xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / iio / light / vl6180.c
blob192c77ef36084e1c53b36e07f7cde79d9cb01dc1
1 /*
2 * vl6180.c - Support for STMicroelectronics VL6180 ALS, range and proximity
3 * sensor
5 * Copyright 2017 Peter Meerwald-Stadler <pmeerw@pmeerw.net>
6 * Copyright 2017 Manivannan Sadhasivam <manivannanece23@gmail.com>
8 * This file is subject to the terms and conditions of version 2 of
9 * the GNU General Public License. See the file COPYING in the main
10 * directory of this archive for more details.
12 * IIO driver for VL6180 (7-bit I2C slave address 0x29)
14 * Range: 0 to 100mm
15 * ALS: < 1 Lux up to 100 kLux
16 * IR: 850nm
18 * TODO: irq, threshold events, continuous mode, hardware buffer
21 #include <linux/module.h>
22 #include <linux/i2c.h>
23 #include <linux/mutex.h>
24 #include <linux/err.h>
25 #include <linux/of.h>
26 #include <linux/delay.h>
27 #include <linux/util_macros.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
32 #define VL6180_DRV_NAME "vl6180"
34 /* Device identification register and value */
35 #define VL6180_MODEL_ID 0x000
36 #define VL6180_MODEL_ID_VAL 0xb4
38 /* Configuration registers */
39 #define VL6180_INTR_CONFIG 0x014
40 #define VL6180_INTR_CLEAR 0x015
41 #define VL6180_OUT_OF_RESET 0x016
42 #define VL6180_HOLD 0x017
43 #define VL6180_RANGE_START 0x018
44 #define VL6180_ALS_START 0x038
45 #define VL6180_ALS_GAIN 0x03f
46 #define VL6180_ALS_IT 0x040
48 /* Status registers */
49 #define VL6180_RANGE_STATUS 0x04d
50 #define VL6180_ALS_STATUS 0x04e
51 #define VL6180_INTR_STATUS 0x04f
53 /* Result value registers */
54 #define VL6180_ALS_VALUE 0x050
55 #define VL6180_RANGE_VALUE 0x062
56 #define VL6180_RANGE_RATE 0x066
58 /* bits of the RANGE_START and ALS_START register */
59 #define VL6180_MODE_CONT BIT(1) /* continuous mode */
60 #define VL6180_STARTSTOP BIT(0) /* start measurement, auto-reset */
62 /* bits of the INTR_STATUS and INTR_CONFIG register */
63 #define VL6180_ALS_READY BIT(5)
64 #define VL6180_RANGE_READY BIT(2)
66 /* bits of the INTR_CLEAR register */
67 #define VL6180_CLEAR_ERROR BIT(2)
68 #define VL6180_CLEAR_ALS BIT(1)
69 #define VL6180_CLEAR_RANGE BIT(0)
71 /* bits of the HOLD register */
72 #define VL6180_HOLD_ON BIT(0)
74 /* default value for the ALS_IT register */
75 #define VL6180_ALS_IT_100 0x63 /* 100 ms */
77 /* values for the ALS_GAIN register */
78 #define VL6180_ALS_GAIN_1 0x46
79 #define VL6180_ALS_GAIN_1_25 0x45
80 #define VL6180_ALS_GAIN_1_67 0x44
81 #define VL6180_ALS_GAIN_2_5 0x43
82 #define VL6180_ALS_GAIN_5 0x42
83 #define VL6180_ALS_GAIN_10 0x41
84 #define VL6180_ALS_GAIN_20 0x40
85 #define VL6180_ALS_GAIN_40 0x47
87 struct vl6180_data {
88 struct i2c_client *client;
89 struct mutex lock;
90 unsigned int als_gain_milli;
91 unsigned int als_it_ms;
94 enum { VL6180_ALS, VL6180_RANGE, VL6180_PROX };
96 /**
97 * struct vl6180_chan_regs - Registers for accessing channels
98 * @drdy_mask: Data ready bit in status register
99 * @start_reg: Conversion start register
100 * @value_reg: Result value register
101 * @word: Register word length
