xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / md / dm-kcopyd.c
blobe6e7c686646d2946f5461b8b4ab0bdb347af96f2
1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
5 * This file is released under the GPL.
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/delay.h>
26 #include <linux/device-mapper.h>
27 #include <linux/dm-kcopyd.h>
29 #include "dm-core.h"
31 #define SUB_JOB_SIZE 128
32 #define SPLIT_COUNT 8
33 #define MIN_JOBS 8
34 #define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
36 /*-----------------------------------------------------------------
37 * Each kcopyd client has its own little pool of preallocated
38 * pages for kcopyd io.
39 *---------------------------------------------------------------*/
40 struct dm_kcopyd_client {
41 struct page_list *pages;
42 unsigned nr_reserved_pages;
43 unsigned nr_free_pages;
45 struct dm_io_client *io_client;
47 wait_queue_head_t destroyq;
48 atomic_t nr_jobs;
50 mempool_t *job_pool;
52 struct workqueue_struct *kcopyd_wq;
53 struct work_struct kcopyd_work;
55 struct dm_kcopyd_throttle *throttle;
58 * We maintain three lists of jobs:
60 * i) jobs waiting for pages
61 * ii) jobs that have pages, and are waiting for the io to be issued.
62 * iii) jobs that have completed.
64 * All three of these are protected by job_lock.
66 spinlock_t job_lock;
67 struct list_head complete_jobs;
68 struct list_head io_jobs;
69 struct list_head pages_jobs;
72 static struct page_list zero_page_list;
74 static DEFINE_SPINLOCK(throttle_spinlock);
77 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
78 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
79 * by 2.
81 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
84 * Sleep this number of milliseconds.
86 * The value was decided experimentally.
87 * Smaller values seem to cause an increased copy rate above the limit.
88 * The reason for this is unknown but possibly due to jiffies rounding errors
89 * or read/write cache inside the disk.
91 #define SLEEP_MSEC 100
94 * Maximum number of sleep events. There is a theoretical livelock if more
95 * kcopyd clients do work simultaneously which this limit avoids.
97 #define MAX_SLEEPS 10
99 static void io_job_start(struct dm_kcopyd_throttle *t)
101 unsigned throttle, now, difference;
102 int slept = 0, skew;
104 if (unlikely(!t))
105 return;
107 try_again:
108 spin_lock_irq(&throttle_spinlock);
110 throttle = READ_ONCE(t->throttle);
112 if (likely(throttle >= 100))
113 goto skip_limit;
115 now = jiffies;
116 difference = now - t->last_jiffies;
117 t->last_jiffies = now;
118 if (t->num_io_jobs)
119 t->io_period += difference;
120 t->total_period += difference;
123 * Maintain sane values if we got a temporary overflow.
125 if (unlikely(t->io_period > t->total_period))
126 t->io_period = t->total_period;
128 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
129 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
130 t->total_period >>= shift;
131 t->io_period >>= shift;
134 skew = t->io_period - throttle * t->total_period / 100;
136 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
137 slept++;
138 spin_unlock_irq(&throttle_spinlock);
139 msleep(SLEEP_MSEC);
140 goto try_again;
143 skip_limit:
144 t->num_io_jobs++;
146 spin_unlock_irq(&throttle_spinlock);
149 static void io_job_finish(struct dm_kcopyd_throttle *t)
151 unsigned long flags;
153 if (unlikely(!t))
154 return;
156 spin_lock_irqsave(&throttle_spinlock, flags);
158 t->num_io_jobs--;
160 if (likely(READ_ONCE(t->throttle) >= 100))
161 goto skip_limit;
163 if (!t->num_io_jobs) {
164 unsigned now, difference;
166 now = jiffies;
167 difference = now - t->last_jiffies;
168 t->last_jiffies = now;
170 t->io_period += difference;
171 t->total_period += difference;
174 * Maintain sane values if we got a temporary overflow.
176 if (unlikely(t->io_period > t->total_period))
177 t->io_period = t->total_period;
180 skip_limit:
181 spin_unlock_irqrestore(&throttle_spinlock, flags);
185 static void wake(struct dm_kcopyd_client *kc)
187 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
191 * Obtain one page for the use of kcopyd.
