xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / iio / pressure / bmp280-core.c
blob5ec3e41b65f2b8f991626a4522d6263d66ca2a27
1 /*
2 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3 * Copyright (c) 2012 Bosch Sensortec GmbH
4 * Copyright (c) 2012 Unixphere AB
5 * Copyright (c) 2014 Intel Corporation
6 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * Datasheet:
15 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17 * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
20 #define pr_fmt(fmt) "bmp280: " fmt
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
36 #include "bmp280.h"
39 * These enums are used for indexing into the array of calibration
40 * coefficients for BMP180.
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
44 struct bmp180_calib {
45 s16 AC1;
46 s16 AC2;
47 s16 AC3;
48 u16 AC4;
49 u16 AC5;
50 u16 AC6;
51 s16 B1;
52 s16 B2;
53 s16 MB;
54 s16 MC;
55 s16 MD;
58 /* See datasheet Section 4.2.2. */
59 struct bmp280_calib {
60 u16 T1;
61 s16 T2;
62 s16 T3;
63 u16 P1;
64 s16 P2;
65 s16 P3;
66 s16 P4;
67 s16 P5;
68 s16 P6;
69 s16 P7;
70 s16 P8;
71 s16 P9;
72 u8 H1;
73 s16 H2;
74 u8 H3;
75 s16 H4;
76 s16 H5;
77 s8 H6;
80 struct bmp280_data {
81 struct device *dev;
82 struct mutex lock;
83 struct regmap *regmap;
84 struct completion done;
85 bool use_eoc;
86 const struct bmp280_chip_info *chip_info;
87 union {
88 struct bmp180_calib bmp180;
89 struct bmp280_calib bmp280;
90 } calib;
91 struct regulator *vddd;
92 struct regulator *vdda;
93 unsigned int start_up_time; /* in microseconds */
95 /* log of base 2 of oversampling rate */
96 u8 oversampling_press;
97 u8 oversampling_temp;
98 u8 oversampling_humid;
101 * Carryover value from temperature conversion, used in pressure
102 * calculation.
104 s32 t_fine;
107 struct bmp280_chip_info {
108 const int *oversampling_temp_avail;
109 int num_oversampling_temp_avail;
111 const int *oversampling_press_avail;
112 int num_oversampling_press_avail;
114 const int *oversampling_humid_avail;
115 int num_oversampling_humid_avail;
117 int (*chip_config)(struct bmp280_data *);
118 int (*read_temp)(struct bmp280_data *, int *);
119 int (*read_press)(struct bmp280_data *, int *, int *);
120 int (*read_humid)(struct bmp280_data *, int *, int *);
124 * These enums are used for indexing into the array of compensation
125 * parameters for BMP280.
127 enum { T1, T2, T3 };
128 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
130 static const struct iio_chan_spec bmp280_channels[] = {
132 .type = IIO_PRESSURE,
133 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
134 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
137 .type = IIO_TEMP,
138 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
139 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
142 .type = IIO_HUMIDITYRELATIVE,
143 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
144 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
148 static int bmp280_read_calib(struct bmp280_data *data,
149 struct bmp280_calib *calib,
150 unsigned int chip)
152 int ret;
153 unsigned int tmp;
154 struct device *dev = data->dev;
155 __le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
156 __le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
158 /* Read temperature calibration values. */
159 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
160 t_buf, BMP280_COMP_TEMP_REG_COUNT);
161 if (ret < 0) {
162 dev_err(data->dev,
163 "failed to read temperature calibration parameters\n");
164 return ret;
167 calib->T1 = le16_to_cpu(t_buf[T1]);
168 calib->T2 = le16_to_cpu(t_buf[T2]);
169 calib->T3 = le16_to_cpu(t_buf[T3]);
171 /* Read pressure calibration values. */
172 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
173 p_buf, BMP280_COMP_PRESS_REG_COUNT);
174 if (ret < 0) {
175 dev_err(data->dev,
176 "failed to read pressure calibration parameters\n");
177 return ret;
180 calib->P1 = le16_to_cpu(p_buf[P1]);
181 calib->P2 = le16_to_cpu(p_buf[P2]);
182 calib->P3 = le16_to_cpu(p_buf[P3]);
183 calib->P4 = le16_to_cpu(p_buf[P4]);
184 calib->P5 = le16_to_cpu(p_buf[P5]);
185 calib->P6 = le16_to_cpu(p_buf[P6]);
186 calib->P7 = le16_to_cpu(p_buf[P7]);
187 calib->P8 = le16_to_cpu(p_buf[P8]);
188 calib->P9 = le16_to_cpu(p_buf[P9]);
191 * Read humidity calibration values.
