2 * MPU3050 gyroscope driver
4 * Copyright (C) 2016 Linaro Ltd.
5 * Author: Linus Walleij <linus.walleij@linaro.org>
7 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
8 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
9 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
10 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12 * TODO: add support for setting up the low pass 3dB frequency.
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
32 #define MPU3050_CHIP_ID 0x69
35 * Register map: anything suffixed *_H is a big-endian high byte and always
36 * followed by the corresponding low byte (*_L) even though these are not
37 * explicitly included in the register definitions.
39 #define MPU3050_CHIP_ID_REG 0x00
40 #define MPU3050_PRODUCT_ID_REG 0x01
41 #define MPU3050_XG_OFFS_TC 0x05
42 #define MPU3050_YG_OFFS_TC 0x08
43 #define MPU3050_ZG_OFFS_TC 0x0B
44 #define MPU3050_X_OFFS_USR_H 0x0C
45 #define MPU3050_Y_OFFS_USR_H 0x0E
46 #define MPU3050_Z_OFFS_USR_H 0x10
47 #define MPU3050_FIFO_EN 0x12
48 #define MPU3050_AUX_VDDIO 0x13
49 #define MPU3050_SLV_ADDR 0x14
50 #define MPU3050_SMPLRT_DIV 0x15
51 #define MPU3050_DLPF_FS_SYNC 0x16
52 #define MPU3050_INT_CFG 0x17
53 #define MPU3050_AUX_ADDR 0x18
54 #define MPU3050_INT_STATUS 0x1A
55 #define MPU3050_TEMP_H 0x1B
56 #define MPU3050_XOUT_H 0x1D
57 #define MPU3050_YOUT_H 0x1F
58 #define MPU3050_ZOUT_H 0x21
59 #define MPU3050_DMP_CFG1 0x35
60 #define MPU3050_DMP_CFG2 0x36
61 #define MPU3050_BANK_SEL 0x37
62 #define MPU3050_MEM_START_ADDR 0x38
63 #define MPU3050_MEM_R_W 0x39
64 #define MPU3050_FIFO_COUNT_H 0x3A
65 #define MPU3050_FIFO_R 0x3C
66 #define MPU3050_USR_CTRL 0x3D
67 #define MPU3050_PWR_MGM 0x3E
69 /* MPU memory bank read options */
70 #define MPU3050_MEM_PRFTCH BIT(5)
71 #define MPU3050_MEM_USER_BANK BIT(4)
72 /* Bits 8-11 select memory bank */
73 #define MPU3050_MEM_RAM_BANK_0 0
74 #define MPU3050_MEM_RAM_BANK_1 1
75 #define MPU3050_MEM_RAM_BANK_2 2
76 #define MPU3050_MEM_RAM_BANK_3 3
77 #define MPU3050_MEM_OTP_BANK_0 4
79 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
84 #define MPU3050_FIFO_EN_FOOTER BIT(0)
85 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
86 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
87 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
88 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
89 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
90 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
91 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
94 * Digital Low Pass filter (DLPF)
98 #define MPU3050_EXT_SYNC_NONE 0x00
99 #define MPU3050_EXT_SYNC_TEMP 0x20
100 #define MPU3050_EXT_SYNC_GYROX 0x40
101 #define MPU3050_EXT_SYNC_GYROY 0x60
102 #define MPU3050_EXT_SYNC_GYROZ 0x80
103 #define MPU3050_EXT_SYNC_ACCELX 0xA0
104 #define MPU3050_EXT_SYNC_ACCELY 0xC0
105 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
106 #define MPU3050_EXT_SYNC_MASK 0xE0
107 #define MPU3050_EXT_SYNC_SHIFT 5
109 #define MPU3050_FS_250DPS 0x00
110 #define MPU3050_FS_500DPS 0x08
111 #define MPU3050_FS_1000DPS 0x10
112 #define MPU3050_FS_2000DPS 0x18
113 #define MPU3050_FS_MASK 0x18
114 #define MPU3050_FS_SHIFT 3
116 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
117 #define MPU3050_DLPF_CFG_188HZ 0x01
118 #define MPU3050_DLPF_CFG_98HZ 0x02
119 #define MPU3050_DLPF_CFG_42HZ 0x03
120 #define MPU3050_DLPF_CFG_20HZ 0x04
121 #define MPU3050_DLPF_CFG_10HZ 0x05
122 #define MPU3050_DLPF_CFG_5HZ 0x06
123 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
124 #define MPU3050_DLPF_CFG_MASK 0x07
125 #define MPU3050_DLPF_CFG_SHIFT 0
127 /* Interrupt config */
128 #define MPU3050_INT_RAW_RDY_EN BIT(0)
129 #define MPU3050_INT_DMP_DONE_EN BIT(1)
130 #define MPU3050_INT_MPU_RDY_EN BIT(2)
131 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
132 #define MPU3050_INT_LATCH_EN BIT(5)
133 #define MPU3050_INT_OPEN BIT(6)
134 #define MPU3050_INT_ACTL BIT(7)
135 /* Interrupt status */
136 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
137 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
138 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
139 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
141 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
142 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
143 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
144 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
145 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
147 #define MPU3050_PWR_MGM_PLL_X 0x01
148 #define MPU3050_PWR_MGM_PLL_Y 0x02
149 #define MPU3050_PWR_MGM_PLL_Z 0x03
150 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
151 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
152 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
153 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
154 #define MPU3050_PWR_MGM_SLEEP BIT(6)
155 #define MPU3050_PWR_MGM_RESET BIT(7)
156 #define MPU3050_PWR_MGM_MASK 0xff
159 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
160 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
161 * in two's complement.
