xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / md / dm-verity-fec.c
blobe13f90832b6b54256f88d45ba30cee16660f58ef
1 /*
2 * Copyright (C) 2015 Google, Inc.
4 * Author: Sami Tolvanen <samitolvanen@google.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
12 #include "dm-verity-fec.h"
13 #include <linux/math64.h>
15 #define DM_MSG_PREFIX "verity-fec"
18 * If error correction has been configured, returns true.
20 bool verity_fec_is_enabled(struct dm_verity *v)
22 return v->fec && v->fec->dev;
26 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
27 * length fields.
29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
31 return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
35 * Return an interleaved offset for a byte in RS block.
37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
39 u32 mod;
41 mod = do_div(offset, v->fec->rsn);
42 return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
46 * Decode an RS block using Reed-Solomon.
48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
49 u8 *data, u8 *fec, int neras)
51 int i;
52 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
54 for (i = 0; i < v->fec->roots; i++)
55 par[i] = fec[i];
57 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
58 fio->erasures, 0, NULL);
62 * Read error-correcting codes for the requested RS block. Returns a pointer
63 * to the data block. Caller is responsible for releasing buf.
65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
66 unsigned *offset, struct dm_buffer **buf)
68 u64 position, block;
69 u8 *res;
71 position = (index + rsb) * v->fec->roots;
72 block = position >> v->data_dev_block_bits;
73 *offset = (unsigned)(position - (block << v->data_dev_block_bits));
75 res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
76 if (unlikely(IS_ERR(res))) {
77 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
78 v->data_dev->name, (unsigned long long)rsb,
79 (unsigned long long)(v->fec->start + block),
80 PTR_ERR(res));
81 *buf = NULL;
84 return res;
87 /* Loop over each preallocated buffer slot. */
88 #define fec_for_each_prealloc_buffer(__i) \
89 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
91 /* Loop over each extra buffer slot. */
92 #define fec_for_each_extra_buffer(io, __i) \
93 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
95 /* Loop over each allocated buffer. */
96 #define fec_for_each_buffer(io, __i) \
97 for (__i = 0; __i < (io)->nbufs; __i++)
99 /* Loop over each RS block in each allocated buffer. */
100 #define fec_for_each_buffer_rs_block(io, __i, __j) \
101 fec_for_each_buffer(io, __i) \
102 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
105 * Return a pointer to the current RS block when called inside
106 * fec_for_each_buffer_rs_block.
108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109 struct dm_verity_fec_io *fio,
110 unsigned i, unsigned j)
112 return &fio->bufs[i][j * v->fec->rsn];
116 * Return an index to the current RS block when called inside
117 * fec_for_each_buffer_rs_block.
119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
121 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
125 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126 * starting from block_offset.
128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129 u64 rsb, int byte_index, unsigned block_offset,
130 int neras)
132 int r, corrected = 0, res;
133 struct dm_buffer *buf;
134 unsigned n, i, offset;
135 u8 *par, *block;
137 par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
138 if (IS_ERR(par))
139 return PTR_ERR(par);
142 * Decode the RS blocks we have in bufs. Each RS block results in
143 * one corrected target byte and consumes fec->roots parity bytes.
145 fec_for_each_buffer_rs_block(fio, n, i) {
146 block = fec_buffer_rs_block(v, fio, n, i);
147 res = fec_decode_rs8(v, fio, block, &par[offset], neras);
148 if (res < 0) {
149 r = res;
150 goto error;
153 corrected += res;
154 fio->output[block_offset] = block[byte_index];
156 block_offset++;
157 if (block_offset >= 1 << v->data_dev_block_bits)
158 goto done;
160 /* read the next block when we run out of parity bytes */
161 offset += v->fec->roots;
162 if (offset >= 1 << v->data_dev_block_bits) {
163 dm_bufio_release(buf);
165 par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
166 if (unlikely(IS_ERR(par)))
167 return PTR_ERR(par);
170 done:
171 r = corrected;
172 error:
173 dm_bufio_release(buf);
175 if (r < 0 && neras)
176 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177 v->data_dev->name, (unsigned long long)rsb, r);
178 else if (r > 0)
179 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180 v->data_dev->name, (unsigned long long)rsb, r);
182 return r;
186 * Locate data block erasures using verity hashes.