193 static struct page_list *alloc_pl(gfp_t gfp)
195 struct page_list *pl;
197 pl = kmalloc(sizeof(*pl), gfp);
198 if (!pl)
199 return NULL;
201 pl->page = alloc_page(gfp);
202 if (!pl->page) {
203 kfree(pl);
204 return NULL;
207 return pl;
210 static void free_pl(struct page_list *pl)
212 __free_page(pl->page);
213 kfree(pl);
217 * Add the provided pages to a client's free page list, releasing
218 * back to the system any beyond the reserved_pages limit.
220 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
222 struct page_list *next;
224 do {
225 next = pl->next;
227 if (kc->nr_free_pages >= kc->nr_reserved_pages)
228 free_pl(pl);
229 else {
230 pl->next = kc->pages;
231 kc->pages = pl;
232 kc->nr_free_pages++;
235 pl = next;
236 } while (pl);
239 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
240 unsigned int nr, struct page_list **pages)
242 struct page_list *pl;
244 *pages = NULL;
246 do {
247 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
248 if (unlikely(!pl)) {
249 /* Use reserved pages */
250 pl = kc->pages;
251 if (unlikely(!pl))
252 goto out_of_memory;
253 kc->pages = pl->next;
254 kc->nr_free_pages--;
256 pl->next = *pages;
257 *pages = pl;
258 } while (--nr);
260 return 0;
262 out_of_memory:
263 if (*pages)
264 kcopyd_put_pages(kc, *pages);
265 return -ENOMEM;
269 * These three functions resize the page pool.
271 static void drop_pages(struct page_list *pl)
273 struct page_list *next;
275 while (pl) {
276 next = pl->next;
277 free_pl(pl);
278 pl = next;
283 * Allocate and reserve nr_pages for the use of a specific client.
285 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
287 unsigned i;
288 struct page_list *pl = NULL, *next;
290 for (i = 0; i < nr_pages; i++) {
291 next = alloc_pl(GFP_KERNEL);
292 if (!next) {
293 if (pl)
294 drop_pages(pl);
295 return -ENOMEM;
297 next->next = pl;
298 pl = next;
301 kc->nr_reserved_pages += nr_pages;
302 kcopyd_put_pages(kc, pl);
304 return 0;
307 static void client_free_pages(struct dm_kcopyd_client *kc)
309 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
310 drop_pages(kc->pages);
311 kc->pages = NULL;
312 kc->nr_free_pages = kc->nr_reserved_pages = 0;
315 /*-----------------------------------------------------------------
316 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
317 * for this reason we use a mempool to prevent the client from
318 * ever having to do io (which could cause a deadlock).
319 *---------------------------------------------------------------*/
320 struct kcopyd_job {
321 struct dm_kcopyd_client *kc;
322 struct list_head list;
323 unsigned long flags;
326 * Error state of the job.
328 int read_err;
329 unsigned long write_err;
332 * Either READ or WRITE
334 int rw;
335 struct dm_io_region source;
338 * The destinations for the transfer.
340 unsigned int num_dests;
341 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
343 struct page_list *pages;
346 * Set this to ensure you are notified when the job has
347 * completed. 'context' is for callback to use.
349 dm_kcopyd_notify_fn fn;
350 void *context;
353 * These fields are only used if the job has been split
354 * into more manageable parts.
356 struct mutex lock;
357 atomic_t sub_jobs;
358 sector_t progress;
359 sector_t write_offset;
361 struct kcopyd_job *master_job;
364 static struct kmem_cache *_job_cache;
366 int __init dm_kcopyd_init(void)
368 _job_cache = kmem_cache_create("kcopyd_job",
369 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
370 __alignof__(struct kcopyd_job), 0, NULL);
371 if (!_job_cache)
372 return -ENOMEM;
374 zero_page_list.next = &zero_page_list;
375 zero_page_list.page = ZERO_PAGE(0);
377 return 0;
380 void dm_kcopyd_exit(void)
382 kmem_cache_destroy(_job_cache);
383 _job_cache = NULL;
387 * Functions to push and pop a job onto the head of a given job
388 * list.
390 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
391 struct dm_kcopyd_client *kc)
393 struct kcopyd_job *job;
396 * For I/O jobs, pop any read, any write without sequential write
397 * constraint and sequential writes that are at the right position.