192 * Due to some odd register addressing we cannot just
193 * do a big bulk read. Instead, we have to read each Hx
194 * value separately and sometimes do some bit shifting...
195 * Humidity data is only available on BME280.
197 if (chip != BME280_CHIP_ID)
198 return 0;
200 ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
201 if (ret < 0) {
202 dev_err(dev, "failed to read H1 comp value\n");
203 return ret;
205 calib->H1 = tmp;
207 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
208 if (ret < 0) {
209 dev_err(dev, "failed to read H2 comp value\n");
210 return ret;
212 calib->H2 = sign_extend32(le16_to_cpu(tmp), 15);
214 ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
215 if (ret < 0) {
216 dev_err(dev, "failed to read H3 comp value\n");
217 return ret;
219 calib->H3 = tmp;
221 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
222 if (ret < 0) {
223 dev_err(dev, "failed to read H4 comp value\n");
224 return ret;
226 calib->H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
227 (be16_to_cpu(tmp) & 0xf), 11);
229 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
230 if (ret < 0) {
231 dev_err(dev, "failed to read H5 comp value\n");
232 return ret;
234 calib->H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
236 ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
237 if (ret < 0) {
238 dev_err(dev, "failed to read H6 comp value\n");
239 return ret;
241 calib->H6 = sign_extend32(tmp, 7);
243 return 0;
246 * Returns humidity in percent, resolution is 0.01 percent. Output value of
247 * "47445" represents 47445/1024 = 46.333 %RH.
249 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
251 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
252 s32 adc_humidity)
254 s32 var;
255 struct bmp280_calib *calib = &data->calib.bmp280;
257 var = ((s32)data->t_fine) - (s32)76800;
258 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
259 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
260 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
261 + (s32)2097152) * calib->H2 + 8192) >> 14);
262 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
264 return var >> 12;
268 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of
269 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global
270 * value.
272 * Taken from datasheet, Section 3.11.3, "Compensation formula".
274 static s32 bmp280_compensate_temp(struct bmp280_data *data,
275 s32 adc_temp)
277 s32 var1, var2;
278 struct bmp280_calib *calib = &data->calib.bmp280;
280 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
281 ((s32)calib->T2)) >> 11;
282 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
283 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
284 ((s32)calib->T3)) >> 14;
285 data->t_fine = var1 + var2;
287 return (data->t_fine * 5 + 128) >> 8;
291 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
292 * integer bits and 8 fractional bits). Output value of "24674867"
293 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
295 * Taken from datasheet, Section 3.11.3, "Compensation formula".
