xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / md / dm-bufio.c
blob414c9af54ded2fde89531cedf3da430c53fcac9d
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
22 #define DM_MSG_PREFIX "bufio"
25 * Memory management policy:
26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30 * dirty buffers.
32 #define DM_BUFIO_MIN_BUFFERS 8
34 #define DM_BUFIO_MEMORY_PERCENT 2
35 #define DM_BUFIO_VMALLOC_PERCENT 25
36 #define DM_BUFIO_WRITEBACK_PERCENT 75
39 * Check buffer ages in this interval (seconds)
41 #define DM_BUFIO_WORK_TIMER_SECS 30
44 * Free buffers when they are older than this (seconds)
46 #define DM_BUFIO_DEFAULT_AGE_SECS 300
49 * The nr of bytes of cached data to keep around.
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
54 * The number of bvec entries that are embedded directly in the buffer.
55 * If the chunk size is larger, dm-io is used to do the io.
57 #define DM_BUFIO_INLINE_VECS 16
60 * Don't try to use kmem_cache_alloc for blocks larger than this.
61 * For explanation, see alloc_buffer_data below.
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
67 * Align buffer writes to this boundary.
68 * Tests show that SSDs have the highest IOPS when using 4k writes.
70 #define DM_BUFIO_WRITE_ALIGN 4096
73 * dm_buffer->list_mode
75 #define LIST_CLEAN 0
76 #define LIST_DIRTY 1
77 #define LIST_SIZE 2
80 * Linking of buffers:
81 * All buffers are linked to cache_hash with their hash_list field.
83 * Clean buffers that are not being written (B_WRITING not set)
84 * are linked to lru[LIST_CLEAN] with their lru_list field.
86 * Dirty and clean buffers that are being written are linked to
87 * lru[LIST_DIRTY] with their lru_list field. When the write
88 * finishes, the buffer cannot be relinked immediately (because we
89 * are in an interrupt context and relinking requires process
90 * context), so some clean-not-writing buffers can be held on
91 * dirty_lru too. They are later added to lru in the process
92 * context.
94 struct dm_bufio_client {
95 struct mutex lock;
97 struct list_head lru[LIST_SIZE];
98 unsigned long n_buffers[LIST_SIZE];
100 struct block_device *bdev;
101 unsigned block_size;
102 unsigned char sectors_per_block_bits;
103 unsigned char pages_per_block_bits;
104 unsigned char blocks_per_page_bits;
105 unsigned aux_size;
106 void (*alloc_callback)(struct dm_buffer *);
107 void (*write_callback)(struct dm_buffer *);
109 struct dm_io_client *dm_io;
111 struct list_head reserved_buffers;
112 unsigned need_reserved_buffers;
114 unsigned minimum_buffers;
116 struct rb_root buffer_tree;
117 wait_queue_head_t free_buffer_wait;
119 sector_t start;
121 int async_write_error;
123 struct list_head client_list;
124 struct shrinker shrinker;
128 * Buffer state bits.
130 #define B_READING 0
131 #define B_WRITING 1
132 #define B_DIRTY 2
135 * Describes how the block was allocated:
136 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
137 * See the comment at alloc_buffer_data.
139 enum data_mode {
140 DATA_MODE_SLAB = 0,
141 DATA_MODE_GET_FREE_PAGES = 1,
142 DATA_MODE_VMALLOC = 2,
143 DATA_MODE_LIMIT = 3
146 struct dm_buffer {
147 struct rb_node node;
148 struct list_head lru_list;
149 sector_t block;
150 void *data;
151 enum data_mode data_mode;
152 unsigned char list_mode; /* LIST_* */
153 unsigned hold_count;
154 blk_status_t read_error;
155 blk_status_t write_error;
156 unsigned long state;
157 unsigned long last_accessed;
158 unsigned dirty_start;
159 unsigned dirty_end;
160 unsigned write_start;
161 unsigned write_end;
162 struct dm_bufio_client *c;
163 struct list_head write_list;
164 struct bio bio;
165 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
167 #define MAX_STACK 10
168 struct stack_trace stack_trace;
169 unsigned long stack_entries[MAX_STACK];
170 #endif
173 /*----------------------------------------------------------------*/
175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
180 unsigned ret = c->blocks_per_page_bits - 1;
182 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
184 return ret;
187 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
188 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
190 #define dm_bufio_in_request() (!!current->bio_list)
192 static void dm_bufio_lock(struct dm_bufio_client *c)
194 mutex_lock_nested(&c->lock, dm_bufio_in_request());
197 static int dm_bufio_trylock(struct dm_bufio_client *c)
199 return mutex_trylock(&c->lock);
202 static void dm_bufio_unlock(struct dm_bufio_client *c)
204 mutex_unlock(&c->lock);
207 /*----------------------------------------------------------------*/
210 * Default cache size: available memory divided by the ratio.
212 static unsigned long dm_bufio_default_cache_size;
215 * Total cache size set by the user.
217 static unsigned long dm_bufio_cache_size;
220 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221 * at any time. If it disagrees, the user has changed cache size.
223 static unsigned long dm_bufio_cache_size_latch;
225 static DEFINE_SPINLOCK(param_spinlock);
228 * Buffers are freed after this timeout
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
239 /*----------------------------------------------------------------*/
242 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
244 static unsigned long dm_bufio_cache_size_per_client;
247 * The current number of clients.
249 static int dm_bufio_client_count;
252 * The list of all clients.
254 static LIST_HEAD(dm_bufio_all_clients);
257 * This mutex protects dm_bufio_cache_size_latch,
258 * dm_bufio_cache_size_per_client and dm_bufio_client_count
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
265 b->stack_trace.nr_entries = 0;
266 b->stack_trace.max_entries = MAX_STACK;
267 b->stack_trace.entries = b->stack_entries;
268 b->stack_trace.skip = 2;
269 save_stack_trace(&b->stack_trace);
271 #endif
273 /*----------------------------------------------------------------
274 * A red/black tree acts as an index for all the buffers.