399 list_for_each_entry(job, jobs, list) {
400 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
401 list_del(&job->list);
402 return job;
405 if (job->write_offset == job->master_job->write_offset) {
406 job->master_job->write_offset += job->source.count;
407 list_del(&job->list);
408 return job;
412 return NULL;
415 static struct kcopyd_job *pop(struct list_head *jobs,
416 struct dm_kcopyd_client *kc)
418 struct kcopyd_job *job = NULL;
419 unsigned long flags;
421 spin_lock_irqsave(&kc->job_lock, flags);
423 if (!list_empty(jobs)) {
424 if (jobs == &kc->io_jobs)
425 job = pop_io_job(jobs, kc);
426 else {
427 job = list_entry(jobs->next, struct kcopyd_job, list);
428 list_del(&job->list);
431 spin_unlock_irqrestore(&kc->job_lock, flags);
433 return job;
436 static void push(struct list_head *jobs, struct kcopyd_job *job)
438 unsigned long flags;
439 struct dm_kcopyd_client *kc = job->kc;
441 spin_lock_irqsave(&kc->job_lock, flags);
442 list_add_tail(&job->list, jobs);
443 spin_unlock_irqrestore(&kc->job_lock, flags);
447 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
449 unsigned long flags;
450 struct dm_kcopyd_client *kc = job->kc;
452 spin_lock_irqsave(&kc->job_lock, flags);
453 list_add(&job->list, jobs);
454 spin_unlock_irqrestore(&kc->job_lock, flags);
458 * These three functions process 1 item from the corresponding
459 * job list.
461 * They return:
462 * < 0: error
463 * 0: success
464 * > 0: can't process yet.
466 static int run_complete_job(struct kcopyd_job *job)
468 void *context = job->context;
469 int read_err = job->read_err;
470 unsigned long write_err = job->write_err;
471 dm_kcopyd_notify_fn fn = job->fn;
472 struct dm_kcopyd_client *kc = job->kc;
474 if (job->pages && job->pages != &zero_page_list)
475 kcopyd_put_pages(kc, job->pages);
477 * If this is the master job, the sub jobs have already
478 * completed so we can free everything.
480 if (job->master_job == job) {
481 mutex_destroy(&job->lock);
482 mempool_free(job, kc->job_pool);
484 fn(read_err, write_err, context);
486 if (atomic_dec_and_test(&kc->nr_jobs))
487 wake_up(&kc->destroyq);
489 return 0;
492 static void complete_io(unsigned long error, void *context)
494 struct kcopyd_job *job = (struct kcopyd_job *) context;
495 struct dm_kcopyd_client *kc = job->kc;
497 io_job_finish(kc->throttle);
499 if (error) {
500 if (op_is_write(job->rw))
501 job->write_err |= error;
502 else
503 job->read_err = 1;
505 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
506 push(&kc->complete_jobs, job);
507 wake(kc);
508 return;
512 if (op_is_write(job->rw))
513 push(&kc->complete_jobs, job);
515 else {
516 job->rw = WRITE;
517 push(&kc->io_jobs, job);
520 wake(kc);
524 * Request io on as many buffer heads as we can currently get for
525 * a particular job.
527 static int run_io_job(struct kcopyd_job *job)
529 int r;
530 struct dm_io_request io_req = {
531 .bi_op = job->rw,
532 .bi_op_flags = 0,
533 .mem.type = DM_IO_PAGE_LIST,
534 .mem.ptr.pl = job->pages,
535 .mem.offset = 0,
536 .notify.fn = complete_io,
537 .notify.context = job,
538 .client = job->kc->io_client,
542 * If we need to write sequentially and some reads or writes failed,
543 * no point in continuing.
545 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
546 job->master_job->write_err)
547 return -EIO;
549 io_job_start(job->kc->throttle);
551 if (job->rw == READ)
552 r = dm_io(&io_req, 1, &job->source, NULL);
553 else
554 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
556 return r;
559 static int run_pages_job(struct kcopyd_job *job)
561 int r;
562 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
564 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
565 if (!r) {
566 /* this job is ready for io */
567 push(&job->kc->io_jobs, job);
568 return 0;
571 if (r == -ENOMEM)
572 /* can't complete now */
573 return 1;
575 return r;
579 * Run through a list for as long as possible. Returns the count
580 * of successful jobs.
582 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
583 int (*fn) (struct kcopyd_job *))
585 struct kcopyd_job *job;
586 int r, count = 0;
588 while ((job = pop(jobs, kc))) {
590 r = fn(job);
592 if (r < 0) {
593 /* error this rogue job */
594 if (op_is_write(job->rw))
595 job->write_err = (unsigned long) -1L;
596 else
597 job->read_err = 1;
598 push(&kc->complete_jobs, job);
599 break;
602 if (r > 0) {
604 * We couldn't service this job ATM, so
605 * push this job back onto the list.
