xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / md / raid10.c
blob99c9207899a777c615880f286a6f617ffc4a70bf
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
98 static int max_queued_requests = 1024;
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 #include "raid1-10.c"
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
121 return get_resync_pages(bio)->raid_bio;
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
134 static void r10bio_pool_free(void *r10_bio, void *data)
136 kfree(r10_bio);
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
156 struct r10conf *conf = data;
157 struct r10bio *r10_bio;
158 struct bio *bio;
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 if (!r10_bio)
165 return NULL;
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 if (!rps)
180 goto out_free_r10bio;
183 * Allocate bios.
185 for (j = nalloc ; j-- ; ) {
186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
201 for (j = 0; j < nalloc; j++) {
202 struct bio *rbio = r10_bio->devs[j].repl_bio;
203 struct resync_pages *rp, *rp_repl;
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
209 bio = r10_bio->devs[j].bio;
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
214 goto out_free_pages;
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
228 return r10_bio;
230 out_free_pages:
231 while (--j >= 0)
232 resync_free_pages(&rps[j * 2]);
234 j = 0;
235 out_free_bio:
236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
242 kfree(rps);
243 out_free_r10bio:
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
248 static void r10buf_pool_free(void *__r10_bio, void *data)
250 struct r10conf *conf = data;
251 struct r10bio *r10bio = __r10_bio;
252 int j;
253 struct resync_pages *rp = NULL;
255 for (j = conf->copies; j--; ) {
256 struct bio *bio = r10bio->devs[j].bio;
258 rp = get_resync_pages(bio);
259 resync_free_pages(rp);
260 bio_put(bio);
262 bio = r10bio->devs[j].repl_bio;
263 if (bio)
264 bio_put(bio);
267 /* resync pages array stored in the 1st bio's .bi_private */
268 kfree(rp);
270 r10bio_pool_free(r10bio, conf);
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
275 int i;
277 for (i = 0; i < conf->copies; i++) {
278 struct bio **bio = & r10_bio->devs[i].bio;
279 if (!BIO_SPECIAL(*bio))
280 bio_put(*bio);
281 *bio = NULL;
282 bio = &r10_bio->devs[i].repl_bio;
283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 bio_put(*bio);
285 *bio = NULL;
289 static void free_r10bio(struct r10bio *r10_bio)
291 struct r10conf *conf = r10_bio->mddev->private;
293 put_all_bios(conf, r10_bio);
294 mempool_free(r10_bio, conf->r10bio_pool);
297 static void put_buf(struct r10bio *r10_bio)
299 struct r10conf *conf = r10_bio->mddev->private;
301 mempool_free(r10_bio, conf->r10buf_pool);
303 lower_barrier(conf);
306 static void reschedule_retry(struct r10bio *r10_bio)
308 unsigned long flags;
309 struct mddev *mddev = r10_bio->mddev;
310 struct r10conf *conf = mddev->private;
312 spin_lock_irqsave(&conf->device_lock, flags);
313 list_add(&r10_bio->retry_list, &conf->retry_list);
314 conf->nr_queued ++;
315 spin_unlock_irqrestore(&conf->device_lock, flags);
317 /* wake up frozen array... */
318 wake_up(&conf->wait_barrier);
320 md_wakeup_thread(mddev->thread);
324 * raid_end_bio_io() is called when we have finished servicing a mirrored
325 * operation and are ready to return a success/failure code to the buffer
326 * cache layer.
328 static void raid_end_bio_io(struct r10bio *r10_bio)
330 struct bio *bio = r10_bio->master_bio;
331 struct r10conf *conf = r10_bio->mddev->private;
333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334 bio->bi_status = BLK_STS_IOERR;
336 bio_endio(bio);
338 * Wake up any possible resync thread that waits for the device
339 * to go idle.
341 allow_barrier(conf);
343 free_r10bio(r10_bio);
347 * Update disk head position estimator based on IRQ completion info.
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
351 struct r10conf *conf = r10_bio->mddev->private;
353 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 r10_bio->devs[slot].addr + (r10_bio->sectors);
358 * Find the disk number which triggered given bio
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361 struct bio *bio, int *slotp, int *replp)
363 int slot;
364 int repl = 0;
366 for (slot = 0; slot < conf->copies; slot++) {
367 if (r10_bio->devs[slot].bio == bio)
368 break;
369 if (r10_bio->devs[slot].repl_bio == bio) {
370 repl = 1;
371 break;
375 BUG_ON(slot == conf->copies);
376 update_head_pos(slot, r10_bio);
378 if (slotp)
379 *slotp = slot;
380 if (replp)
381 *replp = repl;
382 return r10_bio->devs[slot].devnum;
385 static void raid10_end_read_request(struct bio *bio)
387 int uptodate = !bio->bi_status;
388 struct r10bio *r10_bio = bio->bi_private;
389 int slot;
390 struct md_rdev *rdev;
391 struct r10conf *conf = r10_bio->mddev->private;
393 slot = r10_bio->read_slot;
394 rdev = r10_bio->devs[slot].rdev;
396 * this branch is our 'one mirror IO has finished' event handler:
398 update_head_pos(slot, r10_bio);
400 if (uptodate) {
402 * Set R10BIO_Uptodate in our master bio, so that
403 * we will return a good error code to the higher
404 * levels even if IO on some other mirrored buffer fails.
406 * The 'master' represents the composite IO operation to
407 * user-side. So if something waits for IO, then it will
408 * wait for the 'master' bio.
410 set_bit(R10BIO_Uptodate, &r10_bio->state);
411 } else {
412 /* If all other devices that store this block have
413 * failed, we want to return the error upwards rather
414 * than fail the last device. Here we redefine
415 * "uptodate" to mean "Don't want to retry"
417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 rdev->raid_disk))
419 uptodate = 1;
421 if (uptodate) {
422 raid_end_bio_io(r10_bio);
423 rdev_dec_pending(rdev, conf->mddev);
424 } else {
426 * oops, read error - keep the refcount on the rdev
428 char b[BDEVNAME_SIZE];
429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430 mdname(conf->mddev),
431 bdevname(rdev->bdev, b),
432 (unsigned long long)r10_bio->sector);
433 set_bit(R10BIO_ReadError, &r10_bio->state);
434 reschedule_retry(r10_bio);
438 static void close_write(struct r10bio *r10_bio)
440 /* clear the bitmap if all writes complete successfully */
441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 r10_bio->sectors,
443 !test_bit(R10BIO_Degraded, &r10_bio->state),
445 md_write_end(r10_bio->mddev);
448 static void one_write_done(struct r10bio *r10_bio)
450 if (atomic_dec_and_test(&r10_bio->remaining)) {
451 if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 reschedule_retry(r10_bio);
453 else {
454 close_write(r10_bio);
455 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 reschedule_retry(r10_bio);
457 else
458 raid_end_bio_io(r10_bio);
463 static void raid10_end_write_request(struct bio *bio)
465 struct r10bio *r10_bio = bio->bi_private;
466 int dev;
467 int dec_rdev = 1;
468 struct r10conf *conf = r10_bio->mddev->private;
469 int slot, repl;
470 struct md_rdev *rdev = NULL;
471 struct bio *to_put = NULL;
472 bool discard_error;
474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
478 if (repl)
479 rdev = conf->mirrors[dev].replacement;
480 if (!rdev) {
481 smp_rmb();
482 repl = 0;
483 rdev = conf->mirrors[dev].rdev;
486 * this branch is our 'one mirror IO has finished' event handler:
488 if (bio->bi_status && !discard_error) {
489 if (repl)
490 /* Never record new bad blocks to replacement,
491 * just fail it.
493 md_error(rdev->mddev, rdev);
494 else {
495 set_bit(WriteErrorSeen, &rdev->flags);
496 if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 set_bit(MD_RECOVERY_NEEDED,
498 &rdev->mddev->recovery);
500 dec_rdev = 0;
501 if (test_bit(FailFast, &rdev->flags) &&
502 (bio->bi_opf & MD_FAILFAST)) {
503 md_error(rdev->mddev, rdev);
504 if (!test_bit(Faulty, &rdev->flags))
505 /* This is the only remaining device,
506 * We need to retry the write without
507 * FailFast
509 set_bit(R10BIO_WriteError, &r10_bio->state);
510 else {
511 r10_bio->devs[slot].bio = NULL;
512 to_put = bio;
513 dec_rdev = 1;
515 } else
516 set_bit(R10BIO_WriteError, &r10_bio->state);
518 } else {
520 * Set R10BIO_Uptodate in our master bio, so that
521 * we will return a good error code for to the higher
522 * levels even if IO on some other mirrored buffer fails.
524 * The 'master' represents the composite IO operation to
525 * user-side. So if something waits for IO, then it will
526 * wait for the 'master' bio.
528 sector_t first_bad;
529 int bad_sectors;
532 * Do not set R10BIO_Uptodate if the current device is
533 * rebuilding or Faulty. This is because we cannot use
534 * such device for properly reading the data back (we could
535 * potentially use it, if the current write would have felt
536 * before rdev->recovery_offset, but for simplicity we don't
537 * check this here.
539 if (test_bit(In_sync, &rdev->flags) &&
540 !test_bit(Faulty, &rdev->flags))
541 set_bit(R10BIO_Uptodate, &r10_bio->state);
543 /* Maybe we can clear some bad blocks. */
544 if (is_badblock(rdev,
545 r10_bio->devs[slot].addr,
546 r10_bio->sectors,
547 &first_bad, &bad_sectors) && !discard_error) {
548 bio_put(bio);
549 if (repl)
550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 else
552 r10_bio->devs[slot].bio = IO_MADE_GOOD;
553 dec_rdev = 0;
554 set_bit(R10BIO_MadeGood, &r10_bio->state);
560 * Let's see if all mirrored write operations have finished
561 * already.
563 one_write_done(r10_bio);
564 if (dec_rdev)
565 rdev_dec_pending(rdev, conf->mddev);
566 if (to_put)
567 bio_put(to_put);
571 * RAID10 layout manager
572 * As well as the chunksize and raid_disks count, there are two
573 * parameters: near_copies and far_copies.
574 * near_copies * far_copies must be <= raid_disks.
575 * Normally one of these will be 1.
576 * If both are 1, we get raid0.
577 * If near_copies == raid_disks, we get raid1.
579 * Chunks are laid out in raid0 style with near_copies copies of the
580 * first chunk, followed by near_copies copies of the next chunk and
581 * so on.
582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
583 * as described above, we start again with a device offset of near_copies.
584 * So we effectively have another copy of the whole array further down all
585 * the drives, but with blocks on different drives.
586 * With this layout, and block is never stored twice on the one device.
588 * raid10_find_phys finds the sector offset of a given virtual sector
589 * on each device that it is on.
591 * raid10_find_virt does the reverse mapping, from a device and a
592 * sector offset to a virtual address
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
597 int n,f;
598 sector_t sector;
599 sector_t chunk;
600 sector_t stripe;
601 int dev;
602 int slot = 0;
603 int last_far_set_start, last_far_set_size;
605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 last_far_set_start *= geo->far_set_size;
608 last_far_set_size = geo->far_set_size;
609 last_far_set_size += (geo->raid_disks % geo->far_set_size);
611 /* now calculate first sector/dev */
612 chunk = r10bio->sector >> geo->chunk_shift;
613 sector = r10bio->sector & geo->chunk_mask;
615 chunk *= geo->near_copies;
616 stripe = chunk;
617 dev = sector_div(stripe, geo->raid_disks);
618 if (geo->far_offset)
619 stripe *= geo->far_copies;
621 sector += stripe << geo->chunk_shift;
623 /* and calculate all the others */
624 for (n = 0; n < geo->near_copies; n++) {
625 int d = dev;
626 int set;
627 sector_t s = sector;
628 r10bio->devs[slot].devnum = d;
629 r10bio->devs[slot].addr = s;
630 slot++;
632 for (f = 1; f < geo->far_copies; f++) {
633 set = d / geo->far_set_size;
634 d += geo->near_copies;
636 if ((geo->raid_disks % geo->far_set_size) &&
637 (d > last_far_set_start)) {
638 d -= last_far_set_start;
639 d %= last_far_set_size;
640 d += last_far_set_start;
641 } else {
642 d %= geo->far_set_size;
643 d += geo->far_set_size * set;
645 s += geo->stride;
646 r10bio->devs[slot].devnum = d;
647 r10bio->devs[slot].addr = s;
648 slot++;
650 dev++;
651 if (dev >= geo->raid_disks) {
652 dev = 0;
653 sector += (geo->chunk_mask + 1);
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
660 struct geom *geo = &conf->geo;
662 if (conf->reshape_progress != MaxSector &&
663 ((r10bio->sector >= conf->reshape_progress) !=
664 conf->mddev->reshape_backwards)) {
665 set_bit(R10BIO_Previous, &r10bio->state);
666 geo = &conf->prev;
667 } else
668 clear_bit(R10BIO_Previous, &r10bio->state);
670 __raid10_find_phys(geo, r10bio);
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
675 sector_t offset, chunk, vchunk;
676 /* Never use conf->prev as this is only called during resync
677 * or recovery, so reshape isn't happening
679 struct geom *geo = &conf->geo;
680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 int far_set_size = geo->far_set_size;
682 int last_far_set_start;
684 if (geo->raid_disks % geo->far_set_size) {
685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 last_far_set_start *= geo->far_set_size;
688 if (dev >= last_far_set_start) {
689 far_set_size = geo->far_set_size;
690 far_set_size += (geo->raid_disks % geo->far_set_size);
691 far_set_start = last_far_set_start;
695 offset = sector & geo->chunk_mask;
696 if (geo->far_offset) {
697 int fc;
698 chunk = sector >> geo->chunk_shift;
699 fc = sector_div(chunk, geo->far_copies);
700 dev -= fc * geo->near_copies;
701 if (dev < far_set_start)
702 dev += far_set_size;
703 } else {
704 while (sector >= geo->stride) {
705 sector -= geo->stride;
706 if (dev < (geo->near_copies + far_set_start))
707 dev += far_set_size - geo->near_copies;
708 else
709 dev -= geo->near_copies;
711 chunk = sector >> geo->chunk_shift;
713 vchunk = chunk * geo->raid_disks + dev;
714 sector_div(vchunk, geo->near_copies);
715 return (vchunk << geo->chunk_shift) + offset;
719 * This routine returns the disk from which the requested read should
720 * be done. There is a per-array 'next expected sequential IO' sector
721 * number - if this matches on the next IO then we use the last disk.
722 * There is also a per-disk 'last know head position' sector that is
723 * maintained from IRQ contexts, both the normal and the resync IO
724 * completion handlers update this position correctly. If there is no
725 * perfect sequential match then we pick the disk whose head is closest.
727 * If there are 2 mirrors in the same 2 devices, performance degrades
728 * because position is mirror, not device based.
730 * The rdev for the device selected will have nr_pending incremented.
734 * FIXME: possibly should rethink readbalancing and do it differently
735 * depending on near_copies / far_copies geometry.
737 static struct md_rdev *read_balance(struct r10conf *conf,
738 struct r10bio *r10_bio,
739 int *max_sectors)
741 const sector_t this_sector = r10_bio->sector;
742 int disk, slot;
743 int sectors = r10_bio->sectors;
744 int best_good_sectors;
745 sector_t new_distance, best_dist;
746 struct md_rdev *best_rdev, *rdev = NULL;
747 int do_balance;
748 int best_slot;
749 struct geom *geo = &conf->geo;
751 raid10_find_phys(conf, r10_bio);
752 rcu_read_lock();
753 best_slot = -1;
754 best_rdev = NULL;
755 best_dist = MaxSector;
756 best_good_sectors = 0;
757 do_balance = 1;
758 clear_bit(R10BIO_FailFast, &r10_bio->state);
760 * Check if we can balance. We can balance on the whole
761 * device if no resync is going on (recovery is ok), or below
762 * the resync window. We take the first readable disk when
763 * above the resync window.