275 *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
278 struct rb_node *n = c->buffer_tree.rb_node;
279 struct dm_buffer *b;
281 while (n) {
282 b = container_of(n, struct dm_buffer, node);
284 if (b->block == block)
285 return b;
287 n = (b->block < block) ? n->rb_left : n->rb_right;
290 return NULL;
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
295 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 struct dm_buffer *found;
298 while (*new) {
299 found = container_of(*new, struct dm_buffer, node);
301 if (found->block == b->block) {
302 BUG_ON(found != b);
303 return;
306 parent = *new;
307 new = (found->block < b->block) ?
308 &((*new)->rb_left) : &((*new)->rb_right);
311 rb_link_node(&b->node, parent, new);
312 rb_insert_color(&b->node, &c->buffer_tree);
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
317 rb_erase(&b->node, &c->buffer_tree);
320 /*----------------------------------------------------------------*/
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
324 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 &dm_bufio_allocated_kmem_cache,
326 &dm_bufio_allocated_get_free_pages,
327 &dm_bufio_allocated_vmalloc,
330 spin_lock(&param_spinlock);
332 *class_ptr[data_mode] += diff;
334 dm_bufio_current_allocated += diff;
336 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 dm_bufio_peak_allocated = dm_bufio_current_allocated;
339 spin_unlock(&param_spinlock);
343 * Change the number of clients and recalculate per-client limit.
345 static void __cache_size_refresh(void)
347 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 BUG_ON(dm_bufio_client_count < 0);
350 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
353 * Use default if set to 0 and report the actual cache size used.
355 if (!dm_bufio_cache_size_latch) {
356 (void)cmpxchg(&dm_bufio_cache_size, 0,
357 dm_bufio_default_cache_size);
358 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
361 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 (dm_bufio_client_count ? : 1);
366 * Allocating buffer data.
368 * Small buffers are allocated with kmem_cache, to use space optimally.
370 * For large buffers, we choose between get_free_pages and vmalloc.
371 * Each has advantages and disadvantages.
373 * __get_free_pages can randomly fail if the memory is fragmented.
374 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375 * as low as 128M) so using it for caching is not appropriate.
377 * If the allocation may fail we use __get_free_pages. Memory fragmentation
378 * won't have a fatal effect here, but it just causes flushes of some other
379 * buffers and more I/O will be performed. Don't use __get_free_pages if it
380 * always fails (i.e. order >= MAX_ORDER).
382 * If the allocation shouldn't fail we use __vmalloc. This is only for the
383 * initial reserve allocation, so there's no risk of wasting all vmalloc
384 * space.
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 enum data_mode *data_mode)
389 unsigned noio_flag;
390 void *ptr;
392 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393 *data_mode = DATA_MODE_SLAB;
394 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
397 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398 gfp_mask & __GFP_NORETRY) {
399 *data_mode = DATA_MODE_GET_FREE_PAGES;
400 return (void *)__get_free_pages(gfp_mask,
401 c->pages_per_block_bits);
404 *data_mode = DATA_MODE_VMALLOC;
407 * __vmalloc allocates the data pages and auxiliary structures with
408 * gfp_flags that were specified, but pagetables are always allocated
409 * with GFP_KERNEL, no matter what was specified as gfp_mask.
411 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412 * all allocations done by this process (including pagetables) are done
413 * as if GFP_NOIO was specified.
416 if (gfp_mask & __GFP_NORETRY)
417 noio_flag = memalloc_noio_save();
419 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
421 if (gfp_mask & __GFP_NORETRY)
422 memalloc_noio_restore(noio_flag);
424 return ptr;
428 * Free buffer's data.
430 static void free_buffer_data(struct dm_bufio_client *c,
431 void *data, enum data_mode data_mode)
433 switch (data_mode) {
434 case DATA_MODE_SLAB:
435 kmem_cache_free(DM_BUFIO_CACHE(c), data);
436 break;
438 case DATA_MODE_GET_FREE_PAGES:
439 free_pages((unsigned long)data, c->pages_per_block_bits);
440 break;
442 case DATA_MODE_VMALLOC:
443 vfree(data);
444 break;
446 default:
447 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448 data_mode);
449 BUG();
454 * Allocate buffer and its data.
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
458 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459 gfp_mask);
461 if (!b)
462 return NULL;
464 b->c = c;
466 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467 if (!b->data) {
468 kfree(b);
469 return NULL;
472 adjust_total_allocated(b->data_mode, (long)c->block_size);
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475 memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477 return b;
481 * Free buffer and its data.
483 static void free_buffer(struct dm_buffer *b)
485 struct dm_bufio_client *c = b->c;
487 adjust_total_allocated(b->data_mode, -(long)c->block_size);
489 free_buffer_data(c, b->data, b->data_mode);
490 kfree(b);
494 * Link buffer to the hash list and clean or dirty queue.
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
498 struct dm_bufio_client *c = b->c;
500 c->n_buffers[dirty]++;
501 b->block = block;
502 b->list_mode = dirty;
503 list_add(&b->lru_list, &c->lru[dirty]);
504 __insert(b->c, b);
505 b->last_accessed = jiffies;
509 * Unlink buffer from the hash list and dirty or clean queue.
511 static void __unlink_buffer(struct dm_buffer *b)
513 struct dm_bufio_client *c = b->c;
515 BUG_ON(!c->n_buffers[b->list_mode]);
517 c->n_buffers[b->list_mode]--;
518 __remove(b->c, b);
519 list_del(&b->lru_list);
523 * Place the buffer to the head of dirty or clean LRU queue.
525 static void __relink_lru(struct dm_buffer *b, int dirty)
527 struct dm_bufio_client *c = b->c;
529 BUG_ON(!c->n_buffers[b->list_mode]);
531 c->n_buffers[b->list_mode]--;
532 c->n_buffers[dirty]++;
533 b->list_mode = dirty;
534 list_move(&b->lru_list, &c->lru[dirty]);
535 b->last_accessed = jiffies;
538 /*----------------------------------------------------------------
539 * Submit I/O on the buffer.
541 * Bio interface is faster but it has some problems:
542 * the vector list is limited (increasing this limit increases
543 * memory-consumption per buffer, so it is not viable);
545 * the memory must be direct-mapped, not vmalloced;
547 * the I/O driver can reject requests spuriously if it thinks that
548 * the requests are too big for the device or if they cross a
549 * controller-defined memory boundary.