607 push_head(jobs, job);
608 break;
611 count++;
614 return count;
618 * kcopyd does this every time it's woken up.
620 static void do_work(struct work_struct *work)
622 struct dm_kcopyd_client *kc = container_of(work,
623 struct dm_kcopyd_client, kcopyd_work);
624 struct blk_plug plug;
627 * The order that these are called is *very* important.
628 * complete jobs can free some pages for pages jobs.
629 * Pages jobs when successful will jump onto the io jobs
630 * list. io jobs call wake when they complete and it all
631 * starts again.
633 blk_start_plug(&plug);
634 process_jobs(&kc->complete_jobs, kc, run_complete_job);
635 process_jobs(&kc->pages_jobs, kc, run_pages_job);
636 process_jobs(&kc->io_jobs, kc, run_io_job);
637 blk_finish_plug(&plug);
641 * If we are copying a small region we just dispatch a single job
642 * to do the copy, otherwise the io has to be split up into many
643 * jobs.
645 static void dispatch_job(struct kcopyd_job *job)
647 struct dm_kcopyd_client *kc = job->kc;
648 atomic_inc(&kc->nr_jobs);
649 if (unlikely(!job->source.count))
650 push(&kc->complete_jobs, job);
651 else if (job->pages == &zero_page_list)
652 push(&kc->io_jobs, job);
653 else
654 push(&kc->pages_jobs, job);
655 wake(kc);
658 static void segment_complete(int read_err, unsigned long write_err,
659 void *context)
661 /* FIXME: tidy this function */
662 sector_t progress = 0;
663 sector_t count = 0;
664 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
665 struct kcopyd_job *job = sub_job->master_job;
666 struct dm_kcopyd_client *kc = job->kc;
668 mutex_lock(&job->lock);
670 /* update the error */
671 if (read_err)
672 job->read_err = 1;
674 if (write_err)
675 job->write_err |= write_err;
678 * Only dispatch more work if there hasn't been an error.
680 if ((!job->read_err && !job->write_err) ||
681 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
682 /* get the next chunk of work */
683 progress = job->progress;
684 count = job->source.count - progress;
685 if (count) {
686 if (count > SUB_JOB_SIZE)
687 count = SUB_JOB_SIZE;
689 job->progress += count;
692 mutex_unlock(&job->lock);
694 if (count) {
695 int i;
697 *sub_job = *job;
698 sub_job->write_offset = progress;
699 sub_job->source.sector += progress;
700 sub_job->source.count = count;
702 for (i = 0; i < job->num_dests; i++) {
703 sub_job->dests[i].sector += progress;
704 sub_job->dests[i].count = count;
707 sub_job->fn = segment_complete;
708 sub_job->context = sub_job;
709 dispatch_job(sub_job);
711 } else if (atomic_dec_and_test(&job->sub_jobs)) {
714 * Queue the completion callback to the kcopyd thread.
716 * Some callers assume that all the completions are called
717 * from a single thread and don't race with each other.
719 * We must not call the callback directly here because this
720 * code may not be executing in the thread.
722 push(&kc->complete_jobs, job);
723 wake(kc);
728 * Create some sub jobs to share the work between them.
730 static void split_job(struct kcopyd_job *master_job)
732 int i;
734 atomic_inc(&master_job->kc->nr_jobs);
736 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
737 for (i = 0; i < SPLIT_COUNT; i++) {
738 master_job[i + 1].master_job = master_job;
739 segment_complete(0, 0u, &master_job[i + 1]);
743 int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
744 unsigned int num_dests, struct dm_io_region *dests,
745 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
747 struct kcopyd_job *job;
748 int i;
751 * Allocate an array of jobs consisting of one master job
752 * followed by SPLIT_COUNT sub jobs.
754 job = mempool_alloc(kc->job_pool, GFP_NOIO);
755 mutex_init(&job->lock);
758 * set up for the read.
760 job->kc = kc;
761 job->flags = flags;
762 job->read_err = 0;
763 job->write_err = 0;
765 job->num_dests = num_dests;
766 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
769 * If one of the destination is a host-managed zoned block device,
770 * we need to write sequentially. If one of the destination is a
771 * host-aware device, then leave it to the caller to choose what to do.
773 if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
774 for (i = 0; i < job->num_dests; i++) {
775 if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
776 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
777 break;
783 * If we need to write sequentially, errors cannot be ignored.