765 if ((conf->mddev->recovery_cp < MaxSector
766 && (this_sector + sectors >= conf->next_resync)) ||
767 (mddev_is_clustered(conf->mddev) &&
768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 this_sector + sectors)))
770 do_balance = 0;
772 for (slot = 0; slot < conf->copies ; slot++) {
773 sector_t first_bad;
774 int bad_sectors;
775 sector_t dev_sector;
777 if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 continue;
779 disk = r10_bio->devs[slot].devnum;
780 rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 rdev = rcu_dereference(conf->mirrors[disk].rdev);
784 if (rdev == NULL ||
785 test_bit(Faulty, &rdev->flags))
786 continue;
787 if (!test_bit(In_sync, &rdev->flags) &&
788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 continue;
791 dev_sector = r10_bio->devs[slot].addr;
792 if (is_badblock(rdev, dev_sector, sectors,
793 &first_bad, &bad_sectors)) {
794 if (best_dist < MaxSector)
795 /* Already have a better slot */
796 continue;
797 if (first_bad <= dev_sector) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
802 bad_sectors -= (dev_sector - first_bad);
803 if (!do_balance && sectors > bad_sectors)
804 sectors = bad_sectors;
805 if (best_good_sectors > sectors)
806 best_good_sectors = sectors;
807 } else {
808 sector_t good_sectors =
809 first_bad - dev_sector;
810 if (good_sectors > best_good_sectors) {
811 best_good_sectors = good_sectors;
812 best_slot = slot;
813 best_rdev = rdev;
815 if (!do_balance)
816 /* Must read from here */
817 break;
819 continue;
820 } else
821 best_good_sectors = sectors;
823 if (!do_balance)
824 break;
826 if (best_slot >= 0)
827 /* At least 2 disks to choose from so failfast is OK */
828 set_bit(R10BIO_FailFast, &r10_bio->state);
829 /* This optimisation is debatable, and completely destroys
830 * sequential read speed for 'far copies' arrays. So only
831 * keep it for 'near' arrays, and review those later.
833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834 new_distance = 0;
836 /* for far > 1 always use the lowest address */
837 else if (geo->far_copies > 1)
838 new_distance = r10_bio->devs[slot].addr;
839 else
840 new_distance = abs(r10_bio->devs[slot].addr -
841 conf->mirrors[disk].head_position);
842 if (new_distance < best_dist) {
843 best_dist = new_distance;
844 best_slot = slot;
845 best_rdev = rdev;
848 if (slot >= conf->copies) {
849 slot = best_slot;
850 rdev = best_rdev;
853 if (slot >= 0) {
854 atomic_inc(&rdev->nr_pending);
855 r10_bio->read_slot = slot;
856 } else
857 rdev = NULL;
858 rcu_read_unlock();
859 *max_sectors = best_good_sectors;
861 return rdev;
864 static int raid10_congested(struct mddev *mddev, int bits)
866 struct r10conf *conf = mddev->private;
867 int i, ret = 0;
869 if ((bits & (1 << WB_async_congested)) &&
870 conf->pending_count >= max_queued_requests)
871 return 1;
873 rcu_read_lock();
874 for (i = 0;
875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 && ret == 0;
877 i++) {
878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879 if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 struct request_queue *q = bdev_get_queue(rdev->bdev);
882 ret |= bdi_congested(q->backing_dev_info, bits);
885 rcu_read_unlock();
886 return ret;
889 static void flush_pending_writes(struct r10conf *conf)
891 /* Any writes that have been queued but are awaiting
892 * bitmap updates get flushed here.
894 spin_lock_irq(&conf->device_lock);
896 if (conf->pending_bio_list.head) {
897 struct blk_plug plug;
898 struct bio *bio;
900 bio = bio_list_get(&conf->pending_bio_list);
901 conf->pending_count = 0;
902 spin_unlock_irq(&conf->device_lock);
905 * As this is called in a wait_event() loop (see freeze_array),
906 * current->state might be TASK_UNINTERRUPTIBLE which will
907 * cause a warning when we prepare to wait again. As it is
908 * rare that this path is taken, it is perfectly safe to force
909 * us to go around the wait_event() loop again, so the warning
910 * is a false-positive. Silence the warning by resetting
911 * thread state
913 __set_current_state(TASK_RUNNING);
915 blk_start_plug(&plug);
916 /* flush any pending bitmap writes to disk
917 * before proceeding w/ I/O */
918 bitmap_unplug(conf->mddev->bitmap);
919 wake_up(&conf->wait_barrier);
921 while (bio) { /* submit pending writes */
922 struct bio *next = bio->bi_next;
923 struct md_rdev *rdev = (void*)bio->bi_disk;
924 bio->bi_next = NULL;
925 bio_set_dev(bio, rdev->bdev);
926 if (test_bit(Faulty, &rdev->flags)) {
927 bio_io_error(bio);
928 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
929 !blk_queue_discard(bio->bi_disk->queue)))
930 /* Just ignore it */
931 bio_endio(bio);
932 else
933 generic_make_request(bio);
934 bio = next;
936 blk_finish_plug(&plug);
937 } else
938 spin_unlock_irq(&conf->device_lock);
941 /* Barriers....
942 * Sometimes we need to suspend IO while we do something else,
943 * either some resync/recovery, or reconfigure the array.
944 * To do this we raise a 'barrier'.
945 * The 'barrier' is a counter that can be raised multiple times
946 * to count how many activities are happening which preclude
947 * normal IO.
948 * We can only raise the barrier if there is no pending IO.
949 * i.e. if nr_pending == 0.
950 * We choose only to raise the barrier if no-one is waiting for the
951 * barrier to go down. This means that as soon as an IO request
952 * is ready, no other operations which require a barrier will start
953 * until the IO request has had a chance.
955 * So: regular IO calls 'wait_barrier'. When that returns there
956 * is no backgroup IO happening, It must arrange to call
957 * allow_barrier when it has finished its IO.
958 * backgroup IO calls must call raise_barrier. Once that returns
959 * there is no normal IO happeing. It must arrange to call
960 * lower_barrier when the particular background IO completes.
963 static void raise_barrier(struct r10conf *conf, int force)
965 BUG_ON(force && !conf->barrier);
966 spin_lock_irq(&conf->resync_lock);
968 /* Wait until no block IO is waiting (unless 'force') */
969 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
970 conf->resync_lock);
972 /* block any new IO from starting */
973 conf->barrier++;
975 /* Now wait for all pending IO to complete */
976 wait_event_lock_irq(conf->wait_barrier,
977 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
978 conf->resync_lock);
980 spin_unlock_irq(&conf->resync_lock);
983 static void lower_barrier(struct r10conf *conf)
985 unsigned long flags;
986 spin_lock_irqsave(&conf->resync_lock, flags);
987 conf->barrier--;
988 spin_unlock_irqrestore(&conf->resync_lock, flags);
989 wake_up(&conf->wait_barrier);
992 static void wait_barrier(struct r10conf *conf)
994 spin_lock_irq(&conf->resync_lock);
995 if (conf->barrier) {
996 conf->nr_waiting++;
997 /* Wait for the barrier to drop.
998 * However if there are already pending
999 * requests (preventing the barrier from
1000 * rising completely), and the
1001 * pre-process bio queue isn't empty,
1002 * then don't wait, as we need to empty
1003 * that queue to get the nr_pending
1004 * count down.
1006 raid10_log(conf->mddev, "wait barrier");
1007 wait_event_lock_irq(conf->wait_barrier,
1008 !conf->barrier ||
1009 (atomic_read(&conf->nr_pending) &&
1010 current->bio_list &&
1011 (!bio_list_empty(&current->bio_list[0]) ||
1012 !bio_list_empty(&current->bio_list[1]))),
1013 conf->resync_lock);
1014 conf->nr_waiting--;
1015 if (!conf->nr_waiting)
1016 wake_up(&conf->wait_barrier);
1018 atomic_inc(&conf->nr_pending);
1019 spin_unlock_irq(&conf->resync_lock);
1022 static void allow_barrier(struct r10conf *conf)
1024 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1025 (conf->array_freeze_pending))
1026 wake_up(&conf->wait_barrier);
1029 static void freeze_array(struct r10conf *conf, int extra)
1031 /* stop syncio and normal IO and wait for everything to
1032 * go quiet.
1033 * We increment barrier and nr_waiting, and then
1034 * wait until nr_pending match nr_queued+extra
1035 * This is called in the context of one normal IO request
1036 * that has failed. Thus any sync request that might be pending
1037 * will be blocked by nr_pending, and we need to wait for
1038 * pending IO requests to complete or be queued for re-try.
1039 * Thus the number queued (nr_queued) plus this request (extra)
1040 * must match the number of pending IOs (nr_pending) before
1041 * we continue.
1043 spin_lock_irq(&conf->resync_lock);
1044 conf->array_freeze_pending++;
1045 conf->barrier++;
1046 conf->nr_waiting++;
1047 wait_event_lock_irq_cmd(conf->wait_barrier,
1048 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1049 conf->resync_lock,
1050 flush_pending_writes(conf));
1052 conf->array_freeze_pending--;
1053 spin_unlock_irq(&conf->resync_lock);
1056 static void unfreeze_array(struct r10conf *conf)
1058 /* reverse the effect of the freeze */
1059 spin_lock_irq(&conf->resync_lock);
1060 conf->barrier--;
1061 conf->nr_waiting--;
1062 wake_up(&conf->wait_barrier);
1063 spin_unlock_irq(&conf->resync_lock);
1066 static sector_t choose_data_offset(struct r10bio *r10_bio,
1067 struct md_rdev *rdev)
1069 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1070 test_bit(R10BIO_Previous, &r10_bio->state))
1071 return rdev->data_offset;
1072 else
1073 return rdev->new_data_offset;
1076 struct raid10_plug_cb {
1077 struct blk_plug_cb cb;
1078 struct bio_list pending;
1079 int pending_cnt;
1082 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1084 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1085 cb);
1086 struct mddev *mddev = plug->cb.data;
1087 struct r10conf *conf = mddev->private;
1088 struct bio *bio;
1090 if (from_schedule || current->bio_list) {
1091 spin_lock_irq(&conf->device_lock);
1092 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1093 conf->pending_count += plug->pending_cnt;
1094 spin_unlock_irq(&conf->device_lock);
1095 wake_up(&conf->wait_barrier);
1096 md_wakeup_thread(mddev->thread);
1097 kfree(plug);
1098 return;
1101 /* we aren't scheduling, so we can do the write-out directly. */
1102 bio = bio_list_get(&plug->pending);
1103 bitmap_unplug(mddev->bitmap);
1104 wake_up(&conf->wait_barrier);
1106 while (bio) { /* submit pending writes */
1107 struct bio *next = bio->bi_next;
1108 struct md_rdev *rdev = (void*)bio->bi_disk;
1109 bio->bi_next = NULL;
1110 bio_set_dev(bio, rdev->bdev);
1111 if (test_bit(Faulty, &rdev->flags)) {
1112 bio_io_error(bio);
1113 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1114 !blk_queue_discard(bio->bi_disk->queue)))
1115 /* Just ignore it */
1116 bio_endio(bio);
1117 else
1118 generic_make_request(bio);
1119 bio = next;
1121 kfree(plug);
1124 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1125 struct r10bio *r10_bio)
1127 struct r10conf *conf = mddev->private;
1128 struct bio *read_bio;
1129 const int op = bio_op(bio);
1130 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1131 int max_sectors;
1132 sector_t sectors;
1133 struct md_rdev *rdev;
1134 char b[BDEVNAME_SIZE];
1135 int slot = r10_bio->read_slot;
1136 struct md_rdev *err_rdev = NULL;
1137 gfp_t gfp = GFP_NOIO;
1139 if (r10_bio->devs[slot].rdev) {
1141 * This is an error retry, but we cannot
1142 * safely dereference the rdev in the r10_bio,
1143 * we must use the one in conf.
1144 * If it has already been disconnected (unlikely)
1145 * we lose the device name in error messages.
1147 int disk;
1149 * As we are blocking raid10, it is a little safer to
1150 * use __GFP_HIGH.
1152 gfp = GFP_NOIO | __GFP_HIGH;
1154 rcu_read_lock();
1155 disk = r10_bio->devs[slot].devnum;
1156 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1157 if (err_rdev)
1158 bdevname(err_rdev->bdev, b);
1159 else {
1160 strcpy(b, "???");
1161 /* This never gets dereferenced */
1162 err_rdev = r10_bio->devs[slot].rdev;
1164 rcu_read_unlock();
1167 * Register the new request and wait if the reconstruction
1168 * thread has put up a bar for new requests.
1169 * Continue immediately if no resync is active currently.
1171 wait_barrier(conf);
1173 sectors = r10_bio->sectors;
1174 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1175 bio->bi_iter.bi_sector < conf->reshape_progress &&
1176 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1178 * IO spans the reshape position. Need to wait for reshape to
1179 * pass
1181 raid10_log(conf->mddev, "wait reshape");
1182 allow_barrier(conf);
1183 wait_event(conf->wait_barrier,
1184 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185 conf->reshape_progress >= bio->bi_iter.bi_sector +
1186 sectors);
1187 wait_barrier(conf);
1190 rdev = read_balance(conf, r10_bio, &max_sectors);
1191 if (!rdev) {
1192 if (err_rdev) {
1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194 mdname(mddev), b,
1195 (unsigned long long)r10_bio->sector);
1197 raid_end_bio_io(r10_bio);
1198 return;
1200 if (err_rdev)
1201 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1202 mdname(mddev),
1203 bdevname(rdev->bdev, b),
1204 (unsigned long long)r10_bio->sector);
1205 if (max_sectors < bio_sectors(bio)) {
1206 struct bio *split = bio_split(bio, max_sectors,
1207 gfp, conf->bio_split);
1208 bio_chain(split, bio);
1209 generic_make_request(bio);
1210 bio = split;
1211 r10_bio->master_bio = bio;
1212 r10_bio->sectors = max_sectors;
1214 slot = r10_bio->read_slot;
1216 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1218 r10_bio->devs[slot].bio = read_bio;
1219 r10_bio->devs[slot].rdev = rdev;
1221 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1222 choose_data_offset(r10_bio, rdev);
1223 bio_set_dev(read_bio, rdev->bdev);
1224 read_bio->bi_end_io = raid10_end_read_request;
1225 bio_set_op_attrs(read_bio, op, do_sync);
1226 if (test_bit(FailFast, &rdev->flags) &&
1227 test_bit(R10BIO_FailFast, &r10_bio->state))
1228 read_bio->bi_opf |= MD_FAILFAST;
1229 read_bio->bi_private = r10_bio;
1231 if (mddev->gendisk)
1232 trace_block_bio_remap(read_bio->bi_disk->queue,
1233 read_bio, disk_devt(mddev->gendisk),
1234 r10_bio->sector);
1235 generic_make_request(read_bio);
1236 return;
1239 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1240 struct bio *bio, bool replacement,
1241 int n_copy)
1243 const int op = bio_op(bio);
1244 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1245 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1246 unsigned long flags;
1247 struct blk_plug_cb *cb;
1248 struct raid10_plug_cb *plug = NULL;
1249 struct r10conf *conf = mddev->private;
1250 struct md_rdev *rdev;
1251 int devnum = r10_bio->devs[n_copy].devnum;
1252 struct bio *mbio;
1254 if (replacement) {
1255 rdev = conf->mirrors[devnum].replacement;
1256 if (rdev == NULL) {
1257 /* Replacement just got moved to main 'rdev' */
1258 smp_mb();
1259 rdev = conf->mirrors[devnum].rdev;
1261 } else
1262 rdev = conf->mirrors[devnum].rdev;
1264 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1265 if (replacement)
1266 r10_bio->devs[n_copy].repl_bio = mbio;
1267 else
1268 r10_bio->devs[n_copy].bio = mbio;
1270 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1271 choose_data_offset(r10_bio, rdev));
1272 bio_set_dev(mbio, rdev->bdev);
1273 mbio->bi_end_io = raid10_end_write_request;
1274 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1275 if (!replacement && test_bit(FailFast,
1276 &conf->mirrors[devnum].rdev->flags)
1277 && enough(conf, devnum))
1278 mbio->bi_opf |= MD_FAILFAST;
1279 mbio->bi_private = r10_bio;
1281 if (conf->mddev->gendisk)
1282 trace_block_bio_remap(mbio->bi_disk->queue,
1283 mbio, disk_devt(conf->mddev->gendisk),
1284 r10_bio->sector);
1285 /* flush_pending_writes() needs access to the rdev so...*/
1286 mbio->bi_disk = (void *)rdev;
1288 atomic_inc(&r10_bio->remaining);
1290 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1291 if (cb)
1292 plug = container_of(cb, struct raid10_plug_cb, cb);
1293 else
1294 plug = NULL;
1295 if (plug) {
1296 bio_list_add(&plug->pending, mbio);
1297 plug->pending_cnt++;
1298 } else {
1299 spin_lock_irqsave(&conf->device_lock, flags);
1300 bio_list_add(&conf->pending_bio_list, mbio);
1301 conf->pending_count++;
1302 spin_unlock_irqrestore(&conf->device_lock, flags);
1303 md_wakeup_thread(mddev->thread);
1307 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1308 struct r10bio *r10_bio)
1310 struct r10conf *conf = mddev->private;
1311 int i;
1312 struct md_rdev *blocked_rdev;
1313 sector_t sectors;
1314 int max_sectors;
1316 if ((mddev_is_clustered(mddev) &&
1317 md_cluster_ops->area_resyncing(mddev, WRITE,
1318 bio->bi_iter.bi_sector,
1319 bio_end_sector(bio)))) {
1320 DEFINE_WAIT(w);
1321 for (;;) {
1322 prepare_to_wait(&conf->wait_barrier,
1323 &w, TASK_IDLE);
1324 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1326 break;
1327 schedule();
1329 finish_wait(&conf->wait_barrier, &w);
1333 * Register the new request and wait if the reconstruction
1334 * thread has put up a bar for new requests.
