xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / input / keyboard / lm8323.c
blob04a5d7e134d72490bb8511754930f612db1978a1
1 /*
2 * drivers/i2c/chips/lm8323.c
4 * Copyright (C) 2007-2009 Nokia Corporation
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/input.h>
32 #include <linux/leds.h>
33 #include <linux/platform_data/lm8323.h>
34 #include <linux/pm.h>
35 #include <linux/slab.h>
37 /* Commands to send to the chip. */
38 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
39 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
40 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
41 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
42 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
43 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
44 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
45 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
46 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
47 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
48 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
49 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
50 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
51 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
52 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
53 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
54 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
55 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
56 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
57 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
58 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
59 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
61 /* Interrupt status. */
62 #define INT_KEYPAD 0x01 /* Key event. */
63 #define INT_ROTATOR 0x02 /* Rotator event. */
64 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
65 #define INT_NOINIT 0x10 /* Lost configuration. */
66 #define INT_PWM1 0x20 /* PWM1 stopped. */
67 #define INT_PWM2 0x40 /* PWM2 stopped. */
68 #define INT_PWM3 0x80 /* PWM3 stopped. */
70 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
71 #define ERR_BADPAR 0x01 /* Bad parameter. */
72 #define ERR_CMDUNK 0x02 /* Unknown command. */
73 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
74 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
76 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
77 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
78 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
79 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
80 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
81 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
82 #define CFG_ROTEN 0x40 /* Enable rotator. */
84 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
85 #define CLK_RCPWM_INTERNAL 0x00
86 #define CLK_RCPWM_EXTERNAL 0x03
87 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
88 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
90 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
91 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
92 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
93 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
94 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
96 /* Key event fifo length */
97 #define LM8323_FIFO_LEN 15
99 /* Commands for PWM engine; feed in with PWM_WRITE. */
100 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
101 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
102 /* Go to start of script. */
103 #define PWM_GOTOSTART 0x0000
105 * Stop engine (generates interrupt). If reset is 1, clear the program
106 * counter, else leave it.
108 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
110 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
111 * Take t clock scales (up to 63) per step, for n steps (up to 126).
112 * If u is set, ramp up, else ramp down.
114 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
115 ((n) & 0x7f) | ((u) ? 0 : 0x80))
117 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
118 * If cnt is zero, execute until PWM_END is encountered.
120 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
121 ((pos) & 0x3f))
123 * Wait for trigger. Argument is a mask of channels, shifted by the channel
124 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
125 * from 1, not 0.
127 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
128 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
129 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
131 struct lm8323_pwm {
132 int id;
133 int fade_time;
134 int brightness;
135 int desired_brightness;
136 bool enabled;
137 bool running;
138 /* pwm lock */
139 struct mutex lock;
140 struct work_struct work;
141 struct led_classdev cdev;
142 struct lm8323_chip *chip;
145 struct lm8323_chip {
146 /* device lock */
147 struct mutex lock;
148 struct i2c_client *client;
149 struct input_dev *idev;
150 bool kp_enabled;
151 bool pm_suspend;
152 unsigned keys_down;
153 char phys[32];
154 unsigned short keymap[LM8323_KEYMAP_SIZE];
155 int size_x;
156 int size_y;
157 int debounce_time;
158 int active_time;
159 struct lm8323_pwm pwm[LM8323_NUM_PWMS];
162 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
163 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
164 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
165 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
167 #define LM8323_MAX_DATA 8
170 * To write, we just access the chip's address in write mode, and dump the
171 * command and data out on the bus. The command byte and data are taken as
172 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
174 static int lm8323_write(struct lm8323_chip *lm, int len, ...)
176 int ret, i;
177 va_list ap;
178 u8 data[LM8323_MAX_DATA];
180 va_start(ap, len);
182 if (unlikely(len > LM8323_MAX_DATA)) {
183 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
184 va_end(ap);
185 return 0;
188 for (i = 0; i < len; i++)
189 data[i] = va_arg(ap, int);
191 va_end(ap);
194 * If the host is asleep while we send the data, we can get a NACK
195 * back while it wakes up, so try again, once.
197 ret = i2c_master_send(lm->client, data, len);
198 if (unlikely(ret == -EREMOTEIO))
199 ret = i2c_master_send(lm->client, data, len);
200 if (unlikely(ret != len))
201 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
202 len, ret);
204 return ret;
208 * To read, we first send the command byte to the chip and end the transaction,
209 * then access the chip in read mode, at which point it will send the data.