785 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
786 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
787 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
789 if (from) {
790 job->source = *from;
791 job->pages = NULL;
792 job->rw = READ;
793 } else {
794 memset(&job->source, 0, sizeof job->source);
795 job->source.count = job->dests[0].count;
796 job->pages = &zero_page_list;
799 * Use WRITE ZEROES to optimize zeroing if all dests support it.
801 job->rw = REQ_OP_WRITE_ZEROES;
802 for (i = 0; i < job->num_dests; i++)
803 if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
804 job->rw = WRITE;
805 break;
809 job->fn = fn;
810 job->context = context;
811 job->master_job = job;
812 job->write_offset = 0;
814 if (job->source.count <= SUB_JOB_SIZE)
815 dispatch_job(job);
816 else {
817 job->progress = 0;
818 split_job(job);
821 return 0;
823 EXPORT_SYMBOL(dm_kcopyd_copy);
825 int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
826 unsigned num_dests, struct dm_io_region *dests,
827 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
829 return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
831 EXPORT_SYMBOL(dm_kcopyd_zero);
833 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
834 dm_kcopyd_notify_fn fn, void *context)
836 struct kcopyd_job *job;
838 job = mempool_alloc(kc->job_pool, GFP_NOIO);
840 memset(job, 0, sizeof(struct kcopyd_job));
841 job->kc = kc;
842 job->fn = fn;
843 job->context = context;
844 job->master_job = job;
846 atomic_inc(&kc->nr_jobs);
848 return job;
850 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
852 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
854 struct kcopyd_job *job = j;
855 struct dm_kcopyd_client *kc = job->kc;
857 job->read_err = read_err;
858 job->write_err = write_err;
860 push(&kc->complete_jobs, job);
861 wake(kc);
863 EXPORT_SYMBOL(dm_kcopyd_do_callback);
866 * Cancels a kcopyd job, eg. someone might be deactivating a
867 * mirror.
869 #if 0
870 int kcopyd_cancel(struct kcopyd_job *job, int block)
872 /* FIXME: finish */
873 return -1;
875 #endif /* 0 */
877 /*-----------------------------------------------------------------
878 * Client setup
879 *---------------------------------------------------------------*/
880 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
882 int r = -ENOMEM;
883 struct dm_kcopyd_client *kc;
885 kc = kmalloc(sizeof(*kc), GFP_KERNEL);
886 if (!kc)
887 return ERR_PTR(-ENOMEM);
889 spin_lock_init(&kc->job_lock);
890 INIT_LIST_HEAD(&kc->complete_jobs);
891 INIT_LIST_HEAD(&kc->io_jobs);
892 INIT_LIST_HEAD(&kc->pages_jobs);
893 kc->throttle = throttle;
895 kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
896 if (!kc->job_pool)
897 goto bad_slab;
899 INIT_WORK(&kc->kcopyd_work, do_work);
900 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
901 if (!kc->kcopyd_wq)
902 goto bad_workqueue;
904 kc->pages = NULL;
905 kc->nr_reserved_pages = kc->nr_free_pages = 0;
906 r = client_reserve_pages(kc, RESERVE_PAGES);
907 if (r)
908 goto bad_client_pages;
910 kc->io_client = dm_io_client_create();
911 if (IS_ERR(kc->io_client)) {
912 r = PTR_ERR(kc->io_client);
913 goto bad_io_client;
916 init_waitqueue_head(&kc->destroyq);
917 atomic_set(&kc->nr_jobs, 0);
919 return kc;
921 bad_io_client:
922 client_free_pages(kc);
923 bad_client_pages:
924 destroy_workqueue(kc->kcopyd_wq);
925 bad_workqueue:
926 mempool_destroy(kc->job_pool);
927 bad_slab:
928 kfree(kc);
930 return ERR_PTR(r);
932 EXPORT_SYMBOL(dm_kcopyd_client_create);
934 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
936 /* Wait for completion of all jobs submitted by this client. */
937 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
939 BUG_ON(!list_empty(&kc->complete_jobs));
940 BUG_ON(!list_empty(&kc->io_jobs));
941 BUG_ON(!list_empty(&kc->pages_jobs));
942 destroy_workqueue(kc->kcopyd_wq);
943 dm_io_client_destroy(kc->io_client);
944 client_free_pages(kc);
945 mempool_destroy(kc->job_pool);
946 kfree(kc);
948 EXPORT_SYMBOL(dm_kcopyd_client_destroy);