297 static u32 bmp280_compensate_press(struct bmp280_data *data,
298 s32 adc_press)
300 s64 var1, var2, p;
301 struct bmp280_calib *calib = &data->calib.bmp280;
303 var1 = ((s64)data->t_fine) - 128000;
304 var2 = var1 * var1 * (s64)calib->P6;
305 var2 += (var1 * (s64)calib->P5) << 17;
306 var2 += ((s64)calib->P4) << 35;
307 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
308 ((var1 * (s64)calib->P2) << 12);
309 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
311 if (var1 == 0)
312 return 0;
314 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
315 p = div64_s64(p, var1);
316 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
317 var2 = ((s64)(calib->P8) * p) >> 19;
318 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
320 return (u32)p;
323 static int bmp280_read_temp(struct bmp280_data *data,
324 int *val)
326 int ret;
327 __be32 tmp = 0;
328 s32 adc_temp, comp_temp;
330 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
331 (u8 *) &tmp, 3);
332 if (ret < 0) {
333 dev_err(data->dev, "failed to read temperature\n");
334 return ret;
337 adc_temp = be32_to_cpu(tmp) >> 12;
338 if (adc_temp == BMP280_TEMP_SKIPPED) {
339 /* reading was skipped */
340 dev_err(data->dev, "reading temperature skipped\n");
341 return -EIO;
343 comp_temp = bmp280_compensate_temp(data, adc_temp);
346 * val might be NULL if we're called by the read_press routine,
347 * who only cares about the carry over t_fine value.
349 if (val) {
350 *val = comp_temp * 10;
351 return IIO_VAL_INT;
354 return 0;
357 static int bmp280_read_press(struct bmp280_data *data,
358 int *val, int *val2)
360 int ret;
361 __be32 tmp = 0;
362 s32 adc_press;
363 u32 comp_press;
365 /* Read and compensate temperature so we get a reading of t_fine. */
366 ret = bmp280_read_temp(data, NULL);
367 if (ret < 0)
368 return ret;
370 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
371 (u8 *) &tmp, 3);
372 if (ret < 0) {
373 dev_err(data->dev, "failed to read pressure\n");
374 return ret;
377 adc_press = be32_to_cpu(tmp) >> 12;
378 if (adc_press == BMP280_PRESS_SKIPPED) {
379 /* reading was skipped */
380 dev_err(data->dev, "reading pressure skipped\n");
381 return -EIO;
383 comp_press = bmp280_compensate_press(data, adc_press);
385 *val = comp_press;
386 *val2 = 256000;
388 return IIO_VAL_FRACTIONAL;
391 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
393 int ret;
394 __be16 tmp = 0;
395 s32 adc_humidity;
396 u32 comp_humidity;
398 /* Read and compensate temperature so we get a reading of t_fine. */
399 ret = bmp280_read_temp(data, NULL);
400 if (ret < 0)
401 return ret;
403 ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
404 (u8 *) &tmp, 2);
405 if (ret < 0) {
406 dev_err(data->dev, "failed to read humidity\n");
407 return ret;
410 adc_humidity = be16_to_cpu(tmp);
411 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
412 /* reading was skipped */
413 dev_err(data->dev, "reading humidity skipped\n");
414 return -EIO;
416 comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
418 *val = comp_humidity;
419 *val2 = 1024;
421 return IIO_VAL_FRACTIONAL;
424 static int bmp280_read_raw(struct iio_dev *indio_dev,
425 struct iio_chan_spec const *chan,
426 int *val, int *val2, long mask)
428 int ret;
429 struct bmp280_data *data = iio_priv(indio_dev);
431 pm_runtime_get_sync(data->dev);
432 mutex_lock(&data->lock);
434 switch (mask) {
435 case IIO_CHAN_INFO_PROCESSED:
436 switch (chan->type) {
437 case IIO_HUMIDITYRELATIVE:
438 ret = data->chip_info->read_humid(data, val, val2);
439 break;
440 case IIO_PRESSURE:
441 ret = data->chip_info->read_press(data, val, val2);
442 break;
443 case IIO_TEMP:
444 ret = data->chip_info->read_temp(data, val);
445 break;
446 default:
447 ret = -EINVAL;
448 break;
450 break;
451 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
452 switch (chan->type) {
453 case IIO_HUMIDITYRELATIVE:
454 *val = 1 << data->oversampling_humid;
455 ret = IIO_VAL_INT;
456 break;
457 case IIO_PRESSURE:
458 *val = 1 << data->oversampling_press;
459 ret = IIO_VAL_INT;
460 break;
461 case IIO_TEMP:
462 *val = 1 << data->oversampling_temp;
463 ret = IIO_VAL_INT;
464 break;
465 default:
466 ret = -EINVAL;
467 break;
469 break;
470 default:
471 ret = -EINVAL;
472 break;
475 mutex_unlock(&data->lock);
476 pm_runtime_mark_last_busy(data->dev);
477 pm_runtime_put_autosuspend(data->dev);
479 return ret;
482 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
483 int val)
485 int i;
486 const int *avail = data->chip_info->oversampling_humid_avail;
487 const int n = data->chip_info->num_oversampling_humid_avail;