163 static unsigned int mpu3050_fs_precision
[] = {
164 IIO_DEGREE_TO_RAD(250),
165 IIO_DEGREE_TO_RAD(500),
166 IIO_DEGREE_TO_RAD(1000),
167 IIO_DEGREE_TO_RAD(2000)
173 static const char mpu3050_reg_vdd
[] = "vdd";
174 static const char mpu3050_reg_vlogic
[] = "vlogic";
176 static unsigned int mpu3050_get_freq(struct mpu3050
*mpu3050
)
180 if (mpu3050
->lpf
== MPU3050_DLPF_CFG_256HZ_NOLPF2
)
184 freq
/= (mpu3050
->divisor
+ 1);
189 static int mpu3050_start_sampling(struct mpu3050
*mpu3050
)
196 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
197 MPU3050_PWR_MGM_RESET
, MPU3050_PWR_MGM_RESET
);
201 /* Turn on the Z-axis PLL */
202 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
203 MPU3050_PWR_MGM_CLKSEL_MASK
,
204 MPU3050_PWR_MGM_PLL_Z
);
208 /* Write calibration offset registers */
209 for (i
= 0; i
< 3; i
++)
210 raw_val
[i
] = cpu_to_be16(mpu3050
->calibration
[i
]);
212 ret
= regmap_bulk_write(mpu3050
->map
, MPU3050_X_OFFS_USR_H
, raw_val
,
217 /* Set low pass filter (sample rate), sync and full scale */
218 ret
= regmap_write(mpu3050
->map
, MPU3050_DLPF_FS_SYNC
,
219 MPU3050_EXT_SYNC_NONE
<< MPU3050_EXT_SYNC_SHIFT
|
220 mpu3050
->fullscale
<< MPU3050_FS_SHIFT
|
221 mpu3050
->lpf
<< MPU3050_DLPF_CFG_SHIFT
);
225 /* Set up sampling frequency */
226 ret
= regmap_write(mpu3050
->map
, MPU3050_SMPLRT_DIV
, mpu3050
->divisor
);
231 * Max 50 ms start-up time after setting DLPF_FS_SYNC
232 * according to the data sheet, then wait for the next sample
233 * at this frequency T = 1000/f ms.
235 msleep(50 + 1000 / mpu3050_get_freq(mpu3050
));
240 static int mpu3050_set_8khz_samplerate(struct mpu3050
*mpu3050
)
244 enum mpu3050_lpf lpf
;
247 divisor
= mpu3050
->divisor
;
249 mpu3050
->lpf
= LPF_256_HZ_NOLPF
; /* 8 kHz base frequency */
250 mpu3050
->divisor
= 0; /* Divide by 1 */
251 ret
= mpu3050_start_sampling(mpu3050
);
254 mpu3050
->divisor
= divisor
;
259 static int mpu3050_read_raw(struct iio_dev
*indio_dev
,
260 struct iio_chan_spec
const *chan
,
264 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
269 case IIO_CHAN_INFO_OFFSET
:
270 switch (chan
->type
) {
272 /* The temperature scaling is (x+23000)/280 Celsius */
278 case IIO_CHAN_INFO_CALIBBIAS
:
279 switch (chan
->type
) {
281 *val
= mpu3050
->calibration
[chan
->scan_index
-1];
286 case IIO_CHAN_INFO_SAMP_FREQ
:
287 *val
= mpu3050_get_freq(mpu3050
);
289 case IIO_CHAN_INFO_SCALE
:
290 switch (chan
->type
) {
292 /* Millidegrees, see about temperature scaling above */
295 return IIO_VAL_FRACTIONAL
;
298 * Convert to the corresponding full scale in
299 * radians. All 16 bits are used with sign to
300 * span the available scale: to account for the one
301 * missing value if we multiply by 1/S16_MAX, instead
302 * multiply with 2/U16_MAX.