211 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
213 int ret;
216 * If the host is asleep while we send the byte, we can get a NACK
217 * back while it wakes up, so try again, once.
219 ret = i2c_master_send(lm->client, &cmd, 1);
220 if (unlikely(ret == -EREMOTEIO))
221 ret = i2c_master_send(lm->client, &cmd, 1);
222 if (unlikely(ret != 1)) {
223 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
224 cmd);
225 return 0;
228 ret = i2c_master_recv(lm->client, buf, len);
229 if (unlikely(ret != len))
230 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
231 len, ret);
233 return ret;
237 * Set the chip active time (idle time before it enters halt).
239 static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
241 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
245 * The signals are AT-style: the low 7 bits are the keycode, and the top
246 * bit indicates the state (1 for down, 0 for up).
248 static inline u8 lm8323_whichkey(u8 event)
250 return event & 0x7f;
253 static inline int lm8323_ispress(u8 event)
255 return (event & 0x80) ? 1 : 0;
258 static void process_keys(struct lm8323_chip *lm)
260 u8 event;
261 u8 key_fifo[LM8323_FIFO_LEN + 1];
262 int old_keys_down = lm->keys_down;
263 int ret;
264 int i = 0;
267 * Read all key events from the FIFO at once. Next READ_FIFO clears the
268 * FIFO even if we didn't read all events previously.
270 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
272 if (ret < 0) {
273 dev_err(&lm->client->dev, "Failed reading fifo \n");
274 return;
276 key_fifo[ret] = 0;
278 while ((event = key_fifo[i++])) {
279 u8 key = lm8323_whichkey(event);
280 int isdown = lm8323_ispress(event);
281 unsigned short keycode = lm->keymap[key];
283 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
284 key, isdown ? "down" : "up");
286 if (lm->kp_enabled) {
287 input_event(lm->idev, EV_MSC, MSC_SCAN, key);
288 input_report_key(lm->idev, keycode, isdown);
289 input_sync(lm->idev);
292 if (isdown)
293 lm->keys_down++;
294 else
295 lm->keys_down--;
299 * Errata: We need to ensure that the chip never enters halt mode
300 * during a keypress, so set active time to 0. When it's released,
301 * we can enter halt again, so set the active time back to normal.
303 if (!old_keys_down && lm->keys_down)
304 lm8323_set_active_time(lm, 0);
305 if (old_keys_down && !lm->keys_down)
306 lm8323_set_active_time(lm, lm->active_time);
309 static void lm8323_process_error(struct lm8323_chip *lm)
311 u8 error;
313 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
314 if (error & ERR_FIFOOVER)
315 dev_vdbg(&lm->client->dev, "fifo overflow!\n");
316 if (error & ERR_KEYOVR)
317 dev_vdbg(&lm->client->dev,
318 "more than two keys pressed\n");
319 if (error & ERR_CMDUNK)
320 dev_vdbg(&lm->client->dev,
321 "unknown command submitted\n");
322 if (error & ERR_BADPAR)
323 dev_vdbg(&lm->client->dev, "bad command parameter\n");
327 static void lm8323_reset(struct lm8323_chip *lm)
329 /* The docs say we must pass 0xAA as the data byte. */
330 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
333 static int lm8323_configure(struct lm8323_chip *lm)
335 int keysize = (lm->size_x << 4) | lm->size_y;
336 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
337 int debounce = lm->debounce_time >> 2;
338 int active = lm->active_time >> 2;
341 * Active time must be greater than the debounce time: if it's
342 * a close-run thing, give ourselves a 12ms buffer.
344 if (debounce >= active)
345 active = debounce + 3;
347 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
348 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
349 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
350 lm8323_set_active_time(lm, lm->active_time);
351 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
352 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
353 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
356 * Not much we can do about errors at this point, so just hope
357 * for the best.
360 return 0;
363 static void pwm_done(struct lm8323_pwm *pwm)
365 mutex_lock(&pwm->lock);
366 pwm->running = false;
367 if (pwm->desired_brightness != pwm->brightness)
368 schedule_work(&pwm->work);
369 mutex_unlock(&pwm->lock);
373 * Bottom half: handle the interrupt by posting key events, or dealing with
374 * errors appropriately.