489 for (i = 0; i < n; i++) {
490 if (avail[i] == val) {
491 data->oversampling_humid = ilog2(val);
493 return data->chip_info->chip_config(data);
496 return -EINVAL;
499 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
500 int val)
502 int i;
503 const int *avail = data->chip_info->oversampling_temp_avail;
504 const int n = data->chip_info->num_oversampling_temp_avail;
506 for (i = 0; i < n; i++) {
507 if (avail[i] == val) {
508 data->oversampling_temp = ilog2(val);
510 return data->chip_info->chip_config(data);
513 return -EINVAL;
516 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
517 int val)
519 int i;
520 const int *avail = data->chip_info->oversampling_press_avail;
521 const int n = data->chip_info->num_oversampling_press_avail;
523 for (i = 0; i < n; i++) {
524 if (avail[i] == val) {
525 data->oversampling_press = ilog2(val);
527 return data->chip_info->chip_config(data);
530 return -EINVAL;
533 static int bmp280_write_raw(struct iio_dev *indio_dev,
534 struct iio_chan_spec const *chan,
535 int val, int val2, long mask)
537 int ret = 0;
538 struct bmp280_data *data = iio_priv(indio_dev);
540 switch (mask) {
541 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
542 pm_runtime_get_sync(data->dev);
543 mutex_lock(&data->lock);
544 switch (chan->type) {
545 case IIO_HUMIDITYRELATIVE:
546 ret = bmp280_write_oversampling_ratio_humid(data, val);
547 break;
548 case IIO_PRESSURE:
549 ret = bmp280_write_oversampling_ratio_press(data, val);
550 break;
551 case IIO_TEMP:
552 ret = bmp280_write_oversampling_ratio_temp(data, val);
553 break;
554 default:
555 ret = -EINVAL;
556 break;
558 mutex_unlock(&data->lock);
559 pm_runtime_mark_last_busy(data->dev);
560 pm_runtime_put_autosuspend(data->dev);
561 break;
562 default:
563 return -EINVAL;
566 return ret;
569 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
571 size_t len = 0;
572 int i;
574 for (i = 0; i < n; i++)
575 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
577 buf[len - 1] = '\n';
579 return len;
582 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
583 struct device_attribute *attr, char *buf)
585 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
587 return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
588 data->chip_info->num_oversampling_temp_avail);
591 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
596 return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
597 data->chip_info->num_oversampling_press_avail);
600 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
601 S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
603 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
604 S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
606 static struct attribute *bmp280_attributes[] = {
607 &iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
608 &iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
609 NULL,
612 static const struct attribute_group bmp280_attrs_group = {
613 .attrs = bmp280_attributes,
616 static const struct iio_info bmp280_info = {
617 .read_raw = &bmp280_read_raw,
618 .write_raw = &bmp280_write_raw,
619 .attrs = &bmp280_attrs_group,
622 static int bmp280_chip_config(struct bmp280_data *data)
624 int ret;
625 u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
626 BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
628 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
629 BMP280_OSRS_TEMP_MASK |
630 BMP280_OSRS_PRESS_MASK |
631 BMP280_MODE_MASK,
632 osrs | BMP280_MODE_NORMAL);
633 if (ret < 0) {
634 dev_err(data->dev,
635 "failed to write ctrl_meas register\n");
636 return ret;
639 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
640 BMP280_FILTER_MASK,
641 BMP280_FILTER_4X);
642 if (ret < 0) {
643 dev_err(data->dev,
644 "failed to write config register\n");
645 return ret;
648 return ret;
651 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
653 static const struct bmp280_chip_info bmp280_chip_info = {
654 .oversampling_temp_avail = bmp280_oversampling_avail,
655 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
657 .oversampling_press_avail = bmp280_oversampling_avail,
658 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
660 .chip_config = bmp280_chip_config,
661 .read_temp = bmp280_read_temp,
662 .read_press = bmp280_read_press,
665 static int bme280_chip_config(struct bmp280_data *data)
667 int ret;
668 u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
671 * Oversampling of humidity must be set before oversampling of
672 * temperature/pressure is set to become effective.