103 struct vl6180_chan_regs {
104 u8 drdy_mask;
105 u16 start_reg, value_reg;
106 bool word;
109 static const struct vl6180_chan_regs vl6180_chan_regs_table[] = {
110 [VL6180_ALS] = {
111 .drdy_mask = VL6180_ALS_READY,
112 .start_reg = VL6180_ALS_START,
113 .value_reg = VL6180_ALS_VALUE,
114 .word = true,
116 [VL6180_RANGE] = {
117 .drdy_mask = VL6180_RANGE_READY,
118 .start_reg = VL6180_RANGE_START,
119 .value_reg = VL6180_RANGE_VALUE,
120 .word = false,
122 [VL6180_PROX] = {
123 .drdy_mask = VL6180_RANGE_READY,
124 .start_reg = VL6180_RANGE_START,
125 .value_reg = VL6180_RANGE_RATE,
126 .word = true,
130 static int vl6180_read(struct i2c_client *client, u16 cmd, void *databuf,
131 u8 len)
133 __be16 cmdbuf = cpu_to_be16(cmd);
134 struct i2c_msg msgs[2] = {
135 { .addr = client->addr, .len = sizeof(cmdbuf), .buf = (u8 *) &cmdbuf },
136 { .addr = client->addr, .len = len, .buf = databuf,
137 .flags = I2C_M_RD } };
138 int ret;
140 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
141 if (ret < 0)
142 dev_err(&client->dev, "failed reading register 0x%04x\n", cmd);
144 return ret;
147 static int vl6180_read_byte(struct i2c_client *client, u16 cmd)
149 u8 data;
150 int ret;
152 ret = vl6180_read(client, cmd, &data, sizeof(data));
153 if (ret < 0)
154 return ret;
156 return data;
159 static int vl6180_read_word(struct i2c_client *client, u16 cmd)
161 __be16 data;
162 int ret;
164 ret = vl6180_read(client, cmd, &data, sizeof(data));
165 if (ret < 0)
166 return ret;
168 return be16_to_cpu(data);
171 static int vl6180_write_byte(struct i2c_client *client, u16 cmd, u8 val)
173 u8 buf[3];
174 struct i2c_msg msgs[1] = {
175 { .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } };
176 int ret;
178 buf[0] = cmd >> 8;
179 buf[1] = cmd & 0xff;
180 buf[2] = val;
182 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
183 if (ret < 0) {
184 dev_err(&client->dev, "failed writing register 0x%04x\n", cmd);
185 return ret;
188 return 0;
191 static int vl6180_write_word(struct i2c_client *client, u16 cmd, u16 val)
193 __be16 buf[2];
194 struct i2c_msg msgs[1] = {
195 { .addr = client->addr, .len = sizeof(buf), .buf = (u8 *) &buf } };
196 int ret;
198 buf[0] = cpu_to_be16(cmd);
199 buf[1] = cpu_to_be16(val);
201 ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
202 if (ret < 0) {
203 dev_err(&client->dev, "failed writing register 0x%04x\n", cmd);
204 return ret;
207 return 0;
210 static int vl6180_measure(struct vl6180_data *data, int addr)
212 struct i2c_client *client = data->client;
213 int tries = 20, ret;
214 u16 value;
216 mutex_lock(&data->lock);
217 /* Start single shot measurement */
218 ret = vl6180_write_byte(client,
219 vl6180_chan_regs_table[addr].start_reg, VL6180_STARTSTOP);
220 if (ret < 0)
221 goto fail;
223 while (tries--) {
224 ret = vl6180_read_byte(client, VL6180_INTR_STATUS);
225 if (ret < 0)
226 goto fail;
228 if (ret & vl6180_chan_regs_table[addr].drdy_mask)
229 break;
230 msleep(20);
233 if (tries < 0) {
234 ret = -EIO;
235 goto fail;
238 /* Read result value from appropriate registers */
239 ret = vl6180_chan_regs_table[addr].word ?
