2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
57 #define AMD_IOMMU_MAPPING_ERROR 0
59 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
61 #define LOOP_TIMEOUT 100000
63 /* IO virtual address start page frame number */
64 #define IOVA_START_PFN (1)
65 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
67 /* Reserved IOVA ranges */
68 #define MSI_RANGE_START (0xfee00000)
69 #define MSI_RANGE_END (0xfeefffff)
70 #define HT_RANGE_START (0xfd00000000ULL)
71 #define HT_RANGE_END (0xffffffffffULL)
74 * This bitmap is used to advertise the page sizes our hardware support
75 * to the IOMMU core, which will then use this information to split
76 * physically contiguous memory regions it is mapping into page sizes
79 * 512GB Pages are not supported due to a hardware bug
81 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
83 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
85 /* List of all available dev_data structures */
86 static LIST_HEAD(dev_data_list
);
87 static DEFINE_SPINLOCK(dev_data_list_lock
);
89 LIST_HEAD(ioapic_map
);
91 LIST_HEAD(acpihid_map
);
94 * Domain for untranslated devices - only allocated
95 * if iommu=pt passed on kernel cmd line.
97 const struct iommu_ops amd_iommu_ops
;
99 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
100 int amd_iommu_max_glx_val
= -1;
102 static const struct dma_map_ops amd_iommu_dma_ops
;
105 * general struct to manage commands send to an IOMMU
111 struct kmem_cache
*amd_iommu_irq_cache
;
113 static void update_domain(struct protection_domain
*domain
);
114 static int protection_domain_init(struct protection_domain
*domain
);
115 static void detach_device(struct device
*dev
);
116 static void iova_domain_flush_tlb(struct iova_domain
*iovad
);
119 * Data container for a dma_ops specific protection domain
121 struct dma_ops_domain
{
122 /* generic protection domain information */
123 struct protection_domain domain
;
126 struct iova_domain iovad
;
129 static struct iova_domain reserved_iova_ranges
;
130 static struct lock_class_key reserved_rbtree_key
;
132 /****************************************************************************
136 ****************************************************************************/
138 static inline int match_hid_uid(struct device
*dev
,
139 struct acpihid_map_entry
*entry
)
141 const char *hid
, *uid
;
143 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
144 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
150 return strcmp(hid
, entry
->hid
);
153 return strcmp(hid
, entry
->hid
);
155 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
158 static inline u16
get_pci_device_id(struct device
*dev
)
160 struct pci_dev
*pdev
= to_pci_dev(dev
);
162 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
165 static inline int get_acpihid_device_id(struct device
*dev
,
166 struct acpihid_map_entry
**entry
)
168 struct acpihid_map_entry
*p
;
170 list_for_each_entry(p
, &acpihid_map
, list
) {
171 if (!match_hid_uid(dev
, p
)) {
180 static inline int get_device_id(struct device
*dev
)
185 devid
= get_pci_device_id(dev
);
187 devid
= get_acpihid_device_id(dev
, NULL
);
192 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
194 return container_of(dom
, struct protection_domain
, domain
);
197 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
199 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
200 return container_of(domain
, struct dma_ops_domain
, domain
);
203 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
205 struct iommu_dev_data
*dev_data
;
208 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
212 dev_data
->devid
= devid
;
214 spin_lock_irqsave(&dev_data_list_lock
, flags
);
215 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
216 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
218 ratelimit_default_init(&dev_data
->rs
);
223 static struct iommu_dev_data
*search_dev_data(u16 devid
)
225 struct iommu_dev_data
*dev_data
;
228 spin_lock_irqsave(&dev_data_list_lock
, flags
);
229 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
230 if (dev_data
->devid
== devid
)
237 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
242 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
244 *(u16
*)data
= alias
;
248 static u16
get_alias(struct device
*dev
)
250 struct pci_dev
*pdev
= to_pci_dev(dev
);
251 u16 devid
, ivrs_alias
, pci_alias
;
253 /* The callers make sure that get_device_id() does not fail here */
254 devid
= get_device_id(dev
);
255 ivrs_alias
= amd_iommu_alias_table
[devid
];
256 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
258 if (ivrs_alias
== pci_alias
)
264 * The IVRS is fairly reliable in telling us about aliases, but it
265 * can't know about every screwy device. If we don't have an IVRS
266 * reported alias, use the PCI reported alias. In that case we may
267 * still need to initialize the rlookup and dev_table entries if the
268 * alias is to a non-existent device.
270 if (ivrs_alias
== devid
) {
271 if (!amd_iommu_rlookup_table
[pci_alias
]) {
272 amd_iommu_rlookup_table
[pci_alias
] =
273 amd_iommu_rlookup_table
[devid
];
274 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
275 amd_iommu_dev_table
[devid
].data
,
276 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
282 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
283 "for device %s[%04x:%04x], kernel reported alias "
284 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
285 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
286 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
287 PCI_FUNC(pci_alias
));
290 * If we don't have a PCI DMA alias and the IVRS alias is on the same
291 * bus, then the IVRS table may know about a quirk that we don't.
293 if (pci_alias
== devid
&&
294 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
295 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
296 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
297 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
304 static struct iommu_dev_data
*find_dev_data(u16 devid
)
306 struct iommu_dev_data
*dev_data
;
307 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
309 dev_data
= search_dev_data(devid
);
311 if (dev_data
== NULL
) {
312 dev_data
= alloc_dev_data(devid
);
314 if (translation_pre_enabled(iommu
))
315 dev_data
->defer_attach
= true;
321 struct iommu_dev_data
*get_dev_data(struct device
*dev
)
323 return dev
->archdata
.iommu
;
325 EXPORT_SYMBOL(get_dev_data
);
328 * Find or create an IOMMU group for a acpihid device.
330 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
332 struct acpihid_map_entry
*p
, *entry
= NULL
;
335 devid
= get_acpihid_device_id(dev
, &entry
);
337 return ERR_PTR(devid
);
339 list_for_each_entry(p
, &acpihid_map
, list
) {
340 if ((devid
== p
->devid
) && p
->group
)
341 entry
->group
= p
->group
;
345 entry
->group
= generic_device_group(dev
);
347 iommu_group_ref_get(entry
->group
);
352 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
354 static const int caps
[] = {
357 PCI_EXT_CAP_ID_PASID
,
361 for (i
= 0; i
< 3; ++i
) {
362 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
370 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
372 struct iommu_dev_data
*dev_data
;
374 dev_data
= get_dev_data(&pdev
->dev
);
376 return dev_data
->errata
& (1 << erratum
) ? true : false;
380 * This function checks if the driver got a valid device from the caller to
381 * avoid dereferencing invalid pointers.
383 static bool check_device(struct device
*dev
)
387 if (!dev
|| !dev
->dma_mask
)
390 devid
= get_device_id(dev
);
394 /* Out of our scope? */
395 if (devid
> amd_iommu_last_bdf
)
398 if (amd_iommu_rlookup_table
[devid
] == NULL
)
404 static void init_iommu_group(struct device
*dev
)
406 struct iommu_group
*group
;
408 group
= iommu_group_get_for_dev(dev
);
412 iommu_group_put(group
);
415 static int iommu_init_device(struct device
*dev
)
417 struct iommu_dev_data
*dev_data
;
418 struct amd_iommu
*iommu
;
421 if (dev
->archdata
.iommu
)
424 devid
= get_device_id(dev
);
428 iommu
= amd_iommu_rlookup_table
[devid
];
430 dev_data
= find_dev_data(devid
);
434 dev_data
->alias
= get_alias(dev
);
436 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
437 struct amd_iommu
*iommu
;
439 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
440 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
443 dev
->archdata
.iommu
= dev_data
;
445 iommu_device_link(&iommu
->iommu
, dev
);
450 static void iommu_ignore_device(struct device
*dev
)
455 devid
= get_device_id(dev
);
459 alias
= get_alias(dev
);
461 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
462 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
464 amd_iommu_rlookup_table
[devid
] = NULL
;
465 amd_iommu_rlookup_table
[alias
] = NULL
;
468 static void iommu_uninit_device(struct device
*dev
)
470 struct iommu_dev_data
*dev_data
;
471 struct amd_iommu
*iommu
;
474 devid
= get_device_id(dev
);
478 iommu
= amd_iommu_rlookup_table
[devid
];
480 dev_data
= search_dev_data(devid
);
484 if (dev_data
->domain
)
487 iommu_device_unlink(&iommu
->iommu
, dev
);
489 iommu_group_remove_device(dev
);
495 * We keep dev_data around for unplugged devices and reuse it when the
496 * device is re-plugged - not doing so would introduce a ton of races.