1335 * Continue immediately if no resync is active currently.
1337 wait_barrier(conf);
1339 sectors = r10_bio->sectors;
1340 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1341 bio->bi_iter.bi_sector < conf->reshape_progress &&
1342 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1344 * IO spans the reshape position. Need to wait for reshape to
1345 * pass
1347 raid10_log(conf->mddev, "wait reshape");
1348 allow_barrier(conf);
1349 wait_event(conf->wait_barrier,
1350 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1351 conf->reshape_progress >= bio->bi_iter.bi_sector +
1352 sectors);
1353 wait_barrier(conf);
1356 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1357 (mddev->reshape_backwards
1358 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1359 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1360 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1361 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1362 /* Need to update reshape_position in metadata */
1363 mddev->reshape_position = conf->reshape_progress;
1364 set_mask_bits(&mddev->sb_flags, 0,
1365 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1366 md_wakeup_thread(mddev->thread);
1367 raid10_log(conf->mddev, "wait reshape metadata");
1368 wait_event(mddev->sb_wait,
1369 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1371 conf->reshape_safe = mddev->reshape_position;
1374 if (conf->pending_count >= max_queued_requests) {
1375 md_wakeup_thread(mddev->thread);
1376 raid10_log(mddev, "wait queued");
1377 wait_event(conf->wait_barrier,
1378 conf->pending_count < max_queued_requests);
1380 /* first select target devices under rcu_lock and
1381 * inc refcount on their rdev. Record them by setting
1382 * bios[x] to bio
1383 * If there are known/acknowledged bad blocks on any device
1384 * on which we have seen a write error, we want to avoid
1385 * writing to those blocks. This potentially requires several
1386 * writes to write around the bad blocks. Each set of writes
1387 * gets its own r10_bio with a set of bios attached.
1390 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1391 raid10_find_phys(conf, r10_bio);
1392 retry_write:
1393 blocked_rdev = NULL;
1394 rcu_read_lock();
1395 max_sectors = r10_bio->sectors;
1397 for (i = 0; i < conf->copies; i++) {
1398 int d = r10_bio->devs[i].devnum;
1399 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1400 struct md_rdev *rrdev = rcu_dereference(
1401 conf->mirrors[d].replacement);
1402 if (rdev == rrdev)
1403 rrdev = NULL;
1404 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1405 atomic_inc(&rdev->nr_pending);
1406 blocked_rdev = rdev;
1407 break;
1409 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1410 atomic_inc(&rrdev->nr_pending);
1411 blocked_rdev = rrdev;
1412 break;
1414 if (rdev && (test_bit(Faulty, &rdev->flags)))
1415 rdev = NULL;
1416 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1417 rrdev = NULL;
1419 r10_bio->devs[i].bio = NULL;
1420 r10_bio->devs[i].repl_bio = NULL;
1422 if (!rdev && !rrdev) {
1423 set_bit(R10BIO_Degraded, &r10_bio->state);
1424 continue;
1426 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1427 sector_t first_bad;
1428 sector_t dev_sector = r10_bio->devs[i].addr;
1429 int bad_sectors;
1430 int is_bad;
1432 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1433 &first_bad, &bad_sectors);
1434 if (is_bad < 0) {
1435 /* Mustn't write here until the bad block
1436 * is acknowledged
1438 atomic_inc(&rdev->nr_pending);
1439 set_bit(BlockedBadBlocks, &rdev->flags);
1440 blocked_rdev = rdev;
1441 break;
1443 if (is_bad && first_bad <= dev_sector) {
1444 /* Cannot write here at all */
1445 bad_sectors -= (dev_sector - first_bad);
1446 if (bad_sectors < max_sectors)
1447 /* Mustn't write more than bad_sectors
1448 * to other devices yet
1450 max_sectors = bad_sectors;
1451 /* We don't set R10BIO_Degraded as that
1452 * only applies if the disk is missing,
1453 * so it might be re-added, and we want to
1454 * know to recover this chunk.
1455 * In this case the device is here, and the
1456 * fact that this chunk is not in-sync is
1457 * recorded in the bad block log.
1459 continue;
1461 if (is_bad) {
1462 int good_sectors = first_bad - dev_sector;
1463 if (good_sectors < max_sectors)
1464 max_sectors = good_sectors;
1467 if (rdev) {
1468 r10_bio->devs[i].bio = bio;
1469 atomic_inc(&rdev->nr_pending);
1471 if (rrdev) {
1472 r10_bio->devs[i].repl_bio = bio;
1473 atomic_inc(&rrdev->nr_pending);
1476 rcu_read_unlock();
1478 if (unlikely(blocked_rdev)) {
1479 /* Have to wait for this device to get unblocked, then retry */
1480 int j;
1481 int d;
1483 for (j = 0; j < i; j++) {
1484 if (r10_bio->devs[j].bio) {
1485 d = r10_bio->devs[j].devnum;
1486 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1488 if (r10_bio->devs[j].repl_bio) {
1489 struct md_rdev *rdev;
1490 d = r10_bio->devs[j].devnum;
1491 rdev = conf->mirrors[d].replacement;
1492 if (!rdev) {
1493 /* Race with remove_disk */
1494 smp_mb();
1495 rdev = conf->mirrors[d].rdev;
1497 rdev_dec_pending(rdev, mddev);
1500 allow_barrier(conf);
1501 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1502 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1503 wait_barrier(conf);
1504 goto retry_write;
1507 if (max_sectors < r10_bio->sectors)
1508 r10_bio->sectors = max_sectors;
1510 if (r10_bio->sectors < bio_sectors(bio)) {
1511 struct bio *split = bio_split(bio, r10_bio->sectors,
1512 GFP_NOIO, conf->bio_split);
1513 bio_chain(split, bio);
1514 generic_make_request(bio);
1515 bio = split;
1516 r10_bio->master_bio = bio;
1519 atomic_set(&r10_bio->remaining, 1);
1520 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1522 for (i = 0; i < conf->copies; i++) {
1523 if (r10_bio->devs[i].bio)
1524 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525 if (r10_bio->devs[i].repl_bio)
1526 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1528 one_write_done(r10_bio);
1531 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1533 struct r10conf *conf = mddev->private;
1534 struct r10bio *r10_bio;
1536 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1538 r10_bio->master_bio = bio;
1539 r10_bio->sectors = sectors;
1541 r10_bio->mddev = mddev;
1542 r10_bio->sector = bio->bi_iter.bi_sector;
1543 r10_bio->state = 0;
1544 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1546 if (bio_data_dir(bio) == READ)
1547 raid10_read_request(mddev, bio, r10_bio);
1548 else
1549 raid10_write_request(mddev, bio, r10_bio);
1552 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1554 struct r10conf *conf = mddev->private;
1555 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1556 int chunk_sects = chunk_mask + 1;
1557 int sectors = bio_sectors(bio);
1559 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560 md_flush_request(mddev, bio);
1561 return true;
1564 if (!md_write_start(mddev, bio))
1565 return false;
1568 * If this request crosses a chunk boundary, we need to split
1569 * it.
1571 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1572 sectors > chunk_sects
1573 && (conf->geo.near_copies < conf->geo.raid_disks
1574 || conf->prev.near_copies <
1575 conf->prev.raid_disks)))
1576 sectors = chunk_sects -
1577 (bio->bi_iter.bi_sector &
1578 (chunk_sects - 1));
1579 __make_request(mddev, bio, sectors);
1581 /* In case raid10d snuck in to freeze_array */
1582 wake_up(&conf->wait_barrier);
1583 return true;
1586 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1588 struct r10conf *conf = mddev->private;
1589 int i;
1591 if (conf->geo.near_copies < conf->geo.raid_disks)
1592 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1593 if (conf->geo.near_copies > 1)
1594 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1595 if (conf->geo.far_copies > 1) {
1596 if (conf->geo.far_offset)
1597 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1598 else
1599 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1600 if (conf->geo.far_set_size != conf->geo.raid_disks)
1601 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1603 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604 conf->geo.raid_disks - mddev->degraded);
1605 rcu_read_lock();
1606 for (i = 0; i < conf->geo.raid_disks; i++) {
1607 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1608 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1610 rcu_read_unlock();
1611 seq_printf(seq, "]");
1614 /* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1619 static int _enough(struct r10conf *conf, int previous, int ignore)
1621 int first = 0;
1622 int has_enough = 0;
1623 int disks, ncopies;
1624 if (previous) {
1625 disks = conf->prev.raid_disks;
1626 ncopies = conf->prev.near_copies;
1627 } else {
1628 disks = conf->geo.raid_disks;
1629 ncopies = conf->geo.near_copies;
1632 rcu_read_lock();
1633 do {
1634 int n = conf->copies;
1635 int cnt = 0;
1636 int this = first;
1637 while (n--) {
1638 struct md_rdev *rdev;
1639 if (this != ignore &&
1640 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641 test_bit(In_sync, &rdev->flags))
1642 cnt++;
1643 this = (this+1) % disks;
1645 if (cnt == 0)
1646 goto out;
1647 first = (first + ncopies) % disks;
1648 } while (first != 0);
1649 has_enough = 1;
1650 out:
1651 rcu_read_unlock();
1652 return has_enough;
1655 static int enough(struct r10conf *conf, int ignore)
1657 /* when calling 'enough', both 'prev' and 'geo' must
1658 * be stable.
1659 * This is ensured if ->reconfig_mutex or ->device_lock
1660 * is held.
1662 return _enough(conf, 0, ignore) &&
1663 _enough(conf, 1, ignore);
1666 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1668 char b[BDEVNAME_SIZE];
1669 struct r10conf *conf = mddev->private;
1670 unsigned long flags;
1673 * If it is not operational, then we have already marked it as dead
1674 * else if it is the last working disks, ignore the error, let the
1675 * next level up know.
1676 * else mark the drive as failed
1678 spin_lock_irqsave(&conf->device_lock, flags);
1679 if (test_bit(In_sync, &rdev->flags)
1680 && !enough(conf, rdev->raid_disk)) {
1682 * Don't fail the drive, just return an IO error.
1684 spin_unlock_irqrestore(&conf->device_lock, flags);
1685 return;
1687 if (test_and_clear_bit(In_sync, &rdev->flags))
1688 mddev->degraded++;
1690 * If recovery is running, make sure it aborts.
1692 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693 set_bit(Blocked, &rdev->flags);
1694 set_bit(Faulty, &rdev->flags);
1695 set_mask_bits(&mddev->sb_flags, 0,
1696 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1697 spin_unlock_irqrestore(&conf->device_lock, flags);
1698 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1699 "md/raid10:%s: Operation continuing on %d devices.\n",
1700 mdname(mddev), bdevname(rdev->bdev, b),
1701 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1704 static void print_conf(struct r10conf *conf)
1706 int i;
1707 struct md_rdev *rdev;
1709 pr_debug("RAID10 conf printout:\n");
1710 if (!conf) {
1711 pr_debug("(!conf)\n");
1712 return;
1714 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715 conf->geo.raid_disks);
1717 /* This is only called with ->reconfix_mutex held, so
1718 * rcu protection of rdev is not needed */
1719 for (i = 0; i < conf->geo.raid_disks; i++) {
1720 char b[BDEVNAME_SIZE];
1721 rdev = conf->mirrors[i].rdev;
1722 if (rdev)
1723 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1724 i, !test_bit(In_sync, &rdev->flags),
1725 !test_bit(Faulty, &rdev->flags),
1726 bdevname(rdev->bdev,b));
1730 static void close_sync(struct r10conf *conf)
1732 wait_barrier(conf);
1733 allow_barrier(conf);
1735 mempool_destroy(conf->r10buf_pool);
1736 conf->r10buf_pool = NULL;
1739 static int raid10_spare_active(struct mddev *mddev)
1741 int i;
1742 struct r10conf *conf = mddev->private;
1743 struct raid10_info *tmp;
1744 int count = 0;
1745 unsigned long flags;
1748 * Find all non-in_sync disks within the RAID10 configuration
1749 * and mark them in_sync
1751 for (i = 0; i < conf->geo.raid_disks; i++) {
1752 tmp = conf->mirrors + i;
1753 if (tmp->replacement
1754 && tmp->replacement->recovery_offset == MaxSector
1755 && !test_bit(Faulty, &tmp->replacement->flags)
1756 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1757 /* Replacement has just become active */
1758 if (!tmp->rdev
1759 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1760 count++;
1761 if (tmp->rdev) {
1762 /* Replaced device not technically faulty,
1763 * but we need to be sure it gets removed
1764 * and never re-added.
1766 set_bit(Faulty, &tmp->rdev->flags);
1767 sysfs_notify_dirent_safe(
1768 tmp->rdev->sysfs_state);
1770 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1771 } else if (tmp->rdev
1772 && tmp->rdev->recovery_offset == MaxSector
1773 && !test_bit(Faulty, &tmp->rdev->flags)
1774 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1775 count++;
1776 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1779 spin_lock_irqsave(&conf->device_lock, flags);
1780 mddev->degraded -= count;
1781 spin_unlock_irqrestore(&conf->device_lock, flags);
1783 print_conf(conf);
1784 return count;
1787 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1789 struct r10conf *conf = mddev->private;
1790 int err = -EEXIST;
1791 int mirror;
1792 int first = 0;
1793 int last = conf->geo.raid_disks - 1;
1795 if (mddev->recovery_cp < MaxSector)
1796 /* only hot-add to in-sync arrays, as recovery is
1797 * very different from resync
1799 return -EBUSY;
1800 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801 return -EINVAL;
1803 if (md_integrity_add_rdev(rdev, mddev))
1804 return -ENXIO;
1806 if (rdev->raid_disk >= 0)
1807 first = last = rdev->raid_disk;
1809 if (rdev->saved_raid_disk >= first &&
1810 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1811 mirror = rdev->saved_raid_disk;
1812 else
1813 mirror = first;
1814 for ( ; mirror <= last ; mirror++) {
1815 struct raid10_info *p = &conf->mirrors[mirror];
1816 if (p->recovery_disabled == mddev->recovery_disabled)
1817 continue;
1818 if (p->rdev) {
1819 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1820 p->replacement != NULL)
1821 continue;
1822 clear_bit(In_sync, &rdev->flags);
1823 set_bit(Replacement, &rdev->flags);
1824 rdev->raid_disk = mirror;
1825 err = 0;
1826 if (mddev->gendisk)
1827 disk_stack_limits(mddev->gendisk, rdev->bdev,
1828 rdev->data_offset << 9);
1829 conf->fullsync = 1;
1830 rcu_assign_pointer(p->replacement, rdev);
1831 break;
1834 if (mddev->gendisk)
1835 disk_stack_limits(mddev->gendisk, rdev->bdev,
1836 rdev->data_offset << 9);
1838 p->head_position = 0;
1839 p->recovery_disabled = mddev->recovery_disabled - 1;
1840 rdev->raid_disk = mirror;
1841 err = 0;
1842 if (rdev->saved_raid_disk != mirror)
1843 conf->fullsync = 1;
1844 rcu_assign_pointer(p->rdev, rdev);
1845 break;
1847 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1850 print_conf(conf);
1851 return err;
1854 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1856 struct r10conf *conf = mddev->private;
1857 int err = 0;
1858 int number = rdev->raid_disk;
1859 struct md_rdev **rdevp;
1860 struct raid10_info *p = conf->mirrors + number;
1862 print_conf(conf);
1863 if (rdev == p->rdev)
1864 rdevp = &p->rdev;
1865 else if (rdev == p->replacement)
1866 rdevp = &p->replacement;
1867 else
1868 return 0;
1870 if (test_bit(In_sync, &rdev->flags) ||
1871 atomic_read(&rdev->nr_pending)) {
1872 err = -EBUSY;
1873 goto abort;
1875 /* Only remove non-faulty devices if recovery
1876 * is not possible.
