xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / md / bcache / writeback.c
blobf1d2fc15abcc05d7fb338d67efcac1c1454954f4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * background writeback - scan btree for dirty data and write it to the backing
4 * device
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
20 /* Rate limiting */
21 static uint64_t __calc_target_rate(struct cached_dev *dc)
23 struct cache_set *c = dc->disk.c;
26 * This is the size of the cache, minus the amount used for
27 * flash-only devices
29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 bcache_flash_devs_sectors_dirty(c);
33 * Unfortunately there is no control of global dirty data. If the
34 * user states that they want 10% dirty data in the cache, and has,
35 * e.g., 5 backing volumes of equal size, we try and ensure each
36 * backing volume uses about 2% of the cache for dirty data.
38 uint32_t bdev_share =
39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 c->cached_dev_sectors);
42 uint64_t cache_dirty_target =
43 div_u64(cache_sectors * dc->writeback_percent, 100);
45 /* Ensure each backing dev gets at least one dirty share */
46 if (bdev_share < 1)
47 bdev_share = 1;
49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
52 static void __update_writeback_rate(struct cached_dev *dc)
55 * PI controller:
56 * Figures out the amount that should be written per second.
58 * First, the error (number of sectors that are dirty beyond our
59 * target) is calculated. The error is accumulated (numerically
60 * integrated).
62 * Then, the proportional value and integral value are scaled
63 * based on configured values. These are stored as inverses to
64 * avoid fixed point math and to make configuration easy-- e.g.
65 * the default value of 40 for writeback_rate_p_term_inverse
66 * attempts to write at a rate that would retire all the dirty
67 * blocks in 40 seconds.
69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 * of the error is accumulated in the integral term per second.
71 * This acts as a slow, long-term average that is not subject to
72 * variations in usage like the p term.
74 int64_t target = __calc_target_rate(dc);
75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 int64_t error = dirty - target;
77 int64_t proportional_scaled =
78 div_s64(error, dc->writeback_rate_p_term_inverse);
79 int64_t integral_scaled;
80 uint32_t new_rate;
82 if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 (error > 0 && time_before64(local_clock(),
84 dc->writeback_rate.next + NSEC_PER_MSEC))) {
86 * Only decrease the integral term if it's more than
87 * zero. Only increase the integral term if the device
88 * is keeping up. (Don't wind up the integral
89 * ineffectively in either case).
91 * It's necessary to scale this by
92 * writeback_rate_update_seconds to keep the integral
93 * term dimensioned properly.
95 dc->writeback_rate_integral += error *
96 dc->writeback_rate_update_seconds;
99 integral_scaled = div_s64(dc->writeback_rate_integral,
100 dc->writeback_rate_i_term_inverse);
102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 dc->writeback_rate_minimum, NSEC_PER_SEC);
105 dc->writeback_rate_proportional = proportional_scaled;
106 dc->writeback_rate_integral_scaled = integral_scaled;
107 dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
108 dc->writeback_rate.rate = new_rate;
109 dc->writeback_rate_target = target;
112 static void update_writeback_rate(struct work_struct *work)
114 struct cached_dev *dc = container_of(to_delayed_work(work),
115 struct cached_dev,
116 writeback_rate_update);
118 down_read(&dc->writeback_lock);
120 if (atomic_read(&dc->has_dirty) &&
121 dc->writeback_percent)
122 __update_writeback_rate(dc);
124 up_read(&dc->writeback_lock);
126 schedule_delayed_work(&dc->writeback_rate_update,
127 dc->writeback_rate_update_seconds * HZ);
130 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
132 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
133 !dc->writeback_percent)
134 return 0;
136 return bch_next_delay(&dc->writeback_rate, sectors);
139 struct dirty_io {
140 struct closure cl;
141 struct cached_dev *dc;
142 uint16_t sequence;
143 struct bio bio;
146 static void dirty_init(struct keybuf_key *w)
148 struct dirty_io *io = w->private;
149 struct bio *bio = &io->bio;
151 bio_init(bio, bio->bi_inline_vecs,
152 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
153 if (!io->dc->writeback_percent)
154 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