500 /****************************************************************************
502 * Interrupt handling functions
504 ****************************************************************************/
506 static void dump_dte_entry(u16 devid
)
510 for (i
= 0; i
< 4; ++i
)
511 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
512 amd_iommu_dev_table
[devid
].data
[i
]);
515 static void dump_command(unsigned long phys_addr
)
517 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
520 for (i
= 0; i
< 4; ++i
)
521 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
524 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
525 u64 address
, int flags
)
527 struct iommu_dev_data
*dev_data
= NULL
;
528 struct pci_dev
*pdev
;
530 pdev
= pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid
),
533 dev_data
= get_dev_data(&pdev
->dev
);
535 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
536 dev_err(&pdev
->dev
, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
537 domain_id
, address
, flags
);
538 } else if (printk_ratelimit()) {
539 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
540 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
541 domain_id
, address
, flags
);
548 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
550 int type
, devid
, domid
, flags
;
551 volatile u32
*event
= __evt
;
556 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
557 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
558 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
559 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
560 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
563 /* Did we hit the erratum? */
564 if (++count
== LOOP_TIMEOUT
) {
565 pr_err("AMD-Vi: No event written to event log\n");
572 if (type
== EVENT_TYPE_IO_FAULT
) {
573 amd_iommu_report_page_fault(devid
, domid
, address
, flags
);
576 printk(KERN_ERR
"AMD-Vi: Event logged [");
580 case EVENT_TYPE_ILL_DEV
:
581 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
582 "address=0x%016llx flags=0x%04x]\n",
583 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
585 dump_dte_entry(devid
);
587 case EVENT_TYPE_DEV_TAB_ERR
:
588 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
589 "address=0x%016llx flags=0x%04x]\n",
590 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
593 case EVENT_TYPE_PAGE_TAB_ERR
:
594 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
595 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
596 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
597 domid
, address
, flags
);
599 case EVENT_TYPE_ILL_CMD
:
600 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
601 dump_command(address
);
603 case EVENT_TYPE_CMD_HARD_ERR
:
604 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
605 "flags=0x%04x]\n", address
, flags
);
607 case EVENT_TYPE_IOTLB_INV_TO
:
608 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
609 "address=0x%016llx]\n",
610 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
613 case EVENT_TYPE_INV_DEV_REQ
:
614 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
615 "address=0x%016llx flags=0x%04x]\n",
616 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
620 printk(KERN_ERR
"UNKNOWN type=0x%02x event[0]=0x%08x "
621 "event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
622 type
, event
[0], event
[1], event
[2], event
[3]);
625 memset(__evt
, 0, 4 * sizeof(u32
));
628 static void iommu_poll_events(struct amd_iommu
*iommu
)
632 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
633 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
635 while (head
!= tail
) {
636 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
637 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
640 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
643 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
645 struct amd_iommu_fault fault
;
647 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
648 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
652 fault
.address
= raw
[1];
653 fault
.pasid
= PPR_PASID(raw
[0]);
654 fault
.device_id
= PPR_DEVID(raw
[0]);
655 fault
.tag
= PPR_TAG(raw
[0]);
656 fault
.flags
= PPR_FLAGS(raw
[0]);
658 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
661 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
665 if (iommu
->ppr_log
== NULL
)
668 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
669 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
671 while (head
!= tail
) {
676 raw
= (u64
*)(iommu
->ppr_log
+ head
);
679 * Hardware bug: Interrupt may arrive before the entry is
680 * written to memory. If this happens we need to wait for the
683 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
684 if (PPR_REQ_TYPE(raw
[0]) != 0)
689 /* Avoid memcpy function-call overhead */
694 * To detect the hardware bug we need to clear the entry
697 raw
[0] = raw
[1] = 0UL;
699 /* Update head pointer of hardware ring-buffer */
700 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
701 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
703 /* Handle PPR entry */
704 iommu_handle_ppr_entry(iommu
, entry
);
706 /* Refresh ring-buffer information */
707 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
708 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
712 #ifdef CONFIG_IRQ_REMAP
713 static int (*iommu_ga_log_notifier
)(u32
);
715 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
717 iommu_ga_log_notifier
= notifier
;
721 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
723 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
725 u32 head
, tail
, cnt
= 0;
727 if (iommu
->ga_log
== NULL
)
730 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
731 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
733 while (head
!= tail
) {
737 raw
= (u64
*)(iommu
->ga_log
+ head
);
740 /* Avoid memcpy function-call overhead */
743 /* Update head pointer of hardware ring-buffer */
744 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
745 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
747 /* Handle GA entry */
748 switch (GA_REQ_TYPE(log_entry
)) {
750 if (!iommu_ga_log_notifier
)
753 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
754 __func__
, GA_DEVID(log_entry
),
757 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
758 pr_err("AMD-Vi: GA log notifier failed.\n");
765 #endif /* CONFIG_IRQ_REMAP */
767 #define AMD_IOMMU_INT_MASK \
768 (MMIO_STATUS_EVT_INT_MASK | \
769 MMIO_STATUS_PPR_INT_MASK | \
770 MMIO_STATUS_GALOG_INT_MASK)
772 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
774 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
775 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
777 while (status
& AMD_IOMMU_INT_MASK
) {
778 /* Enable EVT and PPR and GA interrupts again */
779 writel(AMD_IOMMU_INT_MASK
,
780 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
782 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
783 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
784 iommu_poll_events(iommu
);
787 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
788 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
789 iommu_poll_ppr_log(iommu
);
792 #ifdef CONFIG_IRQ_REMAP
793 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
794 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
795 iommu_poll_ga_log(iommu
);
800 * Hardware bug: ERBT1312
801 * When re-enabling interrupt (by writing 1
802 * to clear the bit), the hardware might also try to set
803 * the interrupt bit in the event status register.
804 * In this scenario, the bit will be set, and disable
805 * subsequent interrupts.
807 * Workaround: The IOMMU driver should read back the
808 * status register and check if the interrupt bits are cleared.
809 * If not, driver will need to go through the interrupt handler
810 * again and re-clear the bits
812 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
817 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
819 return IRQ_WAKE_THREAD
;
822 /****************************************************************************
824 * IOMMU command queuing functions
826 ****************************************************************************/
828 static int wait_on_sem(volatile u64
*sem
)
832 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
837 if (i
== LOOP_TIMEOUT
) {
838 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
845 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
846 struct iommu_cmd
*cmd
)
850 target
= iommu
->cmd_buf
+ iommu
->cmd_buf_tail
;
852 iommu
->cmd_buf_tail
+= sizeof(*cmd
);
853 iommu
->cmd_buf_tail
%= CMD_BUFFER_SIZE
;
855 /* Copy command to buffer */
856 memcpy(target
, cmd
, sizeof(*cmd
));
858 /* Tell the IOMMU about it */
859 writel(iommu
->cmd_buf_tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
862 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
864 u64 paddr
= iommu_virt_to_phys((void *)address
);
866 WARN_ON(address
& 0x7ULL
);
868 memset(cmd
, 0, sizeof(*cmd
));
869 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
870 cmd
->data
[1] = upper_32_bits(paddr
);
872 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
875 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
877 memset(cmd
, 0, sizeof(*cmd
));
878 cmd
->data
[0] = devid
;
879 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
882 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
883 size_t size
, u16 domid
, int pde
)
888 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
893 * If we have to flush more than one page, flush all
894 * TLB entries for this domain
896 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
900 address
&= PAGE_MASK
;
902 memset(cmd
, 0, sizeof(*cmd
));
903 cmd
->data
[1] |= domid
;
904 cmd
->data
[2] = lower_32_bits(address
);
905 cmd
->data
[3] = upper_32_bits(address
);
906 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
907 if (s
) /* size bit - we flush more than one 4kb page */
908 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
909 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
910 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
913 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
914 u64 address
, size_t size
)
919 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
924 * If we have to flush more than one page, flush all
925 * TLB entries for this domain
927 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
931 address
&= PAGE_MASK
;
933 memset(cmd
, 0, sizeof(*cmd
));
934 cmd
->data
[0] = devid
;
935 cmd
->data
[0] |= (qdep
& 0xff) << 24;
936 cmd
->data
[1] = devid
;
937 cmd
->data
[2] = lower_32_bits(address
);
938 cmd
->data
[3] = upper_32_bits(address
);
939 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
941 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
944 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
945 u64 address
, bool size
)
947 memset(cmd
, 0, sizeof(*cmd
));
949 address
&= ~(0xfffULL
);
951 cmd
->data
[0] = pasid
;
952 cmd
->data
[1] = domid
;
953 cmd
->data
[2] = lower_32_bits(address
);
954 cmd
->data
[3] = upper_32_bits(address
);
955 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
956 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
958 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
959 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
962 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
963 int qdep
, u64 address
, bool size
)
965 memset(cmd
, 0, sizeof(*cmd
));
967 address
&= ~(0xfffULL
);
969 cmd
->data
[0] = devid
;
970 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
971 cmd
->data
[0] |= (qdep
& 0xff) << 24;
972 cmd
->data
[1] = devid
;
973 cmd
->data
[1] |= (pasid
& 0xff) << 16;
974 cmd
->data
[2] = lower_32_bits(address
);
975 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
976 cmd
->data
[3] = upper_32_bits(address
);
978 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
979 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
982 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
983 int status
, int tag
, bool gn
)
985 memset(cmd
, 0, sizeof(*cmd
));
987 cmd
->data
[0] = devid
;
989 cmd
->data
[1] = pasid
;
990 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
992 cmd
->data
[3] = tag
& 0x1ff;
993 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
995 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
998 static void build_inv_all(struct iommu_cmd
*cmd
)
1000 memset(cmd
, 0, sizeof(*cmd
));
1001 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1004 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1006 memset(cmd
, 0, sizeof(*cmd
));
1007 cmd
->data
[0] = devid
;
1008 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1012 * Writes the command to the IOMMUs command buffer and informs the
1013 * hardware about the new command.
1015 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1016 struct iommu_cmd
*cmd
,
1019 unsigned int count
= 0;
1020 u32 left
, next_tail
;
1022 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1024 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
1027 /* Skip udelay() the first time around */
1029 if (count
== LOOP_TIMEOUT
) {
1030 pr_err("AMD-Vi: Command buffer timeout\n");
1037 /* Update head and recheck remaining space */
1038 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1039 MMIO_CMD_HEAD_OFFSET
);
1044 copy_cmd_to_buffer(iommu
, cmd
);
1046 /* Do we need to make sure all commands are processed? */
1047 iommu
->need_sync
= sync
;
1052 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1053 struct iommu_cmd
*cmd
,
1056 unsigned long flags
;
1059 spin_lock_irqsave(&iommu
->lock
, flags
);
1060 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1061 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1066 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1068 return iommu_queue_command_sync(iommu
, cmd
, true);
1072 * This function queues a completion wait command into the command
1073 * buffer of an IOMMU
1075 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1077 struct iommu_cmd cmd
;
1078 unsigned long flags
;
1081 if (!iommu
->need_sync
)
1085 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1087 spin_lock_irqsave(&iommu
->lock
, flags
);
1091 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1095 ret
= wait_on_sem(&iommu
->cmd_sem
);
1098 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1103 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1105 struct iommu_cmd cmd
;
1107 build_inv_dte(&cmd
, devid
);
1109 return iommu_queue_command(iommu
, &cmd
);
1112 static void amd_iommu_flush_dte_all(struct amd_iommu
*iommu
)
1116 for (devid
= 0; devid
<= 0xffff; ++devid
)
1117 iommu_flush_dte(iommu
, devid
);
1119 iommu_completion_wait(iommu
);
1123 * This function uses heavy locking and may disable irqs for some time. But
1124 * this is no issue because it is only called during resume.
1126 static void amd_iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1130 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1131 struct iommu_cmd cmd
;
1132 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1134 iommu_queue_command(iommu
, &cmd
);
1137 iommu_completion_wait(iommu
);
1140 static void amd_iommu_flush_all(struct amd_iommu
*iommu
)
1142 struct iommu_cmd cmd
;
1144 build_inv_all(&cmd
);
1146 iommu_queue_command(iommu
, &cmd
);
1147 iommu_completion_wait(iommu
);
1150 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1152 struct iommu_cmd cmd
;
1154 build_inv_irt(&cmd
, devid
);
1156 iommu_queue_command(iommu
, &cmd
);
1159 static void amd_iommu_flush_irt_all(struct amd_iommu
*iommu
)
1163 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1164 iommu_flush_irt(iommu
, devid
);
1166 iommu_completion_wait(iommu
);
1169 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1171 if (iommu_feature(iommu
, FEATURE_IA
)) {
1172 amd_iommu_flush_all(iommu
);
1174 amd_iommu_flush_dte_all(iommu
);
1175 amd_iommu_flush_irt_all(iommu
);
1176 amd_iommu_flush_tlb_all(iommu
);
1181 * Command send function for flushing on-device TLB
1183 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1184 u64 address
, size_t size
)
1186 struct amd_iommu
*iommu
;
1187 struct iommu_cmd cmd
;
1190 qdep
= dev_data
->ats
.qdep
;
1191 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1193 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1195 return iommu_queue_command(iommu
, &cmd
);
1199 * Command send function for invalidating a device table entry
1201 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1203 struct amd_iommu
*iommu
;
1207 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1208 alias
= dev_data
->alias
;
1210 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1211 if (!ret
&& alias
!= dev_data
->devid
)
1212 ret
= iommu_flush_dte(iommu
, alias
);
1216 if (dev_data
->ats
.enabled
)
1217 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1223 * TLB invalidation function which is called from the mapping functions.