304 *val
= mpu3050_fs_precision
[mpu3050
->fullscale
] * 2;
306 return IIO_VAL_FRACTIONAL
;
310 case IIO_CHAN_INFO_RAW
:
312 pm_runtime_get_sync(mpu3050
->dev
);
313 mutex_lock(&mpu3050
->lock
);
315 ret
= mpu3050_set_8khz_samplerate(mpu3050
);
317 goto out_read_raw_unlock
;
319 switch (chan
->type
) {
321 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
,
322 &raw_val
, sizeof(raw_val
));
324 dev_err(mpu3050
->dev
,
325 "error reading temperature\n");
326 goto out_read_raw_unlock
;
329 *val
= be16_to_cpu(raw_val
);
332 goto out_read_raw_unlock
;
334 ret
= regmap_bulk_read(mpu3050
->map
,
335 MPU3050_AXIS_REGS(chan
->scan_index
-1),
339 dev_err(mpu3050
->dev
,
340 "error reading axis data\n");
341 goto out_read_raw_unlock
;
344 *val
= be16_to_cpu(raw_val
);
347 goto out_read_raw_unlock
;
350 goto out_read_raw_unlock
;
359 mutex_unlock(&mpu3050
->lock
);
360 pm_runtime_mark_last_busy(mpu3050
->dev
);
361 pm_runtime_put_autosuspend(mpu3050
->dev
);
366 static int mpu3050_write_raw(struct iio_dev
*indio_dev
,
367 const struct iio_chan_spec
*chan
,
368 int val
, int val2
, long mask
)
370 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
372 * Couldn't figure out a way to precalculate these at compile time.
375 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[0] * 1000000 * 2,
378 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[1] * 1000000 * 2,
380 unsigned int fs1000
=
381 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[2] * 1000000 * 2,
383 unsigned int fs2000
=
384 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[3] * 1000000 * 2,
388 case IIO_CHAN_INFO_CALIBBIAS
:
389 if (chan
->type
!= IIO_ANGL_VEL
)
391 mpu3050
->calibration
[chan
->scan_index
-1] = val
;
393 case IIO_CHAN_INFO_SAMP_FREQ
:
395 * The max samplerate is 8000 Hz, the minimum
398 if (val
< 4 || val
> 8000)
402 * Above 1000 Hz we must turn off the digital low pass filter
403 * so we get a base frequency of 8kHz to the divider
406 mpu3050
->lpf
= LPF_256_HZ_NOLPF
;
407 mpu3050
->divisor
= DIV_ROUND_CLOSEST(8000, val
) - 1;
411 mpu3050
->lpf
= LPF_188_HZ
;
412 mpu3050
->divisor
= DIV_ROUND_CLOSEST(1000, val
) - 1;
414 case IIO_CHAN_INFO_SCALE
:
415 if (chan
->type
!= IIO_ANGL_VEL
)
418 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
419 * which means we need to round to the closest radians
420 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
421 * rad/s. The scale is then for the 16 bits used to cover
422 * it 2/(2^16) of that.
425 /* Just too large, set the max range */
427 mpu3050
->fullscale
= FS_2000_DPS
;
432 * Now we're dealing with fractions below zero in millirad/s
433 * do some integer interpolation and match with the closest
434 * fullscale in the table.
437 val2
< ((fs500
+ fs250
) / 2))
438 mpu3050
->fullscale
= FS_250_DPS
;
439 else if (val2
<= fs500
||
440 val2
< ((fs1000
+ fs500
) / 2))
441 mpu3050
->fullscale
= FS_500_DPS
;
442 else if (val2
<= fs1000
||
443 val2
< ((fs2000
+ fs1000
) / 2))
444 mpu3050
->fullscale
= FS_1000_DPS
;
447 mpu3050
->fullscale
= FS_2000_DPS
;
456 static irqreturn_t
mpu3050_trigger_handler(int irq
, void *p
)
458 const struct iio_poll_func
*pf
= p
;
459 struct iio_dev
*indio_dev
= pf
->indio_dev
;
460 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
463 * Temperature 1*16 bits
464 * Three axes 3*16 bits
465 * Timestamp 64 bits (4*16 bits)
466 * Sum total 8*16 bits
470 unsigned int datums_from_fifo
= 0;
473 * If we're using the hardware trigger, get the precise timestamp from
474 * the top half of the threaded IRQ handler. Otherwise get the
475 * timestamp here so it will be close in time to the actual values
476 * read from the registers.