551 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552 * it is not vmalloced, try using the bio interface.
554 * If the buffer is big, if it is vmalloced or if the underlying device
555 * rejects the bio because it is too large, use dm-io layer to do the I/O.
556 * The dm-io layer splits the I/O into multiple requests, avoiding the above
557 * shortcomings.
558 *--------------------------------------------------------------*/
561 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562 * that the request was handled directly with bio interface.
564 static void dmio_complete(unsigned long error, void *context)
566 struct dm_buffer *b = context;
568 b->bio.bi_status = error ? BLK_STS_IOERR : 0;
569 b->bio.bi_end_io(&b->bio);
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
573 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
575 int r;
576 struct dm_io_request io_req = {
577 .bi_op = rw,
578 .bi_op_flags = 0,
579 .notify.fn = dmio_complete,
580 .notify.context = b,
581 .client = b->c->dm_io,
583 struct dm_io_region region = {
584 .bdev = b->c->bdev,
585 .sector = sector,
586 .count = n_sectors,
589 if (b->data_mode != DATA_MODE_VMALLOC) {
590 io_req.mem.type = DM_IO_KMEM;
591 io_req.mem.ptr.addr = (char *)b->data + offset;
592 } else {
593 io_req.mem.type = DM_IO_VMA;
594 io_req.mem.ptr.vma = (char *)b->data + offset;
597 b->bio.bi_end_io = end_io;
599 r = dm_io(&io_req, 1, &region, NULL);
600 if (r) {
601 b->bio.bi_status = errno_to_blk_status(r);
602 end_io(&b->bio);
606 static void inline_endio(struct bio *bio)
608 bio_end_io_t *end_fn = bio->bi_private;
609 blk_status_t status = bio->bi_status;
612 * Reset the bio to free any attached resources
613 * (e.g. bio integrity profiles).
615 bio_reset(bio);
617 bio->bi_status = status;
618 end_fn(bio);
621 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector,
622 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
624 char *ptr;
625 unsigned len;
627 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
628 b->bio.bi_iter.bi_sector = sector;
629 bio_set_dev(&b->bio, b->c->bdev);
630 b->bio.bi_end_io = inline_endio;
632 * Use of .bi_private isn't a problem here because
633 * the dm_buffer's inline bio is local to bufio.
635 b->bio.bi_private = end_io;
636 bio_set_op_attrs(&b->bio, rw, 0);
638 ptr = (char *)b->data + offset;
639 len = n_sectors << SECTOR_SHIFT;
641 do {
642 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
643 if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step,
644 offset_in_page(ptr))) {
645 BUG_ON(b->c->block_size <= PAGE_SIZE);
646 use_dmio(b, rw, sector, n_sectors, offset, end_io);
647 return;
650 len -= this_step;
651 ptr += this_step;
652 } while (len > 0);
654 submit_bio(&b->bio);
657 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io)
659 unsigned n_sectors;
660 sector_t sector;
661 unsigned offset, end;
663 sector = (b->block << b->c->sectors_per_block_bits) + b->c->start;
665 if (rw != REQ_OP_WRITE) {
666 n_sectors = 1 << b->c->sectors_per_block_bits;
667 offset = 0;
668 } else {
669 if (b->c->write_callback)
670 b->c->write_callback(b);
671 offset = b->write_start;
672 end = b->write_end;
673 offset &= -DM_BUFIO_WRITE_ALIGN;
674 end += DM_BUFIO_WRITE_ALIGN - 1;
675 end &= -DM_BUFIO_WRITE_ALIGN;
676 if (unlikely(end > b->c->block_size))
677 end = b->c->block_size;
679 sector += offset >> SECTOR_SHIFT;
680 n_sectors = (end - offset) >> SECTOR_SHIFT;
683 if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) &&
684 b->data_mode != DATA_MODE_VMALLOC)
685 use_inline_bio(b, rw, sector, n_sectors, offset, end_io);
686 else
687 use_dmio(b, rw, sector, n_sectors, offset, end_io);
690 /*----------------------------------------------------------------
691 * Writing dirty buffers
692 *--------------------------------------------------------------*/
695 * The endio routine for write.
697 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
698 * it.
700 static void write_endio(struct bio *bio)
702 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
704 b->write_error = bio->bi_status;
705 if (unlikely(bio->bi_status)) {
706 struct dm_bufio_client *c = b->c;
708 (void)cmpxchg(&c->async_write_error, 0,
709 blk_status_to_errno(bio->bi_status));
712 BUG_ON(!test_bit(B_WRITING, &b->state));
714 smp_mb__before_atomic();
715 clear_bit(B_WRITING, &b->state);
716 smp_mb__after_atomic();
718 wake_up_bit(&b->state, B_WRITING);
722 * Initiate a write on a dirty buffer, but don't wait for it.
724 * - If the buffer is not dirty, exit.
725 * - If there some previous write going on, wait for it to finish (we can't
726 * have two writes on the same buffer simultaneously).
727 * - Submit our write and don't wait on it. We set B_WRITING indicating
728 * that there is a write in progress.
730 static void __write_dirty_buffer(struct dm_buffer *b,
731 struct list_head *write_list)
733 if (!test_bit(B_DIRTY, &b->state))
734 return;
736 clear_bit(B_DIRTY, &b->state);
737 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
739 b->write_start = b->dirty_start;
740 b->write_end = b->dirty_end;
742 if (!write_list)
743 submit_io(b, REQ_OP_WRITE, write_endio);
744 else
745 list_add_tail(&b->write_list, write_list);
748 static void __flush_write_list(struct list_head *write_list)
750 struct blk_plug plug;
751 blk_start_plug(&plug);
752 while (!list_empty(write_list)) {
753 struct dm_buffer *b =
754 list_entry(write_list->next, struct dm_buffer, write_list);
755 list_del(&b->write_list);
756 submit_io(b, REQ_OP_WRITE, write_endio);
757 cond_resched();
759 blk_finish_plug(&plug);
763 * Wait until any activity on the buffer finishes. Possibly write the
764 * buffer if it is dirty. When this function finishes, there is no I/O
765 * running on the buffer and the buffer is not dirty.