1224 * It invalidates a single PTE if the range to flush is within a single
1225 * page. Otherwise it flushes the whole TLB of the IOMMU.
1227 static void __domain_flush_pages(struct protection_domain
*domain
,
1228 u64 address
, size_t size
, int pde
)
1230 struct iommu_dev_data
*dev_data
;
1231 struct iommu_cmd cmd
;
1234 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1236 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1237 if (!domain
->dev_iommu
[i
])
1241 * Devices of this domain are behind this IOMMU
1242 * We need a TLB flush
1244 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1247 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1249 if (!dev_data
->ats
.enabled
)
1252 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1258 static void domain_flush_pages(struct protection_domain
*domain
,
1259 u64 address
, size_t size
)
1261 __domain_flush_pages(domain
, address
, size
, 0);
1264 /* Flush the whole IO/TLB for a given protection domain */
1265 static void domain_flush_tlb(struct protection_domain
*domain
)
1267 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1270 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1271 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1273 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1276 static void domain_flush_complete(struct protection_domain
*domain
)
1280 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1281 if (domain
&& !domain
->dev_iommu
[i
])
1285 * Devices of this domain are behind this IOMMU
1286 * We need to wait for completion of all commands.
1288 iommu_completion_wait(amd_iommus
[i
]);
1294 * This function flushes the DTEs for all devices in domain
1296 static void domain_flush_devices(struct protection_domain
*domain
)
1298 struct iommu_dev_data
*dev_data
;
1300 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1301 device_flush_dte(dev_data
);
1304 /****************************************************************************
1306 * The functions below are used the create the page table mappings for
1307 * unity mapped regions.
1309 ****************************************************************************/
1312 * This function is used to add another level to an IO page table. Adding
1313 * another level increases the size of the address space by 9 bits to a size up
1316 static bool increase_address_space(struct protection_domain
*domain
,
1321 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1322 /* address space already 64 bit large */
1325 pte
= (void *)get_zeroed_page(gfp
);
1329 *pte
= PM_LEVEL_PDE(domain
->mode
,
1330 iommu_virt_to_phys(domain
->pt_root
));
1331 domain
->pt_root
= pte
;
1333 domain
->updated
= true;
1338 static u64
*alloc_pte(struct protection_domain
*domain
,
1339 unsigned long address
,
1340 unsigned long page_size
,
1347 BUG_ON(!is_power_of_2(page_size
));
1349 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1350 increase_address_space(domain
, gfp
);
1352 level
= domain
->mode
- 1;
1353 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1354 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1355 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1357 while (level
> end_lvl
) {
1362 if (!IOMMU_PTE_PRESENT(__pte
)) {
1363 page
= (u64
*)get_zeroed_page(gfp
);
1367 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1369 /* pte could have been changed somewhere. */
1370 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1371 free_page((unsigned long)page
);
1376 /* No level skipping support yet */
1377 if (PM_PTE_LEVEL(*pte
) != level
)
1382 pte
= IOMMU_PTE_PAGE(*pte
);
1384 if (pte_page
&& level
== end_lvl
)
1387 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1394 * This function checks if there is a PTE for a given dma address. If
1395 * there is one, it returns the pointer to it.
1397 static u64
*fetch_pte(struct protection_domain
*domain
,
1398 unsigned long address
,
1399 unsigned long *page_size
)
1404 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1407 level
= domain
->mode
- 1;
1408 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1409 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1414 if (!IOMMU_PTE_PRESENT(*pte
))
1418 if (PM_PTE_LEVEL(*pte
) == 7 ||
1419 PM_PTE_LEVEL(*pte
) == 0)
1422 /* No level skipping support yet */
1423 if (PM_PTE_LEVEL(*pte
) != level
)
1428 /* Walk to the next level */
1429 pte
= IOMMU_PTE_PAGE(*pte
);
1430 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1431 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1434 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1435 unsigned long pte_mask
;
1438 * If we have a series of large PTEs, make
1439 * sure to return a pointer to the first one.
1441 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1442 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1443 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1450 * Generic mapping functions. It maps a physical address into a DMA
1451 * address space. It allocates the page table pages if necessary.
1452 * In the future it can be extended to a generic mapping function
1453 * supporting all features of AMD IOMMU page tables like level skipping
1454 * and full 64 bit address spaces.
1456 static int iommu_map_page(struct protection_domain
*dom
,
1457 unsigned long bus_addr
,
1458 unsigned long phys_addr
,
1459 unsigned long page_size
,
1466 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1467 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1469 if (!(prot
& IOMMU_PROT_MASK
))
1472 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1473 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1478 for (i
= 0; i
< count
; ++i
)
1479 if (IOMMU_PTE_PRESENT(pte
[i
]))
1483 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1484 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1486 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1488 if (prot
& IOMMU_PROT_IR
)
1489 __pte
|= IOMMU_PTE_IR
;
1490 if (prot
& IOMMU_PROT_IW
)
1491 __pte
|= IOMMU_PTE_IW
;
1493 for (i
= 0; i
< count
; ++i
)
1501 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1502 unsigned long bus_addr
,
1503 unsigned long page_size
)
1505 unsigned long long unmapped
;
1506 unsigned long unmap_size
;
1509 BUG_ON(!is_power_of_2(page_size
));
1513 while (unmapped
< page_size
) {
1515 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1520 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1521 for (i
= 0; i
< count
; i
++)
1525 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1526 unmapped
+= unmap_size
;
1529 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1534 /****************************************************************************
1536 * The next functions belong to the address allocator for the dma_ops
1537 * interface functions.
1539 ****************************************************************************/
1542 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1543 struct dma_ops_domain
*dma_dom
,
1544 unsigned int pages
, u64 dma_mask
)
1546 unsigned long pfn
= 0;
1548 pages
= __roundup_pow_of_two(pages
);
1550 if (dma_mask
> DMA_BIT_MASK(32))
1551 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1552 IOVA_PFN(DMA_BIT_MASK(32)), false);
1555 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1556 IOVA_PFN(dma_mask
), true);
1558 return (pfn
<< PAGE_SHIFT
);
1561 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1562 unsigned long address
,
1565 pages
= __roundup_pow_of_two(pages
);
1566 address
>>= PAGE_SHIFT
;
1568 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1571 /****************************************************************************
1573 * The next functions belong to the domain allocation. A domain is
1574 * allocated for every IOMMU as the default domain. If device isolation
1575 * is enabled, every device get its own domain. The most important thing
1576 * about domains is the page table mapping the DMA address space they
1579 ****************************************************************************/
1582 * This function adds a protection domain to the global protection domain list
1584 static void add_domain_to_list(struct protection_domain
*domain
)
1586 unsigned long flags
;
1588 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1589 list_add(&domain
->list
, &amd_iommu_pd_list
);
1590 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1594 * This function removes a protection domain to the global
1595 * protection domain list
1597 static void del_domain_from_list(struct protection_domain
*domain
)
1599 unsigned long flags
;
1601 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1602 list_del(&domain
->list
);
1603 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1606 static u16
domain_id_alloc(void)
1608 unsigned long flags
;
1611 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1612 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1614 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1615 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1618 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1623 static void domain_id_free(int id
)
1625 unsigned long flags
;
1627 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1628 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1629 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1630 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1633 #define DEFINE_FREE_PT_FN(LVL, FN) \
1634 static void free_pt_##LVL (unsigned long __pt) \
1642 for (i = 0; i < 512; ++i) { \
1643 /* PTE present? */ \
1644 if (!IOMMU_PTE_PRESENT(pt[i])) \
1648 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1649 PM_PTE_LEVEL(pt[i]) == 7) \
1652 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1655 free_page((unsigned long)pt); \
1658 DEFINE_FREE_PT_FN(l2
, free_page
)
1659 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1660 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1661 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1662 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1664 static void free_pagetable(struct protection_domain
*domain
)
1666 unsigned long root
= (unsigned long)domain
->pt_root
;
1668 switch (domain
->mode
) {
1669 case PAGE_MODE_NONE
:
1671 case PAGE_MODE_1_LEVEL
:
1674 case PAGE_MODE_2_LEVEL
:
1677 case PAGE_MODE_3_LEVEL
:
1680 case PAGE_MODE_4_LEVEL
:
1683 case PAGE_MODE_5_LEVEL
:
1686 case PAGE_MODE_6_LEVEL
:
1694 static void free_gcr3_tbl_level1(u64
*tbl
)
1699 for (i
= 0; i
< 512; ++i
) {
1700 if (!(tbl
[i
] & GCR3_VALID
))
1703 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1705 free_page((unsigned long)ptr
);
1709 static void free_gcr3_tbl_level2(u64
*tbl
)
1714 for (i
= 0; i
< 512; ++i
) {
1715 if (!(tbl
[i
] & GCR3_VALID
))
1718 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1720 free_gcr3_tbl_level1(ptr
);
1724 static void free_gcr3_table(struct protection_domain
*domain
)
1726 if (domain
->glx
== 2)
1727 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1728 else if (domain
->glx
== 1)
1729 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1731 BUG_ON(domain
->glx
!= 0);
1733 free_page((unsigned long)domain
->gcr3_tbl
);
1736 static void dma_ops_domain_flush_tlb(struct dma_ops_domain
*dom
)
1738 domain_flush_tlb(&dom
->domain
);
1739 domain_flush_complete(&dom
->domain
);
1742 static void iova_domain_flush_tlb(struct iova_domain
*iovad
)
1744 struct dma_ops_domain
*dom
;
1746 dom
= container_of(iovad
, struct dma_ops_domain
, iovad
);
1748 dma_ops_domain_flush_tlb(dom
);
1752 * Free a domain, only used if something went wrong in the
1753 * allocation path and we need to free an already allocated page table
1755 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1760 del_domain_from_list(&dom
->domain
);
1762 put_iova_domain(&dom
->iovad
);
1764 free_pagetable(&dom
->domain
);
1767 domain_id_free(dom
->domain
.id
);
1773 * Allocates a new protection domain usable for the dma_ops functions.