188 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
189 u8 *want_digest, u8 *data)
191 if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
192 data, 1 << v->data_dev_block_bits,
193 verity_io_real_digest(v, io))))
194 return 0;
196 return memcmp(verity_io_real_digest(v, io), want_digest,
197 v->digest_size) != 0;
201 * Read data blocks that are part of the RS block and deinterleave as much as
202 * fits into buffers. Check for erasure locations if @neras is non-NULL.
204 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
205 u64 rsb, u64 target, unsigned block_offset,
206 int *neras)
208 bool is_zero;
209 int i, j, target_index = -1;
210 struct dm_buffer *buf;
211 struct dm_bufio_client *bufio;
212 struct dm_verity_fec_io *fio = fec_io(io);
213 u64 block, ileaved;
214 u8 *bbuf, *rs_block;
215 u8 want_digest[v->digest_size];
216 unsigned n, k;
218 if (neras)
219 *neras = 0;
222 * read each of the rsn data blocks that are part of the RS block, and
223 * interleave contents to available bufs
225 for (i = 0; i < v->fec->rsn; i++) {
226 ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
229 * target is the data block we want to correct, target_index is
230 * the index of this block within the rsn RS blocks
232 if (ileaved == target)
233 target_index = i;
235 block = ileaved >> v->data_dev_block_bits;
236 bufio = v->fec->data_bufio;
238 if (block >= v->data_blocks) {
239 block -= v->data_blocks;
242 * blocks outside the area were assumed to contain
243 * zeros when encoding data was generated
245 if (unlikely(block >= v->fec->hash_blocks))
246 continue;
248 block += v->hash_start;
249 bufio = v->bufio;
252 bbuf = dm_bufio_read(bufio, block, &buf);
253 if (unlikely(IS_ERR(bbuf))) {
254 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
255 v->data_dev->name,
256 (unsigned long long)rsb,
257 (unsigned long long)block, PTR_ERR(bbuf));
259 /* assume the block is corrupted */
260 if (neras && *neras <= v->fec->roots)
261 fio->erasures[(*neras)++] = i;
263 continue;
266 /* locate erasures if the block is on the data device */
267 if (bufio == v->fec->data_bufio &&
268 verity_hash_for_block(v, io, block, want_digest,
269 &is_zero) == 0) {
270 /* skip known zero blocks entirely */
271 if (is_zero)
272 goto done;
275 * skip if we have already found the theoretical
276 * maximum number (i.e. fec->roots) of erasures
278 if (neras && *neras <= v->fec->roots &&
279 fec_is_erasure(v, io, want_digest, bbuf))
280 fio->erasures[(*neras)++] = i;
284 * deinterleave and copy the bytes that fit into bufs,
285 * starting from block_offset
287 fec_for_each_buffer_rs_block(fio, n, j) {
288 k = fec_buffer_rs_index(n, j) + block_offset;
290 if (k >= 1 << v->data_dev_block_bits)
291 goto done;
293 rs_block = fec_buffer_rs_block(v, fio, n, j);
294 rs_block[i] = bbuf[k];
296 done:
297 dm_bufio_release(buf);
300 return target_index;
304 * Allocate RS control structure and FEC buffers from preallocated mempools,
305 * and attempt to allocate as many extra buffers as available.