767 static void __make_buffer_clean(struct dm_buffer *b)
769 BUG_ON(b->hold_count);
771 if (!b->state) /* fast case */
772 return;
774 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
775 __write_dirty_buffer(b, NULL);
776 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
780 * Find some buffer that is not held by anybody, clean it, unlink it and
781 * return it.
783 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
785 struct dm_buffer *b;
787 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
788 BUG_ON(test_bit(B_WRITING, &b->state));
789 BUG_ON(test_bit(B_DIRTY, &b->state));
791 if (!b->hold_count) {
792 __make_buffer_clean(b);
793 __unlink_buffer(b);
794 return b;
796 cond_resched();
799 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
800 BUG_ON(test_bit(B_READING, &b->state));
802 if (!b->hold_count) {
803 __make_buffer_clean(b);
804 __unlink_buffer(b);
805 return b;
807 cond_resched();
810 return NULL;
814 * Wait until some other threads free some buffer or release hold count on
815 * some buffer.
817 * This function is entered with c->lock held, drops it and regains it
818 * before exiting.
820 static void __wait_for_free_buffer(struct dm_bufio_client *c)
822 DECLARE_WAITQUEUE(wait, current);
824 add_wait_queue(&c->free_buffer_wait, &wait);
825 set_current_state(TASK_UNINTERRUPTIBLE);
826 dm_bufio_unlock(c);
828 io_schedule();
830 remove_wait_queue(&c->free_buffer_wait, &wait);
832 dm_bufio_lock(c);
835 enum new_flag {
836 NF_FRESH = 0,
837 NF_READ = 1,
838 NF_GET = 2,
839 NF_PREFETCH = 3
843 * Allocate a new buffer. If the allocation is not possible, wait until
844 * some other thread frees a buffer.
846 * May drop the lock and regain it.
848 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
850 struct dm_buffer *b;
851 bool tried_noio_alloc = false;
854 * dm-bufio is resistant to allocation failures (it just keeps
855 * one buffer reserved in cases all the allocations fail).
856 * So set flags to not try too hard:
857 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
858 * mutex and wait ourselves.
859 * __GFP_NORETRY: don't retry and rather return failure
860 * __GFP_NOMEMALLOC: don't use emergency reserves
861 * __GFP_NOWARN: don't print a warning in case of failure
863 * For debugging, if we set the cache size to 1, no new buffers will
864 * be allocated.
866 while (1) {
867 if (dm_bufio_cache_size_latch != 1) {
868 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
869 if (b)
870 return b;
873 if (nf == NF_PREFETCH)
874 return NULL;
876 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
877 dm_bufio_unlock(c);
878 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
879 dm_bufio_lock(c);
880 if (b)
881 return b;
882 tried_noio_alloc = true;
885 if (!list_empty(&c->reserved_buffers)) {
886 b = list_entry(c->reserved_buffers.next,
887 struct dm_buffer, lru_list);
888 list_del(&b->lru_list);
889 c->need_reserved_buffers++;
891 return b;
894 b = __get_unclaimed_buffer(c);
895 if (b)
896 return b;
898 __wait_for_free_buffer(c);
902 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
904 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
906 if (!b)
907 return NULL;
909 if (c->alloc_callback)
910 c->alloc_callback(b);
912 return b;
916 * Free a buffer and wake other threads waiting for free buffers.
918 static void __free_buffer_wake(struct dm_buffer *b)
920 struct dm_bufio_client *c = b->c;
922 if (!c->need_reserved_buffers)
923 free_buffer(b);
924 else {
925 list_add(&b->lru_list, &c->reserved_buffers);
926 c->need_reserved_buffers--;
929 wake_up(&c->free_buffer_wait);
932 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
933 struct list_head *write_list)
935 struct dm_buffer *b, *tmp;
937 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
938 BUG_ON(test_bit(B_READING, &b->state));
940 if (!test_bit(B_DIRTY, &b->state) &&
941 !test_bit(B_WRITING, &b->state)) {
942 __relink_lru(b, LIST_CLEAN);
943 continue;
946 if (no_wait && test_bit(B_WRITING, &b->state))
947 return;
949 __write_dirty_buffer(b, write_list);
950 cond_resched();
955 * Get writeback threshold and buffer limit for a given client.
957 static void __get_memory_limit(struct dm_bufio_client *c,
958 unsigned long *threshold_buffers,
959 unsigned long *limit_buffers)
961 unsigned long buffers;
963 if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
964 if (mutex_trylock(&dm_bufio_clients_lock)) {
965 __cache_size_refresh();
966 mutex_unlock(&dm_bufio_clients_lock);
970 buffers = dm_bufio_cache_size_per_client >>
971 (c->sectors_per_block_bits + SECTOR_SHIFT);
973 if (buffers < c->minimum_buffers)
974 buffers = c->minimum_buffers;
976 *limit_buffers = buffers;
977 *threshold_buffers = mult_frac(buffers,
978 DM_BUFIO_WRITEBACK_PERCENT, 100);
982 * Check if we're over watermark.
983 * If we are over threshold_buffers, start freeing buffers.
984 * If we're over "limit_buffers", block until we get under the limit.
986 static void __check_watermark(struct dm_bufio_client *c,
987 struct list_head *write_list)
989 unsigned long threshold_buffers, limit_buffers;
991 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
993 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
994 limit_buffers) {
996 struct dm_buffer *b = __get_unclaimed_buffer(c);
998 if (!b)
999 return;
1001 __free_buffer_wake(b);
1002 cond_resched();
1005 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
1006 __write_dirty_buffers_async(c, 1, write_list);
1009 /*----------------------------------------------------------------
1010 * Getting a buffer
1011 *--------------------------------------------------------------*/
1013 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1014 enum new_flag nf, int *need_submit,
1015 struct list_head *write_list)
1017 struct dm_buffer *b, *new_b = NULL;
1019 *need_submit = 0;
1021 b = __find(c, block);
1022 if (b)
1023 goto found_buffer;
1025 if (nf == NF_GET)
1026 return NULL;
1028 new_b = __alloc_buffer_wait(c, nf);
1029 if (!new_b)
1030 return NULL;
1033 * We've had a period where the mutex was unlocked, so need to
1034 * recheck the hash table.