1774 * It also initializes the page table and the address allocator data
1775 * structures required for the dma_ops interface
1777 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1779 struct dma_ops_domain
*dma_dom
;
1781 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1785 if (protection_domain_init(&dma_dom
->domain
))
1788 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1789 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1790 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1791 if (!dma_dom
->domain
.pt_root
)
1794 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
, IOVA_START_PFN
);
1796 if (init_iova_flush_queue(&dma_dom
->iovad
, iova_domain_flush_tlb
, NULL
))
1799 /* Initialize reserved ranges */
1800 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1802 add_domain_to_list(&dma_dom
->domain
);
1807 dma_ops_domain_free(dma_dom
);
1813 * little helper function to check whether a given protection domain is a
1816 static bool dma_ops_domain(struct protection_domain
*domain
)
1818 return domain
->flags
& PD_DMA_OPS_MASK
;
1821 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
,
1827 if (domain
->mode
!= PAGE_MODE_NONE
)
1828 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
1830 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1831 << DEV_ENTRY_MODE_SHIFT
;
1832 pte_root
|= DTE_FLAG_IR
| DTE_FLAG_IW
| DTE_FLAG_V
| DTE_FLAG_TV
;
1834 flags
= amd_iommu_dev_table
[devid
].data
[1];
1837 flags
|= DTE_FLAG_IOTLB
;
1840 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1842 if (iommu_feature(iommu
, FEATURE_EPHSUP
))
1843 pte_root
|= 1ULL << DEV_ENTRY_PPR
;
1846 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1847 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
1848 u64 glx
= domain
->glx
;
1851 pte_root
|= DTE_FLAG_GV
;
1852 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1854 /* First mask out possible old values for GCR3 table */
1855 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1858 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1861 /* Encode GCR3 table into DTE */
1862 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1865 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1868 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1872 flags
&= ~DEV_DOMID_MASK
;
1873 flags
|= domain
->id
;
1875 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1876 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1879 static void clear_dte_entry(u16 devid
)
1881 /* remove entry from the device table seen by the hardware */
1882 amd_iommu_dev_table
[devid
].data
[0] = DTE_FLAG_V
| DTE_FLAG_TV
;
1883 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1885 amd_iommu_apply_erratum_63(devid
);
1888 static void do_attach(struct iommu_dev_data
*dev_data
,
1889 struct protection_domain
*domain
)
1891 struct amd_iommu
*iommu
;
1895 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1896 alias
= dev_data
->alias
;
1897 ats
= dev_data
->ats
.enabled
;
1899 /* Update data structures */
1900 dev_data
->domain
= domain
;
1901 list_add(&dev_data
->list
, &domain
->dev_list
);
1903 /* Do reference counting */
1904 domain
->dev_iommu
[iommu
->index
] += 1;
1905 domain
->dev_cnt
+= 1;
1907 /* Update device table */
1908 set_dte_entry(dev_data
->devid
, domain
, ats
, dev_data
->iommu_v2
);
1909 if (alias
!= dev_data
->devid
)
1910 set_dte_entry(alias
, domain
, ats
, dev_data
->iommu_v2
);
1912 device_flush_dte(dev_data
);
1915 static void do_detach(struct iommu_dev_data
*dev_data
)
1917 struct amd_iommu
*iommu
;
1921 * First check if the device is still attached. It might already
1922 * be detached from its domain because the generic
1923 * iommu_detach_group code detached it and we try again here in
1924 * our alias handling.
1926 if (!dev_data
->domain
)
1929 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1930 alias
= dev_data
->alias
;
1932 /* decrease reference counters */
1933 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1934 dev_data
->domain
->dev_cnt
-= 1;
1936 /* Update data structures */
1937 dev_data
->domain
= NULL
;
1938 list_del(&dev_data
->list
);
1939 clear_dte_entry(dev_data
->devid
);
1940 if (alias
!= dev_data
->devid
)
1941 clear_dte_entry(alias
);
1943 /* Flush the DTE entry */
1944 device_flush_dte(dev_data
);
1948 * If a device is not yet associated with a domain, this function does
1949 * assigns it visible for the hardware
1951 static int __attach_device(struct iommu_dev_data
*dev_data
,
1952 struct protection_domain
*domain
)
1957 * Must be called with IRQs disabled. Warn here to detect early
1960 WARN_ON(!irqs_disabled());
1963 spin_lock(&domain
->lock
);
1966 if (dev_data
->domain
!= NULL
)
1969 /* Attach alias group root */
1970 do_attach(dev_data
, domain
);
1977 spin_unlock(&domain
->lock
);
1983 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1985 pci_disable_ats(pdev
);
1986 pci_disable_pri(pdev
);
1987 pci_disable_pasid(pdev
);
1990 /* FIXME: Change generic reset-function to do the same */
1991 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1996 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2000 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2001 control
|= PCI_PRI_CTRL_RESET
;
2002 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2007 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2012 /* FIXME: Hardcode number of outstanding requests for now */
2014 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2016 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2018 /* Only allow access to user-accessible pages */
2019 ret
= pci_enable_pasid(pdev
, 0);
2023 /* First reset the PRI state of the device */
2024 ret
= pci_reset_pri(pdev
);
2029 ret
= pci_enable_pri(pdev
, reqs
);
2034 ret
= pri_reset_while_enabled(pdev
);
2039 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2046 pci_disable_pri(pdev
);
2047 pci_disable_pasid(pdev
);
2052 /* FIXME: Move this to PCI code */
2053 #define PCI_PRI_TLP_OFF (1 << 15)
2055 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2060 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2064 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2066 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2070 * If a device is not yet associated with a domain, this function
2071 * assigns it visible for the hardware
2073 static int attach_device(struct device
*dev
,
2074 struct protection_domain
*domain
)
2076 struct pci_dev
*pdev
;
2077 struct iommu_dev_data
*dev_data
;
2078 unsigned long flags
;
2081 dev_data
= get_dev_data(dev
);
2083 if (!dev_is_pci(dev
))
2084 goto skip_ats_check
;
2086 pdev
= to_pci_dev(dev
);
2087 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2088 if (!dev_data
->passthrough
)
2091 if (dev_data
->iommu_v2
) {
2092 if (pdev_iommuv2_enable(pdev
) != 0)
2095 dev_data
->ats
.enabled
= true;
2096 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2097 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2099 } else if (amd_iommu_iotlb_sup
&&
2100 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2101 dev_data
->ats
.enabled
= true;
2102 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2106 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2107 ret
= __attach_device(dev_data
, domain
);
2108 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2111 * We might boot into a crash-kernel here. The crashed kernel
2112 * left the caches in the IOMMU dirty. So we have to flush
2113 * here to evict all dirty stuff.
2115 domain_flush_tlb_pde(domain
);
2121 * Removes a device from a protection domain (unlocked)
2123 static void __detach_device(struct iommu_dev_data
*dev_data
)
2125 struct protection_domain
*domain
;
2128 * Must be called with IRQs disabled. Warn here to detect early
2131 WARN_ON(!irqs_disabled());
2133 if (WARN_ON(!dev_data
->domain
))
2136 domain
= dev_data
->domain
;
2138 spin_lock(&domain
->lock
);
2140 do_detach(dev_data
);
2142 spin_unlock(&domain
->lock
);
2146 * Removes a device from a protection domain (with devtable_lock held)
2148 static void detach_device(struct device
*dev
)
2150 struct protection_domain
*domain
;
2151 struct iommu_dev_data
*dev_data
;
2152 unsigned long flags
;
2154 dev_data
= get_dev_data(dev
);
2155 domain
= dev_data
->domain
;
2157 /* lock device table */
2158 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2159 __detach_device(dev_data
);
2160 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2162 if (!dev_is_pci(dev
))
2165 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2166 pdev_iommuv2_disable(to_pci_dev(dev
));
2167 else if (dev_data
->ats
.enabled
)
2168 pci_disable_ats(to_pci_dev(dev
));
2170 dev_data
->ats
.enabled
= false;
2173 static int amd_iommu_add_device(struct device
*dev
)
2175 struct iommu_dev_data
*dev_data
;
2176 struct iommu_domain
*domain
;
2177 struct amd_iommu
*iommu
;
2180 if (!check_device(dev
) || get_dev_data(dev
))
2183 devid
= get_device_id(dev
);
2187 iommu
= amd_iommu_rlookup_table
[devid
];
2189 ret
= iommu_init_device(dev
);
2191 if (ret
!= -ENOTSUPP
)
2192 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2195 iommu_ignore_device(dev
);
2196 dev
->dma_ops
= &nommu_dma_ops
;
2199 init_iommu_group(dev
);
2201 dev_data
= get_dev_data(dev
);
2205 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2206 iommu_request_dm_for_dev(dev
);
2208 /* Domains are initialized for this device - have a look what we ended up with */
2209 domain
= iommu_get_domain_for_dev(dev
);
2210 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2211 dev_data
->passthrough
= true;
2213 dev
->dma_ops
= &amd_iommu_dma_ops
;
2216 iommu_completion_wait(iommu
);
2221 static void amd_iommu_remove_device(struct device
*dev
)
2223 struct amd_iommu
*iommu
;
2226 if (!check_device(dev
))
2229 devid
= get_device_id(dev
);
2233 iommu
= amd_iommu_rlookup_table
[devid
];
2235 iommu_uninit_device(dev
);
2236 iommu_completion_wait(iommu
);
2239 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2241 if (dev_is_pci(dev
))
2242 return pci_device_group(dev
);
2244 return acpihid_device_group(dev
);
2247 /*****************************************************************************
2249 * The next functions belong to the dma_ops mapping/unmapping code.
2251 *****************************************************************************/
2254 * In the dma_ops path we only have the struct device. This function
2255 * finds the corresponding IOMMU, the protection domain and the
2256 * requestor id for a given device.
2257 * If the device is not yet associated with a domain this is also done
2260 static struct protection_domain
*get_domain(struct device
*dev
)
2262 struct protection_domain
*domain
;
2263 struct iommu_domain
*io_domain
;
2265 if (!check_device(dev
))
2266 return ERR_PTR(-EINVAL
);
2268 domain
= get_dev_data(dev
)->domain
;
2269 if (domain
== NULL
&& get_dev_data(dev
)->defer_attach
) {
2270 get_dev_data(dev
)->defer_attach
= false;
2271 io_domain
= iommu_get_domain_for_dev(dev
);
2272 domain
= to_pdomain(io_domain
);
2273 attach_device(dev
, domain
);
2276 return ERR_PTR(-EBUSY
);
2278 if (!dma_ops_domain(domain
))
2279 return ERR_PTR(-EBUSY
);
2284 static void update_device_table(struct protection_domain
*domain
)
2286 struct iommu_dev_data
*dev_data
;
2288 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2289 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
,
2290 dev_data
->iommu_v2
);
2292 if (dev_data
->devid
== dev_data
->alias
)
2295 /* There is an alias, update device table entry for it */
2296 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
,
2297 dev_data
->iommu_v2
);
2301 static void update_domain(struct protection_domain
*domain
)
2303 if (!domain
->updated
)
2306 update_device_table(domain
);
2308 domain_flush_devices(domain
);
2309 domain_flush_tlb_pde(domain
);
2311 domain
->updated
= false;
2314 static int dir2prot(enum dma_data_direction direction
)
2316 if (direction
== DMA_TO_DEVICE
)
2317 return IOMMU_PROT_IR
;
2318 else if (direction
== DMA_FROM_DEVICE
)
2319 return IOMMU_PROT_IW
;
2320 else if (direction
== DMA_BIDIRECTIONAL
)
2321 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2327 * This function contains common code for mapping of a physically
2328 * contiguous memory region into DMA address space. It is used by all
2329 * mapping functions provided with this IOMMU driver.
