xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / iio / imu / bmi160 / bmi160_core.c
blobc85659ca95078705fa20e0d37aca4db90e9e1b0f
1 /*
2 * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
4 * Copyright (c) 2016, Intel Corporation.
6 * This file is subject to the terms and conditions of version 2 of
7 * the GNU General Public License. See the file COPYING in the main
8 * directory of this archive for more details.
10 * IIO core driver for BMI160, with support for I2C/SPI busses
12 * TODO: magnetometer, interrupts, hardware FIFO
14 #include <linux/module.h>
15 #include <linux/regmap.h>
16 #include <linux/acpi.h>
17 #include <linux/delay.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/sysfs.h>
25 #include "bmi160.h"
27 #define BMI160_REG_CHIP_ID 0x00
28 #define BMI160_CHIP_ID_VAL 0xD1
30 #define BMI160_REG_PMU_STATUS 0x03
32 /* X axis data low byte address, the rest can be obtained using axis offset */
33 #define BMI160_REG_DATA_MAGN_XOUT_L 0x04
34 #define BMI160_REG_DATA_GYRO_XOUT_L 0x0C
35 #define BMI160_REG_DATA_ACCEL_XOUT_L 0x12
37 #define BMI160_REG_ACCEL_CONFIG 0x40
38 #define BMI160_ACCEL_CONFIG_ODR_MASK GENMASK(3, 0)
39 #define BMI160_ACCEL_CONFIG_BWP_MASK GENMASK(6, 4)
41 #define BMI160_REG_ACCEL_RANGE 0x41
42 #define BMI160_ACCEL_RANGE_2G 0x03
43 #define BMI160_ACCEL_RANGE_4G 0x05
44 #define BMI160_ACCEL_RANGE_8G 0x08
45 #define BMI160_ACCEL_RANGE_16G 0x0C
47 #define BMI160_REG_GYRO_CONFIG 0x42
48 #define BMI160_GYRO_CONFIG_ODR_MASK GENMASK(3, 0)
49 #define BMI160_GYRO_CONFIG_BWP_MASK GENMASK(5, 4)
51 #define BMI160_REG_GYRO_RANGE 0x43
52 #define BMI160_GYRO_RANGE_2000DPS 0x00
53 #define BMI160_GYRO_RANGE_1000DPS 0x01
54 #define BMI160_GYRO_RANGE_500DPS 0x02
55 #define BMI160_GYRO_RANGE_250DPS 0x03
56 #define BMI160_GYRO_RANGE_125DPS 0x04
58 #define BMI160_REG_CMD 0x7E
59 #define BMI160_CMD_ACCEL_PM_SUSPEND 0x10
60 #define BMI160_CMD_ACCEL_PM_NORMAL 0x11
61 #define BMI160_CMD_ACCEL_PM_LOW_POWER 0x12
62 #define BMI160_CMD_GYRO_PM_SUSPEND 0x14
63 #define BMI160_CMD_GYRO_PM_NORMAL 0x15
64 #define BMI160_CMD_GYRO_PM_FAST_STARTUP 0x17
65 #define BMI160_CMD_SOFTRESET 0xB6
67 #define BMI160_REG_DUMMY 0x7F
69 #define BMI160_ACCEL_PMU_MIN_USLEEP 3800
70 #define BMI160_GYRO_PMU_MIN_USLEEP 80000
71 #define BMI160_SOFTRESET_USLEEP 1000
73 #define BMI160_CHANNEL(_type, _axis, _index) { \
74 .type = _type, \
75 .modified = 1, \
76 .channel2 = IIO_MOD_##_axis, \
77 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
78 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
79 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
80 .scan_index = _index, \
81 .scan_type = { \
82 .sign = 's', \
83 .realbits = 16, \
84 .storagebits = 16, \
85 .endianness = IIO_LE, \
86 }, \
89 /* scan indexes follow DATA register order */
90 enum bmi160_scan_axis {
91 BMI160_SCAN_EXT_MAGN_X = 0,
92 BMI160_SCAN_EXT_MAGN_Y,
93 BMI160_SCAN_EXT_MAGN_Z,
94 BMI160_SCAN_RHALL,
95 BMI160_SCAN_GYRO_X,
96 BMI160_SCAN_GYRO_Y,
97 BMI160_SCAN_GYRO_Z,
98 BMI160_SCAN_ACCEL_X,
99 BMI160_SCAN_ACCEL_Y,
100 BMI160_SCAN_ACCEL_Z,
101 BMI160_SCAN_TIMESTAMP,
104 enum bmi160_sensor_type {
105 BMI160_ACCEL = 0,
106 BMI160_GYRO,
107 BMI160_EXT_MAGN,
108 BMI160_NUM_SENSORS /* must be last */
111 struct bmi160_data {
112 struct regmap *regmap;
115 const struct regmap_config bmi160_regmap_config = {
116 .reg_bits = 8,
117 .val_bits = 8,
119 EXPORT_SYMBOL(bmi160_regmap_config);
121 struct bmi160_regs {
122 u8 data; /* LSB byte register for X-axis */
123 u8 config;
124 u8 config_odr_mask;
125 u8 config_bwp_mask;
126 u8 range;
127 u8 pmu_cmd_normal;
128 u8 pmu_cmd_suspend;
131 static struct bmi160_regs bmi160_regs[] = {
132 [BMI160_ACCEL] = {
133 .data = BMI160_REG_DATA_ACCEL_XOUT_L,
134 .config = BMI160_REG_ACCEL_CONFIG,
135 .config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
136 .config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