1036 b = __find(c, block);
1037 if (b) {
1038 __free_buffer_wake(new_b);
1039 goto found_buffer;
1042 __check_watermark(c, write_list);
1044 b = new_b;
1045 b->hold_count = 1;
1046 b->read_error = 0;
1047 b->write_error = 0;
1048 __link_buffer(b, block, LIST_CLEAN);
1050 if (nf == NF_FRESH) {
1051 b->state = 0;
1052 return b;
1055 b->state = 1 << B_READING;
1056 *need_submit = 1;
1058 return b;
1060 found_buffer:
1061 if (nf == NF_PREFETCH)
1062 return NULL;
1064 * Note: it is essential that we don't wait for the buffer to be
1065 * read if dm_bufio_get function is used. Both dm_bufio_get and
1066 * dm_bufio_prefetch can be used in the driver request routine.
1067 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1068 * the same buffer, it would deadlock if we waited.
1070 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1071 return NULL;
1073 b->hold_count++;
1074 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1075 test_bit(B_WRITING, &b->state));
1076 return b;
1080 * The endio routine for reading: set the error, clear the bit and wake up
1081 * anyone waiting on the buffer.
1083 static void read_endio(struct bio *bio)
1085 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1087 b->read_error = bio->bi_status;
1089 BUG_ON(!test_bit(B_READING, &b->state));
1091 smp_mb__before_atomic();
1092 clear_bit(B_READING, &b->state);
1093 smp_mb__after_atomic();
1095 wake_up_bit(&b->state, B_READING);
1099 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1100 * functions is similar except that dm_bufio_new doesn't read the
1101 * buffer from the disk (assuming that the caller overwrites all the data
1102 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1104 static void *new_read(struct dm_bufio_client *c, sector_t block,
1105 enum new_flag nf, struct dm_buffer **bp)
1107 int need_submit;
1108 struct dm_buffer *b;
1110 LIST_HEAD(write_list);
1112 dm_bufio_lock(c);
1113 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1114 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1115 if (b && b->hold_count == 1)
1116 buffer_record_stack(b);
1117 #endif
1118 dm_bufio_unlock(c);
1120 __flush_write_list(&write_list);
1122 if (!b)
1123 return NULL;
1125 if (need_submit)
1126 submit_io(b, REQ_OP_READ, read_endio);
1128 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1130 if (b->read_error) {
1131 int error = blk_status_to_errno(b->read_error);
1133 dm_bufio_release(b);
1135 return ERR_PTR(error);
1138 *bp = b;
1140 return b->data;
1143 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1144 struct dm_buffer **bp)
1146 return new_read(c, block, NF_GET, bp);
1148 EXPORT_SYMBOL_GPL(dm_bufio_get);
1150 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1151 struct dm_buffer **bp)
1153 BUG_ON(dm_bufio_in_request());
1155 return new_read(c, block, NF_READ, bp);
1157 EXPORT_SYMBOL_GPL(dm_bufio_read);
1159 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1160 struct dm_buffer **bp)
1162 BUG_ON(dm_bufio_in_request());
1164 return new_read(c, block, NF_FRESH, bp);
1166 EXPORT_SYMBOL_GPL(dm_bufio_new);
1168 void dm_bufio_prefetch(struct dm_bufio_client *c,
1169 sector_t block, unsigned n_blocks)
1171 struct blk_plug plug;
1173 LIST_HEAD(write_list);
1175 BUG_ON(dm_bufio_in_request());
1177 blk_start_plug(&plug);
1178 dm_bufio_lock(c);
1180 for (; n_blocks--; block++) {
1181 int need_submit;
1182 struct dm_buffer *b;
1183 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1184 &write_list);
1185 if (unlikely(!list_empty(&write_list))) {
1186 dm_bufio_unlock(c);
1187 blk_finish_plug(&plug);
1188 __flush_write_list(&write_list);
1189 blk_start_plug(&plug);
1190 dm_bufio_lock(c);
1192 if (unlikely(b != NULL)) {
1193 dm_bufio_unlock(c);
1195 if (need_submit)
1196 submit_io(b, REQ_OP_READ, read_endio);
1197 dm_bufio_release(b);
1199 cond_resched();
1201 if (!n_blocks)
1202 goto flush_plug;
1203 dm_bufio_lock(c);
1207 dm_bufio_unlock(c);
1209 flush_plug:
1210 blk_finish_plug(&plug);
1212 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1214 void dm_bufio_release(struct dm_buffer *b)
1216 struct dm_bufio_client *c = b->c;
1218 dm_bufio_lock(c);
1220 BUG_ON(!b->hold_count);
1222 b->hold_count--;
1223 if (!b->hold_count) {
1224 wake_up(&c->free_buffer_wait);
1227 * If there were errors on the buffer, and the buffer is not
1228 * to be written, free the buffer. There is no point in caching
1229 * invalid buffer.
1231 if ((b->read_error || b->write_error) &&
1232 !test_bit(B_READING, &b->state) &&
1233 !test_bit(B_WRITING, &b->state) &&
1234 !test_bit(B_DIRTY, &b->state)) {
1235 __unlink_buffer(b);
1236 __free_buffer_wake(b);
1240 dm_bufio_unlock(c);
1242 EXPORT_SYMBOL_GPL(dm_bufio_release);
1244 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1245 unsigned start, unsigned end)
1247 struct dm_bufio_client *c = b->c;
1249 BUG_ON(start >= end);
1250 BUG_ON(end > b->c->block_size);
1252 dm_bufio_lock(c);
1254 BUG_ON(test_bit(B_READING, &b->state));
1256 if (!test_and_set_bit(B_DIRTY, &b->state)) {
1257 b->dirty_start = start;
1258 b->dirty_end = end;
1259 __relink_lru(b, LIST_DIRTY);
1260 } else {
1261 if (start < b->dirty_start)
1262 b->dirty_start = start;
1263 if (end > b->dirty_end)
1264 b->dirty_end = end;
1267 dm_bufio_unlock(c);
1269 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1271 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1273 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1275 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1277 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1279 LIST_HEAD(write_list);
1281 BUG_ON(dm_bufio_in_request());
1283 dm_bufio_lock(c);
1284 __write_dirty_buffers_async(c, 0, &write_list);
1285 dm_bufio_unlock(c);
1286 __flush_write_list(&write_list);
1288 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1291 * For performance, it is essential that the buffers are written asynchronously
1292 * and simultaneously (so that the block layer can merge the writes) and then
1293 * waited upon.