2330 * Must be called with the domain lock held.
2332 static dma_addr_t
__map_single(struct device
*dev
,
2333 struct dma_ops_domain
*dma_dom
,
2336 enum dma_data_direction direction
,
2339 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2340 dma_addr_t address
, start
, ret
;
2345 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2348 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2349 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2352 prot
= dir2prot(direction
);
2355 for (i
= 0; i
< pages
; ++i
) {
2356 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2357 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2366 if (unlikely(amd_iommu_np_cache
)) {
2367 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2368 domain_flush_complete(&dma_dom
->domain
);
2376 for (--i
; i
>= 0; --i
) {
2378 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2381 domain_flush_tlb(&dma_dom
->domain
);
2382 domain_flush_complete(&dma_dom
->domain
);
2384 dma_ops_free_iova(dma_dom
, address
, pages
);
2386 return AMD_IOMMU_MAPPING_ERROR
;
2390 * Does the reverse of the __map_single function. Must be called with
2391 * the domain lock held too
2393 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2394 dma_addr_t dma_addr
,
2398 dma_addr_t i
, start
;
2401 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2402 dma_addr
&= PAGE_MASK
;
2405 for (i
= 0; i
< pages
; ++i
) {
2406 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2410 if (amd_iommu_unmap_flush
) {
2411 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2412 domain_flush_tlb(&dma_dom
->domain
);
2413 domain_flush_complete(&dma_dom
->domain
);
2415 pages
= __roundup_pow_of_two(pages
);
2416 queue_iova(&dma_dom
->iovad
, dma_addr
>> PAGE_SHIFT
, pages
, 0);
2421 * The exported map_single function for dma_ops.
2423 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2424 unsigned long offset
, size_t size
,
2425 enum dma_data_direction dir
,
2426 unsigned long attrs
)
2428 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2429 struct protection_domain
*domain
;
2430 struct dma_ops_domain
*dma_dom
;
2433 domain
= get_domain(dev
);
2434 if (PTR_ERR(domain
) == -EINVAL
)
2435 return (dma_addr_t
)paddr
;
2436 else if (IS_ERR(domain
))
2437 return AMD_IOMMU_MAPPING_ERROR
;
2439 dma_mask
= *dev
->dma_mask
;
2440 dma_dom
= to_dma_ops_domain(domain
);
2442 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2446 * The exported unmap_single function for dma_ops.
2448 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2449 enum dma_data_direction dir
, unsigned long attrs
)
2451 struct protection_domain
*domain
;
2452 struct dma_ops_domain
*dma_dom
;
2454 domain
= get_domain(dev
);
2458 dma_dom
= to_dma_ops_domain(domain
);
2460 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2463 static int sg_num_pages(struct device
*dev
,
2464 struct scatterlist
*sglist
,
2467 unsigned long mask
, boundary_size
;
2468 struct scatterlist
*s
;
2471 mask
= dma_get_seg_boundary(dev
);
2472 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2473 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2475 for_each_sg(sglist
, s
, nelems
, i
) {
2478 s
->dma_address
= npages
<< PAGE_SHIFT
;
2479 p
= npages
% boundary_size
;
2480 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2481 if (p
+ n
> boundary_size
)
2482 npages
+= boundary_size
- p
;
2490 * The exported map_sg function for dma_ops (handles scatter-gather
2493 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2494 int nelems
, enum dma_data_direction direction
,
2495 unsigned long attrs
)
2497 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2498 struct protection_domain
*domain
;
2499 struct dma_ops_domain
*dma_dom
;
2500 struct scatterlist
*s
;
2501 unsigned long address
;
2504 domain
= get_domain(dev
);
2508 dma_dom
= to_dma_ops_domain(domain
);
2509 dma_mask
= *dev
->dma_mask
;
2511 npages
= sg_num_pages(dev
, sglist
, nelems
);
2513 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2514 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2517 prot
= dir2prot(direction
);
2519 /* Map all sg entries */
2520 for_each_sg(sglist
, s
, nelems
, i
) {
2521 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2523 for (j
= 0; j
< pages
; ++j
) {
2524 unsigned long bus_addr
, phys_addr
;
2527 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2528 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2529 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2537 /* Everything is mapped - write the right values into s->dma_address */
2538 for_each_sg(sglist
, s
, nelems
, i
) {
2539 s
->dma_address
+= address
+ s
->offset
;
2540 s
->dma_length
= s
->length
;
2546 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2547 dev_name(dev
), npages
);
2549 for_each_sg(sglist
, s
, nelems
, i
) {
2550 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2552 for (j
= 0; j
< pages
; ++j
) {
2553 unsigned long bus_addr
;
2555 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2556 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2564 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2571 * The exported map_sg function for dma_ops (handles scatter-gather
2574 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2575 int nelems
, enum dma_data_direction dir
,
2576 unsigned long attrs
)
2578 struct protection_domain
*domain
;
2579 struct dma_ops_domain
*dma_dom
;
2580 unsigned long startaddr
;
2583 domain
= get_domain(dev
);
2587 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2588 dma_dom
= to_dma_ops_domain(domain
);
2589 npages
= sg_num_pages(dev
, sglist
, nelems
);
2591 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2595 * The exported alloc_coherent function for dma_ops.
2597 static void *alloc_coherent(struct device
*dev
, size_t size
,
2598 dma_addr_t
*dma_addr
, gfp_t flag
,
2599 unsigned long attrs
)
2601 u64 dma_mask
= dev
->coherent_dma_mask
;
2602 struct protection_domain
*domain
;
2603 struct dma_ops_domain
*dma_dom
;
2606 domain
= get_domain(dev
);
2607 if (PTR_ERR(domain
) == -EINVAL
) {
2608 page
= alloc_pages(flag
, get_order(size
));
2609 *dma_addr
= page_to_phys(page
);
2610 return page_address(page
);
2611 } else if (IS_ERR(domain
))
2614 dma_dom
= to_dma_ops_domain(domain
);
2615 size
= PAGE_ALIGN(size
);
2616 dma_mask
= dev
->coherent_dma_mask
;
2617 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2620 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2622 if (!gfpflags_allow_blocking(flag
))
2625 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2626 get_order(size
), flag
);
2632 dma_mask
= *dev
->dma_mask
;
2634 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2635 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2637 if (*dma_addr
== AMD_IOMMU_MAPPING_ERROR
)
2640 return page_address(page
);
2644 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2645 __free_pages(page
, get_order(size
));
2651 * The exported free_coherent function for dma_ops.
2653 static void free_coherent(struct device
*dev
, size_t size
,
2654 void *virt_addr
, dma_addr_t dma_addr
,
2655 unsigned long attrs
)
2657 struct protection_domain
*domain
;
2658 struct dma_ops_domain
*dma_dom
;
2661 page
= virt_to_page(virt_addr
);
2662 size
= PAGE_ALIGN(size
);
2664 domain
= get_domain(dev
);
2668 dma_dom
= to_dma_ops_domain(domain
);
2670 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2673 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2674 __free_pages(page
, get_order(size
));
2678 * This function is called by the DMA layer to find out if we can handle a
2679 * particular device. It is part of the dma_ops.
2681 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2683 if (!x86_dma_supported(dev
, mask
))
2685 return check_device(dev
);
2688 static int amd_iommu_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2690 return dma_addr
== AMD_IOMMU_MAPPING_ERROR
;
2693 static const struct dma_map_ops amd_iommu_dma_ops
= {
2694 .alloc
= alloc_coherent
,
2695 .free
= free_coherent
,
2696 .map_page
= map_page
,
2697 .unmap_page
= unmap_page
,
2699 .unmap_sg
= unmap_sg
,
2700 .dma_supported
= amd_iommu_dma_supported
,
2701 .mapping_error
= amd_iommu_mapping_error
,
2704 static int init_reserved_iova_ranges(void)
2706 struct pci_dev
*pdev
= NULL
;
2709 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
, IOVA_START_PFN
);
2711 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2712 &reserved_rbtree_key
);
2714 /* MSI memory range */
2715 val
= reserve_iova(&reserved_iova_ranges
,
2716 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2718 pr_err("Reserving MSI range failed\n");
2722 /* HT memory range */
2723 val
= reserve_iova(&reserved_iova_ranges
,
2724 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2726 pr_err("Reserving HT range failed\n");
2731 * Memory used for PCI resources
2732 * FIXME: Check whether we can reserve the PCI-hole completly
2734 for_each_pci_dev(pdev
) {
2737 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2738 struct resource
*r
= &pdev
->resource
[i
];
2740 if (!(r
->flags
& IORESOURCE_MEM
))
2743 val
= reserve_iova(&reserved_iova_ranges
,
2747 pr_err("Reserve pci-resource range failed\n");
2756 int __init
amd_iommu_init_api(void)
2760 ret
= iova_cache_get();
2764 ret
= init_reserved_iova_ranges();
2768 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2771 #ifdef CONFIG_ARM_AMBA
2772 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2776 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2783 int __init
amd_iommu_init_dma_ops(void)
2785 swiotlb
= (iommu_pass_through
|| sme_me_mask
) ? 1 : 0;
2789 * In case we don't initialize SWIOTLB (actually the common case
2790 * when AMD IOMMU is enabled and SME is not active), make sure there
2791 * are global dma_ops set as a fall-back for devices not handled by
2792 * this driver (for example non-PCI devices). When SME is active,
2793 * make sure that swiotlb variable remains set so the global dma_ops
2794 * continue to be SWIOTLB.
2797 dma_ops
= &nommu_dma_ops
;
2799 if (amd_iommu_unmap_flush
)
2800 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2802 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2808 /*****************************************************************************
2810 * The following functions belong to the exported interface of AMD IOMMU
2812 * This interface allows access to lower level functions of the IOMMU
2813 * like protection domain handling and assignement of devices to domains
2814 * which is not possible with the dma_ops interface.
