xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / iio / pressure / st_pressure_core.c
blob349e5c713c03b882f91b33a22e8007f6b53c8667
1 /*
2 * STMicroelectronics pressures driver
4 * Copyright 2013 STMicroelectronics Inc.
6 * Denis Ciocca <denis.ciocca@st.com>
8 * Licensed under the GPL-2.
9 */
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/mutex.h>
17 #include <linux/interrupt.h>
18 #include <linux/i2c.h>
19 #include <linux/gpio.h>
20 #include <linux/irq.h>
21 #include <linux/delay.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/buffer.h>
26 #include <asm/unaligned.h>
28 #include <linux/iio/common/st_sensors.h>
29 #include "st_pressure.h"
32 * About determining pressure scaling factors
33 * ------------------------------------------
35 * Datasheets specify typical pressure sensitivity so that pressure is computed
36 * according to the following equation :
37 * pressure[mBar] = raw / sensitivity
38 * where :
39 * raw the 24 bits long raw sampled pressure
40 * sensitivity a scaling factor specified by the datasheet in LSB/mBar
42 * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
43 * computed according to :
44 * pressure[kPascal] = pressure[mBar] / 10
45 * = raw / (sensitivity * 10) (1)
47 * Finally, st_press_read_raw() returns pressure scaling factor as an
48 * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
49 * Therefore, from (1), "gain" becomes :
50 * gain = 10^9 / (sensitivity * 10)
51 * = 10^8 / sensitivity
53 * About determining temperature scaling factors and offsets
54 * ---------------------------------------------------------
56 * Datasheets specify typical temperature sensitivity and offset so that
57 * temperature is computed according to the following equation :
58 * temp[Celsius] = offset[Celsius] + (raw / sensitivity)
59 * where :
60 * raw the 16 bits long raw sampled temperature
61 * offset a constant specified by the datasheet in degree Celsius
62 * (sometimes zero)
63 * sensitivity a scaling factor specified by the datasheet in LSB/Celsius
65 * IIO ABI expects temperature to be expressed as milli degree Celsius such as
66 * user space should compute temperature according to :
67 * temp[mCelsius] = temp[Celsius] * 10^3
68 * = (offset[Celsius] + (raw / sensitivity)) * 10^3
69 * = ((offset[Celsius] * sensitivity) + raw) *
70 * (10^3 / sensitivity) (2)
72 * IIO ABI expects user space to apply offset and scaling factors to raw samples
73 * according to :
74 * temp[mCelsius] = (OFFSET + raw) * SCALE
75 * where :
76 * OFFSET an arbitrary constant exposed by device
77 * SCALE an arbitrary scaling factor exposed by device
79 * Matching OFFSET and SCALE with members of (2) gives :
80 * OFFSET = offset[Celsius] * sensitivity (3)
81 * SCALE = 10^3 / sensitivity (4)
83 * st_press_read_raw() returns temperature scaling factor as an
84 * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
85 * Therefore, from (3), "gain2" becomes :
86 * gain2 = sensitivity
88 * When declared within channel, i.e. for a non zero specified offset,
89 * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
90 * numerator = OFFSET * 10^3
91 * denominator = 10^3
92 * giving from (4):
93 * numerator = offset[Celsius] * 10^3 * sensitivity
94 * = offset[mCelsius] * gain2
97 #define MCELSIUS_PER_CELSIUS 1000
99 /* Default pressure sensitivity */
100 #define ST_PRESS_LSB_PER_MBAR 4096UL
101 #define ST_PRESS_KPASCAL_NANO_SCALE (100000000UL / \
102 ST_PRESS_LSB_PER_MBAR)
104 /* Default temperature sensitivity */
105 #define ST_PRESS_LSB_PER_CELSIUS 480UL
106 #define ST_PRESS_MILLI_CELSIUS_OFFSET 42500UL
108 /* FULLSCALE */
109 #define ST_PRESS_FS_AVL_1100MB 1100
110 #define ST_PRESS_FS_AVL_1260MB 1260
112 #define ST_PRESS_1_OUT_XL_ADDR 0x28
113 #define ST_TEMP_1_OUT_L_ADDR 0x2b
115 /* LPS001WP pressure resolution */
116 #define ST_PRESS_LPS001WP_LSB_PER_MBAR 16UL