478 if (iio_trigger_using_own(indio_dev
))
479 timestamp
= mpu3050
->hw_timestamp
;
481 timestamp
= iio_get_time_ns(indio_dev
);
483 mutex_lock(&mpu3050
->lock
);
485 /* Using the hardware IRQ trigger? Check the buffer then. */
486 if (mpu3050
->hw_irq_trigger
) {
489 /* X, Y, Z + temperature */
490 unsigned int bytes_per_datum
= 8;
491 bool fifo_overflow
= false;
493 ret
= regmap_bulk_read(mpu3050
->map
,
494 MPU3050_FIFO_COUNT_H
,
496 sizeof(raw_fifocnt
));
498 goto out_trigger_unlock
;
499 fifocnt
= be16_to_cpu(raw_fifocnt
);
501 if (fifocnt
== 512) {
502 dev_info(mpu3050
->dev
,
503 "FIFO overflow! Emptying and resetting FIFO\n");
504 fifo_overflow
= true;
505 /* Reset and enable the FIFO */
506 ret
= regmap_update_bits(mpu3050
->map
,
508 MPU3050_USR_CTRL_FIFO_EN
|
509 MPU3050_USR_CTRL_FIFO_RST
,
510 MPU3050_USR_CTRL_FIFO_EN
|
511 MPU3050_USR_CTRL_FIFO_RST
);
513 dev_info(mpu3050
->dev
, "error resetting FIFO\n");
514 goto out_trigger_unlock
;
516 mpu3050
->pending_fifo_footer
= false;
520 dev_dbg(mpu3050
->dev
,
521 "%d bytes in the FIFO\n",
524 while (!fifo_overflow
&& fifocnt
> bytes_per_datum
) {
527 __be16 fifo_values
[5];
530 * If there is a FIFO footer in the pipe, first clear
531 * that out. This follows the complex algorithm in the
532 * datasheet that states that you may never leave the
533 * FIFO empty after the first reading: you have to
534 * always leave two footer bytes in it. The footer is
535 * in practice just two zero bytes.
537 if (mpu3050
->pending_fifo_footer
) {
538 toread
= bytes_per_datum
+ 2;
541 toread
= bytes_per_datum
;
543 /* Put in some dummy value */
544 fifo_values
[0] = 0xAAAA;
547 ret
= regmap_bulk_read(mpu3050
->map
,
549 &fifo_values
[offset
],
552 dev_dbg(mpu3050
->dev
,
553 "%04x %04x %04x %04x %04x\n",
560 /* Index past the footer (fifo_values[0]) and push */
561 iio_push_to_buffers_with_timestamp(indio_dev
,
567 mpu3050
->pending_fifo_footer
= true;
570 * If we're emptying the FIFO, just make sure to
571 * check if something new appeared.
573 if (fifocnt
< bytes_per_datum
) {
574 ret
= regmap_bulk_read(mpu3050
->map
,
575 MPU3050_FIFO_COUNT_H
,
577 sizeof(raw_fifocnt
));
579 goto out_trigger_unlock
;
580 fifocnt
= be16_to_cpu(raw_fifocnt
);
583 if (fifocnt
< bytes_per_datum
)
584 dev_dbg(mpu3050
->dev
,
585 "%d bytes left in the FIFO\n",
589 * At this point, the timestamp that triggered the
590 * hardware interrupt is no longer valid for what
591 * we are reading (the interrupt likely fired for
592 * the value on the top of the FIFO), so set the
593 * timestamp to zero and let userspace deal with it.
600 * If we picked some datums from the FIFO that's enough, else
601 * fall through and just read from the current value registers.
602 * This happens in two cases:
604 * - We are using some other trigger (external, like an HRTimer)
605 * than the sensor's own sample generator. In this case the
606 * sensor is just set to the max sampling frequency and we give
607 * the trigger a copy of the latest value every time we get here.
609 * - The hardware trigger is active but unused and we actually use
610 * another trigger which calls here with a frequency higher
611 * than what the device provides data. We will then just read
612 * duplicate values directly from the hardware registers.