376 static irqreturn_t lm8323_irq(int irq, void *_lm)
378 struct lm8323_chip *lm = _lm;
379 u8 ints;
380 int i;
382 mutex_lock(&lm->lock);
384 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
385 if (likely(ints & INT_KEYPAD))
386 process_keys(lm);
387 if (ints & INT_ROTATOR) {
388 /* We don't currently support the rotator. */
389 dev_vdbg(&lm->client->dev, "rotator fired\n");
391 if (ints & INT_ERROR) {
392 dev_vdbg(&lm->client->dev, "error!\n");
393 lm8323_process_error(lm);
395 if (ints & INT_NOINIT) {
396 dev_err(&lm->client->dev, "chip lost config; "
397 "reinitialising\n");
398 lm8323_configure(lm);
400 for (i = 0; i < LM8323_NUM_PWMS; i++) {
401 if (ints & (INT_PWM1 << i)) {
402 dev_vdbg(&lm->client->dev,
403 "pwm%d engine completed\n", i);
404 pwm_done(&lm->pwm[i]);
409 mutex_unlock(&lm->lock);
411 return IRQ_HANDLED;
415 * Read the chip ID.
417 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
419 int bytes;
421 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
422 if (unlikely(bytes != 2))
423 return -EIO;
425 return 0;
428 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
430 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
431 (cmd & 0xff00) >> 8, cmd & 0x00ff);
435 * Write a script into a given PWM engine, concluding with PWM_END.
436 * If 'kill' is nonzero, the engine will be shut down at the end
437 * of the script, producing a zero output. Otherwise the engine
438 * will be kept running at the final PWM level indefinitely.
440 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
441 int len, const u16 *cmds)
443 int i;
445 for (i = 0; i < len; i++)
446 lm8323_write_pwm_one(pwm, i, cmds[i]);
448 lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
449 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
450 pwm->running = true;
453 static void lm8323_pwm_work(struct work_struct *work)
455 struct lm8323_pwm *pwm = work_to_pwm(work);
456 int div512, perstep, steps, hz, up, kill;
457 u16 pwm_cmds[3];
458 int num_cmds = 0;
460 mutex_lock(&pwm->lock);
463 * Do nothing if we're already at the requested level,
464 * or previous setting is not yet complete. In the latter
465 * case we will be called again when the previous PWM script
466 * finishes.
468 if (pwm->running || pwm->desired_brightness == pwm->brightness)
469 goto out;
471 kill = (pwm->desired_brightness == 0);
472 up = (pwm->desired_brightness > pwm->brightness);
473 steps = abs(pwm->desired_brightness - pwm->brightness);
476 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
477 * 32768Hz), and number of ticks per step.
479 if ((pwm->fade_time / steps) > (32768 / 512)) {
480 div512 = 1;
481 hz = 32768 / 512;
482 } else {
483 div512 = 0;
484 hz = 32768 / 16;
487 perstep = (hz * pwm->fade_time) / (steps * 1000);
489 if (perstep == 0)
490 perstep = 1;
491 else if (perstep > 63)
492 perstep = 63;
494 while (steps) {
495 int s;
497 s = min(126, steps);
498 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
499 steps -= s;
502 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
503 pwm->brightness = pwm->desired_brightness;
505 out:
506 mutex_unlock(&pwm->lock);
509 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
510 enum led_brightness brightness)
512 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
513 struct lm8323_chip *lm = pwm->chip;
515 mutex_lock(&pwm->lock);
516 pwm->desired_brightness = brightness;
517 mutex_unlock(&pwm->lock);
519 if (in_interrupt()) {
520 schedule_work(&pwm->work);
521 } else {
523 * Schedule PWM work as usual unless we are going into suspend
525 mutex_lock(&lm->lock);