307 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
309 unsigned n;
311 if (!fio->rs)
312 fio->rs = mempool_alloc(v->fec->rs_pool, GFP_NOIO);
314 fec_for_each_prealloc_buffer(n) {
315 if (fio->bufs[n])
316 continue;
318 fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOWAIT);
319 if (unlikely(!fio->bufs[n])) {
320 DMERR("failed to allocate FEC buffer");
321 return -ENOMEM;
325 /* try to allocate the maximum number of buffers */
326 fec_for_each_extra_buffer(fio, n) {
327 if (fio->bufs[n])
328 continue;
330 fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOWAIT);
331 /* we can manage with even one buffer if necessary */
332 if (unlikely(!fio->bufs[n]))
333 break;
335 fio->nbufs = n;
337 if (!fio->output)
338 fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
340 return 0;
344 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
345 * zeroed before deinterleaving.
347 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
349 unsigned n;
351 fec_for_each_buffer(fio, n)
352 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
354 memset(fio->erasures, 0, sizeof(fio->erasures));
358 * Decode all RS blocks in a single data block and return the target block
359 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
360 * hashes to locate erasures.
362 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
363 struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
364 bool use_erasures)
366 int r, neras = 0;
367 unsigned pos;
369 r = fec_alloc_bufs(v, fio);
370 if (unlikely(r < 0))
371 return r;
373 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
374 fec_init_bufs(v, fio);
376 r = fec_read_bufs(v, io, rsb, offset, pos,
377 use_erasures ? &neras : NULL);
378 if (unlikely(r < 0))
379 return r;
381 r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
382 if (r < 0)
383 return r;
385 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
388 /* Always re-validate the corrected block against the expected hash */
389 r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
390 1 << v->data_dev_block_bits,
391 verity_io_real_digest(v, io));
392 if (unlikely(r < 0))
393 return r;
395 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
396 v->digest_size)) {
397 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
398 v->data_dev->name, (unsigned long long)rsb, neras);
399 return -EILSEQ;
402 return 0;
405 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
406 size_t len)
408 struct dm_verity_fec_io *fio = fec_io(io);
410 memcpy(data, &fio->output[fio->output_pos], len);
411 fio->output_pos += len;
413 return 0;
417 * Correct errors in a block. Copies corrected block to dest if non-NULL,
418 * otherwise to a bio_vec starting from iter.
420 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
421 enum verity_block_type type, sector_t block, u8 *dest,
422 struct bvec_iter *iter)
424 int r;
425 struct dm_verity_fec_io *fio = fec_io(io);
426 u64 offset, res, rsb;
428 if (!verity_fec_is_enabled(v))
429 return -EOPNOTSUPP;
431 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
432 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
433 return -EIO;
436 fio->level++;
438 if (type == DM_VERITY_BLOCK_TYPE_METADATA)
439 block += v->data_blocks;
442 * For RS(M, N), the continuous FEC data is divided into blocks of N
443 * bytes. Since block size may not be divisible by N, the last block
444 * is zero padded when decoding.
446 * Each byte of the block is covered by a different RS(M, N) code,
447 * and each code is interleaved over N blocks to make it less likely
448 * that bursty corruption will leave us in unrecoverable state.
451 offset = block << v->data_dev_block_bits;
452 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
455 * The base RS block we can feed to the interleaver to find out all
456 * blocks required for decoding.
458 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
461 * Locating erasures is slow, so attempt to recover the block without
462 * them first. Do a second attempt with erasures if the corruption is
463 * bad enough.
465 r = fec_decode_rsb(v, io, fio, rsb, offset, false);
466 if (r < 0) {
467 r = fec_decode_rsb(v, io, fio, rsb, offset, true);
468 if (r < 0)
469 goto done;
472 if (dest)
473 memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
474 else if (iter) {
475 fio->output_pos = 0;
476 r = verity_for_bv_block(v, io, iter, fec_bv_copy);
479 done:
480 fio->level--;
481 return r;
485 * Clean up per-bio data.