2816 *****************************************************************************/
2818 static void cleanup_domain(struct protection_domain
*domain
)
2820 struct iommu_dev_data
*entry
;
2821 unsigned long flags
;
2823 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2825 while (!list_empty(&domain
->dev_list
)) {
2826 entry
= list_first_entry(&domain
->dev_list
,
2827 struct iommu_dev_data
, list
);
2828 __detach_device(entry
);
2831 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2834 static void protection_domain_free(struct protection_domain
*domain
)
2839 del_domain_from_list(domain
);
2842 domain_id_free(domain
->id
);
2847 static int protection_domain_init(struct protection_domain
*domain
)
2849 spin_lock_init(&domain
->lock
);
2850 mutex_init(&domain
->api_lock
);
2851 domain
->id
= domain_id_alloc();
2854 INIT_LIST_HEAD(&domain
->dev_list
);
2859 static struct protection_domain
*protection_domain_alloc(void)
2861 struct protection_domain
*domain
;
2863 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2867 if (protection_domain_init(domain
))
2870 add_domain_to_list(domain
);
2880 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2882 struct protection_domain
*pdomain
;
2883 struct dma_ops_domain
*dma_domain
;
2886 case IOMMU_DOMAIN_UNMANAGED
:
2887 pdomain
= protection_domain_alloc();
2891 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2892 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2893 if (!pdomain
->pt_root
) {
2894 protection_domain_free(pdomain
);
2898 pdomain
->domain
.geometry
.aperture_start
= 0;
2899 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2900 pdomain
->domain
.geometry
.force_aperture
= true;
2903 case IOMMU_DOMAIN_DMA
:
2904 dma_domain
= dma_ops_domain_alloc();
2906 pr_err("AMD-Vi: Failed to allocate\n");
2909 pdomain
= &dma_domain
->domain
;
2911 case IOMMU_DOMAIN_IDENTITY
:
2912 pdomain
= protection_domain_alloc();
2916 pdomain
->mode
= PAGE_MODE_NONE
;
2922 return &pdomain
->domain
;
2925 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2927 struct protection_domain
*domain
;
2928 struct dma_ops_domain
*dma_dom
;
2930 domain
= to_pdomain(dom
);
2932 if (domain
->dev_cnt
> 0)
2933 cleanup_domain(domain
);
2935 BUG_ON(domain
->dev_cnt
!= 0);
2940 switch (dom
->type
) {
2941 case IOMMU_DOMAIN_DMA
:
2942 /* Now release the domain */
2943 dma_dom
= to_dma_ops_domain(domain
);
2944 dma_ops_domain_free(dma_dom
);
2947 if (domain
->mode
!= PAGE_MODE_NONE
)
2948 free_pagetable(domain
);
2950 if (domain
->flags
& PD_IOMMUV2_MASK
)
2951 free_gcr3_table(domain
);
2953 protection_domain_free(domain
);
2958 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2961 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2962 struct amd_iommu
*iommu
;
2965 if (!check_device(dev
))
2968 devid
= get_device_id(dev
);
2972 if (dev_data
->domain
!= NULL
)
2975 iommu
= amd_iommu_rlookup_table
[devid
];
2979 #ifdef CONFIG_IRQ_REMAP
2980 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
2981 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
2982 dev_data
->use_vapic
= 0;
2985 iommu_completion_wait(iommu
);
2988 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2991 struct protection_domain
*domain
= to_pdomain(dom
);
2992 struct iommu_dev_data
*dev_data
;
2993 struct amd_iommu
*iommu
;
2996 if (!check_device(dev
))
2999 dev_data
= dev
->archdata
.iommu
;
3001 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3005 if (dev_data
->domain
)
3008 ret
= attach_device(dev
, domain
);
3010 #ifdef CONFIG_IRQ_REMAP
3011 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3012 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3013 dev_data
->use_vapic
= 1;
3015 dev_data
->use_vapic
= 0;
3019 iommu_completion_wait(iommu
);
3024 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3025 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3027 struct protection_domain
*domain
= to_pdomain(dom
);
3031 if (domain
->mode
== PAGE_MODE_NONE
)
3034 if (iommu_prot
& IOMMU_READ
)
3035 prot
|= IOMMU_PROT_IR
;
3036 if (iommu_prot
& IOMMU_WRITE
)
3037 prot
|= IOMMU_PROT_IW
;
3039 mutex_lock(&domain
->api_lock
);
3040 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3041 mutex_unlock(&domain
->api_lock
);
3046 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3049 struct protection_domain
*domain
= to_pdomain(dom
);
3052 if (domain
->mode
== PAGE_MODE_NONE
)
3055 mutex_lock(&domain
->api_lock
);
3056 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3057 mutex_unlock(&domain
->api_lock
);
3059 domain_flush_tlb_pde(domain
);
3060 domain_flush_complete(domain
);
3065 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3068 struct protection_domain
*domain
= to_pdomain(dom
);
3069 unsigned long offset_mask
, pte_pgsize
;
3072 if (domain
->mode
== PAGE_MODE_NONE
)
3075 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3077 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3080 offset_mask
= pte_pgsize
- 1;
3081 __pte
= *pte
& PM_ADDR_MASK
;
3083 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3086 static bool amd_iommu_capable(enum iommu_cap cap
)
3089 case IOMMU_CAP_CACHE_COHERENCY
:
3091 case IOMMU_CAP_INTR_REMAP
:
3092 return (irq_remapping_enabled
== 1);
3093 case IOMMU_CAP_NOEXEC
:
3100 static void amd_iommu_get_resv_regions(struct device
*dev
,
3101 struct list_head
*head
)
3103 struct iommu_resv_region
*region
;
3104 struct unity_map_entry
*entry
;
3107 devid
= get_device_id(dev
);
3111 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3115 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3118 length
= entry
->address_end
- entry
->address_start
;
3119 if (entry
->prot
& IOMMU_PROT_IR
)
3121 if (entry
->prot
& IOMMU_PROT_IW
)
3122 prot
|= IOMMU_WRITE
;
3124 region
= iommu_alloc_resv_region(entry
->address_start
,
3128 pr_err("Out of memory allocating dm-regions for %s\n",
3132 list_add_tail(®ion
->list
, head
);
3135 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
3136 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
3140 list_add_tail(®ion
->list
, head
);
3142 region
= iommu_alloc_resv_region(HT_RANGE_START
,
3143 HT_RANGE_END
- HT_RANGE_START
+ 1,
3144 0, IOMMU_RESV_RESERVED
);
3147 list_add_tail(®ion
->list
, head
);
3150 static void amd_iommu_put_resv_regions(struct device
*dev
,
3151 struct list_head
*head
)
3153 struct iommu_resv_region
*entry
, *next
;
3155 list_for_each_entry_safe(entry
, next
, head
, list
)
3159 static void amd_iommu_apply_resv_region(struct device
*dev
,
3160 struct iommu_domain
*domain
,
3161 struct iommu_resv_region
*region
)
3163 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3164 unsigned long start
, end
;
3166 start
= IOVA_PFN(region
->start
);
3167 end
= IOVA_PFN(region
->start
+ region
->length
- 1);
3169 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3172 static bool amd_iommu_is_attach_deferred(struct iommu_domain
*domain
,
3175 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3176 return dev_data
->defer_attach
;
3179 const struct iommu_ops amd_iommu_ops
= {
3180 .capable
= amd_iommu_capable
,
3181 .domain_alloc
= amd_iommu_domain_alloc
,
3182 .domain_free
= amd_iommu_domain_free
,
3183 .attach_dev
= amd_iommu_attach_device
,
3184 .detach_dev
= amd_iommu_detach_device
,
3185 .map
= amd_iommu_map
,
3186 .unmap
= amd_iommu_unmap
,
3187 .map_sg
= default_iommu_map_sg
,
3188 .iova_to_phys
= amd_iommu_iova_to_phys
,
3189 .add_device
= amd_iommu_add_device
,
3190 .remove_device
= amd_iommu_remove_device
,
3191 .device_group
= amd_iommu_device_group
,
3192 .get_resv_regions
= amd_iommu_get_resv_regions
,
3193 .put_resv_regions
= amd_iommu_put_resv_regions
,
3194 .apply_resv_region
= amd_iommu_apply_resv_region
,
3195 .is_attach_deferred
= amd_iommu_is_attach_deferred
,
3196 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3199 /*****************************************************************************
3201 * The next functions do a basic initialization of IOMMU for pass through
3204 * In passthrough mode the IOMMU is initialized and enabled but not used for
3205 * DMA-API translation.
3207 *****************************************************************************/
3209 /* IOMMUv2 specific functions */
3210 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3212 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3214 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3216 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3218 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3220 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3222 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3224 struct protection_domain
*domain
= to_pdomain(dom
);
3225 unsigned long flags
;
3227 spin_lock_irqsave(&domain
->lock
, flags
);
3229 /* Update data structure */
3230 domain
->mode
= PAGE_MODE_NONE
;
3231 domain
->updated
= true;
3233 /* Make changes visible to IOMMUs */
3234 update_domain(domain
);
3236 /* Page-table is not visible to IOMMU anymore, so free it */
3237 free_pagetable(domain
);
3239 spin_unlock_irqrestore(&domain
->lock
, flags
);
3241 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3243 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3245 struct protection_domain
*domain
= to_pdomain(dom
);
3246 unsigned long flags
;
3249 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3252 /* Number of GCR3 table levels required */
3253 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3256 if (levels
> amd_iommu_max_glx_val
)
3259 spin_lock_irqsave(&domain
->lock
, flags
);
3262 * Save us all sanity checks whether devices already in the
3263 * domain support IOMMUv2. Just force that the domain has no
3264 * devices attached when it is switched into IOMMUv2 mode.