137 .range = BMI160_REG_ACCEL_RANGE,
138 .pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
139 .pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
141 [BMI160_GYRO] = {
142 .data = BMI160_REG_DATA_GYRO_XOUT_L,
143 .config = BMI160_REG_GYRO_CONFIG,
144 .config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
145 .config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
146 .range = BMI160_REG_GYRO_RANGE,
147 .pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
148 .pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
152 static unsigned long bmi160_pmu_time[] = {
153 [BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
154 [BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
157 struct bmi160_scale {
158 u8 bits;
159 int uscale;
162 struct bmi160_odr {
163 u8 bits;
164 int odr;
165 int uodr;
168 static const struct bmi160_scale bmi160_accel_scale[] = {
169 { BMI160_ACCEL_RANGE_2G, 598},
170 { BMI160_ACCEL_RANGE_4G, 1197},
171 { BMI160_ACCEL_RANGE_8G, 2394},
172 { BMI160_ACCEL_RANGE_16G, 4788},
175 static const struct bmi160_scale bmi160_gyro_scale[] = {
176 { BMI160_GYRO_RANGE_2000DPS, 1065},
177 { BMI160_GYRO_RANGE_1000DPS, 532},
178 { BMI160_GYRO_RANGE_500DPS, 266},
179 { BMI160_GYRO_RANGE_250DPS, 133},
180 { BMI160_GYRO_RANGE_125DPS, 66},
183 struct bmi160_scale_item {
184 const struct bmi160_scale *tbl;
185 int num;
188 static const struct bmi160_scale_item bmi160_scale_table[] = {
189 [BMI160_ACCEL] = {
190 .tbl = bmi160_accel_scale,
191 .num = ARRAY_SIZE(bmi160_accel_scale),
193 [BMI160_GYRO] = {
194 .tbl = bmi160_gyro_scale,
195 .num = ARRAY_SIZE(bmi160_gyro_scale),
199 static const struct bmi160_odr bmi160_accel_odr[] = {
200 {0x01, 0, 781250},
201 {0x02, 1, 562500},
202 {0x03, 3, 125000},
203 {0x04, 6, 250000},
204 {0x05, 12, 500000},
205 {0x06, 25, 0},
206 {0x07, 50, 0},
207 {0x08, 100, 0},
208 {0x09, 200, 0},
209 {0x0A, 400, 0},
210 {0x0B, 800, 0},
211 {0x0C, 1600, 0},
214 static const struct bmi160_odr bmi160_gyro_odr[] = {
215 {0x06, 25, 0},
216 {0x07, 50, 0},
217 {0x08, 100, 0},
218 {0x09, 200, 0},
219 {0x0A, 400, 0},
220 {0x0B, 800, 0},
221 {0x0C, 1600, 0},
222 {0x0D, 3200, 0},
225 struct bmi160_odr_item {
226 const struct bmi160_odr *tbl;
227 int num;
230 static const struct bmi160_odr_item bmi160_odr_table[] = {
231 [BMI160_ACCEL] = {
232 .tbl = bmi160_accel_odr,
233 .num = ARRAY_SIZE(bmi160_accel_odr),
235 [BMI160_GYRO] = {
236 .tbl = bmi160_gyro_odr,
237 .num = ARRAY_SIZE(bmi160_gyro_odr),
241 static const struct iio_chan_spec bmi160_channels[] = {
242 BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
243 BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
244 BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
245 BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
246 BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
247 BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
248 IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
251 static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
253 switch (iio_type) {
254 case IIO_ACCEL:
255 return BMI160_ACCEL;
256 case IIO_ANGL_VEL:
257 return BMI160_GYRO;
258 default:
259 return -EINVAL;
263 static
264 int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
265 bool mode)
267 int ret;
268 u8 cmd;
270 if (mode)
271 cmd = bmi160_regs[t].pmu_cmd_normal;
272 else
273 cmd = bmi160_regs[t].pmu_cmd_suspend;
275 ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
276 if (ret < 0)
277 return ret;
279 usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
281 return 0;
284 static
285 int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
286 int uscale)
288 int i;
290 for (i = 0; i < bmi160_scale_table[t].num; i++)
291 if (bmi160_scale_table[t].tbl[i].uscale == uscale)
292 break;
294 if (i == bmi160_scale_table[t].num)
295 return -EINVAL;
297 return regmap_write(data->regmap, bmi160_regs[t].range,
298 bmi160_scale_table[t].tbl[i].bits);