156 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
157 bio->bi_private = w;
158 bch_bio_map(bio, NULL);
161 static void dirty_io_destructor(struct closure *cl)
163 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
164 kfree(io);
167 static void write_dirty_finish(struct closure *cl)
169 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
170 struct keybuf_key *w = io->bio.bi_private;
171 struct cached_dev *dc = io->dc;
173 bio_free_pages(&io->bio);
175 /* This is kind of a dumb way of signalling errors. */
176 if (KEY_DIRTY(&w->key)) {
177 int ret;
178 unsigned i;
179 struct keylist keys;
181 bch_keylist_init(&keys);
183 bkey_copy(keys.top, &w->key);
184 SET_KEY_DIRTY(keys.top, false);
185 bch_keylist_push(&keys);
187 for (i = 0; i < KEY_PTRS(&w->key); i++)
188 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
190 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
192 if (ret)
193 trace_bcache_writeback_collision(&w->key);
195 atomic_long_inc(ret
196 ? &dc->disk.c->writeback_keys_failed
197 : &dc->disk.c->writeback_keys_done);
200 bch_keybuf_del(&dc->writeback_keys, w);
201 up(&dc->in_flight);
203 closure_return_with_destructor(cl, dirty_io_destructor);
206 static void dirty_endio(struct bio *bio)
208 struct keybuf_key *w = bio->bi_private;
209 struct dirty_io *io = w->private;
211 if (bio->bi_status)
212 SET_KEY_DIRTY(&w->key, false);
214 closure_put(&io->cl);
217 static void write_dirty(struct closure *cl)
219 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
220 struct keybuf_key *w = io->bio.bi_private;
221 struct cached_dev *dc = io->dc;
223 uint16_t next_sequence;
225 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
226 /* Not our turn to write; wait for a write to complete */
227 closure_wait(&dc->writeback_ordering_wait, cl);
229 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
231 * Edge case-- it happened in indeterminate order
232 * relative to when we were added to wait list..
234 closure_wake_up(&dc->writeback_ordering_wait);
237 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
238 return;
241 next_sequence = io->sequence + 1;
244 * IO errors are signalled using the dirty bit on the key.
245 * If we failed to read, we should not attempt to write to the
246 * backing device. Instead, immediately go to write_dirty_finish
247 * to clean up.
249 if (KEY_DIRTY(&w->key)) {
250 dirty_init(w);
251 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
252 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
253 bio_set_dev(&io->bio, io->dc->bdev);
254 io->bio.bi_end_io = dirty_endio;
256 closure_bio_submit(&io->bio, cl);
259 atomic_set(&dc->writeback_sequence_next, next_sequence);
260 closure_wake_up(&dc->writeback_ordering_wait);
262 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
265 static void read_dirty_endio(struct bio *bio)
267 struct keybuf_key *w = bio->bi_private;
268 struct dirty_io *io = w->private;
270 /* is_read = 1 */
271 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
272 bio->bi_status, 1,
273 "reading dirty data from cache");
275 dirty_endio(bio);
278 static void read_dirty_submit(struct closure *cl)
280 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
282 closure_bio_submit(&io->bio, cl);
284 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
287 static void read_dirty(struct cached_dev *dc)
289 unsigned delay = 0;
290 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
291 size_t size;
292 int nk, i;
293 struct dirty_io *io;
294 struct closure cl;
295 uint16_t sequence = 0;
297 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
298 atomic_set(&dc->writeback_sequence_next, sequence);
299 closure_init_stack(&cl);
302 * XXX: if we error, background writeback just spins. Should use some
303 * mempools.
306 next = bch_keybuf_next(&dc->writeback_keys);
308 while (!kthread_should_stop() && next) {
309 size = 0;
310 nk = 0;
312 do {
313 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
316 * Don't combine too many operations, even if they
317 * are all small.
319 if (nk >= MAX_WRITEBACKS_IN_PASS)
320 break;
323 * If the current operation is very large, don't
324 * further combine operations.
326 if (size >= MAX_WRITESIZE_IN_PASS)
327 break;
330 * Operations are only eligible to be combined
331 * if they are contiguous.
333 * TODO: add a heuristic willing to fire a
334 * certain amount of non-contiguous IO per pass,
335 * so that we can benefit from backing device
336 * command queueing.