526 if (likely(!lm->pm_suspend))
527 schedule_work(&pwm->work);
528 else
529 lm8323_pwm_work(&pwm->work);
530 mutex_unlock(&lm->lock);
534 static ssize_t lm8323_pwm_show_time(struct device *dev,
535 struct device_attribute *attr, char *buf)
537 struct led_classdev *led_cdev = dev_get_drvdata(dev);
538 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
540 return sprintf(buf, "%d\n", pwm->fade_time);
543 static ssize_t lm8323_pwm_store_time(struct device *dev,
544 struct device_attribute *attr, const char *buf, size_t len)
546 struct led_classdev *led_cdev = dev_get_drvdata(dev);
547 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
548 int ret, time;
550 ret = kstrtoint(buf, 10, &time);
551 /* Numbers only, please. */
552 if (ret)
553 return ret;
555 pwm->fade_time = time;
557 return strlen(buf);
559 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
561 static struct attribute *lm8323_pwm_attrs[] = {
562 &dev_attr_time.attr,
563 NULL
565 ATTRIBUTE_GROUPS(lm8323_pwm);
567 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
568 const char *name)
570 struct lm8323_pwm *pwm;
572 BUG_ON(id > 3);
574 pwm = &lm->pwm[id - 1];
576 pwm->id = id;
577 pwm->fade_time = 0;
578 pwm->brightness = 0;
579 pwm->desired_brightness = 0;
580 pwm->running = false;
581 pwm->enabled = false;
582 INIT_WORK(&pwm->work, lm8323_pwm_work);
583 mutex_init(&pwm->lock);
584 pwm->chip = lm;
586 if (name) {
587 pwm->cdev.name = name;
588 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
589 pwm->cdev.groups = lm8323_pwm_groups;
590 if (led_classdev_register(dev, &pwm->cdev) < 0) {
591 dev_err(dev, "couldn't register PWM %d\n", id);
592 return -1;
594 pwm->enabled = true;
597 return 0;
600 static struct i2c_driver lm8323_i2c_driver;
602 static ssize_t lm8323_show_disable(struct device *dev,
603 struct device_attribute *attr, char *buf)
605 struct lm8323_chip *lm = dev_get_drvdata(dev);
607 return sprintf(buf, "%u\n", !lm->kp_enabled);
610 static ssize_t lm8323_set_disable(struct device *dev,
611 struct device_attribute *attr,
612 const char *buf, size_t count)
614 struct lm8323_chip *lm = dev_get_drvdata(dev);
615 int ret;
616 unsigned int i;
618 ret = kstrtouint(buf, 10, &i);
619 if (ret)
620 return ret;
622 mutex_lock(&lm->lock);
623 lm->kp_enabled = !i;
624 mutex_unlock(&lm->lock);
626 return count;
628 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
630 static int lm8323_probe(struct i2c_client *client,
631 const struct i2c_device_id *id)
633 struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
634 struct input_dev *idev;
635 struct lm8323_chip *lm;
636 int pwm;
637 int i, err;
638 unsigned long tmo;
639 u8 data[2];
641 if (!pdata || !pdata->size_x || !pdata->size_y) {
642 dev_err(&client->dev, "missing platform_data\n");
643 return -EINVAL;
646 if (pdata->size_x > 8) {
647 dev_err(&client->dev, "invalid x size %d specified\n",
648 pdata->size_x);
649 return -EINVAL;
652 if (pdata->size_y > 12) {
653 dev_err(&client->dev, "invalid y size %d specified\n",
654 pdata->size_y);
655 return -EINVAL;
658 lm = kzalloc(sizeof *lm, GFP_KERNEL);
659 idev = input_allocate_device();
660 if (!lm || !idev) {
661 err = -ENOMEM;
662 goto fail1;
665 lm->client = client;
666 lm->idev = idev;
667 mutex_init(&lm->lock);
669 lm->size_x = pdata->size_x;
670 lm->size_y = pdata->size_y;
671 dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
672 lm->size_x, lm->size_y);
674 lm->debounce_time = pdata->debounce_time;
675 lm->active_time = pdata->active_time;
677 lm8323_reset(lm);
679 /* Nothing's set up to service the IRQ yet, so just spin for max.