487 void verity_fec_finish_io(struct dm_verity_io *io)
489 unsigned n;
490 struct dm_verity_fec *f = io->v->fec;
491 struct dm_verity_fec_io *fio = fec_io(io);
493 if (!verity_fec_is_enabled(io->v))
494 return;
496 mempool_free(fio->rs, f->rs_pool);
498 fec_for_each_prealloc_buffer(n)
499 mempool_free(fio->bufs[n], f->prealloc_pool);
501 fec_for_each_extra_buffer(fio, n)
502 mempool_free(fio->bufs[n], f->extra_pool);
504 mempool_free(fio->output, f->output_pool);
508 * Initialize per-bio data.
510 void verity_fec_init_io(struct dm_verity_io *io)
512 struct dm_verity_fec_io *fio = fec_io(io);
514 if (!verity_fec_is_enabled(io->v))
515 return;
517 fio->rs = NULL;
518 memset(fio->bufs, 0, sizeof(fio->bufs));
519 fio->nbufs = 0;
520 fio->output = NULL;
521 fio->level = 0;
525 * Append feature arguments and values to the status table.
527 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
528 char *result, unsigned maxlen)
530 if (!verity_fec_is_enabled(v))
531 return sz;
533 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
534 DM_VERITY_OPT_FEC_BLOCKS " %llu "
535 DM_VERITY_OPT_FEC_START " %llu "
536 DM_VERITY_OPT_FEC_ROOTS " %d",
537 v->fec->dev->name,
538 (unsigned long long)v->fec->blocks,
539 (unsigned long long)v->fec->start,
540 v->fec->roots);
542 return sz;
545 void verity_fec_dtr(struct dm_verity *v)
547 struct dm_verity_fec *f = v->fec;
549 if (!verity_fec_is_enabled(v))
550 goto out;
552 mempool_destroy(f->rs_pool);
553 mempool_destroy(f->prealloc_pool);
554 mempool_destroy(f->extra_pool);
555 kmem_cache_destroy(f->cache);
557 if (f->data_bufio)
558 dm_bufio_client_destroy(f->data_bufio);
559 if (f->bufio)
560 dm_bufio_client_destroy(f->bufio);
562 if (f->dev)
563 dm_put_device(v->ti, f->dev);
564 out:
565 kfree(f);
566 v->fec = NULL;
569 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
571 struct dm_verity *v = (struct dm_verity *)pool_data;
573 return init_rs(8, 0x11d, 0, 1, v->fec->roots);
576 static void fec_rs_free(void *element, void *pool_data)
578 struct rs_control *rs = (struct rs_control *)element;
580 if (rs)
581 free_rs(rs);
584 bool verity_is_fec_opt_arg(const char *arg_name)
586 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
587 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
588 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
589 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
592 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
593 unsigned *argc, const char *arg_name)
595 int r;
596 struct dm_target *ti = v->ti;
597 const char *arg_value;
598 unsigned long long num_ll;
599 unsigned char num_c;
600 char dummy;
602 if (!*argc) {
603 ti->error = "FEC feature arguments require a value";
604 return -EINVAL;
607 arg_value = dm_shift_arg(as);
608 (*argc)--;
610 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
611 r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
612 if (r) {
613 ti->error = "FEC device lookup failed";
614 return r;
617 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
618 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
619 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
620 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
621 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
622 return -EINVAL;
624 v->fec->blocks = num_ll;
626 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
627 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
628 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
629 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
630 ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
631 return -EINVAL;
633 v->fec->start = num_ll;
635 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
636 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
637 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
638 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
639 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
640 return -EINVAL;
642 v->fec->roots = num_c;
644 } else {
645 ti->error = "Unrecognized verity FEC feature request";
646 return -EINVAL;
649 return 0;
653 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
655 int verity_fec_ctr_alloc(struct dm_verity *v)
657 struct dm_verity_fec *f;
659 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
660 if (!f) {
661 v->ti->error = "Cannot allocate FEC structure";
662 return -ENOMEM;
664 v->fec = f;
666 return 0;
670 * Validate arguments and preallocate memory. Must be called after arguments
671 * have been parsed using verity_fec_parse_opt_args.
