802_state *st = iio_priv(indio_dev);
295 int ret;
297 switch (mask) {
298 case IIO_CHAN_INFO_RAW:
299 mutex_lock(&st->lock);
301 * Select the channel to use
302 * - Channel 1 is value 0 in the CHS register
303 * - Channel 2 is value 1 in the CHS register
305 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
306 if (ret < 0) {
307 mutex_unlock(&st->lock);
308 return ret;
311 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
312 (!(ret & NAU7802_CTRL2_CHS_BIT) &&
313 chan->channel)) {
314 st->conversion_count = 0;
315 ret = i2c_smbus_write_byte_data(st->client,
316 NAU7802_REG_CTRL2,
317 NAU7802_CTRL2_CHS(chan->channel) |
318 NAU7802_CTRL2_CRS(st->sample_rate));
320 if (ret < 0) {
321 mutex_unlock(&st->lock);
322 return ret;
326 if (st->client->irq)
327 ret = nau7802_read_irq(indio_dev, chan, val);
328 else
329 ret = nau7802_read_poll(indio_dev, chan, val);
331 mutex_unlock(&st->lock);
332 return ret;
334 case IIO_CHAN_INFO_SCALE:
335 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
336 if (ret < 0)
337 return ret;
340 * We have 24 bits of signed data, that means 23 bits of data
341 * plus the sign bit
343 *val = st->vref_mv;
344 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
346 return IIO_VAL_FRACTIONAL_LOG2;
348 case IIO_CHAN_INFO_SAMP_FREQ:
349 *val = nau7802_sample_freq_avail[st->sample_rate];
350 *val2 = 0;
351 return IIO_VAL_INT;
353 default:
354 break;
357 return -EINVAL;
360 static int nau7802_write_raw(struct iio_dev *indio_dev,
361 struct iio_chan_spec const *chan,
362 int val, int val2, long mask)
364 struct nau7802_state *st = iio_priv(indio_dev);
365 int i, ret;
367 switch (mask) {
368 case IIO_CHAN_INFO_SCALE:
369 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
370 if (val2 == st->scale_avail[i])
371 return nau7802_set_gain(st, i);
373 break;
375 case IIO_CHAN_INFO_SAMP_FREQ:
376 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
377 if (val == nau7802_sample_freq_avail[i]) {
378 mutex_lock(&st->lock);
379 st->sample_rate = i;
380 st->conversion_count = 0;
381 ret = i2c_smbus_write_byte_data(st->client,
382 NAU7802_REG_CTRL2,
383 NAU7802_CTRL2_CRS(st->sample_rate));
384 mutex_unlock(&st->lock);
385 return ret;
388 break;
390 default:
391 break;
394 return -EINVAL;
397 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
398 struct iio_chan_spec const *chan,
399 long mask)
401 return IIO_VAL_INT_PLUS_NANO;
404 static const struct iio_info nau7802_info = {
405 .read_raw = &nau7802_read_raw,
406 .write_raw = &nau7802_write_raw,
407 .write_raw_get_fmt = nau7802_write_raw_get_fmt,
408 .attrs = &nau7802_attribute_group,
411 static int nau7802_probe(struct i2c_client *client,
412 const struct i2c_device_id *id)
414 struct iio_dev *indio_dev;
415 struct nau7802_state *st;
416 struct device_node *np = client->dev.of_node;
417 int i, ret;
418 u8 data;
419 u32 tmp = 0;
421 if (!client->dev.of_node) {
422 dev_err(&client->dev, "No device tree node available.\n");
423 return -EINVAL;
426 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
427 if (indio_dev == NULL)
428 return -ENOMEM;
430 st = iio_priv(indio_dev);
432 i2c_set_clientdata(client, indio_dev);
434 indio_dev->dev.parent = &client->dev;
435 indio_dev->dev.of_node = client->dev.of_node;
436 indio_dev->name = dev_name(&client->dev);
437 indio_dev->modes = INDIO_DIRECT_MODE;
438 indio_dev->info = &nau7802_info;
440 st->client = client;
442 /* Reset the device */
443 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
444 NAU7802_PUCTRL_RR_BIT);
445 if (ret < 0)
446 return ret;
448 /* Enter normal operation mode */
449 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
450 NAU7802_PUCTRL_PUD_BIT);
451 if (ret < 0)
452 return ret;
455 * After about 200 usecs, the device should be ready and then
456 * the Power Up bit will be set to 1. If not, wait for it.