1878 if (!test_bit(Faulty, &rdev->flags) &&
1879 mddev->recovery_disabled != p->recovery_disabled &&
1880 (!p->replacement || p->replacement == rdev) &&
1881 number < conf->geo.raid_disks &&
1882 enough(conf, -1)) {
1883 err = -EBUSY;
1884 goto abort;
1886 *rdevp = NULL;
1887 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1888 synchronize_rcu();
1889 if (atomic_read(&rdev->nr_pending)) {
1890 /* lost the race, try later */
1891 err = -EBUSY;
1892 *rdevp = rdev;
1893 goto abort;
1896 if (p->replacement) {
1897 /* We must have just cleared 'rdev' */
1898 p->rdev = p->replacement;
1899 clear_bit(Replacement, &p->replacement->flags);
1900 smp_mb(); /* Make sure other CPUs may see both as identical
1901 * but will never see neither -- if they are careful.
1903 p->replacement = NULL;
1906 clear_bit(WantReplacement, &rdev->flags);
1907 err = md_integrity_register(mddev);
1909 abort:
1911 print_conf(conf);
1912 return err;
1915 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1917 struct r10conf *conf = r10_bio->mddev->private;
1919 if (!bio->bi_status)
1920 set_bit(R10BIO_Uptodate, &r10_bio->state);
1921 else
1922 /* The write handler will notice the lack of
1923 * R10BIO_Uptodate and record any errors etc
1925 atomic_add(r10_bio->sectors,
1926 &conf->mirrors[d].rdev->corrected_errors);
1928 /* for reconstruct, we always reschedule after a read.
1929 * for resync, only after all reads
1931 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1932 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1933 atomic_dec_and_test(&r10_bio->remaining)) {
1934 /* we have read all the blocks,
1935 * do the comparison in process context in raid10d
1937 reschedule_retry(r10_bio);
1941 static void end_sync_read(struct bio *bio)
1943 struct r10bio *r10_bio = get_resync_r10bio(bio);
1944 struct r10conf *conf = r10_bio->mddev->private;
1945 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1947 __end_sync_read(r10_bio, bio, d);
1950 static void end_reshape_read(struct bio *bio)
1952 /* reshape read bio isn't allocated from r10buf_pool */
1953 struct r10bio *r10_bio = bio->bi_private;
1955 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1958 static void end_sync_request(struct r10bio *r10_bio)
1960 struct mddev *mddev = r10_bio->mddev;
1962 while (atomic_dec_and_test(&r10_bio->remaining)) {
1963 if (r10_bio->master_bio == NULL) {
1964 /* the primary of several recovery bios */
1965 sector_t s = r10_bio->sectors;
1966 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967 test_bit(R10BIO_WriteError, &r10_bio->state))
1968 reschedule_retry(r10_bio);
1969 else
1970 put_buf(r10_bio);
1971 md_done_sync(mddev, s, 1);
1972 break;
1973 } else {
1974 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1975 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976 test_bit(R10BIO_WriteError, &r10_bio->state))
1977 reschedule_retry(r10_bio);
1978 else
1979 put_buf(r10_bio);
1980 r10_bio = r10_bio2;
1985 static void end_sync_write(struct bio *bio)
1987 struct r10bio *r10_bio = get_resync_r10bio(bio);
1988 struct mddev *mddev = r10_bio->mddev;
1989 struct r10conf *conf = mddev->private;
1990 int d;
1991 sector_t first_bad;
1992 int bad_sectors;
1993 int slot;
1994 int repl;
1995 struct md_rdev *rdev = NULL;
1997 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1998 if (repl)
1999 rdev = conf->mirrors[d].replacement;
2000 else
2001 rdev = conf->mirrors[d].rdev;
2003 if (bio->bi_status) {
2004 if (repl)
2005 md_error(mddev, rdev);
2006 else {
2007 set_bit(WriteErrorSeen, &rdev->flags);
2008 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009 set_bit(MD_RECOVERY_NEEDED,
2010 &rdev->mddev->recovery);
2011 set_bit(R10BIO_WriteError, &r10_bio->state);
2013 } else if (is_badblock(rdev,
2014 r10_bio->devs[slot].addr,
2015 r10_bio->sectors,
2016 &first_bad, &bad_sectors))
2017 set_bit(R10BIO_MadeGood, &r10_bio->state);
2019 rdev_dec_pending(rdev, mddev);
2021 end_sync_request(r10_bio);
2025 * Note: sync and recover and handled very differently for raid10
2026 * This code is for resync.
2027 * For resync, we read through virtual addresses and read all blocks.
2028 * If there is any error, we schedule a write. The lowest numbered
2029 * drive is authoritative.
2030 * However requests come for physical address, so we need to map.
2031 * For every physical address there are raid_disks/copies virtual addresses,
2032 * which is always are least one, but is not necessarly an integer.
2033 * This means that a physical address can span multiple chunks, so we may
2034 * have to submit multiple io requests for a single sync request.
2037 * We check if all blocks are in-sync and only write to blocks that
2038 * aren't in sync
2040 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2042 struct r10conf *conf = mddev->private;
2043 int i, first;
2044 struct bio *tbio, *fbio;
2045 int vcnt;
2046 struct page **tpages, **fpages;
2048 atomic_set(&r10_bio->remaining, 1);
2050 /* find the first device with a block */
2051 for (i=0; i<conf->copies; i++)
2052 if (!r10_bio->devs[i].bio->bi_status)
2053 break;
2055 if (i == conf->copies)
2056 goto done;
2058 first = i;
2059 fbio = r10_bio->devs[i].bio;
2060 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2061 fbio->bi_iter.bi_idx = 0;
2062 fpages = get_resync_pages(fbio)->pages;
2064 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2065 /* now find blocks with errors */
2066 for (i=0 ; i < conf->copies ; i++) {
2067 int j, d;
2068 struct md_rdev *rdev;
2069 struct resync_pages *rp;
2071 tbio = r10_bio->devs[i].bio;
2073 if (tbio->bi_end_io != end_sync_read)
2074 continue;
2075 if (i == first)
2076 continue;
2078 tpages = get_resync_pages(tbio)->pages;
2079 d = r10_bio->devs[i].devnum;
2080 rdev = conf->mirrors[d].rdev;
2081 if (!r10_bio->devs[i].bio->bi_status) {
2082 /* We know that the bi_io_vec layout is the same for
2083 * both 'first' and 'i', so we just compare them.
2084 * All vec entries are PAGE_SIZE;
2086 int sectors = r10_bio->sectors;
2087 for (j = 0; j < vcnt; j++) {
2088 int len = PAGE_SIZE;
2089 if (sectors < (len / 512))
2090 len = sectors * 512;
2091 if (memcmp(page_address(fpages[j]),
2092 page_address(tpages[j]),
2093 len))
2094 break;
2095 sectors -= len/512;
2097 if (j == vcnt)
2098 continue;
2099 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101 /* Don't fix anything. */
2102 continue;
2103 } else if (test_bit(FailFast, &rdev->flags)) {
2104 /* Just give up on this device */
2105 md_error(rdev->mddev, rdev);
2106 continue;
2108 /* Ok, we need to write this bio, either to correct an
2109 * inconsistency or to correct an unreadable block.
2110 * First we need to fixup bv_offset, bv_len and
2111 * bi_vecs, as the read request might have corrupted these
2113 rp = get_resync_pages(tbio);
2114 bio_reset(tbio);
2116 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2118 rp->raid_bio = r10_bio;
2119 tbio->bi_private = rp;
2120 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2121 tbio->bi_end_io = end_sync_write;
2122 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2124 bio_copy_data(tbio, fbio);
2126 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2127 atomic_inc(&r10_bio->remaining);
2128 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2130 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2131 tbio->bi_opf |= MD_FAILFAST;
2132 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2134 generic_make_request(tbio);
2137 /* Now write out to any replacement devices
2138 * that are active
2140 for (i = 0; i < conf->copies; i++) {
2141 int d;
2143 tbio = r10_bio->devs[i].repl_bio;
2144 if (!tbio || !tbio->bi_end_io)
2145 continue;
2146 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147 && r10_bio->devs[i].bio != fbio)
2148 bio_copy_data(tbio, fbio);
2149 d = r10_bio->devs[i].devnum;
2150 atomic_inc(&r10_bio->remaining);
2151 md_sync_acct(conf->mirrors[d].replacement->bdev,
2152 bio_sectors(tbio));
2153 generic_make_request(tbio);
2156 done:
2157 if (atomic_dec_and_test(&r10_bio->remaining)) {
2158 md_done_sync(mddev, r10_bio->sectors, 1);
2159 put_buf(r10_bio);
2164 * Now for the recovery code.
2165 * Recovery happens across physical sectors.
2166 * We recover all non-is_sync drives by finding the virtual address of
2167 * each, and then choose a working drive that also has that virt address.
2168 * There is a separate r10_bio for each non-in_sync drive.
2169 * Only the first two slots are in use. The first for reading,
2170 * The second for writing.
2173 static void fix_recovery_read_error(struct r10bio *r10_bio)
2175 /* We got a read error during recovery.
2176 * We repeat the read in smaller page-sized sections.
2177 * If a read succeeds, write it to the new device or record
2178 * a bad block if we cannot.
2179 * If a read fails, record a bad block on both old and
2180 * new devices.
2182 struct mddev *mddev = r10_bio->mddev;
2183 struct r10conf *conf = mddev->private;
2184 struct bio *bio = r10_bio->devs[0].bio;
2185 sector_t sect = 0;
2186 int sectors = r10_bio->sectors;
2187 int idx = 0;
2188 int dr = r10_bio->devs[0].devnum;
2189 int dw = r10_bio->devs[1].devnum;
2190 struct page **pages = get_resync_pages(bio)->pages;
2192 while (sectors) {
2193 int s = sectors;
2194 struct md_rdev *rdev;
2195 sector_t addr;
2196 int ok;
2198 if (s > (PAGE_SIZE>>9))
2199 s = PAGE_SIZE >> 9;
2201 rdev = conf->mirrors[dr].rdev;
2202 addr = r10_bio->devs[0].addr + sect,
2203 ok = sync_page_io(rdev,
2204 addr,
2205 s << 9,
2206 pages[idx],
2207 REQ_OP_READ, 0, false);
2208 if (ok) {
2209 rdev = conf->mirrors[dw].rdev;
2210 addr = r10_bio->devs[1].addr + sect;
2211 ok = sync_page_io(rdev,
2212 addr,
2213 s << 9,
2214 pages[idx],
2215 REQ_OP_WRITE, 0, false);
2216 if (!ok) {
2217 set_bit(WriteErrorSeen, &rdev->flags);
2218 if (!test_and_set_bit(WantReplacement,
2219 &rdev->flags))
2220 set_bit(MD_RECOVERY_NEEDED,
2221 &rdev->mddev->recovery);
2224 if (!ok) {
2225 /* We don't worry if we cannot set a bad block -
2226 * it really is bad so there is no loss in not
2227 * recording it yet
2229 rdev_set_badblocks(rdev, addr, s, 0);
2231 if (rdev != conf->mirrors[dw].rdev) {
2232 /* need bad block on destination too */
2233 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2234 addr = r10_bio->devs[1].addr + sect;
2235 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2236 if (!ok) {
2237 /* just abort the recovery */
2238 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2239 mdname(mddev));
2241 conf->mirrors[dw].recovery_disabled
2242 = mddev->recovery_disabled;
2243 set_bit(MD_RECOVERY_INTR,
2244 &mddev->recovery);
2245 break;
2250 sectors -= s;
2251 sect += s;
2252 idx++;
2256 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2258 struct r10conf *conf = mddev->private;
2259 int d;
2260 struct bio *wbio, *wbio2;
2262 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263 fix_recovery_read_error(r10_bio);
2264 end_sync_request(r10_bio);
2265 return;
2269 * share the pages with the first bio
2270 * and submit the write request
2272 d = r10_bio->devs[1].devnum;
2273 wbio = r10_bio->devs[1].bio;
2274 wbio2 = r10_bio->devs[1].repl_bio;
2275 /* Need to test wbio2->bi_end_io before we call
2276 * generic_make_request as if the former is NULL,
2277 * the latter is free to free wbio2.
2279 if (wbio2 && !wbio2->bi_end_io)
2280 wbio2 = NULL;
2281 if (wbio->bi_end_io) {
2282 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284 generic_make_request(wbio);
2286 if (wbio2) {
2287 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288 md_sync_acct(conf->mirrors[d].replacement->bdev,
2289 bio_sectors(wbio2));
2290 generic_make_request(wbio2);
2295 * Used by fix_read_error() to decay the per rdev read_errors.
2296 * We halve the read error count for every hour that has elapsed
2297 * since the last recorded read error.
2300 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2302 long cur_time_mon;
2303 unsigned long hours_since_last;
2304 unsigned int read_errors = atomic_read(&rdev->read_errors);
2306 cur_time_mon = ktime_get_seconds();
2308 if (rdev->last_read_error == 0) {
2309 /* first time we've seen a read error */
2310 rdev->last_read_error = cur_time_mon;
2311 return;
2314 hours_since_last = (long)(cur_time_mon -
2315 rdev->last_read_error) / 3600;
2317 rdev->last_read_error = cur_time_mon;
2320 * if hours_since_last is > the number of bits in read_errors
2321 * just set read errors to 0. We do this to avoid
2322 * overflowing the shift of read_errors by hours_since_last.
2324 if (hours_since_last >= 8 * sizeof(read_errors))
2325 atomic_set(&rdev->read_errors, 0);
2326 else
2327 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2330 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2331 int sectors, struct page *page, int rw)
2333 sector_t first_bad;
2334 int bad_sectors;
2336 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2337 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2338 return -1;
2339 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2340 /* success */
2341 return 1;
2342 if (rw == WRITE) {
2343 set_bit(WriteErrorSeen, &rdev->flags);
2344 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2345 set_bit(MD_RECOVERY_NEEDED,
2346 &rdev->mddev->recovery);
2348 /* need to record an error - either for the block or the device */
2349 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2350 md_error(rdev->mddev, rdev);
2351 return 0;
2355 * This is a kernel thread which:
2357 * 1. Retries failed read operations on working mirrors.
2358 * 2. Updates the raid superblock when problems encounter.
2359 * 3. Performs writes following reads for array synchronising.
2362 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364 int sect = 0; /* Offset from r10_bio->sector */
2365 int sectors = r10_bio->sectors;
2366 struct md_rdev*rdev;
2367 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2368 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370 /* still own a reference to this rdev, so it cannot
2371 * have been cleared recently.
2373 rdev = conf->mirrors[d].rdev;
2375 if (test_bit(Faulty, &rdev->flags))
2376 /* drive has already been failed, just ignore any
2377 more fix_read_error() attempts */
2378 return;
2380 check_decay_read_errors(mddev, rdev);
2381 atomic_inc(&rdev->read_errors);
2382 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2383 char b[BDEVNAME_SIZE];
2384 bdevname(rdev->bdev, b);
2386 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2387 mdname(mddev), b,
2388 atomic_read(&rdev->read_errors), max_read_errors);
2389 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2390 mdname(mddev), b);
2391 md_error(mddev, rdev);
2392 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2393 return;
2396 while(sectors) {
2397 int s = sectors;
2398 int sl = r10_bio->read_slot;
2399 int success = 0;
2400 int start;
2402 if (s > (PAGE_SIZE>>9))
2403 s = PAGE_SIZE >> 9;
2405 rcu_read_lock();
2406 do {
2407 sector_t first_bad;
2408 int bad_sectors;
2410 d = r10_bio->devs[sl].devnum;
2411 rdev = rcu_dereference(conf->mirrors[d].rdev);
2412 if (rdev &&
2413 test_bit(In_sync, &rdev->flags) &&
2414 !test_bit(Faulty, &rdev->flags) &&
2415 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2416 &first_bad, &bad_sectors) == 0) {
2417 atomic_inc(&rdev->nr_pending);
2418 rcu_read_unlock();
2419 success = sync_page_io(rdev,
2420 r10_bio->devs[sl].addr +
2421 sect,
2422 s<<9,
2423 conf->tmppage,
2424 REQ_OP_READ, 0, false);
2425 rdev_dec_pending(rdev, mddev);
2426 rcu_read_lock();
2427 if (success)
2428 break;
2430 sl++;
2431 if (sl == conf->copies)
2432 sl = 0;
2433 } while (!success && sl != r10_bio->read_slot);
2434 rcu_read_unlock();
2436 if (!success) {
2437 /* Cannot read from anywhere, just mark the block
2438 * as bad on the first device to discourage future
2439 * reads.