301 static
302 int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
303 int *uscale)
305 int i, ret, val;
307 ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
308 if (ret < 0)
309 return ret;
311 for (i = 0; i < bmi160_scale_table[t].num; i++)
312 if (bmi160_scale_table[t].tbl[i].bits == val) {
313 *uscale = bmi160_scale_table[t].tbl[i].uscale;
314 return 0;
317 return -EINVAL;
320 static int bmi160_get_data(struct bmi160_data *data, int chan_type,
321 int axis, int *val)
323 u8 reg;
324 int ret;
325 __le16 sample;
326 enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
328 reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
330 ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
331 if (ret < 0)
332 return ret;
334 *val = sign_extend32(le16_to_cpu(sample), 15);
336 return 0;
339 static
340 int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
341 int odr, int uodr)
343 int i;
345 for (i = 0; i < bmi160_odr_table[t].num; i++)
346 if (bmi160_odr_table[t].tbl[i].odr == odr &&
347 bmi160_odr_table[t].tbl[i].uodr == uodr)
348 break;
350 if (i >= bmi160_odr_table[t].num)
351 return -EINVAL;
353 return regmap_update_bits(data->regmap,
354 bmi160_regs[t].config,
355 bmi160_regs[t].config_odr_mask,
356 bmi160_odr_table[t].tbl[i].bits);
359 static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
360 int *odr, int *uodr)
362 int i, val, ret;
364 ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
365 if (ret < 0)
366 return ret;
368 val &= bmi160_regs[t].config_odr_mask;
370 for (i = 0; i < bmi160_odr_table[t].num; i++)
371 if (val == bmi160_odr_table[t].tbl[i].bits)
372 break;
374 if (i >= bmi160_odr_table[t].num)
375 return -EINVAL;
377 *odr = bmi160_odr_table[t].tbl[i].odr;
378 *uodr = bmi160_odr_table[t].tbl[i].uodr;
380 return 0;
383 static irqreturn_t bmi160_trigger_handler(int irq, void *p)
385 struct iio_poll_func *pf = p;
386 struct iio_dev *indio_dev = pf->indio_dev;
387 struct bmi160_data *data = iio_priv(indio_dev);
388 __le16 buf[16];
389 /* 3 sens x 3 axis x __le16 + 3 x __le16 pad + 4 x __le16 tstamp */
390 int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
391 __le16 sample;
393 for_each_set_bit(i, indio_dev->active_scan_mask,
394 indio_dev->masklength) {
395 ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
396 &sample, sizeof(sample));
397 if (ret < 0)
398 goto done;
399 buf[j++] = sample;
402 iio_push_to_buffers_with_timestamp(indio_dev, buf,
403 iio_get_time_ns(indio_dev));
404 done:
405 iio_trigger_notify_done(indio_dev->trig);
406 return IRQ_HANDLED;
409 static int bmi160_read_raw(struct iio_dev *indio_dev,
410 struct iio_chan_spec const *chan,
411 int *val, int *val2, long mask)
413 int ret;
414 struct bmi160_data *data = iio_priv(indio_dev);
416 switch (mask) {
417 case IIO_CHAN_INFO_RAW:
418 ret = bmi160_get_data(data, chan->type, chan->channel2, val);
419 if (ret < 0)
420 return ret;
421 return IIO_VAL_INT;
422 case IIO_CHAN_INFO_SCALE:
423 *val = 0;
424 ret = bmi160_get_scale(data,
425 bmi160_to_sensor(chan->type), val2);
426 return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
427 case IIO_CHAN_INFO_SAMP_FREQ:
428 ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
429 val, val2);
430 return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
431 default:
432 return -EINVAL;
435 return 0;
438 static int bmi160_write_raw(struct iio_dev *indio_dev,
439 struct iio_chan_spec const *chan,
440 int val, int val2, long mask)
442 struct bmi160_data *data = iio_priv(indio_dev);
444 switch (mask) {
445 case IIO_CHAN_INFO_SCALE:
446 return bmi160_set_scale(data,
447 bmi160_to_sensor(chan->type), val2);
448 break;
449 case IIO_CHAN_INFO_SAMP_FREQ:
450 return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
451 val, val2);
452 default:
453 return -EINVAL;
456 return 0;
459 static
460 IIO_CONST_ATTR(in_accel_sampling_frequency_available,