614 if (datums_from_fifo
) {
615 dev_dbg(mpu3050
->dev
,
616 "read %d datums from the FIFO\n",
618 goto out_trigger_unlock
;
621 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
, &hw_values
,
624 dev_err(mpu3050
->dev
,
625 "error reading axis data\n");
626 goto out_trigger_unlock
;
629 iio_push_to_buffers_with_timestamp(indio_dev
, hw_values
, timestamp
);
632 mutex_unlock(&mpu3050
->lock
);
633 iio_trigger_notify_done(indio_dev
->trig
);
638 static int mpu3050_buffer_preenable(struct iio_dev
*indio_dev
)
640 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
642 pm_runtime_get_sync(mpu3050
->dev
);
644 /* Unless we have OUR trigger active, run at full speed */
645 if (!mpu3050
->hw_irq_trigger
)
646 return mpu3050_set_8khz_samplerate(mpu3050
);
651 static int mpu3050_buffer_postdisable(struct iio_dev
*indio_dev
)
653 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
655 pm_runtime_mark_last_busy(mpu3050
->dev
);
656 pm_runtime_put_autosuspend(mpu3050
->dev
);
661 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops
= {
662 .preenable
= mpu3050_buffer_preenable
,
663 .postenable
= iio_triggered_buffer_postenable
,
664 .predisable
= iio_triggered_buffer_predisable
,
665 .postdisable
= mpu3050_buffer_postdisable
,
668 static const struct iio_mount_matrix
*
669 mpu3050_get_mount_matrix(const struct iio_dev
*indio_dev
,
670 const struct iio_chan_spec
*chan
)
672 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
674 return &mpu3050
->orientation
;
677 static const struct iio_chan_spec_ext_info mpu3050_ext_info
[] = {
678 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE
, mpu3050_get_mount_matrix
),
682 #define MPU3050_AXIS_CHANNEL(axis, index) \
684 .type = IIO_ANGL_VEL, \
686 .channel2 = IIO_MOD_##axis, \
687 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
688 BIT(IIO_CHAN_INFO_CALIBBIAS), \
689 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
690 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
691 .ext_info = mpu3050_ext_info, \
692 .scan_index = index, \
697 .endianness = IIO_BE, \
701 static const struct iio_chan_spec mpu3050_channels
[] = {
704 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
705 BIT(IIO_CHAN_INFO_SCALE
) |
706 BIT(IIO_CHAN_INFO_OFFSET
),
707 .info_mask_shared_by_all
= BIT(IIO_CHAN_INFO_SAMP_FREQ
),
713 .endianness
= IIO_BE
,
716 MPU3050_AXIS_CHANNEL(X
, 1),
717 MPU3050_AXIS_CHANNEL(Y
, 2),
718 MPU3050_AXIS_CHANNEL(Z
, 3),
719 IIO_CHAN_SOFT_TIMESTAMP(4),
722 /* Four channels apart from timestamp, scan mask = 0x0f */
723 static const unsigned long mpu3050_scan_masks
[] = { 0xf, 0 };
726 * These are just the hardcoded factors resulting from the more elaborate
727 * calculations done with fractions in the scale raw get/set functions.
729 static IIO_CONST_ATTR(anglevel_scale_available
,
735 static struct attribute
*mpu3050_attributes
[] = {
736 &iio_const_attr_anglevel_scale_available
.dev_attr
.attr
,
740 static const struct attribute_group mpu3050_attribute_group
= {
741 .attrs
= mpu3050_attributes
,
744 static const struct iio_info mpu3050_info
= {
745 .read_raw
= mpu3050_read_raw
,
746 .write_raw
= mpu3050_write_raw
,
747 .attrs
= &mpu3050_attribute_group
,
751 * mpu3050_read_mem() - read MPU-3050 internal memory
752 * @mpu3050: device to read from
754 * @addr: target address
755 * @len: number of bytes
756 * @buf: the buffer to store the read bytes in
758 static int mpu3050_read_mem(struct mpu3050
*mpu3050
,
766 ret
= regmap_write(mpu3050
->map
,
772 ret
= regmap_write(mpu3050
->map
,
773 MPU3050_MEM_START_ADDR
,
778 return regmap_bulk_read(mpu3050
->map
,
784 static int mpu3050_hw_init(struct mpu3050
*mpu3050
)
790 ret
= regmap_update_bits(mpu3050
->map
,
792 MPU3050_PWR_MGM_RESET
,
793 MPU3050_PWR_MGM_RESET
);
797 /* Turn on the PLL */
798 ret
= regmap_update_bits(mpu3050
->map
,
800 MPU3050_PWR_MGM_CLKSEL_MASK
,
801 MPU3050_PWR_MGM_PLL_Z
);
806 ret
= regmap_write(mpu3050
->map
,
812 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
813 ret
= mpu3050_read_mem(mpu3050
,
814 (MPU3050_MEM_PRFTCH
|
815 MPU3050_MEM_USER_BANK
|
816 MPU3050_MEM_OTP_BANK_0
),
823 /* This is device-unique data so it goes into the entropy pool */
824 add_device_randomness(otp
, sizeof(otp
));
826 dev_info(mpu3050
->dev
,
827 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
828 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
829 /* Die ID, bits 0-12 */
830 (otp
[1] << 8 | otp
[0]) & 0x1fff,
831 /* Wafer ID, bits 13-17 */
832 ((otp
[2] << 8 | otp
[1]) & 0x03e0) >> 5,
833 /* A lot ID, bits 18-33 */
834 ((otp
[4] << 16 | otp
[3] << 8 | otp
[2]) & 0x3fffc) >> 2,
835 /* W lot ID, bits 34-45 */
836 ((otp
[5] << 8 | otp
[4]) & 0x3ffc) >> 2,
837 /* WP ID, bits 47-49 */
838 ((otp
[6] << 8 | otp
[5]) & 0x0380) >> 7,
839 /* rev ID, bits 50-55 */
845 static int mpu3050_power_up(struct mpu3050
*mpu3050
)
849 ret
= regulator_bulk_enable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
851 dev_err(mpu3050
->dev
, "cannot enable regulators\n");
855 * 20-100 ms start-up time for register read/write according to
856 * the datasheet, be on the safe side and wait 200 ms.