338 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
339 &START_KEY(&next->key)))
340 break;
342 size += KEY_SIZE(&next->key);
343 keys[nk++] = next;
344 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
346 /* Now we have gathered a set of 1..5 keys to write back. */
347 for (i = 0; i < nk; i++) {
348 w = keys[i];
350 io = kzalloc(sizeof(struct dirty_io) +
351 sizeof(struct bio_vec) *
352 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
353 GFP_KERNEL);
354 if (!io)
355 goto err;
357 w->private = io;
358 io->dc = dc;
359 io->sequence = sequence++;
361 dirty_init(w);
362 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
363 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
364 bio_set_dev(&io->bio,
365 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
366 io->bio.bi_end_io = read_dirty_endio;
368 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
369 goto err_free;
371 trace_bcache_writeback(&w->key);
373 down(&dc->in_flight);
375 /* We've acquired a semaphore for the maximum
376 * simultaneous number of writebacks; from here
377 * everything happens asynchronously.
379 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
382 delay = writeback_delay(dc, size);
384 /* If the control system would wait for at least half a
385 * second, and there's been no reqs hitting the backing disk
386 * for awhile: use an alternate mode where we have at most
387 * one contiguous set of writebacks in flight at a time. If
388 * someone wants to do IO it will be quick, as it will only
389 * have to contend with one operation in flight, and we'll
390 * be round-tripping data to the backing disk as quickly as
391 * it can accept it.
393 if (delay >= HZ / 2) {
394 /* 3 means at least 1.5 seconds, up to 7.5 if we
395 * have slowed way down.
397 if (atomic_inc_return(&dc->backing_idle) >= 3) {
398 /* Wait for current I/Os to finish */
399 closure_sync(&cl);
400 /* And immediately launch a new set. */
401 delay = 0;
405 while (!kthread_should_stop() && delay) {
406 schedule_timeout_interruptible(delay);
407 delay = writeback_delay(dc, 0);
411 if (0) {
412 err_free:
413 kfree(w->private);
414 err:
415 bch_keybuf_del(&dc->writeback_keys, w);
419 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
420 * freed) before refilling again
422 closure_sync(&cl);
425 /* Scan for dirty data */
427 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
428 uint64_t offset, int nr_sectors)
430 struct bcache_device *d = c->devices[inode];
431 unsigned stripe_offset, stripe, sectors_dirty;
433 if (!d)
434 return;
436 stripe = offset_to_stripe(d, offset);
437 stripe_offset = offset & (d->stripe_size - 1);
439 while (nr_sectors) {
440 int s = min_t(unsigned, abs(nr_sectors),
441 d->stripe_size - stripe_offset);
443 if (nr_sectors < 0)
444 s = -s;
446 if (stripe >= d->nr_stripes)
447 return;
449 sectors_dirty = atomic_add_return(s,
450 d->stripe_sectors_dirty + stripe);
451 if (sectors_dirty == d->stripe_size)
452 set_bit(stripe, d->full_dirty_stripes);
453 else
454 clear_bit(stripe, d->full_dirty_stripes);
456 nr_sectors -= s;
457 stripe_offset = 0;
458 stripe++;
462 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
464 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
466 BUG_ON(KEY_INODE(k) != dc->disk.id);
468 return KEY_DIRTY(k);
471 static void refill_full_stripes(struct cached_dev *dc)
473 struct keybuf *buf = &dc->writeback_keys;
474 unsigned start_stripe, stripe, next_stripe;
475 bool wrapped = false;
477 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
479 if (stripe >= dc->disk.nr_stripes)
480 stripe = 0;
482 start_stripe = stripe;
484 while (1) {
485 stripe = find_next_bit(dc->disk.full_dirty_stripes,
486 dc->disk.nr_stripes, stripe);
488 if (stripe == dc->disk.nr_stripes)
489 goto next;
491 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
492 dc->disk.nr_stripes, stripe);
494 buf->last_scanned = KEY(dc->disk.id,
495 stripe * dc->disk.stripe_size, 0);
497 bch_refill_keybuf(dc->disk.c, buf,
498 &KEY(dc->disk.id,
499 next_stripe * dc->disk.stripe_size, 0),
500 dirty_pred);
502 if (array_freelist_empty(&buf->freelist))
503 return;
505 stripe = next_stripe;
506 next:
507 if (wrapped && stripe > start_stripe)
508 return;