674 ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
675 BMP280_OSRS_HUMIDITY_MASK, osrs);
677 if (ret < 0)
678 return ret;
680 return bmp280_chip_config(data);
683 static const struct bmp280_chip_info bme280_chip_info = {
684 .oversampling_temp_avail = bmp280_oversampling_avail,
685 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
687 .oversampling_press_avail = bmp280_oversampling_avail,
688 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
690 .oversampling_humid_avail = bmp280_oversampling_avail,
691 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
693 .chip_config = bme280_chip_config,
694 .read_temp = bmp280_read_temp,
695 .read_press = bmp280_read_press,
696 .read_humid = bmp280_read_humid,
699 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
701 int ret;
702 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
703 unsigned int delay_us;
704 unsigned int ctrl;
706 if (data->use_eoc)
707 init_completion(&data->done);
709 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
710 if (ret)
711 return ret;
713 if (data->use_eoc) {
715 * If we have a completion interrupt, use it, wait up to
716 * 100ms. The longest conversion time listed is 76.5 ms for
717 * advanced resolution mode.
719 ret = wait_for_completion_timeout(&data->done,
720 1 + msecs_to_jiffies(100));
721 if (!ret)
722 dev_err(data->dev, "timeout waiting for completion\n");
723 } else {
724 if (ctrl_meas == BMP180_MEAS_TEMP)
725 delay_us = 4500;
726 else
727 delay_us =
728 conversion_time_max[data->oversampling_press];
730 usleep_range(delay_us, delay_us + 1000);
733 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
734 if (ret)
735 return ret;
737 /* The value of this bit reset to "0" after conversion is complete */
738 if (ctrl & BMP180_MEAS_SCO)
739 return -EIO;
741 return 0;
744 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
746 int ret;
747 __be16 tmp = 0;
749 ret = bmp180_measure(data, BMP180_MEAS_TEMP);
750 if (ret)
751 return ret;
753 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
754 if (ret)
755 return ret;
757 *val = be16_to_cpu(tmp);
759 return 0;
762 static int bmp180_read_calib(struct bmp280_data *data,
763 struct bmp180_calib *calib)
765 int ret;
766 int i;
767 __be16 buf[BMP180_REG_CALIB_COUNT / 2];
769 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
770 sizeof(buf));
772 if (ret < 0)
773 return ret;
775 /* None of the words has the value 0 or 0xFFFF */
776 for (i = 0; i < ARRAY_SIZE(buf); i++) {
777 if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
778 return -EIO;
781 /* Toss the calibration data into the entropy pool */
782 add_device_randomness(buf, sizeof(buf));
784 calib->AC1 = be16_to_cpu(buf[AC1]);
785 calib->AC2 = be16_to_cpu(buf[AC2]);
786 calib->AC3 = be16_to_cpu(buf[AC3]);
787 calib->AC4 = be16_to_cpu(buf[AC4]);
788 calib->AC5 = be16_to_cpu(buf[AC5]);
789 calib->AC6 = be16_to_cpu(buf[AC6]);
790 calib->B1 = be16_to_cpu(buf[B1]);
791 calib->B2 = be16_to_cpu(buf[B2]);
792 calib->MB = be16_to_cpu(buf[MB]);
793 calib->MC = be16_to_cpu(buf[MC]);
794 calib->MD = be16_to_cpu(buf[MD]);
796 return 0;
800 * Returns temperature in DegC, resolution is 0.1 DegC.