860 /* Take device out of sleep mode */
861 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
862 MPU3050_PWR_MGM_SLEEP
, 0);
864 dev_err(mpu3050
->dev
, "error setting power mode\n");
872 static int mpu3050_power_down(struct mpu3050
*mpu3050
)
877 * Put MPU-3050 into sleep mode before cutting regulators.
878 * This is important, because we may not be the sole user
879 * of the regulator so the power may stay on after this, and
880 * then we would be wasting power unless we go to sleep mode
883 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
884 MPU3050_PWR_MGM_SLEEP
, MPU3050_PWR_MGM_SLEEP
);
886 dev_err(mpu3050
->dev
, "error putting to sleep\n");
888 ret
= regulator_bulk_disable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
890 dev_err(mpu3050
->dev
, "error disabling regulators\n");
895 static irqreturn_t
mpu3050_irq_handler(int irq
, void *p
)
897 struct iio_trigger
*trig
= p
;
898 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
899 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
901 if (!mpu3050
->hw_irq_trigger
)
904 /* Get the time stamp as close in time as possible */
905 mpu3050
->hw_timestamp
= iio_get_time_ns(indio_dev
);
907 return IRQ_WAKE_THREAD
;
910 static irqreturn_t
mpu3050_irq_thread(int irq
, void *p
)
912 struct iio_trigger
*trig
= p
;
913 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
914 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
918 /* ACK IRQ and check if it was from us */
919 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
921 dev_err(mpu3050
->dev
, "error reading IRQ status\n");
924 if (!(val
& MPU3050_INT_STATUS_RAW_RDY
))
927 iio_trigger_poll_chained(p
);
933 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
934 * @trig: trigger instance
935 * @enable: true if trigger should be enabled, false to disable
937 static int mpu3050_drdy_trigger_set_state(struct iio_trigger
*trig
,
940 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
941 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
945 /* Disabling trigger: disable interrupt and return */
947 /* Disable all interrupts */
948 ret
= regmap_write(mpu3050
->map
,
952 dev_err(mpu3050
->dev
, "error disabling IRQ\n");
955 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
957 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
959 /* Disable all things in the FIFO and reset it */
960 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
962 dev_err(mpu3050
->dev
, "error disabling FIFO\n");
964 ret
= regmap_write(mpu3050
->map
, MPU3050_USR_CTRL
,
965 MPU3050_USR_CTRL_FIFO_RST
);
967 dev_err(mpu3050
->dev
, "error resetting FIFO\n");
969 pm_runtime_mark_last_busy(mpu3050
->dev
);
970 pm_runtime_put_autosuspend(mpu3050
->dev
);
971 mpu3050
->hw_irq_trigger
= false;
975 /* Else we're enabling the trigger from this point */
976 pm_runtime_get_sync(mpu3050
->dev
);
977 mpu3050
->hw_irq_trigger
= true;
979 /* Disable all things in the FIFO */
980 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
984 /* Reset and enable the FIFO */
985 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_USR_CTRL
,
986 MPU3050_USR_CTRL_FIFO_EN
|
987 MPU3050_USR_CTRL_FIFO_RST
,
988 MPU3050_USR_CTRL_FIFO_EN
|
989 MPU3050_USR_CTRL_FIFO_RST
);
993 mpu3050
->pending_fifo_footer
= false;
995 /* Turn on the FIFO for temp+X+Y+Z */
996 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
,
997 MPU3050_FIFO_EN_TEMP_OUT
|
998 MPU3050_FIFO_EN_GYRO_XOUT
|
999 MPU3050_FIFO_EN_GYRO_YOUT
|
1000 MPU3050_FIFO_EN_GYRO_ZOUT