3267 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3271 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3272 if (domain
->gcr3_tbl
== NULL
)
3275 domain
->glx
= levels
;
3276 domain
->flags
|= PD_IOMMUV2_MASK
;
3277 domain
->updated
= true;
3279 update_domain(domain
);
3284 spin_unlock_irqrestore(&domain
->lock
, flags
);
3288 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3290 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3291 u64 address
, bool size
)
3293 struct iommu_dev_data
*dev_data
;
3294 struct iommu_cmd cmd
;
3297 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3300 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3303 * IOMMU TLB needs to be flushed before Device TLB to
3304 * prevent device TLB refill from IOMMU TLB
3306 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
3307 if (domain
->dev_iommu
[i
] == 0)
3310 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3315 /* Wait until IOMMU TLB flushes are complete */
3316 domain_flush_complete(domain
);
3318 /* Now flush device TLBs */
3319 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3320 struct amd_iommu
*iommu
;
3324 There might be non-IOMMUv2 capable devices in an IOMMUv2
3327 if (!dev_data
->ats
.enabled
)
3330 qdep
= dev_data
->ats
.qdep
;
3331 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3333 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3334 qdep
, address
, size
);
3336 ret
= iommu_queue_command(iommu
, &cmd
);
3341 /* Wait until all device TLBs are flushed */
3342 domain_flush_complete(domain
);
3351 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3354 return __flush_pasid(domain
, pasid
, address
, false);
3357 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3360 struct protection_domain
*domain
= to_pdomain(dom
);
3361 unsigned long flags
;
3364 spin_lock_irqsave(&domain
->lock
, flags
);
3365 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3366 spin_unlock_irqrestore(&domain
->lock
, flags
);
3370 EXPORT_SYMBOL(amd_iommu_flush_page
);
3372 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3374 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3378 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3380 struct protection_domain
*domain
= to_pdomain(dom
);
3381 unsigned long flags
;
3384 spin_lock_irqsave(&domain
->lock
, flags
);
3385 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3386 spin_unlock_irqrestore(&domain
->lock
, flags
);
3390 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3392 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3399 index
= (pasid
>> (9 * level
)) & 0x1ff;
3405 if (!(*pte
& GCR3_VALID
)) {
3409 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3413 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
3416 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
3424 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3429 if (domain
->mode
!= PAGE_MODE_NONE
)
3432 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3436 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3438 return __amd_iommu_flush_tlb(domain
, pasid
);
3441 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3445 if (domain
->mode
!= PAGE_MODE_NONE
)
3448 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3454 return __amd_iommu_flush_tlb(domain
, pasid
);
3457 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3460 struct protection_domain
*domain
= to_pdomain(dom
);
3461 unsigned long flags
;
3464 spin_lock_irqsave(&domain
->lock
, flags
);
3465 ret
= __set_gcr3(domain
, pasid
, cr3
);
3466 spin_unlock_irqrestore(&domain
->lock
, flags
);
3470 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3472 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3474 struct protection_domain
*domain
= to_pdomain(dom
);
3475 unsigned long flags
;
3478 spin_lock_irqsave(&domain
->lock
, flags
);
3479 ret
= __clear_gcr3(domain
, pasid
);
3480 spin_unlock_irqrestore(&domain
->lock
, flags
);
3484 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3486 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3487 int status
, int tag
)
3489 struct iommu_dev_data
*dev_data
;
3490 struct amd_iommu
*iommu
;
3491 struct iommu_cmd cmd
;
3493 dev_data
= get_dev_data(&pdev
->dev
);
3494 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3496 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3497 tag
, dev_data
->pri_tlp
);
3499 return iommu_queue_command(iommu
, &cmd
);
3501 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3503 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3505 struct protection_domain
*pdomain
;
3507 pdomain
= get_domain(&pdev
->dev
);
3508 if (IS_ERR(pdomain
))
3511 /* Only return IOMMUv2 domains */
3512 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3515 return &pdomain
->domain
;
3517 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3519 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3521 struct iommu_dev_data
*dev_data
;
3523 if (!amd_iommu_v2_supported())
3526 dev_data
= get_dev_data(&pdev
->dev
);
3527 dev_data
->errata
|= (1 << erratum
);
3529 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3531 int amd_iommu_device_info(struct pci_dev
*pdev
,
3532 struct amd_iommu_device_info
*info
)
3537 if (pdev
== NULL
|| info
== NULL
)
3540 if (!amd_iommu_v2_supported())
3543 memset(info
, 0, sizeof(*info
));
3545 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3547 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3549 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3551 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3553 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3557 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3558 max_pasids
= min(max_pasids
, (1 << 20));
3560 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3561 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3563 features
= pci_pasid_features(pdev
);
3564 if (features
& PCI_PASID_CAP_EXEC
)
3565 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3566 if (features
& PCI_PASID_CAP_PRIV
)
3567 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3572 EXPORT_SYMBOL(amd_iommu_device_info
);
3574 #ifdef CONFIG_IRQ_REMAP
3576 /*****************************************************************************
3578 * Interrupt Remapping Implementation
3580 *****************************************************************************/
3582 static struct irq_chip amd_ir_chip
;
3584 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3588 dte
= amd_iommu_dev_table
[devid
].data
[2];
3589 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3590 dte
|= iommu_virt_to_phys(table
->table
);
3591 dte
|= DTE_IRQ_REMAP_INTCTL
;
3592 dte
|= DTE_IRQ_TABLE_LEN
;
3593 dte
|= DTE_IRQ_REMAP_ENABLE
;
3595 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3598 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3600 struct irq_remap_table
*table
= NULL
;
3601 struct amd_iommu
*iommu
;
3602 unsigned long flags
;
3605 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3607 iommu
= amd_iommu_rlookup_table
[devid
];
3611 table
= irq_lookup_table
[devid
];
3615 alias
= amd_iommu_alias_table
[devid
];
3616 table
= irq_lookup_table
[alias
];
3618 irq_lookup_table
[devid
] = table
;
3619 set_dte_irq_entry(devid
, table
);
3620 iommu_flush_dte(iommu
, devid
);
3624 /* Nothing there yet, allocate new irq remapping table */
3625 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3629 /* Initialize table spin-lock */
3630 spin_lock_init(&table
->lock
);
3633 /* Keep the first 32 indexes free for IOAPIC interrupts */
3634 table
->min_index
= 32;
3636 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3637 if (!table
->table
) {
3643 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3644 memset(table
->table
, 0,
3645 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3647 memset(table
->table
, 0,
3648 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3653 for (i
= 0; i
< 32; ++i
)
3654 iommu
->irte_ops
->set_allocated(table
, i
);
3657 irq_lookup_table
[devid
] = table
;
3658 set_dte_irq_entry(devid
, table
);
3659 iommu_flush_dte(iommu
, devid
);
3660 if (devid
!= alias
) {
3661 irq_lookup_table
[alias
] = table
;
3662 set_dte_irq_entry(alias
, table
);
3663 iommu_flush_dte(iommu
, alias
);
3667 iommu_completion_wait(iommu
);
3670 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3675 static int alloc_irq_index(u16 devid
, int count
, bool align
)
3677 struct irq_remap_table
*table
;
3678 int index
, c
, alignment
= 1;
3679 unsigned long flags
;
3680 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3685 table
= get_irq_table(devid
, false);
3690 alignment
= roundup_pow_of_two(count
);
3692 spin_lock_irqsave(&table
->lock
, flags
);
3694 /* Scan table for free entries */
3695 for (index
= ALIGN(table
->min_index
, alignment
), c
= 0;
3696 index
< MAX_IRQS_PER_TABLE
;) {
3697 if (!iommu
->irte_ops
->is_allocated(table
, index
)) {
3701 index
= ALIGN(index
+ 1, alignment
);
3707 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3719 spin_unlock_irqrestore(&table
->lock
, flags
);
3724 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3725 struct amd_ir_data
*data
)
3727 struct irq_remap_table
*table
;
3728 struct amd_iommu
*iommu
;
3729 unsigned long flags
;
3730 struct irte_ga
*entry
;
3732 iommu
= amd_iommu_rlookup_table
[devid
];
3736 table
= get_irq_table(devid
, false);
3740 spin_lock_irqsave(&table
->lock
, flags
);
3742 entry
= (struct irte_ga
*)table
->table
;
3743 entry
= &entry
[index
];
3744 entry
->lo
.fields_remap
.valid
= 0;
3745 entry
->hi
.val
= irte
->hi
.val
;
3746 entry
->lo
.val
= irte
->lo
.val
;
3747 entry
->lo
.fields_remap
.valid
= 1;
3751 spin_unlock_irqrestore(&table
->lock
, flags
);
3753 iommu_flush_irt(iommu
, devid
);
3754 iommu_completion_wait(iommu
);
3759 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3761 struct irq_remap_table
*table
;
3762 struct amd_iommu
*iommu
;
3763 unsigned long flags
;
3765 iommu
= amd_iommu_rlookup_table
[devid
];
3769 table
= get_irq_table(devid
, false);
3773 spin_lock_irqsave(&table
->lock
, flags
);
3774 table
->table
[index
] = irte
->val
;
3775 spin_unlock_irqrestore(&table
->lock
, flags
);
3777 iommu_flush_irt(iommu
, devid
);
3778 iommu_completion_wait(iommu
);
3783 static void free_irte(u16 devid
, int index
)
3785 struct irq_remap_table
*table
;
3786 struct amd_iommu
*iommu
;
3787 unsigned long flags
;
3789 iommu
= amd_iommu_rlookup_table
[devid
];
3793 table
= get_irq_table(devid
, false);
3797 spin_lock_irqsave(&table
->lock
, flags
);
3798 iommu
->irte_ops
->clear_allocated(table
, index
);
3799 spin_unlock_irqrestore(&table
->lock
, flags
);
3801 iommu_flush_irt(iommu
, devid
);
3802 iommu_completion_wait(iommu
);
3805 static void irte_prepare(void *entry
,
3806 u32 delivery_mode
, u32 dest_mode
,
3807 u8 vector
, u32 dest_apicid
, int devid
)
3809 union irte
*irte
= (union irte
*) entry
;
3812 irte
->fields
.vector
= vector
;
3813 irte
->fields
.int_type
= delivery_mode
;
3814 irte
->fields
.destination
= dest_apicid
;
3815 irte
->fields
.dm
= dest_mode
;
3816 irte
->fields
.valid
= 1;
3819 static void irte_ga_prepare(void *entry
,
3820 u32 delivery_mode
, u32 dest_mode
,
3821 u8 vector
, u32 dest_apicid
, int devid
)
3823 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3827 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3828 irte
->lo
.fields_remap
.dm
= dest_mode
;
3829 irte
->hi
.fields
.vector
= vector
;
3830 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3831 irte
->lo
.fields_remap
.valid
= 1;
3834 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3836 union irte
*irte
= (union irte
*) entry
;
3838 irte
->fields
.valid
= 1;
3839 modify_irte(devid
, index
, irte
);
3842 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3844 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3846 irte
->lo
.fields_remap
.valid
= 1;
3847 modify_irte_ga(devid
, index
, irte
, NULL
);
3850 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3852 union irte
*irte
= (union irte
*) entry
;
3854 irte
->fields
.valid
= 0;
3855 modify_irte(devid
, index
, irte
);
3858 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3860 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3862 irte
->lo
.fields_remap
.valid
= 0;
3863 modify_irte_ga(devid
, index
, irte
, NULL
);
3866 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3867 u8 vector
, u32 dest_apicid
)
3869 union irte
*irte
= (union irte
*) entry
;
3871 irte
->fields
.vector
= vector
;
3872 irte
->fields
.destination
= dest_apicid
;
3873 modify_irte(devid
, index
, irte
);
3876 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3877 u8 vector
, u32 dest_apicid
)
3879 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3880 struct iommu_dev_data
*dev_data
= search_dev_data(devid
);
3882 if (!dev_data
|| !dev_data
->use_vapic
||
3883 !irte
->lo
.fields_remap
.guest_mode