801 * t_fine carries fine temperature as global value.
803 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
805 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
807 s32 x1, x2;
808 struct bmp180_calib *calib = &data->calib.bmp180;
810 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
811 x2 = (calib->MC << 11) / (x1 + calib->MD);
812 data->t_fine = x1 + x2;
814 return (data->t_fine + 8) >> 4;
817 static int bmp180_read_temp(struct bmp280_data *data, int *val)
819 int ret;
820 s32 adc_temp, comp_temp;
822 ret = bmp180_read_adc_temp(data, &adc_temp);
823 if (ret)
824 return ret;
826 comp_temp = bmp180_compensate_temp(data, adc_temp);
829 * val might be NULL if we're called by the read_press routine,
830 * who only cares about the carry over t_fine value.
832 if (val) {
833 *val = comp_temp * 100;
834 return IIO_VAL_INT;
837 return 0;
840 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
842 int ret;
843 __be32 tmp = 0;
844 u8 oss = data->oversampling_press;
846 ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
847 if (ret)
848 return ret;
850 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
851 if (ret)
852 return ret;
854 *val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
856 return 0;
860 * Returns pressure in Pa, resolution is 1 Pa.
862 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
864 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
866 s32 x1, x2, x3, p;
867 s32 b3, b6;
868 u32 b4, b7;
869 s32 oss = data->oversampling_press;
870 struct bmp180_calib *calib = &data->calib.bmp180;
872 b6 = data->t_fine - 4000;
873 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
874 x2 = calib->AC2 * b6 >> 11;
875 x3 = x1 + x2;
876 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
877 x1 = calib->AC3 * b6 >> 13;
878 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
879 x3 = (x1 + x2 + 2) >> 2;
880 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
881 b7 = ((u32)adc_press - b3) * (50000 >> oss);
882 if (b7 < 0x80000000)
883 p = (b7 * 2) / b4;
884 else
885 p = (b7 / b4) * 2;
887 x1 = (p >> 8) * (p >> 8);
888 x1 = (x1 * 3038) >> 16;
889 x2 = (-7357 * p) >> 16;
891 return p + ((x1 + x2 + 3791) >> 4);
894 static int bmp180_read_press(struct bmp280_data *data,
895 int *val, int *val2)
897 int ret;
898 s32 adc_press;
899 u32 comp_press;
901 /* Read and compensate temperature so we get a reading of t_fine. */
902 ret = bmp180_read_temp(data, NULL);
903 if (ret)
904 return ret;
906 ret = bmp180_read_adc_press(data, &adc_press);
907 if (ret)
908 return ret;
910 comp_press = bmp180_compensate_press(data, adc_press);
912 *val = comp_press;
913 *val2 = 1000;
915 return IIO_VAL_FRACTIONAL;
918 static int bmp180_chip_config(struct bmp280_data *data)
920 return 0;
923 static const int bmp180_oversampling_temp_avail[] = { 1 };
924 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
926 static const struct bmp280_chip_info bmp180_chip_info = {
927 .oversampling_temp_avail = bmp180_oversampling_temp_avail,
928 .num_oversampling_temp_avail =
929 ARRAY_SIZE(bmp180_oversampling_temp_avail),
931 .oversampling_press_avail = bmp180_oversampling_press_avail,
932 .num_oversampling_press_avail =
933 ARRAY_SIZE(bmp180_oversampling_press_avail),
935 .chip_config = bmp180_chip_config,
936 .read_temp = bmp180_read_temp,
937 .read_press = bmp180_read_press,
940 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
942 struct bmp280_data *data = d;
944 complete(&data->done);
946 return IRQ_HANDLED;
949 static int bmp085_fetch_eoc_irq(struct device *dev,
950 const char *name,
951 int irq,
952 struct bmp280_data *data)
954 unsigned long irq_trig;