1295 * Finally, we flush hardware disk cache.
1297 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1299 int a, f;
1300 unsigned long buffers_processed = 0;
1301 struct dm_buffer *b, *tmp;
1303 LIST_HEAD(write_list);
1305 dm_bufio_lock(c);
1306 __write_dirty_buffers_async(c, 0, &write_list);
1307 dm_bufio_unlock(c);
1308 __flush_write_list(&write_list);
1309 dm_bufio_lock(c);
1311 again:
1312 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1313 int dropped_lock = 0;
1315 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1316 buffers_processed++;
1318 BUG_ON(test_bit(B_READING, &b->state));
1320 if (test_bit(B_WRITING, &b->state)) {
1321 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1322 dropped_lock = 1;
1323 b->hold_count++;
1324 dm_bufio_unlock(c);
1325 wait_on_bit_io(&b->state, B_WRITING,
1326 TASK_UNINTERRUPTIBLE);
1327 dm_bufio_lock(c);
1328 b->hold_count--;
1329 } else
1330 wait_on_bit_io(&b->state, B_WRITING,
1331 TASK_UNINTERRUPTIBLE);
1334 if (!test_bit(B_DIRTY, &b->state) &&
1335 !test_bit(B_WRITING, &b->state))
1336 __relink_lru(b, LIST_CLEAN);
1338 cond_resched();
1341 * If we dropped the lock, the list is no longer consistent,
1342 * so we must restart the search.
1344 * In the most common case, the buffer just processed is
1345 * relinked to the clean list, so we won't loop scanning the
1346 * same buffer again and again.
1348 * This may livelock if there is another thread simultaneously
1349 * dirtying buffers, so we count the number of buffers walked
1350 * and if it exceeds the total number of buffers, it means that
1351 * someone is doing some writes simultaneously with us. In
1352 * this case, stop, dropping the lock.
1354 if (dropped_lock)
1355 goto again;
1357 wake_up(&c->free_buffer_wait);
1358 dm_bufio_unlock(c);
1360 a = xchg(&c->async_write_error, 0);
1361 f = dm_bufio_issue_flush(c);
1362 if (a)
1363 return a;
1365 return f;
1367 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1370 * Use dm-io to send and empty barrier flush the device.
1372 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1374 struct dm_io_request io_req = {
1375 .bi_op = REQ_OP_WRITE,
1376 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1377 .mem.type = DM_IO_KMEM,
1378 .mem.ptr.addr = NULL,
1379 .client = c->dm_io,
1381 struct dm_io_region io_reg = {
1382 .bdev = c->bdev,
1383 .sector = 0,
1384 .count = 0,
1387 BUG_ON(dm_bufio_in_request());
1389 return dm_io(&io_req, 1, &io_reg, NULL);
1391 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1394 * We first delete any other buffer that may be at that new location.
1396 * Then, we write the buffer to the original location if it was dirty.
1398 * Then, if we are the only one who is holding the buffer, relink the buffer
1399 * in the hash queue for the new location.
1401 * If there was someone else holding the buffer, we write it to the new
1402 * location but not relink it, because that other user needs to have the buffer
1403 * at the same place.
1405 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1407 struct dm_bufio_client *c = b->c;
1408 struct dm_buffer *new;
1410 BUG_ON(dm_bufio_in_request());
1412 dm_bufio_lock(c);
1414 retry:
1415 new = __find(c, new_block);
1416 if (new) {
1417 if (new->hold_count) {
1418 __wait_for_free_buffer(c);
1419 goto retry;
1423 * FIXME: Is there any point waiting for a write that's going
1424 * to be overwritten in a bit?
1426 __make_buffer_clean(new);
1427 __unlink_buffer(new);
1428 __free_buffer_wake(new);
1431 BUG_ON(!b->hold_count);
1432 BUG_ON(test_bit(B_READING, &b->state));
1434 __write_dirty_buffer(b, NULL);
1435 if (b->hold_count == 1) {
1436 wait_on_bit_io(&b->state, B_WRITING,
1437 TASK_UNINTERRUPTIBLE);
1438 set_bit(B_DIRTY, &b->state);
1439 b->dirty_start = 0;
1440 b->dirty_end = c->block_size;
1441 __unlink_buffer(b);
1442 __link_buffer(b, new_block, LIST_DIRTY);
1443 } else {
1444 sector_t old_block;
1445 wait_on_bit_lock_io(&b->state, B_WRITING,
1446 TASK_UNINTERRUPTIBLE);
1448 * Relink buffer to "new_block" so that write_callback
1449 * sees "new_block" as a block number.
1450 * After the write, link the buffer back to old_block.
1451 * All this must be done in bufio lock, so that block number
1452 * change isn't visible to other threads.
1454 old_block = b->block;
1455 __unlink_buffer(b);
1456 __link_buffer(b, new_block, b->list_mode);
1457 submit_io(b, REQ_OP_WRITE, write_endio);
1458 wait_on_bit_io(&b->state, B_WRITING,
1459 TASK_UNINTERRUPTIBLE);
1460 __unlink_buffer(b);
1461 __link_buffer(b, old_block, b->list_mode);
1464 dm_bufio_unlock(c);
1465 dm_bufio_release(b);
1467 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1470 * Free the given buffer.
1472 * This is just a hint, if the buffer is in use or dirty, this function
1473 * does nothing.
1475 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1477 struct dm_buffer *b;
1479 dm_bufio_lock(c);
1481 b = __find(c, block);
1482 if (b && likely(!b->hold_count) && likely(!b->state)) {
1483 __unlink_buffer(b);
1484 __free_buffer_wake(b);
1487 dm_bufio_unlock(c);
1489 EXPORT_SYMBOL(dm_bufio_forget);
1491 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1493 c->minimum_buffers = n;
1495 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1497 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1499 return c->block_size;
1501 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1503 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1505 return i_size_read(c->bdev->bd_inode) >>
1506 (SECTOR_SHIFT + c->sectors_per_block_bits);
1508 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1510 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1512 return b->block;
1514 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1516 void *dm_bufio_get_block_data(struct dm_buffer *b)
1518 return b->data;
1520 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1522 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1524 return b + 1;
1526 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1528 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1530 return b->c;
1532 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1534 static void drop_buffers(struct dm_bufio_client *c)
1536 struct dm_buffer *b;
1537 int i;
1538 bool warned = false;
1540 BUG_ON(dm_bufio_in_request());
1543 * An optimization so that the buffers are not written one-by-one.