2441 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2442 rdev = conf->mirrors[dn].rdev;
2444 if (!rdev_set_badblocks(
2445 rdev,
2446 r10_bio->devs[r10_bio->read_slot].addr
2447 + sect,
2448 s, 0)) {
2449 md_error(mddev, rdev);
2450 r10_bio->devs[r10_bio->read_slot].bio
2451 = IO_BLOCKED;
2453 break;
2456 start = sl;
2457 /* write it back and re-read */
2458 rcu_read_lock();
2459 while (sl != r10_bio->read_slot) {
2460 char b[BDEVNAME_SIZE];
2462 if (sl==0)
2463 sl = conf->copies;
2464 sl--;
2465 d = r10_bio->devs[sl].devnum;
2466 rdev = rcu_dereference(conf->mirrors[d].rdev);
2467 if (!rdev ||
2468 test_bit(Faulty, &rdev->flags) ||
2469 !test_bit(In_sync, &rdev->flags))
2470 continue;
2472 atomic_inc(&rdev->nr_pending);
2473 rcu_read_unlock();
2474 if (r10_sync_page_io(rdev,
2475 r10_bio->devs[sl].addr +
2476 sect,
2477 s, conf->tmppage, WRITE)
2478 == 0) {
2479 /* Well, this device is dead */
2480 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2481 mdname(mddev), s,
2482 (unsigned long long)(
2483 sect +
2484 choose_data_offset(r10_bio,
2485 rdev)),
2486 bdevname(rdev->bdev, b));
2487 pr_notice("md/raid10:%s: %s: failing drive\n",
2488 mdname(mddev),
2489 bdevname(rdev->bdev, b));
2491 rdev_dec_pending(rdev, mddev);
2492 rcu_read_lock();
2494 sl = start;
2495 while (sl != r10_bio->read_slot) {
2496 char b[BDEVNAME_SIZE];
2498 if (sl==0)
2499 sl = conf->copies;
2500 sl--;
2501 d = r10_bio->devs[sl].devnum;
2502 rdev = rcu_dereference(conf->mirrors[d].rdev);
2503 if (!rdev ||
2504 test_bit(Faulty, &rdev->flags) ||
2505 !test_bit(In_sync, &rdev->flags))
2506 continue;
2508 atomic_inc(&rdev->nr_pending);
2509 rcu_read_unlock();
2510 switch (r10_sync_page_io(rdev,
2511 r10_bio->devs[sl].addr +
2512 sect,
2513 s, conf->tmppage,
2514 READ)) {
2515 case 0:
2516 /* Well, this device is dead */
2517 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2518 mdname(mddev), s,
2519 (unsigned long long)(
2520 sect +
2521 choose_data_offset(r10_bio, rdev)),
2522 bdevname(rdev->bdev, b));
2523 pr_notice("md/raid10:%s: %s: failing drive\n",
2524 mdname(mddev),
2525 bdevname(rdev->bdev, b));
2526 break;
2527 case 1:
2528 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2529 mdname(mddev), s,
2530 (unsigned long long)(
2531 sect +
2532 choose_data_offset(r10_bio, rdev)),
2533 bdevname(rdev->bdev, b));
2534 atomic_add(s, &rdev->corrected_errors);
2537 rdev_dec_pending(rdev, mddev);
2538 rcu_read_lock();
2540 rcu_read_unlock();
2542 sectors -= s;
2543 sect += s;
2547 static int narrow_write_error(struct r10bio *r10_bio, int i)
2549 struct bio *bio = r10_bio->master_bio;
2550 struct mddev *mddev = r10_bio->mddev;
2551 struct r10conf *conf = mddev->private;
2552 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2553 /* bio has the data to be written to slot 'i' where
2554 * we just recently had a write error.
2555 * We repeatedly clone the bio and trim down to one block,
2556 * then try the write. Where the write fails we record
2557 * a bad block.
2558 * It is conceivable that the bio doesn't exactly align with
2559 * blocks. We must handle this.
2561 * We currently own a reference to the rdev.
2564 int block_sectors;
2565 sector_t sector;
2566 int sectors;
2567 int sect_to_write = r10_bio->sectors;
2568 int ok = 1;
2570 if (rdev->badblocks.shift < 0)
2571 return 0;
2573 block_sectors = roundup(1 << rdev->badblocks.shift,
2574 bdev_logical_block_size(rdev->bdev) >> 9);
2575 sector = r10_bio->sector;
2576 sectors = ((r10_bio->sector + block_sectors)
2577 & ~(sector_t)(block_sectors - 1))
2578 - sector;
2580 while (sect_to_write) {
2581 struct bio *wbio;
2582 sector_t wsector;
2583 if (sectors > sect_to_write)
2584 sectors = sect_to_write;
2585 /* Write at 'sector' for 'sectors' */
2586 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2587 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2588 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2589 wbio->bi_iter.bi_sector = wsector +
2590 choose_data_offset(r10_bio, rdev);
2591 bio_set_dev(wbio, rdev->bdev);
2592 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2594 if (submit_bio_wait(wbio) < 0)
2595 /* Failure! */
2596 ok = rdev_set_badblocks(rdev, wsector,
2597 sectors, 0)
2598 && ok;
2600 bio_put(wbio);
2601 sect_to_write -= sectors;
2602 sector += sectors;
2603 sectors = block_sectors;
2605 return ok;
2608 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2610 int slot = r10_bio->read_slot;
2611 struct bio *bio;
2612 struct r10conf *conf = mddev->private;
2613 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2615 /* we got a read error. Maybe the drive is bad. Maybe just
2616 * the block and we can fix it.
2617 * We freeze all other IO, and try reading the block from
2618 * other devices. When we find one, we re-write
2619 * and check it that fixes the read error.
2620 * This is all done synchronously while the array is
2621 * frozen.
2623 bio = r10_bio->devs[slot].bio;
2624 bio_put(bio);
2625 r10_bio->devs[slot].bio = NULL;
2627 if (mddev->ro)
2628 r10_bio->devs[slot].bio = IO_BLOCKED;
2629 else if (!test_bit(FailFast, &rdev->flags)) {
2630 freeze_array(conf, 1);
2631 fix_read_error(conf, mddev, r10_bio);
2632 unfreeze_array(conf);
2633 } else
2634 md_error(mddev, rdev);
2636 rdev_dec_pending(rdev, mddev);
2637 allow_barrier(conf);
2638 r10_bio->state = 0;
2639 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2642 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2644 /* Some sort of write request has finished and it
2645 * succeeded in writing where we thought there was a
2646 * bad block. So forget the bad block.
2647 * Or possibly if failed and we need to record
2648 * a bad block.
2650 int m;
2651 struct md_rdev *rdev;
2653 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2654 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2655 for (m = 0; m < conf->copies; m++) {
2656 int dev = r10_bio->devs[m].devnum;
2657 rdev = conf->mirrors[dev].rdev;
2658 if (r10_bio->devs[m].bio == NULL)
2659 continue;
2660 if (!r10_bio->devs[m].bio->bi_status) {
2661 rdev_clear_badblocks(
2662 rdev,
2663 r10_bio->devs[m].addr,
2664 r10_bio->sectors, 0);
2665 } else {
2666 if (!rdev_set_badblocks(
2667 rdev,
2668 r10_bio->devs[m].addr,
2669 r10_bio->sectors, 0))
2670 md_error(conf->mddev, rdev);
2672 rdev = conf->mirrors[dev].replacement;
2673 if (r10_bio->devs[m].repl_bio == NULL)
2674 continue;
2676 if (!r10_bio->devs[m].repl_bio->bi_status) {
2677 rdev_clear_badblocks(
2678 rdev,
2679 r10_bio->devs[m].addr,
2680 r10_bio->sectors, 0);
2681 } else {
2682 if (!rdev_set_badblocks(
2683 rdev,
2684 r10_bio->devs[m].addr,
2685 r10_bio->sectors, 0))
2686 md_error(conf->mddev, rdev);
2689 put_buf(r10_bio);
2690 } else {
2691 bool fail = false;
2692 for (m = 0; m < conf->copies; m++) {
2693 int dev = r10_bio->devs[m].devnum;
2694 struct bio *bio = r10_bio->devs[m].bio;
2695 rdev = conf->mirrors[dev].rdev;
2696 if (bio == IO_MADE_GOOD) {
2697 rdev_clear_badblocks(
2698 rdev,
2699 r10_bio->devs[m].addr,
2700 r10_bio->sectors, 0);
2701 rdev_dec_pending(rdev, conf->mddev);
2702 } else if (bio != NULL && bio->bi_status) {
2703 fail = true;
2704 if (!narrow_write_error(r10_bio, m)) {
2705 md_error(conf->mddev, rdev);
2706 set_bit(R10BIO_Degraded,
2707 &r10_bio->state);
2709 rdev_dec_pending(rdev, conf->mddev);
2711 bio = r10_bio->devs[m].repl_bio;
2712 rdev = conf->mirrors[dev].replacement;
2713 if (rdev && bio == IO_MADE_GOOD) {
2714 rdev_clear_badblocks(
2715 rdev,
2716 r10_bio->devs[m].addr,
2717 r10_bio->sectors, 0);
2718 rdev_dec_pending(rdev, conf->mddev);
2721 if (fail) {
2722 spin_lock_irq(&conf->device_lock);
2723 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2724 conf->nr_queued++;
2725 spin_unlock_irq(&conf->device_lock);
2727 * In case freeze_array() is waiting for condition
2728 * nr_pending == nr_queued + extra to be true.
2730 wake_up(&conf->wait_barrier);
2731 md_wakeup_thread(conf->mddev->thread);
2732 } else {
2733 if (test_bit(R10BIO_WriteError,
2734 &r10_bio->state))
2735 close_write(r10_bio);
2736 raid_end_bio_io(r10_bio);
2741 static void raid10d(struct md_thread *thread)
2743 struct mddev *mddev = thread->mddev;
2744 struct r10bio *r10_bio;
2745 unsigned long flags;
2746 struct r10conf *conf = mddev->private;
2747 struct list_head *head = &conf->retry_list;
2748 struct blk_plug plug;
2750 md_check_recovery(mddev);
2752 if (!list_empty_careful(&conf->bio_end_io_list) &&
2753 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2754 LIST_HEAD(tmp);
2755 spin_lock_irqsave(&conf->device_lock, flags);
2756 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2757 while (!list_empty(&conf->bio_end_io_list)) {
2758 list_move(conf->bio_end_io_list.prev, &tmp);
2759 conf->nr_queued--;
2762 spin_unlock_irqrestore(&conf->device_lock, flags);
2763 while (!list_empty(&tmp)) {
2764 r10_bio = list_first_entry(&tmp, struct r10bio,
2765 retry_list);
2766 list_del(&r10_bio->retry_list);
2767 if (mddev->degraded)
2768 set_bit(R10BIO_Degraded, &r10_bio->state);
2770 if (test_bit(R10BIO_WriteError,
2771 &r10_bio->state))
2772 close_write(r10_bio);
2773 raid_end_bio_io(r10_bio);
2777 blk_start_plug(&plug);
2778 for (;;) {
2780 flush_pending_writes(conf);
2782 spin_lock_irqsave(&conf->device_lock, flags);
2783 if (list_empty(head)) {
2784 spin_unlock_irqrestore(&conf->device_lock, flags);
2785 break;
2787 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2788 list_del(head->prev);
2789 conf->nr_queued--;
2790 spin_unlock_irqrestore(&conf->device_lock, flags);
2792 mddev = r10_bio->mddev;
2793 conf = mddev->private;
2794 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2795 test_bit(R10BIO_WriteError, &r10_bio->state))
2796 handle_write_completed(conf, r10_bio);
2797 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2798 reshape_request_write(mddev, r10_bio);
2799 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2800 sync_request_write(mddev, r10_bio);
2801 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2802 recovery_request_write(mddev, r10_bio);
2803 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2804 handle_read_error(mddev, r10_bio);
2805 else
2806 WARN_ON_ONCE(1);
2808 cond_resched();
2809 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2810 md_check_recovery(mddev);
2812 blk_finish_plug(&plug);
2815 static int init_resync(struct r10conf *conf)
2817 int buffs;
2818 int i;
2820 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2821 BUG_ON(conf->r10buf_pool);
2822 conf->have_replacement = 0;
2823 for (i = 0; i < conf->geo.raid_disks; i++)
2824 if (conf->mirrors[i].replacement)
2825 conf->have_replacement = 1;
2826 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2827 if (!conf->r10buf_pool)
2828 return -ENOMEM;
2829 conf->next_resync = 0;
2830 return 0;
2833 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2835 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2836 struct rsync_pages *rp;
2837 struct bio *bio;
2838 int nalloc;
2839 int i;
2841 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2842 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2843 nalloc = conf->copies; /* resync */
2844 else
2845 nalloc = 2; /* recovery */
2847 for (i = 0; i < nalloc; i++) {
2848 bio = r10bio->devs[i].bio;
2849 rp = bio->bi_private;
2850 bio_reset(bio);
2851 bio->bi_private = rp;
2852 bio = r10bio->devs[i].repl_bio;
2853 if (bio) {
2854 rp = bio->bi_private;
2855 bio_reset(bio);
2856 bio->bi_private = rp;
2859 return r10bio;
2863 * Set cluster_sync_high since we need other nodes to add the
2864 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2866 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2868 sector_t window_size;
2869 int extra_chunk, chunks;
2872 * First, here we define "stripe" as a unit which across
2873 * all member devices one time, so we get chunks by use
2874 * raid_disks / near_copies. Otherwise, if near_copies is
2875 * close to raid_disks, then resync window could increases
2876 * linearly with the increase of raid_disks, which means
2877 * we will suspend a really large IO window while it is not
2878 * necessary. If raid_disks is not divisible by near_copies,
2879 * an extra chunk is needed to ensure the whole "stripe" is
2880 * covered.
2883 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2884 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2885 extra_chunk = 0;
2886 else
2887 extra_chunk = 1;
2888 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2891 * At least use a 32M window to align with raid1's resync window
2893 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2894 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2896 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2900 * perform a "sync" on one "block"
2902 * We need to make sure that no normal I/O request - particularly write
2903 * requests - conflict with active sync requests.
2905 * This is achieved by tracking pending requests and a 'barrier' concept
2906 * that can be installed to exclude normal IO requests.
2908 * Resync and recovery are handled very differently.
2909 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2911 * For resync, we iterate over virtual addresses, read all copies,
2912 * and update if there are differences. If only one copy is live,
2913 * skip it.
2914 * For recovery, we iterate over physical addresses, read a good
2915 * value for each non-in_sync drive, and over-write.
2917 * So, for recovery we may have several outstanding complex requests for a
2918 * given address, one for each out-of-sync device. We model this by allocating
2919 * a number of r10_bio structures, one for each out-of-sync device.
2920 * As we setup these structures, we collect all bio's together into a list
2921 * which we then process collectively to add pages, and then process again
2922 * to pass to generic_make_request.
2924 * The r10_bio structures are linked using a borrowed master_bio pointer.
2925 * This link is counted in ->remaining. When the r10_bio that points to NULL
2926 * has its remaining count decremented to 0, the whole complex operation
2927 * is complete.
2931 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2932 int *skipped)
2934 struct r10conf *conf = mddev->private;
2935 struct r10bio *r10_bio;
2936 struct bio *biolist = NULL, *bio;
2937 sector_t max_sector, nr_sectors;
2938 int i;
2939 int max_sync;
2940 sector_t sync_blocks;
2941 sector_t sectors_skipped = 0;
2942 int chunks_skipped = 0;
2943 sector_t chunk_mask = conf->geo.chunk_mask;
2944 int page_idx = 0;
2946 if (!conf->r10buf_pool)
2947 if (init_resync(conf))
2948 return 0;
2951 * Allow skipping a full rebuild for incremental assembly
2952 * of a clean array, like RAID1 does.
2954 if (mddev->bitmap == NULL &&
2955 mddev->recovery_cp == MaxSector &&
2956 mddev->reshape_position == MaxSector &&
2957 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2958 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2959 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2960 conf->fullsync == 0) {
2961 *skipped = 1;
2962 return mddev->dev_sectors - sector_nr;
2965 skipped:
2966 max_sector = mddev->dev_sectors;
2967 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2968 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2969 max_sector = mddev->resync_max_sectors;
2970 if (sector_nr >= max_sector) {
2971 conf->cluster_sync_low = 0;
2972 conf->cluster_sync_high = 0;
2974 /* If we aborted, we need to abort the
2975 * sync on the 'current' bitmap chucks (there can
2976 * be several when recovering multiple devices).