240 vl6180_read_word(client, vl6180_chan_regs_table[addr].value_reg) :
241 vl6180_read_byte(client, vl6180_chan_regs_table[addr].value_reg);
242 if (ret < 0)
243 goto fail;
244 value = ret;
246 /* Clear the interrupt flag after data read */
247 ret = vl6180_write_byte(client, VL6180_INTR_CLEAR,
248 VL6180_CLEAR_ERROR | VL6180_CLEAR_ALS | VL6180_CLEAR_RANGE);
249 if (ret < 0)
250 goto fail;
252 ret = value;
254 fail:
255 mutex_unlock(&data->lock);
257 return ret;
260 static const struct iio_chan_spec vl6180_channels[] = {
262 .type = IIO_LIGHT,
263 .address = VL6180_ALS,
264 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
265 BIT(IIO_CHAN_INFO_INT_TIME) |
266 BIT(IIO_CHAN_INFO_SCALE) |
267 BIT(IIO_CHAN_INFO_HARDWAREGAIN),
268 }, {
269 .type = IIO_DISTANCE,
270 .address = VL6180_RANGE,
271 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
272 BIT(IIO_CHAN_INFO_SCALE),
273 }, {
274 .type = IIO_PROXIMITY,
275 .address = VL6180_PROX,
276 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
281 * Available Ambient Light Sensor gain settings, 1/1000th, and
282 * corresponding setting for the VL6180_ALS_GAIN register
284 static const int vl6180_als_gain_tab[8] = {
285 1000, 1250, 1670, 2500, 5000, 10000, 20000, 40000
287 static const u8 vl6180_als_gain_tab_bits[8] = {
288 VL6180_ALS_GAIN_1, VL6180_ALS_GAIN_1_25,
289 VL6180_ALS_GAIN_1_67, VL6180_ALS_GAIN_2_5,
290 VL6180_ALS_GAIN_5, VL6180_ALS_GAIN_10,
291 VL6180_ALS_GAIN_20, VL6180_ALS_GAIN_40
294 static int vl6180_read_raw(struct iio_dev *indio_dev,
295 struct iio_chan_spec const *chan,
296 int *val, int *val2, long mask)
298 struct vl6180_data *data = iio_priv(indio_dev);
299 int ret;
301 switch (mask) {
302 case IIO_CHAN_INFO_RAW:
303 ret = vl6180_measure(data, chan->address);
304 if (ret < 0)
305 return ret;
306 *val = ret;
308 return IIO_VAL_INT;
309 case IIO_CHAN_INFO_INT_TIME:
310 *val = data->als_it_ms;
311 *val2 = 1000;
313 return IIO_VAL_FRACTIONAL;
315 case IIO_CHAN_INFO_SCALE:
316 switch (chan->type) {
317 case IIO_LIGHT:
318 /* one ALS count is 0.32 Lux @ gain 1, IT 100 ms */
319 *val = 32000; /* 0.32 * 1000 * 100 */
320 *val2 = data->als_gain_milli * data->als_it_ms;
322 return IIO_VAL_FRACTIONAL;
324 case IIO_DISTANCE:
325 *val = 0; /* sensor reports mm, scale to meter */
326 *val2 = 1000;
327 break;
328 default:
329 return -EINVAL;
332 return IIO_VAL_INT_PLUS_MICRO;
333 case IIO_CHAN_INFO_HARDWAREGAIN:
334 *val = data->als_gain_milli;
335 *val2 = 1000;
337 return IIO_VAL_FRACTIONAL;
339 default:
340 return -EINVAL;
344 static IIO_CONST_ATTR(als_gain_available, "1 1.25 1.67 2.5 5 10 20 40");
346 static struct attribute *vl6180_attributes[] = {
347 &iio_const_attr_als_gain_available.dev_attr.attr,
348 NULL
351 static const struct attribute_group vl6180_attribute_group = {
352 .attrs = vl6180_attributes,
355 /* HOLD is needed before updating any config registers */
356 static int vl6180_hold(struct vl6180_data *data, bool hold)
358 return vl6180_write_byte(data->client, VL6180_HOLD,
359 hold ? VL6180_HOLD_ON : 0);
362 static int vl6180_set_als_gain(struct vl6180_data *data, int val, int val2)
364 int i, ret, gain;
366 if (val < 1 || val > 40)
367 return -EINVAL;
369 gain = (val * 1000000 + val2) / 1000;
370 if (gain < 1 || gain > 40000)
371 return -EINVAL;
373 i = find_closest(gain, vl6180_als_gain_tab,
374 ARRAY_SIZE(vl6180_als_gain_tab));
376 mutex_lock(&data->lock);
377 ret = vl6180_hold(data, true);
378 if (ret < 0)
379 goto fail;
381 ret = vl6180_write_byte(data->client, VL6180_ALS_GAIN,
382 vl6180_als_gain_tab_bits[i]);
384 if (ret >= 0)
385 data->als_gain_milli = vl6180_als_gain_tab[i];
387 fail:
388 vl6180_hold(data, false);
389 mutex_unlock(&data->lock);
390 return ret;
393 static int vl6180_set_it(struct vl6180_data *data, int val, int val2)
395 int ret, it_ms;
397 it_ms = (val2 + 500) / 1000; /* round to ms */