117 /* LPS001WP temperature resolution */
118 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS 64UL
119 /* LPS001WP pressure gain */
120 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
121 (100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
122 /* LPS001WP pressure and temp L addresses */
123 #define ST_PRESS_LPS001WP_OUT_L_ADDR 0x28
124 #define ST_TEMP_LPS001WP_OUT_L_ADDR 0x2a
126 /* LPS25H pressure and temp L addresses */
127 #define ST_PRESS_LPS25H_OUT_XL_ADDR 0x28
128 #define ST_TEMP_LPS25H_OUT_L_ADDR 0x2b
130 /* LPS22HB temperature sensitivity */
131 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS 100UL
133 static const struct iio_chan_spec st_press_1_channels[] = {
135 .type = IIO_PRESSURE,
136 .address = ST_PRESS_1_OUT_XL_ADDR,
137 .scan_index = 0,
138 .scan_type = {
139 .sign = 's',
140 .realbits = 24,
141 .storagebits = 32,
142 .endianness = IIO_LE,
144 .info_mask_separate =
145 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
146 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
149 .type = IIO_TEMP,
150 .address = ST_TEMP_1_OUT_L_ADDR,
151 .scan_index = 1,
152 .scan_type = {
153 .sign = 's',
154 .realbits = 16,
155 .storagebits = 16,
156 .endianness = IIO_LE,
158 .info_mask_separate =
159 BIT(IIO_CHAN_INFO_RAW) |
160 BIT(IIO_CHAN_INFO_SCALE) |
161 BIT(IIO_CHAN_INFO_OFFSET),
162 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
164 IIO_CHAN_SOFT_TIMESTAMP(2)
167 static const struct iio_chan_spec st_press_lps001wp_channels[] = {
169 .type = IIO_PRESSURE,
170 .address = ST_PRESS_LPS001WP_OUT_L_ADDR,
171 .scan_index = 0,
172 .scan_type = {
173 .sign = 's',
174 .realbits = 16,
175 .storagebits = 16,
176 .endianness = IIO_LE,
178 .info_mask_separate =
179 BIT(IIO_CHAN_INFO_RAW) |
180 BIT(IIO_CHAN_INFO_SCALE),
183 .type = IIO_TEMP,
184 .address = ST_TEMP_LPS001WP_OUT_L_ADDR,
185 .scan_index = 1,
186 .scan_type = {
187 .sign = 's',
188 .realbits = 16,
189 .storagebits = 16,
190 .endianness = IIO_LE,
192 .info_mask_separate =
193 BIT(IIO_CHAN_INFO_RAW) |
194 BIT(IIO_CHAN_INFO_SCALE),
196 IIO_CHAN_SOFT_TIMESTAMP(2)
199 static const struct iio_chan_spec st_press_lps22hb_channels[] = {
201 .type = IIO_PRESSURE,
202 .address = ST_PRESS_1_OUT_XL_ADDR,
203 .scan_index = 0,
204 .scan_type = {
205 .sign = 's',
206 .realbits = 24,
207 .storagebits = 32,
208 .endianness = IIO_LE,
210 .info_mask_separate =
211 BIT(IIO_CHAN_INFO_RAW) |
212 BIT(IIO_CHAN_INFO_SCALE),
213 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
216 .type = IIO_TEMP,
217 .address = ST_TEMP_1_OUT_L_ADDR,
218 .scan_index = 1,
219 .scan_type = {
220 .sign = 's',
221 .realbits = 16,
222 .storagebits = 16,
223 .endianness = IIO_LE,
225 .info_mask_separate =
226 BIT(IIO_CHAN_INFO_RAW) |
227 BIT(IIO_CHAN_INFO_SCALE),
228 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
230 IIO_CHAN_SOFT_TIMESTAMP(2)
233 static const struct st_sensor_settings st_press_sensors_settings[] = {
236 * CUSTOM VALUES FOR LPS331AP SENSOR
237 * See LPS331AP datasheet:
238 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf
240 .wai = 0xbb,
241 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
242 .sensors_supported = {
243 [0] = LPS331AP_PRESS_DEV_NAME,
245 .ch = (struct iio_chan_spec *)st_press_1_channels,
246 .num_ch = ARRAY_SIZE(st_press_1_channels),
247 .odr = {
248 .addr = 0x20,
249 .mask = 0x70,
250 .odr_avl = {
251 { .hz = 1, .value = 0x01 },
252 { .hz = 7, .value = 0x05 },
253 { .hz = 13, .value = 0x06 },
254 { .hz = 25, .value = 0x07 },
257 .pw = {
258 .addr = 0x20,
259 .mask = 0x80,
260 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
261 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
263 .fs = {
264 .addr = 0x23,
265 .mask = 0x30,
266 .fs_avl = {
268 * Pressure and temperature sensitivity values
269 * as defined in table 3 of LPS331AP datasheet.