|
1001 MPU3050_FIFO_EN_FOOTER
);
1005 /* Configure the sample engine */
1006 ret
= mpu3050_start_sampling(mpu3050
);
1010 /* Clear IRQ flag */
1011 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
1013 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
1015 /* Give us interrupts whenever there is new data ready */
1016 val
= MPU3050_INT_RAW_RDY_EN
;
1018 if (mpu3050
->irq_actl
)
1019 val
|= MPU3050_INT_ACTL
;
1020 if (mpu3050
->irq_latch
)
1021 val
|= MPU3050_INT_LATCH_EN
;
1022 if (mpu3050
->irq_opendrain
)
1023 val
|= MPU3050_INT_OPEN
;
1025 ret
= regmap_write(mpu3050
->map
, MPU3050_INT_CFG
, val
);
1033 static const struct iio_trigger_ops mpu3050_trigger_ops
= {
1034 .set_trigger_state
= mpu3050_drdy_trigger_set_state
,
1037 static int mpu3050_trigger_probe(struct iio_dev
*indio_dev
, int irq
)
1039 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1040 unsigned long irq_trig
;
1043 mpu3050
->trig
= devm_iio_trigger_alloc(&indio_dev
->dev
,
1050 /* Check if IRQ is open drain */
1051 if (of_property_read_bool(mpu3050
->dev
->of_node
, "drive-open-drain"))
1052 mpu3050
->irq_opendrain
= true;
1054 irq_trig
= irqd_get_trigger_type(irq_get_irq_data(irq
));
1056 * Configure the interrupt generator hardware to supply whatever
1057 * the interrupt is configured for, edges low/high level low/high,
1058 * we can provide it all.
1061 case IRQF_TRIGGER_RISING
:
1062 dev_info(&indio_dev
->dev
,
1063 "pulse interrupts on the rising edge\n");
1065 case IRQF_TRIGGER_FALLING
:
1066 mpu3050
->irq_actl
= true;
1067 dev_info(&indio_dev
->dev
,
1068 "pulse interrupts on the falling edge\n");
1070 case IRQF_TRIGGER_HIGH
:
1071 mpu3050
->irq_latch
= true;
1072 dev_info(&indio_dev
->dev
,
1073 "interrupts active high level\n");
1075 * With level IRQs, we mask the IRQ until it is processed,
1076 * but with edge IRQs (pulses) we can queue several interrupts
1079 irq_trig
|= IRQF_ONESHOT
;
1081 case IRQF_TRIGGER_LOW
:
1082 mpu3050
->irq_latch
= true;
1083 mpu3050
->irq_actl
= true;
1084 irq_trig
|= IRQF_ONESHOT
;
1085 dev_info(&indio_dev
->dev
,
1086 "interrupts active low level\n");
1089 /* This is the most preferred mode, if possible */
1090 dev_err(&indio_dev
->dev
,
1091 "unsupported IRQ trigger specified (%lx), enforce "
1092 "rising edge\n", irq_trig
);
1093 irq_trig
= IRQF_TRIGGER_RISING
;
1097 /* An open drain line can be shared with several devices */
1098 if (mpu3050
->irq_opendrain
)
1099 irq_trig
|= IRQF_SHARED
;
1101 ret
= request_threaded_irq(irq
,
1102 mpu3050_irq_handler
,
1105 mpu3050
->trig
->name
,
1108 dev_err(mpu3050
->dev
,
1109 "can't get IRQ %d, error %d\n", irq
, ret
);
1114 mpu3050
->trig
->dev
.parent
= mpu3050
->dev
;
1115 mpu3050
->trig
->ops
= &mpu3050_trigger_ops
;
1116 iio_trigger_set_drvdata(mpu3050
->trig
, indio_dev
);
1118 ret
= iio_trigger_register(mpu3050
->trig
);
1122 indio_dev
->trig
= iio_trigger_get(mpu3050
->trig
);
1127 int mpu3050_common_probe(struct device
*dev
,
1132 struct iio_dev
*indio_dev
;
1133 struct mpu3050
*mpu3050
;
1137 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*mpu3050
));
1140 mpu3050
= iio_priv(indio_dev
);
1144 mutex_init(&mpu3050
->lock
);
1145 /* Default fullscale: 2000 degrees per second */
1146 mpu3050
->fullscale
= FS_2000_DPS
;
1147 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1148 mpu3050
->lpf
= MPU3050_DLPF_CFG_188HZ
;
1149 mpu3050
->divisor
= 99;
1151 /* Read the mounting matrix, if present */
1152 ret
= of_iio_read_mount_matrix(dev