1545 dm_bufio_write_dirty_buffers_async(c);
1547 dm_bufio_lock(c);
1549 while ((b = __get_unclaimed_buffer(c)))
1550 __free_buffer_wake(b);
1552 for (i = 0; i < LIST_SIZE; i++)
1553 list_for_each_entry(b, &c->lru[i], lru_list) {
1554 WARN_ON(!warned);
1555 warned = true;
1556 DMERR("leaked buffer %llx, hold count %u, list %d",
1557 (unsigned long long)b->block, b->hold_count, i);
1558 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1559 print_stack_trace(&b->stack_trace, 1);
1560 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1561 #endif
1564 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1565 while ((b = __get_unclaimed_buffer(c)))
1566 __free_buffer_wake(b);
1567 #endif
1569 for (i = 0; i < LIST_SIZE; i++)
1570 BUG_ON(!list_empty(&c->lru[i]));
1572 dm_bufio_unlock(c);
1576 * We may not be able to evict this buffer if IO pending or the client
1577 * is still using it. Caller is expected to know buffer is too old.
1579 * And if GFP_NOFS is used, we must not do any I/O because we hold
1580 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1581 * rerouted to different bufio client.
1583 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1585 if (!(gfp & __GFP_FS)) {
1586 if (test_bit(B_READING, &b->state) ||
1587 test_bit(B_WRITING, &b->state) ||
1588 test_bit(B_DIRTY, &b->state))
1589 return false;
1592 if (b->hold_count)
1593 return false;
1595 __make_buffer_clean(b);
1596 __unlink_buffer(b);
1597 __free_buffer_wake(b);
1599 return true;
1602 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1604 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1605 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1608 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1609 gfp_t gfp_mask)
1611 int l;
1612 struct dm_buffer *b, *tmp;
1613 unsigned long freed = 0;
1614 unsigned long count = c->n_buffers[LIST_CLEAN] +
1615 c->n_buffers[LIST_DIRTY];
1616 unsigned long retain_target = get_retain_buffers(c);
1618 for (l = 0; l < LIST_SIZE; l++) {
1619 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1620 if (__try_evict_buffer(b, gfp_mask))
1621 freed++;
1622 if (!--nr_to_scan || ((count - freed) <= retain_target))
1623 return freed;
1624 cond_resched();
1627 return freed;
1630 static unsigned long
1631 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1633 struct dm_bufio_client *c;
1634 unsigned long freed;
1636 c = container_of(shrink, struct dm_bufio_client, shrinker);
1637 if (sc->gfp_mask & __GFP_FS)
1638 dm_bufio_lock(c);
1639 else if (!dm_bufio_trylock(c))
1640 return SHRINK_STOP;
1642 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1643 dm_bufio_unlock(c);
1644 return freed;
1647 static unsigned long
1648 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1650 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1651 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1652 READ_ONCE(c->n_buffers[LIST_DIRTY]);
1653 unsigned long retain_target = get_retain_buffers(c);
1655 return (count < retain_target) ? 0 : (count - retain_target);
1659 * Create the buffering interface
1661 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1662 unsigned reserved_buffers, unsigned aux_size,
1663 void (*alloc_callback)(struct dm_buffer *),
1664 void (*write_callback)(struct dm_buffer *))
1666 int r;
1667 struct dm_bufio_client *c;
1668 unsigned i;
1670 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1671 (block_size & (block_size - 1)));
1673 c = kzalloc(sizeof(*c), GFP_KERNEL);
1674 if (!c) {
1675 r = -ENOMEM;
1676 goto bad_client;
1678 c->buffer_tree = RB_ROOT;
1680 c->bdev = bdev;
1681 c->block_size = block_size;
1682 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1683 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1684 __ffs(block_size) - PAGE_SHIFT : 0;
1685 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1686 PAGE_SHIFT - __ffs(block_size) : 0);
1688 c->aux_size = aux_size;
1689 c->alloc_callback = alloc_callback;
1690 c->write_callback = write_callback;
1692 for (i = 0; i < LIST_SIZE; i++) {
1693 INIT_LIST_HEAD(&c->lru[i]);
1694 c->n_buffers[i] = 0;
1697 mutex_init(&c->lock);
1698 INIT_LIST_HEAD(&c->reserved_buffers);
1699 c->need_reserved_buffers = reserved_buffers;
1701 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1703 init_waitqueue_head(&c->free_buffer_wait);
1704 c->async_write_error = 0;
1706 c->dm_io = dm_io_client_create();
1707 if (IS_ERR(c->dm_io)) {
1708 r = PTR_ERR(c->dm_io);
1709 goto bad_dm_io;
1712 mutex_lock(&dm_bufio_clients_lock);
1713 if (c->blocks_per_page_bits) {
1714 if (!DM_BUFIO_CACHE_NAME(c)) {
1715 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1716 if (!DM_BUFIO_CACHE_NAME(c)) {
1717 r = -ENOMEM;
1718 mutex_unlock(&dm_bufio_clients_lock);
1719 goto bad;
1723 if (!DM_BUFIO_CACHE(c)) {
1724 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1725 c->block_size,
1726 c->block_size, 0, NULL);
1727 if (!DM_BUFIO_CACHE(c)) {
1728 r = -ENOMEM;
1729 mutex_unlock(&dm_bufio_clients_lock);
1730 goto bad;
1734 mutex_unlock(&dm_bufio_clients_lock);
1736 while (c->need_reserved_buffers) {
1737 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1739 if (!b) {
1740 r = -ENOMEM;
1741 goto bad;
1743 __free_buffer_wake(b);
1746 c->shrinker.count_objects = dm_bufio_shrink_count;
1747 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1748 c->shrinker.seeks = 1;
1749 c->shrinker.batch = 0;
1750 r = register_shrinker(&c->shrinker);
1751 if (r)
1752 goto bad;
1754 mutex_lock(&dm_bufio_clients_lock);
1755 dm_bufio_client_count++;
1756 list_add(&c->client_list, &dm_bufio_all_clients);
1757 __cache_size_refresh();
1758 mutex_unlock(&dm_bufio_clients_lock);
1760 return c;
1762 bad:
1763 while (!list_empty(&c->reserved_buffers)) {
1764 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1765 struct dm_buffer, lru_list);
1766 list_del(&b->lru_list);
1767 free_buffer(b);
1769 dm_io_client_destroy(c->dm_io);
1770 bad_dm_io:
1771 mutex_destroy(&c->lock);
1772 kfree(c);
1773 bad_client:
1774 return ERR_PTR(r);
1776 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1779 * Free the buffering interface.