955 int ret;
957 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
958 if (irq_trig != IRQF_TRIGGER_RISING) {
959 dev_err(dev, "non-rising trigger given for EOC interrupt, "
960 "trying to enforce it\n");
961 irq_trig = IRQF_TRIGGER_RISING;
963 ret = devm_request_threaded_irq(dev,
964 irq,
965 bmp085_eoc_irq,
966 NULL,
967 irq_trig,
968 name,
969 data);
970 if (ret) {
971 /* Bail out without IRQ but keep the driver in place */
972 dev_err(dev, "unable to request DRDY IRQ\n");
973 return 0;
976 data->use_eoc = true;
977 return 0;
980 int bmp280_common_probe(struct device *dev,
981 struct regmap *regmap,
982 unsigned int chip,
983 const char *name,
984 int irq)
986 int ret;
987 struct iio_dev *indio_dev;
988 struct bmp280_data *data;
989 unsigned int chip_id;
990 struct gpio_desc *gpiod;
992 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
993 if (!indio_dev)
994 return -ENOMEM;
996 data = iio_priv(indio_dev);
997 mutex_init(&data->lock);
998 data->dev = dev;
1000 indio_dev->dev.parent = dev;
1001 indio_dev->name = name;
1002 indio_dev->channels = bmp280_channels;
1003 indio_dev->info = &bmp280_info;
1004 indio_dev->modes = INDIO_DIRECT_MODE;
1006 switch (chip) {
1007 case BMP180_CHIP_ID:
1008 indio_dev->num_channels = 2;
1009 data->chip_info = &bmp180_chip_info;
1010 data->oversampling_press = ilog2(8);
1011 data->oversampling_temp = ilog2(1);
1012 data->start_up_time = 10000;
1013 break;
1014 case BMP280_CHIP_ID:
1015 indio_dev->num_channels = 2;
1016 data->chip_info = &bmp280_chip_info;
1017 data->oversampling_press = ilog2(16);
1018 data->oversampling_temp = ilog2(2);
1019 data->start_up_time = 2000;
1020 break;
1021 case BME280_CHIP_ID:
1022 indio_dev->num_channels = 3;
1023 data->chip_info = &bme280_chip_info;
1024 data->oversampling_press = ilog2(16);
1025 data->oversampling_humid = ilog2(16);
1026 data->oversampling_temp = ilog2(2);
1027 data->start_up_time = 2000;
1028 break;
1029 default:
1030 return -EINVAL;
1033 /* Bring up regulators */
1034 data->vddd = devm_regulator_get(dev, "vddd");
1035 if (IS_ERR(data->vddd)) {
1036 dev_err(dev, "failed to get VDDD regulator\n");
1037 return PTR_ERR(data->vddd);
1039 ret = regulator_enable(data->vddd);
1040 if (ret) {
1041 dev_err(dev, "failed to enable VDDD regulator\n");
1042 return ret;
1044 data->vdda = devm_regulator_get(dev, "vdda");
1045 if (IS_ERR(data->vdda)) {
1046 dev_err(dev, "failed to get VDDA regulator\n");
1047 ret = PTR_ERR(data->vdda);
1048 goto out_disable_vddd;
1050 ret = regulator_enable(data->vdda);
1051 if (ret) {
1052 dev_err(dev, "failed to enable VDDA regulator\n");
1053 goto out_disable_vddd;
1055 /* Wait to make sure we started up properly */
1056 usleep_range(data->start_up_time, data->start_up_time + 100);
1058 /* Bring chip out of reset if there is an assigned GPIO line */
1059 gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1060 /* Deassert the signal */
1061 if (!IS_ERR(gpiod)) {
1062 dev_info(dev, "release reset\n");
1063 gpiod_set_value(gpiod, 0);
1066 data->regmap = regmap;
1067 ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1068 if (ret < 0)
1069 goto out_disable_vdda;
1070 if (chip_id != chip) {
1071 dev_err(dev, "bad chip id: expected %x got %x\n",
1072 chip, chip_id);
1073 ret = -EINVAL;
1074 goto out_disable_vdda;
1077 ret = data->chip_info->chip_config(data);
1078 if (ret < 0)
1079 goto out_disable_vdda;
1081 dev_set_drvdata(dev, indio_dev);
1084 * Some chips have calibration parameters "programmed into the devices'
1085 * non-volatile memory during production". Let's read them out at probe
1086 * time once. They will not change.