398 if (val != 0 || it_ms < 1 || it_ms > 512)
399 return -EINVAL;
401 mutex_lock(&data->lock);
402 ret = vl6180_hold(data, true);
403 if (ret < 0)
404 goto fail;
406 ret = vl6180_write_word(data->client, VL6180_ALS_IT, it_ms - 1);
408 if (ret >= 0)
409 data->als_it_ms = it_ms;
411 fail:
412 vl6180_hold(data, false);
413 mutex_unlock(&data->lock);
415 return ret;
418 static int vl6180_write_raw(struct iio_dev *indio_dev,
419 struct iio_chan_spec const *chan,
420 int val, int val2, long mask)
422 struct vl6180_data *data = iio_priv(indio_dev);
424 switch (mask) {
425 case IIO_CHAN_INFO_INT_TIME:
426 return vl6180_set_it(data, val, val2);
428 case IIO_CHAN_INFO_HARDWAREGAIN:
429 if (chan->type != IIO_LIGHT)
430 return -EINVAL;
432 return vl6180_set_als_gain(data, val, val2);
433 default:
434 return -EINVAL;
438 static const struct iio_info vl6180_info = {
439 .read_raw = vl6180_read_raw,
440 .write_raw = vl6180_write_raw,
441 .attrs = &vl6180_attribute_group,
444 static int vl6180_init(struct vl6180_data *data)
446 struct i2c_client *client = data->client;
447 int ret;
449 ret = vl6180_read_byte(client, VL6180_MODEL_ID);
450 if (ret < 0)
451 return ret;
453 if (ret != VL6180_MODEL_ID_VAL) {
454 dev_err(&client->dev, "invalid model ID %02x\n", ret);
455 return -ENODEV;
458 ret = vl6180_hold(data, true);
459 if (ret < 0)
460 return ret;
462 ret = vl6180_read_byte(client, VL6180_OUT_OF_RESET);
463 if (ret < 0)
464 return ret;
467 * Detect false reset condition here. This bit is always set when the
468 * system comes out of reset.
470 if (ret != 0x01)
471 dev_info(&client->dev, "device is not fresh out of reset\n");
473 /* Enable ALS and Range ready interrupts */
474 ret = vl6180_write_byte(client, VL6180_INTR_CONFIG,
475 VL6180_ALS_READY | VL6180_RANGE_READY);
476 if (ret < 0)
477 return ret;
479 /* ALS integration time: 100ms */
480 data->als_it_ms = 100;
481 ret = vl6180_write_word(client, VL6180_ALS_IT, VL6180_ALS_IT_100);
482 if (ret < 0)
483 return ret;
485 /* ALS gain: 1 */
486 data->als_gain_milli = 1000;
487 ret = vl6180_write_byte(client, VL6180_ALS_GAIN, VL6180_ALS_GAIN_1);
488 if (ret < 0)
489 return ret;
491 ret = vl6180_write_byte(client, VL6180_OUT_OF_RESET, 0x00);
492 if (ret < 0)
493 return ret;
495 return vl6180_hold(data, false);
498 static int vl6180_probe(struct i2c_client *client,
499 const struct i2c_device_id *id)
501 struct vl6180_data *data;
502 struct iio_dev *indio_dev;
503 int ret;
505 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
506 if (!indio_dev)
507 return -ENOMEM;
509 data = iio_priv(indio_dev);
510 i2c_set_clientdata(client, indio_dev);
511 data->client = client;
512 mutex_init(&data->lock);
514 indio_dev->dev.parent = &client->dev;
515 indio_dev->info = &vl6180_info;
516 indio_dev->channels = vl6180_channels;
517 indio_dev->num_channels = ARRAY_SIZE(vl6180_channels);
518 indio_dev->name = VL6180_DRV_NAME;
519 indio_dev->modes = INDIO_DIRECT_MODE;
521 ret = vl6180_init(data);
522 if (ret < 0)
523 return ret;
525 return devm_iio_device_register(&client->dev, indio_dev);
528 static const struct of_device_id vl6180_of_match[] = {
529 { .compatible = "st,vl6180", },
530 { },
532 MODULE_DEVICE_TABLE(of, vl6180_of_match);
534 static const struct i2c_device_id vl6180_id[] = {
535 { "vl6180", 0 },
538 MODULE_DEVICE_TABLE(i2c, vl6180_id);
540 static struct i2c_driver vl6180_driver = {
541 .driver = {
542 .name = VL6180_DRV_NAME,
543 .of_match_table = of_match_ptr(vl6180_of_match),
545 .probe = vl6180_probe,
546 .id_table = vl6180_id,
549 module_i2c_driver(vl6180_driver);
551 MODULE_AUTHOR("Peter Meerwald-Stadler <pmeerw@pmeerw.net>");
552 MODULE_AUTHOR("Manivannan Sadhasivam <manivannanece23@gmail.com>");
553 MODULE_DESCRIPTION("STMicro VL6180 ALS, range and proximity sensor driver");
554 MODULE_LICENSE("GPL");