xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / iio / adc / qcom-vadc-common.c
blobfe3d7826783c0fcd0bae1831f356ba0d5acc86a4
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bug.h>
3 #include <linux/kernel.h>
4 #include <linux/bitops.h>
5 #include <linux/math64.h>
6 #include <linux/log2.h>
7 #include <linux/err.h>
8 #include <linux/module.h>
10 #include "qcom-vadc-common.h"
12 /* Voltage to temperature */
13 static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
14 {1758, -40},
15 {1742, -35},
16 {1719, -30},
17 {1691, -25},
18 {1654, -20},
19 {1608, -15},
20 {1551, -10},
21 {1483, -5},
22 {1404, 0},
23 {1315, 5},
24 {1218, 10},
25 {1114, 15},
26 {1007, 20},
27 {900, 25},
28 {795, 30},
29 {696, 35},
30 {605, 40},
31 {522, 45},
32 {448, 50},
33 {383, 55},
34 {327, 60},
35 {278, 65},
36 {237, 70},
37 {202, 75},
38 {172, 80},
39 {146, 85},
40 {125, 90},
41 {107, 95},
42 {92, 100},
43 {79, 105},
44 {68, 110},
45 {59, 115},
46 {51, 120},
47 {44, 125}
50 static int qcom_vadc_map_voltage_temp(const struct vadc_map_pt *pts,
51 u32 tablesize, s32 input, s64 *output)
53 bool descending = 1;
54 u32 i = 0;
56 if (!pts)
57 return -EINVAL;
59 /* Check if table is descending or ascending */
60 if (tablesize > 1) {
61 if (pts[0].x < pts[1].x)
62 descending = 0;
65 while (i < tablesize) {
66 if ((descending) && (pts[i].x < input)) {
67 /* table entry is less than measured*/
68 /* value and table is descending, stop */
69 break;
70 } else if ((!descending) &&
71 (pts[i].x > input)) {
72 /* table entry is greater than measured*/
73 /*value and table is ascending, stop */
74 break;
76 i++;
79 if (i == 0) {
80 *output = pts[0].y;
81 } else if (i == tablesize) {
82 *output = pts[tablesize - 1].y;
83 } else {
84 /* result is between search_index and search_index-1 */
85 /* interpolate linearly */
86 *output = (((s32)((pts[i].y - pts[i - 1].y) *
87 (input - pts[i - 1].x)) /
88 (pts[i].x - pts[i - 1].x)) +
89 pts[i - 1].y);
92 return 0;
95 static void qcom_vadc_scale_calib(const struct vadc_linear_graph *calib_graph,
96 u16 adc_code,
97 bool absolute,
98 s64 *scale_voltage)
100 *scale_voltage = (adc_code - calib_graph->gnd);
101 *scale_voltage *= calib_graph->dx;
102 *scale_voltage = div64_s64(*scale_voltage, calib_graph->dy);
103 if (absolute)
104 *scale_voltage += calib_graph->dx;
106 if (*scale_voltage < 0)
107 *scale_voltage = 0;
110 static int qcom_vadc_scale_volt(const struct vadc_linear_graph *calib_graph,
111 const struct vadc_prescale_ratio *prescale,
112 bool absolute, u16 adc_code,
113 int *result_uv)
115 s64 voltage = 0, result = 0;
117 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
119 voltage = voltage * prescale->den;
120 result = div64_s64(voltage, prescale->num);
121 *result_uv = result;
123 return 0;
126 static int qcom_vadc_scale_therm(const struct vadc_linear_graph *calib_graph,
127 const struct vadc_prescale_ratio *prescale,
128 bool absolute, u16 adc_code,
129 int *result_mdec)
131 s64 voltage = 0, result = 0;
132 int ret;
134 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
136 if (absolute)
137 voltage = div64_s64(voltage, 1000);
139 ret = qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
140 ARRAY_SIZE(adcmap_100k_104ef_104fb),
141 voltage, &result);
142 if (ret)
143 return ret;
145 result *= 1000;
146 *result_mdec = result;
148 return 0;
151 static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph,
152 const struct vadc_prescale_ratio *prescale,
153 bool absolute,
154 u16 adc_code, int *result_mdec)
156 s64 voltage = 0;
157 u64 temp; /* Temporary variable for do_div */
159 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
161 if (voltage > 0) {
162 temp = voltage * prescale->den;
163 do_div(temp, prescale->num * 2);
164 voltage = temp;
165 } else {
166 voltage = 0;
169 voltage -= KELVINMIL_CELSIUSMIL;
170 *result_mdec = voltage;
172 return 0;
175 static int qcom_vadc_scale_chg_temp(const struct vadc_linear_graph *calib_graph,
176 const struct vadc_prescale_ratio *prescale,
177 bool absolute,
178 u16 adc_code, int *result_mdec)
180 s64 voltage = 0, result = 0;
182 qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
184 voltage = voltage * prescale->den;
185 voltage = div64_s64(voltage, prescale->num);
186 voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
187 voltage = (voltage + PMI_CHG_SCALE_2);
188 result = div64_s64(voltage, 1000000);
189 *result_mdec = result;
191 return 0;
194 int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
195 const struct vadc_linear_graph *calib_graph,
196 const struct vadc_prescale_ratio *prescale,
197 bool absolute,
198 u16 adc_code, int *result)
200 switch (scaletype) {
201 case SCALE_DEFAULT:
202 return qcom_vadc_scale_volt(calib_graph, prescale,
203 absolute, adc_code,
204 result);
205 case SCALE_THERM_100K_PULLUP:
206 case SCALE_XOTHERM:
207 return qcom_vadc_scale_therm(calib_graph, prescale,
208 absolute, adc_code,
209 result);
210 case SCALE_PMIC_THERM:
211 return qcom_vadc_scale_die_temp(calib_graph, prescale,
212 absolute, adc_code,
213 result);
214 case SCALE_PMI_CHG_TEMP:
215 return qcom_vadc_scale_chg_temp(calib_graph, prescale,
216 absolute, adc_code,
217 result);
218 default:
219 return -EINVAL;
222 EXPORT_SYMBOL(qcom_vadc_scale);
224 int qcom_vadc_decimation_from_dt(u32 value)
226 if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
227 value > VADC_DECIMATION_MAX)
228 return -EINVAL;
230 return __ffs64(value / VADC_DECIMATION_MIN);
232 EXPORT_SYMBOL(qcom_vadc_decimation_from_dt);
234 MODULE_LICENSE("GPL v2");
235 MODULE_DESCRIPTION("Qualcomm ADC common functionality");