271 [0] = {
272 .num = ST_PRESS_FS_AVL_1260MB,
273 .gain = ST_PRESS_KPASCAL_NANO_SCALE,
274 .gain2 = ST_PRESS_LSB_PER_CELSIUS,
278 .bdu = {
279 .addr = 0x20,
280 .mask = 0x04,
282 .drdy_irq = {
283 .int1 = {
284 .addr = 0x22,
285 .mask = 0x04,
286 .addr_od = 0x22,
287 .mask_od = 0x40,
289 .int2 = {
290 .addr = 0x22,
291 .mask = 0x20,
292 .addr_od = 0x22,
293 .mask_od = 0x40,
295 .addr_ihl = 0x22,
296 .mask_ihl = 0x80,
297 .stat_drdy = {
298 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
299 .mask = 0x03,
302 .sim = {
303 .addr = 0x20,
304 .value = BIT(0),
306 .multi_read_bit = true,
307 .bootime = 2,
311 * CUSTOM VALUES FOR LPS001WP SENSOR
313 .wai = 0xba,
314 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
315 .sensors_supported = {
316 [0] = LPS001WP_PRESS_DEV_NAME,
318 .ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
319 .num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
320 .odr = {
321 .addr = 0x20,
322 .mask = 0x30,
323 .odr_avl = {
324 { .hz = 1, .value = 0x01 },
325 { .hz = 7, .value = 0x02 },
326 { .hz = 13, .value = 0x03 },
329 .pw = {
330 .addr = 0x20,
331 .mask = 0x40,
332 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
333 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
335 .fs = {
336 .fs_avl = {
338 * Pressure and temperature resolution values
339 * as defined in table 3 of LPS001WP datasheet.
341 [0] = {
342 .num = ST_PRESS_FS_AVL_1100MB,
343 .gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
344 .gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
348 .bdu = {
349 .addr = 0x20,
350 .mask = 0x04,
352 .sim = {
353 .addr = 0x20,
354 .value = BIT(0),
356 .multi_read_bit = true,
357 .bootime = 2,
361 * CUSTOM VALUES FOR LPS25H SENSOR
362 * See LPS25H datasheet:
363 * http://www2.st.com/resource/en/datasheet/lps25h.pdf
365 .wai = 0xbd,
366 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
367 .sensors_supported = {
368 [0] = LPS25H_PRESS_DEV_NAME,
370 .ch = (struct iio_chan_spec *)st_press_1_channels,
371 .num_ch = ARRAY_SIZE(st_press_1_channels),
372 .odr = {
373 .addr = 0x20,
374 .mask = 0x70,
375 .odr_avl = {
376 { .hz = 1, .value = 0x01 },
377 { .hz = 7, .value = 0x02 },
378 { .hz = 13, .value = 0x03 },
379 { .hz = 25, .value = 0x04 },
382 .pw = {
383 .addr = 0x20,
384 .mask = 0x80,
385 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
386 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
388 .fs = {
389 .fs_avl = {
391 * Pressure and temperature sensitivity values
392 * as defined in table 3 of LPS25H datasheet.