461 "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
462 static
463 IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
464 "25 50 100 200 400 800 1600 3200");
465 static
466 IIO_CONST_ATTR(in_accel_scale_available,
467 "0.000598 0.001197 0.002394 0.004788");
468 static
469 IIO_CONST_ATTR(in_anglvel_scale_available,
470 "0.001065 0.000532 0.000266 0.000133 0.000066");
472 static struct attribute *bmi160_attrs[] = {
473 &iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
474 &iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
475 &iio_const_attr_in_accel_scale_available.dev_attr.attr,
476 &iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
477 NULL,
480 static const struct attribute_group bmi160_attrs_group = {
481 .attrs = bmi160_attrs,
484 static const struct iio_info bmi160_info = {
485 .read_raw = bmi160_read_raw,
486 .write_raw = bmi160_write_raw,
487 .attrs = &bmi160_attrs_group,
490 static const char *bmi160_match_acpi_device(struct device *dev)
492 const struct acpi_device_id *id;
494 id = acpi_match_device(dev->driver->acpi_match_table, dev);
495 if (!id)
496 return NULL;
498 return dev_name(dev);
501 static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
503 int ret;
504 unsigned int val;
505 struct device *dev = regmap_get_device(data->regmap);
507 ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
508 if (ret < 0)
509 return ret;
511 usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
514 * CS rising edge is needed before starting SPI, so do a dummy read
515 * See Section 3.2.1, page 86 of the datasheet
517 if (use_spi) {
518 ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
519 if (ret < 0)
520 return ret;
523 ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
524 if (ret < 0) {
525 dev_err(dev, "Error reading chip id\n");
526 return ret;
528 if (val != BMI160_CHIP_ID_VAL) {
529 dev_err(dev, "Wrong chip id, got %x expected %x\n",
530 val, BMI160_CHIP_ID_VAL);
531 return -ENODEV;
534 ret = bmi160_set_mode(data, BMI160_ACCEL, true);
535 if (ret < 0)
536 return ret;
538 ret = bmi160_set_mode(data, BMI160_GYRO, true);
539 if (ret < 0)
540 return ret;
542 return 0;
545 static void bmi160_chip_uninit(struct bmi160_data *data)
547 bmi160_set_mode(data, BMI160_GYRO, false);
548 bmi160_set_mode(data, BMI160_ACCEL, false);
551 int bmi160_core_probe(struct device *dev, struct regmap *regmap,
552 const char *name, bool use_spi)
554 struct iio_dev *indio_dev;
555 struct bmi160_data *data;
556 int ret;
558 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
559 if (!indio_dev)
560 return -ENOMEM;
562 data = iio_priv(indio_dev);
563 dev_set_drvdata(dev, indio_dev);
564 data->regmap = regmap;
566 ret = bmi160_chip_init(data, use_spi);
567 if (ret < 0)
568 return ret;
570 if (!name && ACPI_HANDLE(dev))
571 name = bmi160_match_acpi_device(dev);
573 indio_dev->dev.parent = dev;
574 indio_dev->channels = bmi160_channels;
575 indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
576 indio_dev->name = name;
577 indio_dev->modes = INDIO_DIRECT_MODE;
578 indio_dev->info = &bmi160_info;
580 ret = iio_triggered_buffer_setup(indio_dev, NULL,
581 bmi160_trigger_handler, NULL);
582 if (ret < 0)
583 goto uninit;
585 ret = iio_device_register(indio_dev);
586 if (ret < 0)
587 goto buffer_cleanup;
589 return 0;
590 buffer_cleanup:
591 iio_triggered_buffer_cleanup(indio_dev);
592 uninit:
593 bmi160_chip_uninit(data);
594 return ret;
596 EXPORT_SYMBOL_GPL(bmi160_core_probe);
598 void bmi160_core_remove(struct device *dev)
600 struct iio_dev *indio_dev = dev_get_drvdata(dev);
601 struct bmi160_data *data = iio_priv(indio_dev);
603 iio_device_unregister(indio_dev);
604 iio_triggered_buffer_cleanup(indio_dev);
605 bmi160_chip_uninit(data);
607 EXPORT_SYMBOL_GPL(bmi160_core_remove);
609 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com");
610 MODULE_DESCRIPTION("Bosch BMI160 driver");
611 MODULE_LICENSE("GPL v2");