1088 if (chip_id == BMP180_CHIP_ID) {
1089 ret = bmp180_read_calib(data, &data->calib.bmp180);
1090 if (ret < 0) {
1091 dev_err(data->dev,
1092 "failed to read calibration coefficients\n");
1093 goto out_disable_vdda;
1095 } else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1096 ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1097 if (ret < 0) {
1098 dev_err(data->dev,
1099 "failed to read calibration coefficients\n");
1100 goto out_disable_vdda;
1105 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1106 * however as it happens, the BMP085 shares the chip ID of BMP180
1107 * so we look for an IRQ if we have that.
1109 if (irq > 0 || (chip_id == BMP180_CHIP_ID)) {
1110 ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1111 if (ret)
1112 goto out_disable_vdda;
1115 /* Enable runtime PM */
1116 pm_runtime_get_noresume(dev);
1117 pm_runtime_set_active(dev);
1118 pm_runtime_enable(dev);
1120 * Set autosuspend to two orders of magnitude larger than the
1121 * start-up time.
1123 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1124 pm_runtime_use_autosuspend(dev);
1125 pm_runtime_put(dev);
1127 ret = iio_device_register(indio_dev);
1128 if (ret)
1129 goto out_runtime_pm_disable;
1132 return 0;
1134 out_runtime_pm_disable:
1135 pm_runtime_get_sync(data->dev);
1136 pm_runtime_put_noidle(data->dev);
1137 pm_runtime_disable(data->dev);
1138 out_disable_vdda:
1139 regulator_disable(data->vdda);
1140 out_disable_vddd:
1141 regulator_disable(data->vddd);
1142 return ret;
1144 EXPORT_SYMBOL(bmp280_common_probe);
1146 int bmp280_common_remove(struct device *dev)
1148 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1149 struct bmp280_data *data = iio_priv(indio_dev);
1151 iio_device_unregister(indio_dev);
1152 pm_runtime_get_sync(data->dev);
1153 pm_runtime_put_noidle(data->dev);
1154 pm_runtime_disable(data->dev);
1155 regulator_disable(data->vdda);
1156 regulator_disable(data->vddd);
1157 return 0;
1159 EXPORT_SYMBOL(bmp280_common_remove);
1161 #ifdef CONFIG_PM
1162 static int bmp280_runtime_suspend(struct device *dev)
1164 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1165 struct bmp280_data *data = iio_priv(indio_dev);
1166 int ret;
1168 ret = regulator_disable(data->vdda);
1169 if (ret)
1170 return ret;
1171 return regulator_disable(data->vddd);
1174 static int bmp280_runtime_resume(struct device *dev)
1176 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1177 struct bmp280_data *data = iio_priv(indio_dev);
1178 int ret;
1180 ret = regulator_enable(data->vddd);
1181 if (ret)
1182 return ret;
1183 ret = regulator_enable(data->vdda);
1184 if (ret)
1185 return ret;
1186 usleep_range(data->start_up_time, data->start_up_time + 100);
1187 return data->chip_info->chip_config(data);
1189 #endif /* CONFIG_PM */
1191 const struct dev_pm_ops bmp280_dev_pm_ops = {
1192 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1193 pm_runtime_force_resume)
1194 SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1195 bmp280_runtime_resume, NULL)
1197 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1199 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1200 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1201 MODULE_LICENSE("GPL v2");