394 [0] = {
395 .num = ST_PRESS_FS_AVL_1260MB,
396 .gain = ST_PRESS_KPASCAL_NANO_SCALE,
397 .gain2 = ST_PRESS_LSB_PER_CELSIUS,
401 .bdu = {
402 .addr = 0x20,
403 .mask = 0x04,
405 .drdy_irq = {
406 .int1 = {
407 .addr = 0x23,
408 .mask = 0x01,
409 .addr_od = 0x22,
410 .mask_od = 0x40,
412 .addr_ihl = 0x22,
413 .mask_ihl = 0x80,
414 .stat_drdy = {
415 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
416 .mask = 0x03,
419 .sim = {
420 .addr = 0x20,
421 .value = BIT(0),
423 .multi_read_bit = true,
424 .bootime = 2,
428 * CUSTOM VALUES FOR LPS22HB SENSOR
429 * See LPS22HB datasheet:
430 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf
432 .wai = 0xb1,
433 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
434 .sensors_supported = {
435 [0] = LPS22HB_PRESS_DEV_NAME,
436 [1] = LPS33HW_PRESS_DEV_NAME,
437 [2] = LPS35HW_PRESS_DEV_NAME,
439 .ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
440 .num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
441 .odr = {
442 .addr = 0x10,
443 .mask = 0x70,
444 .odr_avl = {
445 { .hz = 1, .value = 0x01 },
446 { .hz = 10, .value = 0x02 },
447 { .hz = 25, .value = 0x03 },
448 { .hz = 50, .value = 0x04 },
449 { .hz = 75, .value = 0x05 },
452 .pw = {
453 .addr = 0x10,
454 .mask = 0x70,
455 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
457 .fs = {
458 .fs_avl = {
460 * Pressure and temperature sensitivity values
461 * as defined in table 3 of LPS22HB datasheet.
463 [0] = {
464 .num = ST_PRESS_FS_AVL_1260MB,
465 .gain = ST_PRESS_KPASCAL_NANO_SCALE,
466 .gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
470 .bdu = {
471 .addr = 0x10,
472 .mask = 0x02,
474 .drdy_irq = {
475 .int1 = {
476 .addr = 0x12,
477 .mask = 0x04,
478 .addr_od = 0x12,
479 .mask_od = 0x40,
481 .addr_ihl = 0x12,
482 .mask_ihl = 0x80,
483 .stat_drdy = {
484 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
485 .mask = 0x03,
488 .sim = {
489 .addr = 0x10,
490 .value = BIT(0),
492 .multi_read_bit = false,
493 .bootime = 2,
497 static int st_press_write_raw(struct iio_dev *indio_dev,
498 struct iio_chan_spec const *ch,
499 int val,
500 int val2,
501 long mask)
503 int err;
505 switch (mask) {
506 case IIO_CHAN_INFO_SAMP_FREQ:
507 if (val2)
508 return -EINVAL;
509 mutex_lock(&indio_dev->mlock);
510 err = st_sensors_set_odr(indio_dev, val);
511 mutex_unlock(&indio_dev->mlock);
512 return err;
513 default:
514 return -EINVAL;
518 static int st_press_read_raw(struct iio_dev *indio_dev,
519 struct iio_chan_spec const *ch, int *val,
520 int *val2, long mask)
522 int err;
523 struct st_sensor_data *press_data = iio_priv(indio_dev);
525 switch (mask) {
526 case IIO_CHAN_INFO_RAW:
527 err = st_sensors_read_info_raw(indio_dev, ch, val);
528 if (err < 0)
529 goto read_error;
531 return IIO_VAL_INT;
532 case IIO_CHAN_INFO_SCALE:
533 switch (ch->type) {
534 case IIO_PRESSURE:
535 *val = 0;
536 *val2 = press_data->current_fullscale->gain;
537 return IIO_VAL_INT_PLUS_NANO;
538 case IIO_TEMP:
539 *val = MCELSIUS_PER_CELSIUS;
540 *val2 = press_data->current_fullscale->gain2;
541 return IIO_VAL_FRACTIONAL;
542 default:
543 err = -EINVAL;
544 goto read_error;
547 case IIO_CHAN_INFO_OFFSET:
548 switch (ch->type) {
549 case IIO_TEMP:
550 *val = ST_PRESS_MILLI_CELSIUS_OFFSET *
551 press_data->current_fullscale->gain2;
552 *val2 = MCELSIUS_PER_CELSIUS;
553 break;
554 default:
555 err = -EINVAL;
556 goto read_error;
559 return IIO_VAL_FRACTIONAL;
560 case IIO_CHAN_INFO_SAMP_FREQ:
561 *val = press_data->odr;
562 return IIO_VAL_INT;
563 default:
564 return -EINVAL;
567 read_error:
568 return err;
571 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
573 static struct attribute *st_press_attributes[] = {