673 int verity_fec_ctr(struct dm_verity *v)
675 struct dm_verity_fec *f = v->fec;
676 struct dm_target *ti = v->ti;
677 u64 hash_blocks;
679 if (!verity_fec_is_enabled(v)) {
680 verity_fec_dtr(v);
681 return 0;
685 * FEC is computed over data blocks, possible metadata, and
686 * hash blocks. In other words, FEC covers total of fec_blocks
687 * blocks consisting of the following:
689 * data blocks | hash blocks | metadata (optional)
691 * We allow metadata after hash blocks to support a use case
692 * where all data is stored on the same device and FEC covers
693 * the entire area.
695 * If metadata is included, we require it to be available on the
696 * hash device after the hash blocks.
699 hash_blocks = v->hash_blocks - v->hash_start;
702 * Require matching block sizes for data and hash devices for
703 * simplicity.
705 if (v->data_dev_block_bits != v->hash_dev_block_bits) {
706 ti->error = "Block sizes must match to use FEC";
707 return -EINVAL;
710 if (!f->roots) {
711 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
712 return -EINVAL;
714 f->rsn = DM_VERITY_FEC_RSM - f->roots;
716 if (!f->blocks) {
717 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
718 return -EINVAL;
721 f->rounds = f->blocks;
722 if (sector_div(f->rounds, f->rsn))
723 f->rounds++;
726 * Due to optional metadata, f->blocks can be larger than
727 * data_blocks and hash_blocks combined.
729 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
730 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
731 return -EINVAL;
735 * Metadata is accessed through the hash device, so we require
736 * it to be large enough.
738 f->hash_blocks = f->blocks - v->data_blocks;
739 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
740 ti->error = "Hash device is too small for "
741 DM_VERITY_OPT_FEC_BLOCKS;
742 return -E2BIG;
745 f->bufio = dm_bufio_client_create(f->dev->bdev,
746 1 << v->data_dev_block_bits,
747 1, 0, NULL, NULL);
748 if (IS_ERR(f->bufio)) {
749 ti->error = "Cannot initialize FEC bufio client";
750 return PTR_ERR(f->bufio);
753 if (dm_bufio_get_device_size(f->bufio) <
754 ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
755 ti->error = "FEC device is too small";
756 return -E2BIG;
759 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
760 1 << v->data_dev_block_bits,
761 1, 0, NULL, NULL);
762 if (IS_ERR(f->data_bufio)) {
763 ti->error = "Cannot initialize FEC data bufio client";
764 return PTR_ERR(f->data_bufio);
767 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
768 ti->error = "Data device is too small";
769 return -E2BIG;
772 /* Preallocate an rs_control structure for each worker thread */
773 f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
774 fec_rs_free, (void *) v);
775 if (!f->rs_pool) {
776 ti->error = "Cannot allocate RS pool";
777 return -ENOMEM;
780 f->cache = kmem_cache_create("dm_verity_fec_buffers",
781 f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
782 0, 0, NULL);
783 if (!f->cache) {
784 ti->error = "Cannot create FEC buffer cache";
785 return -ENOMEM;
788 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
789 f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
790 DM_VERITY_FEC_BUF_PREALLOC,
791 f->cache);
792 if (!f->prealloc_pool) {
793 ti->error = "Cannot allocate FEC buffer prealloc pool";
794 return -ENOMEM;
797 f->extra_pool = mempool_create_slab_pool(0, f->cache);
798 if (!f->extra_pool) {
799 ti->error = "Cannot allocate FEC buffer extra pool";
800 return -ENOMEM;
803 /* Preallocate an output buffer for each thread */
804 f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
805 1 << v->data_dev_block_bits);
806 if (!f->output_pool) {
807 ti->error = "Cannot allocate FEC output pool";
808 return -ENOMEM;
811 /* Reserve space for our per-bio data */
812 ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
814 return 0;