458 udelay(210);
459 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
460 if (ret < 0)
461 return ret;
462 if (!(ret & NAU7802_PUCTRL_PUR_BIT))
463 return ret;
465 of_property_read_u32(np, "nuvoton,vldo", &tmp);
466 st->vref_mv = tmp;
468 data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
469 NAU7802_PUCTRL_CS_BIT;
470 if (tmp >= 2400)
471 data |= NAU7802_PUCTRL_AVDDS_BIT;
473 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
474 if (ret < 0)
475 return ret;
476 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
477 if (ret < 0)
478 return ret;
480 if (tmp >= 2400) {
481 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
482 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
483 data);
484 if (ret < 0)
485 return ret;
488 /* Populate available ADC input ranges */
489 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
490 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
491 >> (23 + i);
493 init_completion(&st->value_ok);
496 * The ADC fires continuously and we can't do anything about
497 * it. So we need to have the IRQ disabled by default, and we
498 * will enable them back when we will need them..
500 if (client->irq) {
501 ret = request_threaded_irq(client->irq,
502 NULL,
503 nau7802_eoc_trigger,
504 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
505 client->dev.driver->name,
506 indio_dev);
507 if (ret) {
509 * What may happen here is that our IRQ controller is
510 * not able to get level interrupt but this is required
511 * by this ADC as when going over 40 sample per second,
512 * the interrupt line may stay high between conversions.
513 * So, we continue no matter what but we switch to
514 * polling mode.
516 dev_info(&client->dev,
517 "Failed to allocate IRQ, using polling mode\n");
518 client->irq = 0;
519 } else
520 disable_irq(client->irq);
523 if (!client->irq) {
525 * We are polling, use the fastest sample rate by
526 * default
528 st->sample_rate = NAU7802_SAMP_FREQ_320;
529 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
530 NAU7802_CTRL2_CRS(st->sample_rate));
531 if (ret)
532 goto error_free_irq;
535 /* Setup the ADC channels available on the board */
536 indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
537 indio_dev->channels = nau7802_chan_array;
539 mutex_init(&st->lock);
540 mutex_init(&st->data_lock);
542 ret = iio_device_register(indio_dev);
543 if (ret < 0) {
544 dev_err(&client->dev, "Couldn't register the device.\n");
545 goto error_device_register;
548 return 0;
550 error_device_register:
551 mutex_destroy(&st->lock);
552 mutex_destroy(&st->data_lock);
553 error_free_irq:
554 if (client->irq)
555 free_irq(client->irq, indio_dev);
557 return ret;
560 static int nau7802_remove(struct i2c_client *client)
562 struct iio_dev *indio_dev = i2c_get_clientdata(client);
563 struct nau7802_state *st = iio_priv(indio_dev);
565 iio_device_unregister(indio_dev);
566 mutex_destroy(&st->lock);
567 mutex_destroy(&st->data_lock);
568 if (client->irq)
569 free_irq(client->irq, indio_dev);
571 return 0;
574 static const struct i2c_device_id nau7802_i2c_id[] = {
575 { "nau7802", 0 },
578 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
580 static const struct of_device_id nau7802_dt_ids[] = {
581 { .compatible = "nuvoton,nau7802" },
584 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
586 static struct i2c_driver nau7802_driver = {
587 .probe = nau7802_probe,
588 .remove = nau7802_remove,
589 .id_table = nau7802_i2c_id,
590 .driver = {
591 .name = "nau7802",
592 .of_match_table = nau7802_dt_ids,
596 module_i2c_driver(nau7802_driver);
598 MODULE_LICENSE("GPL");
599 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
600 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
601 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");