574 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
575 NULL,
578 static const struct attribute_group st_press_attribute_group = {
579 .attrs = st_press_attributes,
582 static const struct iio_info press_info = {
583 .attrs = &st_press_attribute_group,
584 .read_raw = &st_press_read_raw,
585 .write_raw = &st_press_write_raw,
586 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
589 #ifdef CONFIG_IIO_TRIGGER
590 static const struct iio_trigger_ops st_press_trigger_ops = {
591 .set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
592 .validate_device = st_sensors_validate_device,
594 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
595 #else
596 #define ST_PRESS_TRIGGER_OPS NULL
597 #endif
599 int st_press_common_probe(struct iio_dev *indio_dev)
601 struct st_sensor_data *press_data = iio_priv(indio_dev);
602 struct st_sensors_platform_data *pdata =
603 (struct st_sensors_platform_data *)press_data->dev->platform_data;
604 int irq = press_data->get_irq_data_ready(indio_dev);
605 int err;
607 indio_dev->modes = INDIO_DIRECT_MODE;
608 indio_dev->info = &press_info;
609 mutex_init(&press_data->tb.buf_lock);
611 err = st_sensors_power_enable(indio_dev);
612 if (err)
613 return err;
615 err = st_sensors_check_device_support(indio_dev,
616 ARRAY_SIZE(st_press_sensors_settings),
617 st_press_sensors_settings);
618 if (err < 0)
619 goto st_press_power_off;
622 * Skip timestamping channel while declaring available channels to
623 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
624 * see how timestamps are explicitly pushed as last samples block
625 * element.
627 press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
628 press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
629 indio_dev->channels = press_data->sensor_settings->ch;
630 indio_dev->num_channels = press_data->sensor_settings->num_ch;
632 press_data->current_fullscale =
633 (struct st_sensor_fullscale_avl *)
634 &press_data->sensor_settings->fs.fs_avl[0];
636 press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
638 /* Some devices don't support a data ready pin. */
639 if (!pdata && (press_data->sensor_settings->drdy_irq.int1.addr ||
640 press_data->sensor_settings->drdy_irq.int2.addr))
641 pdata = (struct st_sensors_platform_data *)&default_press_pdata;
643 err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
644 if (err < 0)
645 goto st_press_power_off;
647 err = st_press_allocate_ring(indio_dev);
648 if (err < 0)
649 goto st_press_power_off;
651 if (irq > 0) {
652 err = st_sensors_allocate_trigger(indio_dev,
653 ST_PRESS_TRIGGER_OPS);
654 if (err < 0)
655 goto st_press_probe_trigger_error;
658 err = iio_device_register(indio_dev);
659 if (err)
660 goto st_press_device_register_error;
662 dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
663 indio_dev->name);
665 return err;
667 st_press_device_register_error:
668 if (irq > 0)
669 st_sensors_deallocate_trigger(indio_dev);
670 st_press_probe_trigger_error:
671 st_press_deallocate_ring(indio_dev);
672 st_press_power_off:
673 st_sensors_power_disable(indio_dev);
675 return err;
677 EXPORT_SYMBOL(st_press_common_probe);
679 void st_press_common_remove(struct iio_dev *indio_dev)
681 struct st_sensor_data *press_data = iio_priv(indio_dev);
683 st_sensors_power_disable(indio_dev);
685 iio_device_unregister(indio_dev);
686 if (press_data->get_irq_data_ready(indio_dev) > 0)
687 st_sensors_deallocate_trigger(indio_dev);
689 st_press_deallocate_ring(indio_dev);
691 EXPORT_SYMBOL(st_press_common_remove);
693 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
694 MODULE_DESCRIPTION("STMicroelectronics pressures driver");
695 MODULE_LICENSE("GPL v2");