510 if (stripe == dc->disk.nr_stripes) {
511 stripe = 0;
512 wrapped = true;
518 * Returns true if we scanned the entire disk
520 static bool refill_dirty(struct cached_dev *dc)
522 struct keybuf *buf = &dc->writeback_keys;
523 struct bkey start = KEY(dc->disk.id, 0, 0);
524 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
525 struct bkey start_pos;
528 * make sure keybuf pos is inside the range for this disk - at bringup
529 * we might not be attached yet so this disk's inode nr isn't
530 * initialized then
532 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
533 bkey_cmp(&buf->last_scanned, &end) > 0)
534 buf->last_scanned = start;
536 if (dc->partial_stripes_expensive) {
537 refill_full_stripes(dc);
538 if (array_freelist_empty(&buf->freelist))
539 return false;
542 start_pos = buf->last_scanned;
543 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
545 if (bkey_cmp(&buf->last_scanned, &end) < 0)
546 return false;
549 * If we get to the end start scanning again from the beginning, and
550 * only scan up to where we initially started scanning from:
552 buf->last_scanned = start;
553 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
555 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
558 static int bch_writeback_thread(void *arg)
560 struct cached_dev *dc = arg;
561 bool searched_full_index;
563 bch_ratelimit_reset(&dc->writeback_rate);
565 while (!kthread_should_stop()) {
566 down_write(&dc->writeback_lock);
567 set_current_state(TASK_INTERRUPTIBLE);
568 if (!atomic_read(&dc->has_dirty) ||
569 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
570 !dc->writeback_running)) {
571 up_write(&dc->writeback_lock);
573 if (kthread_should_stop()) {
574 set_current_state(TASK_RUNNING);
575 return 0;
578 schedule();
579 continue;
581 set_current_state(TASK_RUNNING);
583 searched_full_index = refill_dirty(dc);
585 if (searched_full_index &&
586 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
587 atomic_set(&dc->has_dirty, 0);
588 cached_dev_put(dc);
589 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
590 bch_write_bdev_super(dc, NULL);
593 up_write(&dc->writeback_lock);
595 read_dirty(dc);
597 if (searched_full_index) {
598 unsigned delay = dc->writeback_delay * HZ;
600 while (delay &&
601 !kthread_should_stop() &&
602 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
603 delay = schedule_timeout_interruptible(delay);
605 bch_ratelimit_reset(&dc->writeback_rate);
609 return 0;
612 /* Init */
614 struct sectors_dirty_init {
615 struct btree_op op;
616 unsigned inode;
619 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
620 struct bkey *k)
622 struct sectors_dirty_init *op = container_of(_op,
623 struct sectors_dirty_init, op);
624 if (KEY_INODE(k) > op->inode)
625 return MAP_DONE;
627 if (KEY_DIRTY(k))
628 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
629 KEY_START(k), KEY_SIZE(k));
631 return MAP_CONTINUE;
634 void bch_sectors_dirty_init(struct bcache_device *d)
636 struct sectors_dirty_init op;
638 bch_btree_op_init(&op.op, -1);
639 op.inode = d->id;
641 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
642 sectors_dirty_init_fn, 0);
645 void bch_cached_dev_writeback_init(struct cached_dev *dc)
647 sema_init(&dc->in_flight, 64);
648 init_rwsem(&dc->writeback_lock);
649 bch_keybuf_init(&dc->writeback_keys);
651 dc->writeback_metadata = true;
652 dc->writeback_running = true;
653 dc->writeback_percent = 10;
654 dc->writeback_delay = 30;
655 dc->writeback_rate.rate = 1024;
656 dc->writeback_rate_minimum = 8;
658 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
659 dc->writeback_rate_p_term_inverse = 40;
660 dc->writeback_rate_i_term_inverse = 10000;
662 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
665 int bch_cached_dev_writeback_start(struct cached_dev *dc)
667 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
668 WQ_MEM_RECLAIM, 0);
669 if (!dc->writeback_write_wq)
670 return -ENOMEM;
672 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
673 "bcache_writeback");
674 if (IS_ERR(dc->writeback_thread))
675 return PTR_ERR(dc->writeback_thread);
677 schedule_delayed_work(&dc->writeback_rate_update,
678 dc->writeback_rate_update_seconds * HZ);
680 bch_writeback_queue(dc);
682 return 0;