2977 * as we may have started syncing it but not finished.
2978 * We can find the current address in
2979 * mddev->curr_resync, but for recovery,
2980 * we need to convert that to several
2981 * virtual addresses.
2983 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2984 end_reshape(conf);
2985 close_sync(conf);
2986 return 0;
2989 if (mddev->curr_resync < max_sector) { /* aborted */
2990 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2991 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2992 &sync_blocks, 1);
2993 else for (i = 0; i < conf->geo.raid_disks; i++) {
2994 sector_t sect =
2995 raid10_find_virt(conf, mddev->curr_resync, i);
2996 bitmap_end_sync(mddev->bitmap, sect,
2997 &sync_blocks, 1);
2999 } else {
3000 /* completed sync */
3001 if ((!mddev->bitmap || conf->fullsync)
3002 && conf->have_replacement
3003 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3004 /* Completed a full sync so the replacements
3005 * are now fully recovered.
3007 rcu_read_lock();
3008 for (i = 0; i < conf->geo.raid_disks; i++) {
3009 struct md_rdev *rdev =
3010 rcu_dereference(conf->mirrors[i].replacement);
3011 if (rdev)
3012 rdev->recovery_offset = MaxSector;
3014 rcu_read_unlock();
3016 conf->fullsync = 0;
3018 bitmap_close_sync(mddev->bitmap);
3019 close_sync(conf);
3020 *skipped = 1;
3021 return sectors_skipped;
3024 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3025 return reshape_request(mddev, sector_nr, skipped);
3027 if (chunks_skipped >= conf->geo.raid_disks) {
3028 /* if there has been nothing to do on any drive,
3029 * then there is nothing to do at all..
3031 *skipped = 1;
3032 return (max_sector - sector_nr) + sectors_skipped;
3035 if (max_sector > mddev->resync_max)
3036 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3038 /* make sure whole request will fit in a chunk - if chunks
3039 * are meaningful
3041 if (conf->geo.near_copies < conf->geo.raid_disks &&
3042 max_sector > (sector_nr | chunk_mask))
3043 max_sector = (sector_nr | chunk_mask) + 1;
3046 * If there is non-resync activity waiting for a turn, then let it
3047 * though before starting on this new sync request.
3049 if (conf->nr_waiting)
3050 schedule_timeout_uninterruptible(1);
3052 /* Again, very different code for resync and recovery.
3053 * Both must result in an r10bio with a list of bios that
3054 * have bi_end_io, bi_sector, bi_disk set,
3055 * and bi_private set to the r10bio.
3056 * For recovery, we may actually create several r10bios
3057 * with 2 bios in each, that correspond to the bios in the main one.
3058 * In this case, the subordinate r10bios link back through a
3059 * borrowed master_bio pointer, and the counter in the master
3060 * includes a ref from each subordinate.
3062 /* First, we decide what to do and set ->bi_end_io
3063 * To end_sync_read if we want to read, and
3064 * end_sync_write if we will want to write.
3067 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3068 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3069 /* recovery... the complicated one */
3070 int j;
3071 r10_bio = NULL;
3073 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3074 int still_degraded;
3075 struct r10bio *rb2;
3076 sector_t sect;
3077 int must_sync;
3078 int any_working;
3079 struct raid10_info *mirror = &conf->mirrors[i];
3080 struct md_rdev *mrdev, *mreplace;
3082 rcu_read_lock();
3083 mrdev = rcu_dereference(mirror->rdev);
3084 mreplace = rcu_dereference(mirror->replacement);
3086 if ((mrdev == NULL ||
3087 test_bit(Faulty, &mrdev->flags) ||
3088 test_bit(In_sync, &mrdev->flags)) &&
3089 (mreplace == NULL ||
3090 test_bit(Faulty, &mreplace->flags))) {
3091 rcu_read_unlock();
3092 continue;
3095 still_degraded = 0;
3096 /* want to reconstruct this device */
3097 rb2 = r10_bio;
3098 sect = raid10_find_virt(conf, sector_nr, i);
3099 if (sect >= mddev->resync_max_sectors) {
3100 /* last stripe is not complete - don't
3101 * try to recover this sector.
3103 rcu_read_unlock();
3104 continue;
3106 if (mreplace && test_bit(Faulty, &mreplace->flags))
3107 mreplace = NULL;
3108 /* Unless we are doing a full sync, or a replacement
3109 * we only need to recover the block if it is set in
3110 * the bitmap
3112 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3113 &sync_blocks, 1);
3114 if (sync_blocks < max_sync)
3115 max_sync = sync_blocks;
3116 if (!must_sync &&
3117 mreplace == NULL &&
3118 !conf->fullsync) {
3119 /* yep, skip the sync_blocks here, but don't assume
3120 * that there will never be anything to do here
3122 chunks_skipped = -1;
3123 rcu_read_unlock();
3124 continue;
3126 atomic_inc(&mrdev->nr_pending);
3127 if (mreplace)
3128 atomic_inc(&mreplace->nr_pending);
3129 rcu_read_unlock();
3131 r10_bio = raid10_alloc_init_r10buf(conf);
3132 r10_bio->state = 0;
3133 raise_barrier(conf, rb2 != NULL);
3134 atomic_set(&r10_bio->remaining, 0);
3136 r10_bio->master_bio = (struct bio*)rb2;
3137 if (rb2)
3138 atomic_inc(&rb2->remaining);
3139 r10_bio->mddev = mddev;
3140 set_bit(R10BIO_IsRecover, &r10_bio->state);
3141 r10_bio->sector = sect;
3143 raid10_find_phys(conf, r10_bio);
3145 /* Need to check if the array will still be
3146 * degraded
3148 rcu_read_lock();
3149 for (j = 0; j < conf->geo.raid_disks; j++) {
3150 struct md_rdev *rdev = rcu_dereference(
3151 conf->mirrors[j].rdev);
3152 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3153 still_degraded = 1;
3154 break;
3158 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3159 &sync_blocks, still_degraded);
3161 any_working = 0;
3162 for (j=0; j<conf->copies;j++) {
3163 int k;
3164 int d = r10_bio->devs[j].devnum;
3165 sector_t from_addr, to_addr;
3166 struct md_rdev *rdev =
3167 rcu_dereference(conf->mirrors[d].rdev);
3168 sector_t sector, first_bad;
3169 int bad_sectors;
3170 if (!rdev ||
3171 !test_bit(In_sync, &rdev->flags))
3172 continue;
3173 /* This is where we read from */
3174 any_working = 1;
3175 sector = r10_bio->devs[j].addr;
3177 if (is_badblock(rdev, sector, max_sync,
3178 &first_bad, &bad_sectors)) {
3179 if (first_bad > sector)
3180 max_sync = first_bad - sector;
3181 else {
3182 bad_sectors -= (sector
3183 - first_bad);
3184 if (max_sync > bad_sectors)
3185 max_sync = bad_sectors;
3186 continue;
3189 bio = r10_bio->devs[0].bio;
3190 bio->bi_next = biolist;
3191 biolist = bio;
3192 bio->bi_end_io = end_sync_read;
3193 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3194 if (test_bit(FailFast, &rdev->flags))
3195 bio->bi_opf |= MD_FAILFAST;
3196 from_addr = r10_bio->devs[j].addr;
3197 bio->bi_iter.bi_sector = from_addr +
3198 rdev->data_offset;
3199 bio_set_dev(bio, rdev->bdev);
3200 atomic_inc(&rdev->nr_pending);
3201 /* and we write to 'i' (if not in_sync) */
3203 for (k=0; k<conf->copies; k++)
3204 if (r10_bio->devs[k].devnum == i)
3205 break;
3206 BUG_ON(k == conf->copies);
3207 to_addr = r10_bio->devs[k].addr;
3208 r10_bio->devs[0].devnum = d;
3209 r10_bio->devs[0].addr = from_addr;
3210 r10_bio->devs[1].devnum = i;
3211 r10_bio->devs[1].addr = to_addr;
3213 if (!test_bit(In_sync, &mrdev->flags)) {
3214 bio = r10_bio->devs[1].bio;
3215 bio->bi_next = biolist;
3216 biolist = bio;
3217 bio->bi_end_io = end_sync_write;
3218 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3219 bio->bi_iter.bi_sector = to_addr
3220 + mrdev->data_offset;
3221 bio_set_dev(bio, mrdev->bdev);
3222 atomic_inc(&r10_bio->remaining);
3223 } else
3224 r10_bio->devs[1].bio->bi_end_io = NULL;
3226 /* and maybe write to replacement */
3227 bio = r10_bio->devs[1].repl_bio;
3228 if (bio)
3229 bio->bi_end_io = NULL;
3230 /* Note: if mreplace != NULL, then bio
3231 * cannot be NULL as r10buf_pool_alloc will
3232 * have allocated it.
3233 * So the second test here is pointless.
3234 * But it keeps semantic-checkers happy, and
3235 * this comment keeps human reviewers
3236 * happy.
3238 if (mreplace == NULL || bio == NULL ||
3239 test_bit(Faulty, &mreplace->flags))
3240 break;
3241 bio->bi_next = biolist;
3242 biolist = bio;
3243 bio->bi_end_io = end_sync_write;
3244 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3245 bio->bi_iter.bi_sector = to_addr +
3246 mreplace->data_offset;
3247 bio_set_dev(bio, mreplace->bdev);
3248 atomic_inc(&r10_bio->remaining);
3249 break;
3251 rcu_read_unlock();
3252 if (j == conf->copies) {
3253 /* Cannot recover, so abort the recovery or
3254 * record a bad block */
3255 if (any_working) {
3256 /* problem is that there are bad blocks
3257 * on other device(s)
3259 int k;
3260 for (k = 0; k < conf->copies; k++)
3261 if (r10_bio->devs[k].devnum == i)
3262 break;
3263 if (!test_bit(In_sync,
3264 &mrdev->flags)
3265 && !rdev_set_badblocks(
3266 mrdev,
3267 r10_bio->devs[k].addr,
3268 max_sync, 0))
3269 any_working = 0;
3270 if (mreplace &&
3271 !rdev_set_badblocks(
3272 mreplace,
3273 r10_bio->devs[k].addr,
3274 max_sync, 0))
3275 any_working = 0;
3277 if (!any_working) {
3278 if (!test_and_set_bit(MD_RECOVERY_INTR,
3279 &mddev->recovery))
3280 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3281 mdname(mddev));
3282 mirror->recovery_disabled
3283 = mddev->recovery_disabled;
3285 put_buf(r10_bio);
3286 if (rb2)
3287 atomic_dec(&rb2->remaining);
3288 r10_bio = rb2;
3289 rdev_dec_pending(mrdev, mddev);
3290 if (mreplace)
3291 rdev_dec_pending(mreplace, mddev);
3292 break;
3294 rdev_dec_pending(mrdev, mddev);
3295 if (mreplace)
3296 rdev_dec_pending(mreplace, mddev);
3297 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3298 /* Only want this if there is elsewhere to
3299 * read from. 'j' is currently the first
3300 * readable copy.
3302 int targets = 1;
3303 for (; j < conf->copies; j++) {
3304 int d = r10_bio->devs[j].devnum;
3305 if (conf->mirrors[d].rdev &&
3306 test_bit(In_sync,
3307 &conf->mirrors[d].rdev->flags))
3308 targets++;
3310 if (targets == 1)
3311 r10_bio->devs[0].bio->bi_opf
3312 &= ~MD_FAILFAST;
3315 if (biolist == NULL) {
3316 while (r10_bio) {
3317 struct r10bio *rb2 = r10_bio;
3318 r10_bio = (struct r10bio*) rb2->master_bio;
3319 rb2->master_bio = NULL;
3320 put_buf(rb2);
3322 goto giveup;
3324 } else {
3325 /* resync. Schedule a read for every block at this virt offset */
3326 int count = 0;
3329 * Since curr_resync_completed could probably not update in
3330 * time, and we will set cluster_sync_low based on it.
3331 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3332 * safety reason, which ensures curr_resync_completed is
3333 * updated in bitmap_cond_end_sync.
3335 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3336 mddev_is_clustered(mddev) &&
3337 (sector_nr + 2 * RESYNC_SECTORS >
3338 conf->cluster_sync_high));
3340 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3341 &sync_blocks, mddev->degraded) &&
3342 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3343 &mddev->recovery)) {
3344 /* We can skip this block */
3345 *skipped = 1;
3346 return sync_blocks + sectors_skipped;
3348 if (sync_blocks < max_sync)
3349 max_sync = sync_blocks;
3350 r10_bio = raid10_alloc_init_r10buf(conf);
3351 r10_bio->state = 0;
3353 r10_bio->mddev = mddev;
3354 atomic_set(&r10_bio->remaining, 0);
3355 raise_barrier(conf, 0);
3356 conf->next_resync = sector_nr;
3358 r10_bio->master_bio = NULL;
3359 r10_bio->sector = sector_nr;
3360 set_bit(R10BIO_IsSync, &r10_bio->state);
3361 raid10_find_phys(conf, r10_bio);
3362 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3364 for (i = 0; i < conf->copies; i++) {
3365 int d = r10_bio->devs[i].devnum;
3366 sector_t first_bad, sector;
3367 int bad_sectors;
3368 struct md_rdev *rdev;
3370 if (r10_bio->devs[i].repl_bio)
3371 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3373 bio = r10_bio->devs[i].bio;
3374 bio->bi_status = BLK_STS_IOERR;
3375 rcu_read_lock();
3376 rdev = rcu_dereference(conf->mirrors[d].rdev);
3377 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3378 rcu_read_unlock();
3379 continue;
3381 sector = r10_bio->devs[i].addr;
3382 if (is_badblock(rdev, sector, max_sync,
3383 &first_bad, &bad_sectors)) {
3384 if (first_bad > sector)
3385 max_sync = first_bad - sector;
3386 else {
3387 bad_sectors -= (sector - first_bad);
3388 if (max_sync > bad_sectors)
3389 max_sync = bad_sectors;
3390 rcu_read_unlock();
3391 continue;
3394 atomic_inc(&rdev->nr_pending);
3395 atomic_inc(&r10_bio->remaining);
3396 bio->bi_next = biolist;
3397 biolist = bio;
3398 bio->bi_end_io = end_sync_read;
3399 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3400 if (test_bit(FailFast, &rdev->flags))
3401 bio->bi_opf |= MD_FAILFAST;
3402 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3403 bio_set_dev(bio, rdev->bdev);
3404 count++;
3406 rdev = rcu_dereference(conf->mirrors[d].replacement);
3407 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3408 rcu_read_unlock();
3409 continue;
3411 atomic_inc(&rdev->nr_pending);
3413 /* Need to set up for writing to the replacement */
3414 bio = r10_bio->devs[i].repl_bio;
3415 bio->bi_status = BLK_STS_IOERR;
3417 sector = r10_bio->devs[i].addr;
3418 bio->bi_next = biolist;
3419 biolist = bio;
3420 bio->bi_end_io = end_sync_write;
3421 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3422 if (test_bit(FailFast, &rdev->flags))
3423 bio->bi_opf |= MD_FAILFAST;
3424 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3425 bio_set_dev(bio, rdev->bdev);
3426 count++;
3427 rcu_read_unlock();
3430 if (count < 2) {
3431 for (i=0; i<conf->copies; i++) {
3432 int d = r10_bio->devs[i].devnum;
3433 if (r10_bio->devs[i].bio->bi_end_io)
3434 rdev_dec_pending(conf->mirrors[d].rdev,
3435 mddev);
3436 if (r10_bio->devs[i].repl_bio &&
3437 r10_bio->devs[i].repl_bio->bi_end_io)
3438 rdev_dec_pending(
3439 conf->mirrors[d].replacement,
3440 mddev);
3442 put_buf(r10_bio);
3443 biolist = NULL;
3444 goto giveup;
3448 nr_sectors = 0;
3449 if (sector_nr + max_sync < max_sector)
3450 max_sector = sector_nr + max_sync;
3451 do {
3452 struct page *page;
3453 int len = PAGE_SIZE;
3454 if (sector_nr + (len>>9) > max_sector)
3455 len = (max_sector - sector_nr) << 9;
3456 if (len == 0)
3457 break;
3458 for (bio= biolist ; bio ; bio=bio->bi_next) {
3459 struct resync_pages *rp = get_resync_pages(bio);
3460 page = resync_fetch_page(rp, page_idx);
3462 * won't fail because the vec table is big enough
3463 * to hold all these pages
3465 bio_add_page(bio, page, len, 0);
3467 nr_sectors += len>>9;
3468 sector_nr += len>>9;
3469 } while (++page_idx < RESYNC_PAGES);
3470 r10_bio->sectors = nr_sectors;
3472 if (mddev_is_clustered(mddev) &&
3473 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3474 /* It is resync not recovery */
3475 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3476 conf->cluster_sync_low = mddev->curr_resync_completed;
3477 raid10_set_cluster_sync_high(conf);
3478 /* Send resync message */
3479 md_cluster_ops->resync_info_update(mddev,
3480 conf->cluster_sync_low,
3481 conf->cluster_sync_high);
3483 } else if (mddev_is_clustered(mddev)) {
3484 /* This is recovery not resync */
3485 sector_t sect_va1, sect_va2;
3486 bool broadcast_msg = false;
3488 for (i = 0; i < conf->geo.raid_disks; i++) {
3490 * sector_nr is a device address for recovery, so we
3491 * need translate it to array address before compare
3492 * with cluster_sync_high.