680 * 100ms until we can configure. */
681 tmo = jiffies + msecs_to_jiffies(100);
682 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
683 if (data[0] & INT_NOINIT)
684 break;
686 if (time_after(jiffies, tmo)) {
687 dev_err(&client->dev,
688 "timeout waiting for initialisation\n");
689 break;
692 msleep(1);
695 lm8323_configure(lm);
697 /* If a true probe check the device */
698 if (lm8323_read_id(lm, data) != 0) {
699 dev_err(&client->dev, "device not found\n");
700 err = -ENODEV;
701 goto fail1;
704 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
705 err = init_pwm(lm, pwm + 1, &client->dev,
706 pdata->pwm_names[pwm]);
707 if (err < 0)
708 goto fail2;
711 lm->kp_enabled = true;
712 err = device_create_file(&client->dev, &dev_attr_disable_kp);
713 if (err < 0)
714 goto fail2;
716 idev->name = pdata->name ? : "LM8323 keypad";
717 snprintf(lm->phys, sizeof(lm->phys),
718 "%s/input-kp", dev_name(&client->dev));
719 idev->phys = lm->phys;
721 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
722 __set_bit(MSC_SCAN, idev->mscbit);
723 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
724 __set_bit(pdata->keymap[i], idev->keybit);
725 lm->keymap[i] = pdata->keymap[i];
727 __clear_bit(KEY_RESERVED, idev->keybit);
729 if (pdata->repeat)
730 __set_bit(EV_REP, idev->evbit);
732 err = input_register_device(idev);
733 if (err) {
734 dev_dbg(&client->dev, "error registering input device\n");
735 goto fail3;
738 err = request_threaded_irq(client->irq, NULL, lm8323_irq,
739 IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
740 if (err) {
741 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
742 goto fail4;
745 i2c_set_clientdata(client, lm);
747 device_init_wakeup(&client->dev, 1);
748 enable_irq_wake(client->irq);
750 return 0;
752 fail4:
753 input_unregister_device(idev);
754 idev = NULL;
755 fail3:
756 device_remove_file(&client->dev, &dev_attr_disable_kp);
757 fail2:
758 while (--pwm >= 0)
759 if (lm->pwm[pwm].enabled)
760 led_classdev_unregister(&lm->pwm[pwm].cdev);
761 fail1:
762 input_free_device(idev);
763 kfree(lm);
764 return err;
767 static int lm8323_remove(struct i2c_client *client)
769 struct lm8323_chip *lm = i2c_get_clientdata(client);
770 int i;
772 disable_irq_wake(client->irq);
773 free_irq(client->irq, lm);
775 input_unregister_device(lm->idev);
777 device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
779 for (i = 0; i < 3; i++)
780 if (lm->pwm[i].enabled)
781 led_classdev_unregister(&lm->pwm[i].cdev);
783 kfree(lm);
785 return 0;
788 #ifdef CONFIG_PM_SLEEP
790 * We don't need to explicitly suspend the chip, as it already switches off
791 * when there's no activity.
793 static int lm8323_suspend(struct device *dev)
795 struct i2c_client *client = to_i2c_client(dev);
796 struct lm8323_chip *lm = i2c_get_clientdata(client);
797 int i;
799 irq_set_irq_wake(client->irq, 0);
800 disable_irq(client->irq);
802 mutex_lock(&lm->lock);
803 lm->pm_suspend = true;
804 mutex_unlock(&lm->lock);
806 for (i = 0; i < 3; i++)
807 if (lm->pwm[i].enabled)
808 led_classdev_suspend(&lm->pwm[i].cdev);
810 return 0;
813 static int lm8323_resume(struct device *dev)
815 struct i2c_client *client = to_i2c_client(dev);
816 struct lm8323_chip *lm = i2c_get_clientdata(client);
817 int i;
819 mutex_lock(&lm->lock);
820 lm->pm_suspend = false;
821 mutex_unlock(&lm->lock);
823 for (i = 0; i < 3; i++)
824 if (lm->pwm[i].enabled)
825 led_classdev_resume(&lm->pwm[i].cdev);
827 enable_irq(client->irq);
828 irq_set_irq_wake(client->irq, 1);
830 return 0;
832 #endif
834 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
836 static const struct i2c_device_id lm8323_id[] = {
837 { "lm8323", 0 },
841 static struct i2c_driver lm8323_i2c_driver = {
842 .driver = {
843 .name = "lm8323",
844 .pm = &lm8323_pm_ops,
846 .probe = lm8323_probe,
847 .remove = lm8323_remove,
848 .id_table = lm8323_id,
850 MODULE_DEVICE_TABLE(i2c, lm8323_id);
852 module_i2c_driver(lm8323_i2c_driver);
854 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
855 MODULE_AUTHOR("Daniel Stone");
856 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
857 MODULE_DESCRIPTION("LM8323 keypad driver");
858 MODULE_LICENSE("GPL");