1780 * It is required that there are no references on any buffers.
1782 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1784 unsigned i;
1786 drop_buffers(c);
1788 unregister_shrinker(&c->shrinker);
1790 mutex_lock(&dm_bufio_clients_lock);
1792 list_del(&c->client_list);
1793 dm_bufio_client_count--;
1794 __cache_size_refresh();
1796 mutex_unlock(&dm_bufio_clients_lock);
1798 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1799 BUG_ON(c->need_reserved_buffers);
1801 while (!list_empty(&c->reserved_buffers)) {
1802 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1803 struct dm_buffer, lru_list);
1804 list_del(&b->lru_list);
1805 free_buffer(b);
1808 for (i = 0; i < LIST_SIZE; i++)
1809 if (c->n_buffers[i])
1810 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1812 for (i = 0; i < LIST_SIZE; i++)
1813 BUG_ON(c->n_buffers[i]);
1815 dm_io_client_destroy(c->dm_io);
1816 mutex_destroy(&c->lock);
1817 kfree(c);
1819 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1821 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1823 c->start = start;
1825 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1827 static unsigned get_max_age_hz(void)
1829 unsigned max_age = READ_ONCE(dm_bufio_max_age);
1831 if (max_age > UINT_MAX / HZ)
1832 max_age = UINT_MAX / HZ;
1834 return max_age * HZ;
1837 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1839 return time_after_eq(jiffies, b->last_accessed + age_hz);
1842 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1844 struct dm_buffer *b, *tmp;
1845 unsigned long retain_target = get_retain_buffers(c);
1846 unsigned long count;
1847 LIST_HEAD(write_list);
1849 dm_bufio_lock(c);
1851 __check_watermark(c, &write_list);
1852 if (unlikely(!list_empty(&write_list))) {
1853 dm_bufio_unlock(c);
1854 __flush_write_list(&write_list);
1855 dm_bufio_lock(c);
1858 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1859 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1860 if (count <= retain_target)
1861 break;
1863 if (!older_than(b, age_hz))
1864 break;
1866 if (__try_evict_buffer(b, 0))
1867 count--;
1869 cond_resched();
1872 dm_bufio_unlock(c);
1875 static void cleanup_old_buffers(void)
1877 unsigned long max_age_hz = get_max_age_hz();
1878 struct dm_bufio_client *c;
1880 mutex_lock(&dm_bufio_clients_lock);
1882 __cache_size_refresh();
1884 list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1885 __evict_old_buffers(c, max_age_hz);
1887 mutex_unlock(&dm_bufio_clients_lock);
1890 static struct workqueue_struct *dm_bufio_wq;
1891 static struct delayed_work dm_bufio_work;
1893 static void work_fn(struct work_struct *w)
1895 cleanup_old_buffers();
1897 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1898 DM_BUFIO_WORK_TIMER_SECS * HZ);
1901 /*----------------------------------------------------------------
1902 * Module setup
1903 *--------------------------------------------------------------*/
1906 * This is called only once for the whole dm_bufio module.
1907 * It initializes memory limit.
1909 static int __init dm_bufio_init(void)
1911 __u64 mem;
1913 dm_bufio_allocated_kmem_cache = 0;
1914 dm_bufio_allocated_get_free_pages = 0;
1915 dm_bufio_allocated_vmalloc = 0;
1916 dm_bufio_current_allocated = 0;
1918 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1919 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1921 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1922 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1924 if (mem > ULONG_MAX)
1925 mem = ULONG_MAX;
1927 #ifdef CONFIG_MMU
1928 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1929 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1930 #endif
1932 dm_bufio_default_cache_size = mem;
1934 mutex_lock(&dm_bufio_clients_lock);
1935 __cache_size_refresh();
1936 mutex_unlock(&dm_bufio_clients_lock);
1938 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1939 if (!dm_bufio_wq)
1940 return -ENOMEM;
1942 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1943 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1944 DM_BUFIO_WORK_TIMER_SECS * HZ);
1946 return 0;
1950 * This is called once when unloading the dm_bufio module.
1952 static void __exit dm_bufio_exit(void)
1954 int bug = 0;
1955 int i;
1957 cancel_delayed_work_sync(&dm_bufio_work);
1958 destroy_workqueue(dm_bufio_wq);
1960 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1961 kmem_cache_destroy(dm_bufio_caches[i]);
1963 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1964 kfree(dm_bufio_cache_names[i]);
1966 if (dm_bufio_client_count) {
1967 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1968 __func__, dm_bufio_client_count);
1969 bug = 1;
1972 if (dm_bufio_current_allocated) {
1973 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1974 __func__, dm_bufio_current_allocated);
1975 bug = 1;
1978 if (dm_bufio_allocated_get_free_pages) {
1979 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1980 __func__, dm_bufio_allocated_get_free_pages);
1981 bug = 1;
1984 if (dm_bufio_allocated_vmalloc) {
1985 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1986 __func__, dm_bufio_allocated_vmalloc);
1987 bug = 1;
1990 BUG_ON(bug);
1993 module_init(dm_bufio_init)
1994 module_exit(dm_bufio_exit)
1996 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1997 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1999 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2000 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2002 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2003 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2005 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2006 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2008 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2009 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2011 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2012 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2014 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2015 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2017 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2018 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2020 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2021 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2022 MODULE_LICENSE("GPL");