) {
3884 irte
->hi
.fields
.vector
= vector
;
3885 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3886 modify_irte_ga(devid
, index
, irte
, NULL
);
3890 #define IRTE_ALLOCATED (~1U)
3891 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
3893 table
->table
[index
] = IRTE_ALLOCATED
;
3896 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
3898 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3899 struct irte_ga
*irte
= &ptr
[index
];
3901 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3902 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3903 irte
->hi
.fields
.vector
= 0xff;
3906 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
3908 union irte
*ptr
= (union irte
*)table
->table
;
3909 union irte
*irte
= &ptr
[index
];
3911 return irte
->val
!= 0;
3914 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
3916 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3917 struct irte_ga
*irte
= &ptr
[index
];
3919 return irte
->hi
.fields
.vector
!= 0;
3922 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
3924 table
->table
[index
] = 0;
3927 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
3929 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3930 struct irte_ga
*irte
= &ptr
[index
];
3932 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3933 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3936 static int get_devid(struct irq_alloc_info
*info
)
3940 switch (info
->type
) {
3941 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3942 devid
= get_ioapic_devid(info
->ioapic_id
);
3944 case X86_IRQ_ALLOC_TYPE_HPET
:
3945 devid
= get_hpet_devid(info
->hpet_id
);
3947 case X86_IRQ_ALLOC_TYPE_MSI
:
3948 case X86_IRQ_ALLOC_TYPE_MSIX
:
3949 devid
= get_device_id(&info
->msi_dev
->dev
);
3959 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3961 struct amd_iommu
*iommu
;
3967 devid
= get_devid(info
);
3969 iommu
= amd_iommu_rlookup_table
[devid
];
3971 return iommu
->ir_domain
;
3977 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
3979 struct amd_iommu
*iommu
;
3985 switch (info
->type
) {
3986 case X86_IRQ_ALLOC_TYPE_MSI
:
3987 case X86_IRQ_ALLOC_TYPE_MSIX
:
3988 devid
= get_device_id(&info
->msi_dev
->dev
);
3992 iommu
= amd_iommu_rlookup_table
[devid
];
3994 return iommu
->msi_domain
;
4003 struct irq_remap_ops amd_iommu_irq_ops
= {
4004 .prepare
= amd_iommu_prepare
,
4005 .enable
= amd_iommu_enable
,
4006 .disable
= amd_iommu_disable
,
4007 .reenable
= amd_iommu_reenable
,
4008 .enable_faulting
= amd_iommu_enable_faulting
,
4009 .get_ir_irq_domain
= get_ir_irq_domain
,
4010 .get_irq_domain
= get_irq_domain
,
4013 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4014 struct irq_cfg
*irq_cfg
,
4015 struct irq_alloc_info
*info
,
4016 int devid
, int index
, int sub_handle
)
4018 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4019 struct msi_msg
*msg
= &data
->msi_entry
;
4020 struct IO_APIC_route_entry
*entry
;
4021 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4026 data
->irq_2_irte
.devid
= devid
;
4027 data
->irq_2_irte
.index
= index
+ sub_handle
;
4028 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4029 apic
->irq_dest_mode
, irq_cfg
->vector
,
4030 irq_cfg
->dest_apicid
, devid
);
4032 switch (info
->type
) {
4033 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4034 /* Setup IOAPIC entry */
4035 entry
= info
->ioapic_entry
;
4036 info
->ioapic_entry
= NULL
;
4037 memset(entry
, 0, sizeof(*entry
));
4038 entry
->vector
= index
;
4040 entry
->trigger
= info
->ioapic_trigger
;
4041 entry
->polarity
= info
->ioapic_polarity
;
4042 /* Mask level triggered irqs. */
4043 if (info
->ioapic_trigger
)
4047 case X86_IRQ_ALLOC_TYPE_HPET
:
4048 case X86_IRQ_ALLOC_TYPE_MSI
:
4049 case X86_IRQ_ALLOC_TYPE_MSIX
:
4050 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4051 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4052 msg
->data
= irte_info
->index
;
4061 struct amd_irte_ops irte_32_ops
= {
4062 .prepare
= irte_prepare
,
4063 .activate
= irte_activate
,
4064 .deactivate
= irte_deactivate
,
4065 .set_affinity
= irte_set_affinity
,
4066 .set_allocated
= irte_set_allocated
,
4067 .is_allocated
= irte_is_allocated
,
4068 .clear_allocated
= irte_clear_allocated
,
4071 struct amd_irte_ops irte_128_ops
= {
4072 .prepare
= irte_ga_prepare
,
4073 .activate
= irte_ga_activate
,
4074 .deactivate
= irte_ga_deactivate
,
4075 .set_affinity
= irte_ga_set_affinity
,
4076 .set_allocated
= irte_ga_set_allocated
,
4077 .is_allocated
= irte_ga_is_allocated
,
4078 .clear_allocated
= irte_ga_clear_allocated
,
4081 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4082 unsigned int nr_irqs
, void *arg
)
4084 struct irq_alloc_info
*info
= arg
;
4085 struct irq_data
*irq_data
;
4086 struct amd_ir_data
*data
= NULL
;
4087 struct irq_cfg
*cfg
;
4093 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4094 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4098 * With IRQ remapping enabled, don't need contiguous CPU vectors
4099 * to support multiple MSI interrupts.
4101 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4102 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4104 devid
= get_devid(info
);
4108 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4112 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4113 if (get_irq_table(devid
, true))
4114 index
= info
->ioapic_pin
;
4118 bool align
= (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
);
4120 index
= alloc_irq_index(devid
, nr_irqs
, align
);
4123 pr_warn("Failed to allocate IRTE\n");
4125 goto out_free_parent
;
4128 for (i
= 0; i
< nr_irqs
; i
++) {
4129 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4130 cfg
= irqd_cfg(irq_data
);
4131 if (!irq_data
|| !cfg
) {
4137 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4141 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4142 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4144 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4151 irq_data
->hwirq
= (devid
<< 16) + i
;
4152 irq_data
->chip_data
= data
;
4153 irq_data
->chip
= &amd_ir_chip
;
4154 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4155 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4161 for (i
--; i
>= 0; i
--) {
4162 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4164 kfree(irq_data
->chip_data
);
4166 for (i
= 0; i
< nr_irqs
; i
++)
4167 free_irte(devid
, index
+ i
);
4169 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4173 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4174 unsigned int nr_irqs
)
4176 struct irq_2_irte
*irte_info
;
4177 struct irq_data
*irq_data
;
4178 struct amd_ir_data
*data
;
4181 for (i
= 0; i
< nr_irqs
; i
++) {
4182 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4183 if (irq_data
&& irq_data
->chip_data
) {
4184 data
= irq_data
->chip_data
;
4185 irte_info
= &data
->irq_2_irte
;
4186 free_irte(irte_info
->devid
, irte_info
->index
);
4191 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4194 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4195 struct amd_ir_data
*ir_data
,
4196 struct irq_2_irte
*irte_info
,
4197 struct irq_cfg
*cfg
);
4199 static int irq_remapping_activate(struct irq_domain
*domain
,
4200 struct irq_data
*irq_data
, bool reserve
)
4202 struct amd_ir_data
*data
= irq_data
->chip_data
;
4203 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4204 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4205 struct irq_cfg
*cfg
= irqd_cfg(irq_data
);
4210 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4212 amd_ir_update_irte(irq_data
, iommu
, data
, irte_info
, cfg
);
4216 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4217 struct irq_data
*irq_data
)
4219 struct amd_ir_data
*data
= irq_data
->chip_data
;
4220 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4221 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4224 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4228 static const struct irq_domain_ops amd_ir_domain_ops
= {
4229 .alloc
= irq_remapping_alloc
,
4230 .free
= irq_remapping_free
,
4231 .activate
= irq_remapping_activate
,
4232 .deactivate
= irq_remapping_deactivate
,
4235 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4237 struct amd_iommu
*iommu
;
4238 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4239 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4240 struct amd_ir_data
*ir_data
= data
->chip_data
;
4241 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4242 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4243 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4246 * This device has never been set up for guest mode.
4247 * we should not modify the IRTE
4249 if (!dev_data
|| !dev_data
->use_vapic
)
4252 pi_data
->ir_data
= ir_data
;
4255 * SVM tries to set up for VAPIC mode, but we are in
4256 * legacy mode. So, we force legacy mode instead.
4258 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4259 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4261 pi_data
->is_guest_mode
= false;
4264 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4268 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4269 if (pi_data
->is_guest_mode
) {
4271 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4272 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4273 irte
->lo
.fields_vapic
.ga_log_intr
= 1;
4274 irte
->lo
.fields_vapic
.guest_mode
= 1;
4275 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4277 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4280 struct irq_cfg
*cfg
= irqd_cfg(data
);
4284 irte
->hi
.fields
.vector
= cfg
->vector
;
4285 irte
->lo
.fields_remap
.guest_mode
= 0;
4286 irte
->lo
.fields_remap
.destination
= cfg
->dest_apicid
;
4287 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4288 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4291 * This communicates the ga_tag back to the caller
4292 * so that it can do all the necessary clean up.
4294 ir_data
->cached_ga_tag
= 0;
4297 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4301 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4302 struct amd_ir_data
*ir_data
,
4303 struct irq_2_irte
*irte_info
,
4304 struct irq_cfg
*cfg
)
4308 * Atomically updates the IRTE with the new destination, vector
4309 * and flushes the interrupt entry cache.
4311 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4312 irte_info
->index
, cfg
->vector
,
4316 static int amd_ir_set_affinity(struct irq_data
*data
,
4317 const struct cpumask
*mask
, bool force
)
4319 struct amd_ir_data
*ir_data
= data
->chip_data
;
4320 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4321 struct irq_cfg
*cfg
= irqd_cfg(data
);
4322 struct irq_data
*parent
= data
->parent_data
;
4323 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4329 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4330 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4333 amd_ir_update_irte(data
, iommu
, ir_data
, irte_info
, cfg
);
4335 * After this point, all the interrupts will start arriving
4336 * at the new destination. So, time to cleanup the previous
4337 * vector allocation.
4339 send_cleanup_vector(cfg
);
4341 return IRQ_SET_MASK_OK_DONE
;
4344 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4346 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4348 *msg
= ir_data
->msi_entry
;
4351 static struct irq_chip amd_ir_chip
= {
4353 .irq_ack
= ir_ack_apic_edge
,
4354 .irq_set_affinity
= amd_ir_set_affinity
,
4355 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4356 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4359 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4361 struct fwnode_handle
*fn
;
4363 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
4366 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
4367 irq_domain_free_fwnode(fn
);
4368 if (!iommu
->ir_domain
)
4371 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4372 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
4378 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4380 unsigned long flags
;
4381 struct amd_iommu
*iommu
;
4382 struct irq_remap_table
*irt
;
4383 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4384 int devid
= ir_data
->irq_2_irte
.devid
;
4385 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4386 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4388 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4389 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4392 iommu
= amd_iommu_rlookup_table
[devid
];
4396 irt
= get_irq_table(devid
, false);
4400 spin_lock_irqsave(&irt
->lock
, flags
);
4402 if (ref
->lo
.fields_vapic
.guest_mode
) {
4404 ref
->lo
.fields_vapic
.destination
= cpu
;
4405 ref
->lo
.fields_vapic
.is_run
= is_run
;
4409 spin_unlock_irqrestore(&irt
->lock
, flags
);
4411 iommu_flush_irt(iommu
, devid
);
4412 iommu_completion_wait(iommu
);
4415 EXPORT_SYMBOL(amd_iommu_update_ga
);