3494 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3496 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3497 broadcast_msg = true;
3499 * curr_resync_completed is similar as
3500 * sector_nr, so make the translation too.
3502 sect_va2 = raid10_find_virt(conf,
3503 mddev->curr_resync_completed, i);
3505 if (conf->cluster_sync_low == 0 ||
3506 conf->cluster_sync_low > sect_va2)
3507 conf->cluster_sync_low = sect_va2;
3510 if (broadcast_msg) {
3511 raid10_set_cluster_sync_high(conf);
3512 md_cluster_ops->resync_info_update(mddev,
3513 conf->cluster_sync_low,
3514 conf->cluster_sync_high);
3518 while (biolist) {
3519 bio = biolist;
3520 biolist = biolist->bi_next;
3522 bio->bi_next = NULL;
3523 r10_bio = get_resync_r10bio(bio);
3524 r10_bio->sectors = nr_sectors;
3526 if (bio->bi_end_io == end_sync_read) {
3527 md_sync_acct_bio(bio, nr_sectors);
3528 bio->bi_status = 0;
3529 generic_make_request(bio);
3533 if (sectors_skipped)
3534 /* pretend they weren't skipped, it makes
3535 * no important difference in this case
3537 md_done_sync(mddev, sectors_skipped, 1);
3539 return sectors_skipped + nr_sectors;
3540 giveup:
3541 /* There is nowhere to write, so all non-sync
3542 * drives must be failed or in resync, all drives
3543 * have a bad block, so try the next chunk...
3545 if (sector_nr + max_sync < max_sector)
3546 max_sector = sector_nr + max_sync;
3548 sectors_skipped += (max_sector - sector_nr);
3549 chunks_skipped ++;
3550 sector_nr = max_sector;
3551 goto skipped;
3554 static sector_t
3555 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3557 sector_t size;
3558 struct r10conf *conf = mddev->private;
3560 if (!raid_disks)
3561 raid_disks = min(conf->geo.raid_disks,
3562 conf->prev.raid_disks);
3563 if (!sectors)
3564 sectors = conf->dev_sectors;
3566 size = sectors >> conf->geo.chunk_shift;
3567 sector_div(size, conf->geo.far_copies);
3568 size = size * raid_disks;
3569 sector_div(size, conf->geo.near_copies);
3571 return size << conf->geo.chunk_shift;
3574 static void calc_sectors(struct r10conf *conf, sector_t size)
3576 /* Calculate the number of sectors-per-device that will
3577 * actually be used, and set conf->dev_sectors and
3578 * conf->stride
3581 size = size >> conf->geo.chunk_shift;
3582 sector_div(size, conf->geo.far_copies);
3583 size = size * conf->geo.raid_disks;
3584 sector_div(size, conf->geo.near_copies);
3585 /* 'size' is now the number of chunks in the array */
3586 /* calculate "used chunks per device" */
3587 size = size * conf->copies;
3589 /* We need to round up when dividing by raid_disks to
3590 * get the stride size.
3592 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3594 conf->dev_sectors = size << conf->geo.chunk_shift;
3596 if (conf->geo.far_offset)
3597 conf->geo.stride = 1 << conf->geo.chunk_shift;
3598 else {
3599 sector_div(size, conf->geo.far_copies);
3600 conf->geo.stride = size << conf->geo.chunk_shift;
3604 enum geo_type {geo_new, geo_old, geo_start};
3605 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3607 int nc, fc, fo;
3608 int layout, chunk, disks;
3609 switch (new) {
3610 case geo_old:
3611 layout = mddev->layout;
3612 chunk = mddev->chunk_sectors;
3613 disks = mddev->raid_disks - mddev->delta_disks;
3614 break;
3615 case geo_new:
3616 layout = mddev->new_layout;
3617 chunk = mddev->new_chunk_sectors;
3618 disks = mddev->raid_disks;
3619 break;
3620 default: /* avoid 'may be unused' warnings */
3621 case geo_start: /* new when starting reshape - raid_disks not
3622 * updated yet. */
3623 layout = mddev->new_layout;
3624 chunk = mddev->new_chunk_sectors;
3625 disks = mddev->raid_disks + mddev->delta_disks;
3626 break;
3628 if (layout >> 19)
3629 return -1;
3630 if (chunk < (PAGE_SIZE >> 9) ||
3631 !is_power_of_2(chunk))
3632 return -2;
3633 nc = layout & 255;
3634 fc = (layout >> 8) & 255;
3635 fo = layout & (1<<16);
3636 geo->raid_disks = disks;
3637 geo->near_copies = nc;
3638 geo->far_copies = fc;
3639 geo->far_offset = fo;
3640 switch (layout >> 17) {
3641 case 0: /* original layout. simple but not always optimal */
3642 geo->far_set_size = disks;
3643 break;
3644 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3645 * actually using this, but leave code here just in case.*/
3646 geo->far_set_size = disks/fc;
3647 WARN(geo->far_set_size < fc,
3648 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3649 break;
3650 case 2: /* "improved" layout fixed to match documentation */
3651 geo->far_set_size = fc * nc;
3652 break;
3653 default: /* Not a valid layout */
3654 return -1;
3656 geo->chunk_mask = chunk - 1;
3657 geo->chunk_shift = ffz(~chunk);
3658 return nc*fc;
3661 static struct r10conf *setup_conf(struct mddev *mddev)
3663 struct r10conf *conf = NULL;
3664 int err = -EINVAL;
3665 struct geom geo;
3666 int copies;
3668 copies = setup_geo(&geo, mddev, geo_new);
3670 if (copies == -2) {
3671 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3672 mdname(mddev), PAGE_SIZE);
3673 goto out;
3676 if (copies < 2 || copies > mddev->raid_disks) {
3677 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3678 mdname(mddev), mddev->new_layout);
3679 goto out;
3682 err = -ENOMEM;
3683 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3684 if (!conf)
3685 goto out;
3687 /* FIXME calc properly */
3688 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3689 max(0,-mddev->delta_disks)),
3690 GFP_KERNEL);
3691 if (!conf->mirrors)
3692 goto out;
3694 conf->tmppage = alloc_page(GFP_KERNEL);
3695 if (!conf->tmppage)
3696 goto out;
3698 conf->geo = geo;
3699 conf->copies = copies;
3700 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3701 r10bio_pool_free, conf);
3702 if (!conf->r10bio_pool)
3703 goto out;
3705 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3706 if (!conf->bio_split)
3707 goto out;
3709 calc_sectors(conf, mddev->dev_sectors);
3710 if (mddev->reshape_position == MaxSector) {
3711 conf->prev = conf->geo;
3712 conf->reshape_progress = MaxSector;
3713 } else {
3714 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3715 err = -EINVAL;
3716 goto out;
3718 conf->reshape_progress = mddev->reshape_position;
3719 if (conf->prev.far_offset)
3720 conf->prev.stride = 1 << conf->prev.chunk_shift;
3721 else
3722 /* far_copies must be 1 */
3723 conf->prev.stride = conf->dev_sectors;
3725 conf->reshape_safe = conf->reshape_progress;
3726 spin_lock_init(&conf->device_lock);
3727 INIT_LIST_HEAD(&conf->retry_list);
3728 INIT_LIST_HEAD(&conf->bio_end_io_list);
3730 spin_lock_init(&conf->resync_lock);
3731 init_waitqueue_head(&conf->wait_barrier);
3732 atomic_set(&conf->nr_pending, 0);
3734 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3735 if (!conf->thread)
3736 goto out;
3738 conf->mddev = mddev;
3739 return conf;
3741 out:
3742 if (conf) {
3743 mempool_destroy(conf->r10bio_pool);
3744 kfree(conf->mirrors);
3745 safe_put_page(conf->tmppage);
3746 if (conf->bio_split)
3747 bioset_free(conf->bio_split);
3748 kfree(conf);
3750 return ERR_PTR(err);
3753 static int raid10_run(struct mddev *mddev)
3755 struct r10conf *conf;
3756 int i, disk_idx, chunk_size;
3757 struct raid10_info *disk;
3758 struct md_rdev *rdev;
3759 sector_t size;
3760 sector_t min_offset_diff = 0;
3761 int first = 1;
3762 bool discard_supported = false;
3764 if (mddev_init_writes_pending(mddev) < 0)
3765 return -ENOMEM;
3767 if (mddev->private == NULL) {
3768 conf = setup_conf(mddev);
3769 if (IS_ERR(conf))
3770 return PTR_ERR(conf);
3771 mddev->private = conf;
3773 conf = mddev->private;
3774 if (!conf)
3775 goto out;
3777 if (mddev_is_clustered(conf->mddev)) {
3778 int fc, fo;
3780 fc = (mddev->layout >> 8) & 255;
3781 fo = mddev->layout & (1<<16);
3782 if (fc > 1 || fo > 0) {
3783 pr_err("only near layout is supported by clustered"
3784 " raid10\n");
3785 goto out;
3789 mddev->thread = conf->thread;
3790 conf->thread = NULL;
3792 chunk_size = mddev->chunk_sectors << 9;
3793 if (mddev->queue) {
3794 blk_queue_max_discard_sectors(mddev->queue,
3795 mddev->chunk_sectors);
3796 blk_queue_max_write_same_sectors(mddev->queue, 0);
3797 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3798 blk_queue_io_min(mddev->queue, chunk_size);
3799 if (conf->geo.raid_disks % conf->geo.near_copies)
3800 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3801 else
3802 blk_queue_io_opt(mddev->queue, chunk_size *
3803 (conf->geo.raid_disks / conf->geo.near_copies));
3806 rdev_for_each(rdev, mddev) {
3807 long long diff;
3809 disk_idx = rdev->raid_disk;
3810 if (disk_idx < 0)
3811 continue;
3812 if (disk_idx >= conf->geo.raid_disks &&
3813 disk_idx >= conf->prev.raid_disks)
3814 continue;
3815 disk = conf->mirrors + disk_idx;
3817 if (test_bit(Replacement, &rdev->flags)) {
3818 if (disk->replacement)
3819 goto out_free_conf;
3820 disk->replacement = rdev;
3821 } else {
3822 if (disk->rdev)
3823 goto out_free_conf;
3824 disk->rdev = rdev;
3826 diff = (rdev->new_data_offset - rdev->data_offset);
3827 if (!mddev->reshape_backwards)
3828 diff = -diff;
3829 if (diff < 0)
3830 diff = 0;
3831 if (first || diff < min_offset_diff)
3832 min_offset_diff = diff;
3834 if (mddev->gendisk)
3835 disk_stack_limits(mddev->gendisk, rdev->bdev,
3836 rdev->data_offset << 9);
3838 disk->head_position = 0;
3840 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3841 discard_supported = true;
3842 first = 0;
3845 if (mddev->queue) {
3846 if (discard_supported)
3847 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3848 mddev->queue);
3849 else
3850 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3851 mddev->queue);
3853 /* need to check that every block has at least one working mirror */
3854 if (!enough(conf, -1)) {
3855 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3856 mdname(mddev));
3857 goto out_free_conf;
3860 if (conf->reshape_progress != MaxSector) {
3861 /* must ensure that shape change is supported */
3862 if (conf->geo.far_copies != 1 &&
3863 conf->geo.far_offset == 0)
3864 goto out_free_conf;
3865 if (conf->prev.far_copies != 1 &&
3866 conf->prev.far_offset == 0)
3867 goto out_free_conf;
3870 mddev->degraded = 0;
3871 for (i = 0;
3872 i < conf->geo.raid_disks
3873 || i < conf->prev.raid_disks;
3874 i++) {
3876 disk = conf->mirrors + i;
3878 if (!disk->rdev && disk->replacement) {
3879 /* The replacement is all we have - use it */
3880 disk->rdev = disk->replacement;
3881 disk->replacement = NULL;
3882 clear_bit(Replacement, &disk->rdev->flags);
3885 if (!disk->rdev ||
3886 !test_bit(In_sync, &disk->rdev->flags)) {
3887 disk->head_position = 0;
3888 mddev->degraded++;
3889 if (disk->rdev &&
3890 disk->rdev->saved_raid_disk < 0)
3891 conf->fullsync = 1;
3893 disk->recovery_disabled = mddev->recovery_disabled - 1;
3896 if (mddev->recovery_cp != MaxSector)
3897 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3898 mdname(mddev));
3899 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3900 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3901 conf->geo.raid_disks);
3903 * Ok, everything is just fine now
3905 mddev->dev_sectors = conf->dev_sectors;
3906 size = raid10_size(mddev, 0, 0);
3907 md_set_array_sectors(mddev, size);
3908 mddev->resync_max_sectors = size;
3909 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3911 if (mddev->queue) {
3912 int stripe = conf->geo.raid_disks *
3913 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3915 /* Calculate max read-ahead size.
3916 * We need to readahead at least twice a whole stripe....
3917 * maybe...
3919 stripe /= conf->geo.near_copies;
3920 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3921 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3924 if (md_integrity_register(mddev))
3925 goto out_free_conf;
3927 if (conf->reshape_progress != MaxSector) {
3928 unsigned long before_length, after_length;
3930 before_length = ((1 << conf->prev.chunk_shift) *
3931 conf->prev.far_copies);
3932 after_length = ((1 << conf->geo.chunk_shift) *
3933 conf->geo.far_copies);
3935 if (max(before_length, after_length) > min_offset_diff) {
3936 /* This cannot work */
3937 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3938 goto out_free_conf;
3940 conf->offset_diff = min_offset_diff;
3942 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3943 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3944 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3945 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3946 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3947 "reshape");
3950 return 0;
3952 out_free_conf:
3953 md_unregister_thread(&mddev->thread);
3954 mempool_destroy(conf->r10bio_pool);
3955 safe_put_page(conf->tmppage);
3956 kfree(conf->mirrors);
3957 kfree(conf);
3958 mddev->private = NULL;
3959 out:
3960 return -EIO;
3963 static void raid10_free(struct mddev *mddev, void *priv)
3965 struct r10conf *conf = priv;
3967 mempool_destroy(conf->r10bio_pool);
3968 safe_put_page(conf->tmppage);
3969 kfree(conf->mirrors);
3970 kfree(conf->mirrors_old);
3971 kfree(conf->mirrors_new);
3972 if (conf->bio_split)
3973 bioset_free(conf->bio_split);
3974 kfree(conf);
3977 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3979 struct r10conf *conf = mddev->private;
3981 if (quiesce)
3982 raise_barrier(conf, 0);
3983 else
3984 lower_barrier(conf);
3987 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3989 /* Resize of 'far' arrays is not supported.
3990 * For 'near' and 'offset' arrays we can set the
3991 * number of sectors used to be an appropriate multiple
3992 * of the chunk size.
3993 * For 'offset', this is far_copies*chunksize.
3994 * For 'near' the multiplier is the LCM of
3995 * near_copies and raid_disks.
3996 * So if far_copies > 1 && !far_offset, fail.
3997 * Else find LCM(raid_disks, near_copy)*far_copies and
3998 * multiply by chunk_size. Then round to this number.