, "mount-matrix",
1153 &mpu3050
->orientation
);
1157 /* Fetch and turn on regulators */
1158 mpu3050
->regs
[0].supply
= mpu3050_reg_vdd
;
1159 mpu3050
->regs
[1].supply
= mpu3050_reg_vlogic
;
1160 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(mpu3050
->regs
),
1163 dev_err(dev
, "Cannot get regulators\n");
1167 ret
= mpu3050_power_up(mpu3050
);
1171 ret
= regmap_read(map
, MPU3050_CHIP_ID_REG
, &val
);
1173 dev_err(dev
, "could not read device ID\n");
1176 goto err_power_down
;
1179 if (val
!= MPU3050_CHIP_ID
) {
1180 dev_err(dev
, "unsupported chip id %02x\n", (u8
)val
);
1182 goto err_power_down
;
1185 ret
= regmap_read(map
, MPU3050_PRODUCT_ID_REG
, &val
);
1187 dev_err(dev
, "could not read device ID\n");
1190 goto err_power_down
;
1192 dev_info(dev
, "found MPU-3050 part no: %d, version: %d\n",
1193 ((val
>> 4) & 0xf), (val
& 0xf));
1195 ret
= mpu3050_hw_init(mpu3050
);
1197 goto err_power_down
;
1199 indio_dev
->dev
.parent
= dev
;
1200 indio_dev
->channels
= mpu3050_channels
;
1201 indio_dev
->num_channels
= ARRAY_SIZE(mpu3050_channels
);
1202 indio_dev
->info
= &mpu3050_info
;
1203 indio_dev
->available_scan_masks
= mpu3050_scan_masks
;
1204 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1205 indio_dev
->name
= name
;
1207 ret
= iio_triggered_buffer_setup(indio_dev
, iio_pollfunc_store_time
,
1208 mpu3050_trigger_handler
,
1209 &mpu3050_buffer_setup_ops
);
1211 dev_err(dev
, "triggered buffer setup failed\n");
1212 goto err_power_down
;
1215 ret
= iio_device_register(indio_dev
);
1217 dev_err(dev
, "device register failed\n");
1218 goto err_cleanup_buffer
;
1221 dev_set_drvdata(dev
, indio_dev
);
1223 /* Check if we have an assigned IRQ to use as trigger */
1225 ret
= mpu3050_trigger_probe(indio_dev
, irq
);
1227 dev_err(dev
, "failed to register trigger\n");
1230 /* Enable runtime PM */
1231 pm_runtime_get_noresume(dev
);
1232 pm_runtime_set_active(dev
);
1233 pm_runtime_enable(dev
);
1235 * Set autosuspend to two orders of magnitude larger than the
1236 * start-up time. 100ms start-up time means 10000ms autosuspend,
1239 pm_runtime_set_autosuspend_delay(dev
, 10000);
1240 pm_runtime_use_autosuspend(dev
);
1241 pm_runtime_put(dev
);
1246 iio_triggered_buffer_cleanup(indio_dev
);
1248 mpu3050_power_down(mpu3050
);
1252 EXPORT_SYMBOL(mpu3050_common_probe
);
1254 int mpu3050_common_remove(struct device
*dev
)
1256 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1257 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1259 pm_runtime_get_sync(dev
);
1260 pm_runtime_put_noidle(dev
);
1261 pm_runtime_disable(dev
);
1262 iio_triggered_buffer_cleanup(indio_dev
);
1264 free_irq(mpu3050
->irq
, mpu3050
);
1265 iio_device_unregister(indio_dev
);
1266 mpu3050_power_down(mpu3050
);
1270 EXPORT_SYMBOL(mpu3050_common_remove
);
1273 static int mpu3050_runtime_suspend(struct device
*dev
)
1275 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev
)));
1278 static int mpu3050_runtime_resume(struct device
*dev
)
1280 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev
)));
1282 #endif /* CONFIG_PM */
1284 const struct dev_pm_ops mpu3050_dev_pm_ops
= {
1285 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1286 pm_runtime_force_resume
)
1287 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend
,
1288 mpu3050_runtime_resume
, NULL
)
1290 EXPORT_SYMBOL(mpu3050_dev_pm_ops
);
1292 MODULE_AUTHOR("Linus Walleij");
1293 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1294 MODULE_LICENSE("GPL");