3999 * This is mostly done by raid10_size()
4001 struct r10conf *conf = mddev->private;
4002 sector_t oldsize, size;
4004 if (mddev->reshape_position != MaxSector)
4005 return -EBUSY;
4007 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4008 return -EINVAL;
4010 oldsize = raid10_size(mddev, 0, 0);
4011 size = raid10_size(mddev, sectors, 0);
4012 if (mddev->external_size &&
4013 mddev->array_sectors > size)
4014 return -EINVAL;
4015 if (mddev->bitmap) {
4016 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4017 if (ret)
4018 return ret;
4020 md_set_array_sectors(mddev, size);
4021 if (sectors > mddev->dev_sectors &&
4022 mddev->recovery_cp > oldsize) {
4023 mddev->recovery_cp = oldsize;
4024 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4026 calc_sectors(conf, sectors);
4027 mddev->dev_sectors = conf->dev_sectors;
4028 mddev->resync_max_sectors = size;
4029 return 0;
4032 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4034 struct md_rdev *rdev;
4035 struct r10conf *conf;
4037 if (mddev->degraded > 0) {
4038 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4039 mdname(mddev));
4040 return ERR_PTR(-EINVAL);
4042 sector_div(size, devs);
4044 /* Set new parameters */
4045 mddev->new_level = 10;
4046 /* new layout: far_copies = 1, near_copies = 2 */
4047 mddev->new_layout = (1<<8) + 2;
4048 mddev->new_chunk_sectors = mddev->chunk_sectors;
4049 mddev->delta_disks = mddev->raid_disks;
4050 mddev->raid_disks *= 2;
4051 /* make sure it will be not marked as dirty */
4052 mddev->recovery_cp = MaxSector;
4053 mddev->dev_sectors = size;
4055 conf = setup_conf(mddev);
4056 if (!IS_ERR(conf)) {
4057 rdev_for_each(rdev, mddev)
4058 if (rdev->raid_disk >= 0) {
4059 rdev->new_raid_disk = rdev->raid_disk * 2;
4060 rdev->sectors = size;
4062 conf->barrier = 1;
4065 return conf;
4068 static void *raid10_takeover(struct mddev *mddev)
4070 struct r0conf *raid0_conf;
4072 /* raid10 can take over:
4073 * raid0 - providing it has only two drives
4075 if (mddev->level == 0) {
4076 /* for raid0 takeover only one zone is supported */
4077 raid0_conf = mddev->private;
4078 if (raid0_conf->nr_strip_zones > 1) {
4079 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4080 mdname(mddev));
4081 return ERR_PTR(-EINVAL);
4083 return raid10_takeover_raid0(mddev,
4084 raid0_conf->strip_zone->zone_end,
4085 raid0_conf->strip_zone->nb_dev);
4087 return ERR_PTR(-EINVAL);
4090 static int raid10_check_reshape(struct mddev *mddev)
4092 /* Called when there is a request to change
4093 * - layout (to ->new_layout)
4094 * - chunk size (to ->new_chunk_sectors)
4095 * - raid_disks (by delta_disks)
4096 * or when trying to restart a reshape that was ongoing.
4098 * We need to validate the request and possibly allocate
4099 * space if that might be an issue later.
4101 * Currently we reject any reshape of a 'far' mode array,
4102 * allow chunk size to change if new is generally acceptable,
4103 * allow raid_disks to increase, and allow
4104 * a switch between 'near' mode and 'offset' mode.
4106 struct r10conf *conf = mddev->private;
4107 struct geom geo;
4109 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4110 return -EINVAL;
4112 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4113 /* mustn't change number of copies */
4114 return -EINVAL;
4115 if (geo.far_copies > 1 && !geo.far_offset)
4116 /* Cannot switch to 'far' mode */
4117 return -EINVAL;
4119 if (mddev->array_sectors & geo.chunk_mask)
4120 /* not factor of array size */
4121 return -EINVAL;
4123 if (!enough(conf, -1))
4124 return -EINVAL;
4126 kfree(conf->mirrors_new);
4127 conf->mirrors_new = NULL;
4128 if (mddev->delta_disks > 0) {
4129 /* allocate new 'mirrors' list */
4130 conf->mirrors_new = kzalloc(
4131 sizeof(struct raid10_info)
4132 *(mddev->raid_disks +
4133 mddev->delta_disks),
4134 GFP_KERNEL);
4135 if (!conf->mirrors_new)
4136 return -ENOMEM;
4138 return 0;
4142 * Need to check if array has failed when deciding whether to:
4143 * - start an array
4144 * - remove non-faulty devices
4145 * - add a spare
4146 * - allow a reshape
4147 * This determination is simple when no reshape is happening.
4148 * However if there is a reshape, we need to carefully check
4149 * both the before and after sections.
4150 * This is because some failed devices may only affect one
4151 * of the two sections, and some non-in_sync devices may
4152 * be insync in the section most affected by failed devices.
4154 static int calc_degraded(struct r10conf *conf)
4156 int degraded, degraded2;
4157 int i;
4159 rcu_read_lock();
4160 degraded = 0;
4161 /* 'prev' section first */
4162 for (i = 0; i < conf->prev.raid_disks; i++) {
4163 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4164 if (!rdev || test_bit(Faulty, &rdev->flags))
4165 degraded++;
4166 else if (!test_bit(In_sync, &rdev->flags))
4167 /* When we can reduce the number of devices in
4168 * an array, this might not contribute to
4169 * 'degraded'. It does now.
4171 degraded++;
4173 rcu_read_unlock();
4174 if (conf->geo.raid_disks == conf->prev.raid_disks)
4175 return degraded;
4176 rcu_read_lock();
4177 degraded2 = 0;
4178 for (i = 0; i < conf->geo.raid_disks; i++) {
4179 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4180 if (!rdev || test_bit(Faulty, &rdev->flags))
4181 degraded2++;
4182 else if (!test_bit(In_sync, &rdev->flags)) {
4183 /* If reshape is increasing the number of devices,
4184 * this section has already been recovered, so
4185 * it doesn't contribute to degraded.
4186 * else it does.
4188 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4189 degraded2++;
4192 rcu_read_unlock();
4193 if (degraded2 > degraded)
4194 return degraded2;
4195 return degraded;
4198 static int raid10_start_reshape(struct mddev *mddev)
4200 /* A 'reshape' has been requested. This commits
4201 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4202 * This also checks if there are enough spares and adds them
4203 * to the array.
4204 * We currently require enough spares to make the final
4205 * array non-degraded. We also require that the difference
4206 * between old and new data_offset - on each device - is
4207 * enough that we never risk over-writing.
4210 unsigned long before_length, after_length;
4211 sector_t min_offset_diff = 0;
4212 int first = 1;
4213 struct geom new;
4214 struct r10conf *conf = mddev->private;
4215 struct md_rdev *rdev;
4216 int spares = 0;
4217 int ret;
4219 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220 return -EBUSY;
4222 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4223 return -EINVAL;
4225 before_length = ((1 << conf->prev.chunk_shift) *
4226 conf->prev.far_copies);
4227 after_length = ((1 << conf->geo.chunk_shift) *
4228 conf->geo.far_copies);
4230 rdev_for_each(rdev, mddev) {
4231 if (!test_bit(In_sync, &rdev->flags)
4232 && !test_bit(Faulty, &rdev->flags))
4233 spares++;
4234 if (rdev->raid_disk >= 0) {
4235 long long diff = (rdev->new_data_offset
4236 - rdev->data_offset);
4237 if (!mddev->reshape_backwards)
4238 diff = -diff;
4239 if (diff < 0)
4240 diff = 0;
4241 if (first || diff < min_offset_diff)
4242 min_offset_diff = diff;
4243 first = 0;
4247 if (max(before_length, after_length) > min_offset_diff)
4248 return -EINVAL;
4250 if (spares < mddev->delta_disks)
4251 return -EINVAL;
4253 conf->offset_diff = min_offset_diff;
4254 spin_lock_irq(&conf->device_lock);
4255 if (conf->mirrors_new) {
4256 memcpy(conf->mirrors_new, conf->mirrors,
4257 sizeof(struct raid10_info)*conf->prev.raid_disks);
4258 smp_mb();
4259 kfree(conf->mirrors_old);
4260 conf->mirrors_old = conf->mirrors;
4261 conf->mirrors = conf->mirrors_new;
4262 conf->mirrors_new = NULL;
4264 setup_geo(&conf->geo, mddev, geo_start);
4265 smp_mb();
4266 if (mddev->reshape_backwards) {
4267 sector_t size = raid10_size(mddev, 0, 0);
4268 if (size < mddev->array_sectors) {
4269 spin_unlock_irq(&conf->device_lock);
4270 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4271 mdname(mddev));
4272 return -EINVAL;
4274 mddev->resync_max_sectors = size;
4275 conf->reshape_progress = size;
4276 } else
4277 conf->reshape_progress = 0;
4278 conf->reshape_safe = conf->reshape_progress;
4279 spin_unlock_irq(&conf->device_lock);
4281 if (mddev->delta_disks && mddev->bitmap) {
4282 ret = bitmap_resize(mddev->bitmap,
4283 raid10_size(mddev, 0,
4284 conf->geo.raid_disks),
4285 0, 0);
4286 if (ret)
4287 goto abort;
4289 if (mddev->delta_disks > 0) {
4290 rdev_for_each(rdev, mddev)
4291 if (rdev->raid_disk < 0 &&
4292 !test_bit(Faulty, &rdev->flags)) {
4293 if (raid10_add_disk(mddev, rdev) == 0) {
4294 if (rdev->raid_disk >=
4295 conf->prev.raid_disks)
4296 set_bit(In_sync, &rdev->flags);
4297 else
4298 rdev->recovery_offset = 0;
4300 if (sysfs_link_rdev(mddev, rdev))
4301 /* Failure here is OK */;
4303 } else if (rdev->raid_disk >= conf->prev.raid_disks
4304 && !test_bit(Faulty, &rdev->flags)) {
4305 /* This is a spare that was manually added */
4306 set_bit(In_sync, &rdev->flags);
4309 /* When a reshape changes the number of devices,
4310 * ->degraded is measured against the larger of the
4311 * pre and post numbers.
4313 spin_lock_irq(&conf->device_lock);
4314 mddev->degraded = calc_degraded(conf);
4315 spin_unlock_irq(&conf->device_lock);
4316 mddev->raid_disks = conf->geo.raid_disks;
4317 mddev->reshape_position = conf->reshape_progress;
4318 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4320 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4321 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4322 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4323 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4324 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4326 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4327 "reshape");
4328 if (!mddev->sync_thread) {
4329 ret = -EAGAIN;
4330 goto abort;
4332 conf->reshape_checkpoint = jiffies;
4333 md_wakeup_thread(mddev->sync_thread);
4334 md_new_event(mddev);
4335 return 0;
4337 abort:
4338 mddev->recovery = 0;
4339 spin_lock_irq(&conf->device_lock);
4340 conf->geo = conf->prev;
4341 mddev->raid_disks = conf->geo.raid_disks;
4342 rdev_for_each(rdev, mddev)
4343 rdev->new_data_offset = rdev->data_offset;
4344 smp_wmb();
4345 conf->reshape_progress = MaxSector;
4346 conf->reshape_safe = MaxSector;
4347 mddev->reshape_position = MaxSector;
4348 spin_unlock_irq(&conf->device_lock);
4349 return ret;
4352 /* Calculate the last device-address that could contain
4353 * any block from the chunk that includes the array-address 's'
4354 * and report the next address.
4355 * i.e. the address returned will be chunk-aligned and after
4356 * any data that is in the chunk containing 's'.
4358 static sector_t last_dev_address(sector_t s, struct geom *geo)
4360 s = (s | geo->chunk_mask) + 1;
4361 s >>= geo->chunk_shift;
4362 s *= geo->near_copies;
4363 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4364 s *= geo->far_copies;
4365 s <<= geo->chunk_shift;
4366 return s;
4369 /* Calculate the first device-address that could contain
4370 * any block from the chunk that includes the array-address 's'.
4371 * This too will be the start of a chunk
4373 static sector_t first_dev_address(sector_t s, struct geom *geo)
4375 s >>= geo->chunk_shift;
4376 s *= geo->near_copies;
4377 sector_div(s, geo->raid_disks);
4378 s *= geo->far_copies;
4379 s <<= geo->chunk_shift;
4380 return s;
4383 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4384 int *skipped)
4386 /* We simply copy at most one chunk (smallest of old and new)
4387 * at a time, possibly less if that exceeds RESYNC_PAGES,
4388 * or we hit a bad block or something.
4389 * This might mean we pause for normal IO in the middle of
4390 * a chunk, but that is not a problem as mddev->reshape_position
4391 * can record any location.
4393 * If we will want to write to a location that isn't
4394 * yet recorded as 'safe' (i.e. in metadata on disk) then
4395 * we need to flush all reshape requests and update the metadata.
4397 * When reshaping forwards (e.g. to more devices), we interpret
4398 * 'safe' as the earliest block which might not have been copied
4399 * down yet. We divide this by previous stripe size and multiply
4400 * by previous stripe length to get lowest device offset that we
4401 * cannot write to yet.
4402 * We interpret 'sector_nr' as an address that we want to write to.
4403 * From this we use last_device_address() to find where we might
4404 * write to, and first_device_address on the 'safe' position.
4405 * If this 'next' write position is after the 'safe' position,
4406 * we must update the metadata to increase the 'safe' position.
4408 * When reshaping backwards, we round in the opposite direction
4409 * and perform the reverse test: next write position must not be
4410 * less than current safe position.
4412 * In all this the minimum difference in data offsets
4413 * (conf->offset_diff - always positive) allows a bit of slack,
4414 * so next can be after 'safe', but not by more than offset_diff
4416 * We need to prepare all the bios here before we start any IO
4417 * to ensure the size we choose is acceptable to all devices.
4418 * The means one for each copy for write-out and an extra one for
4419 * read-in.
4420 * We store the read-in bio in ->master_bio and the others in
4421 * ->devs[x].bio and ->devs[x].repl_bio.
4423 struct r10conf *conf = mddev->private;
4424 struct r10bio *r10_bio;
4425 sector_t next, safe, last;
4426 int max_sectors;
4427 int nr_sectors;
4428 int s;
4429 struct md_rdev *rdev;
4430 int need_flush = 0;
4431 struct bio *blist;
4432 struct bio *bio, *read_bio;
4433 int sectors_done = 0;
4434 struct page **pages;
4436 if (sector_nr == 0) {
4437 /* If restarting in the middle, skip the initial sectors */
4438 if (mddev->reshape_backwards &&
4439 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4440 sector_nr = (raid10_size(mddev, 0, 0)
4441 - conf->reshape_progress);
4442 } else if (!mddev->reshape_backwards &&
4443 conf->reshape_progress > 0)
4444 sector_nr = conf->reshape_progress;
4445 if (sector_nr) {
4446 mddev->curr_resync_completed = sector_nr;
4447 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4448 *skipped = 1;
4449 return sector_nr;
4453 /* We don't use sector_nr to track where we are up to
4454 * as that doesn't work well for ->reshape_backwards.
4455 * So just use ->reshape_progress.
4457 if (mddev->reshape_backwards) {
4458 /* 'next' is the earliest device address that we might
4459 * write to for this chunk in the new layout
4461 next = first_dev_address(conf->reshape_progress - 1,
4462 &conf->geo);
4464 /* 'safe' is the last device address that we might read from
4465 * in the old layout after a restart
4467 safe = last_dev_address(conf->reshape_safe - 1,
4468 &conf->prev);
4470 if (next + conf->offset_diff < safe)
4471 need_flush = 1;
4473 last = conf->reshape_progress - 1;
4474 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4475 & conf->prev.chunk_mask);
4476 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4477 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4478 } else {
4479 /* 'next' is after the last device address that we
4480 * might write to for this chunk in the new layout
4482 next = last_dev_address(conf->reshape_progress, &conf->geo);
4484 /* 'safe' is the earliest device address that we might
4485 * read from in the old layout after a restart
4487 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4489 /* Need to update metadata if 'next' might be beyond 'safe'
4490 * as that would possibly corrupt data
4492 if (next > safe + conf->offset_diff)
4493 need_flush = 1;
4495 sector_nr = conf->reshape_progress;
4496 last = sector_nr | (conf->geo.chunk_mask
4497 & conf->prev.chunk_mask);
4499 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4500 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4503 if (need_flush ||
4504 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4505 /* Need to update reshape_position in metadata */
4506 wait_barrier(conf);
4507 mddev->reshape_position = conf->reshape_progress;
4508 if (mddev->reshape_backwards)
4509 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4510 - conf->reshape_progress;
4511 else
4512 mddev->curr_resync_completed = conf->reshape_progress;
4513 conf->reshape_checkpoint = jiffies;
4514 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4515 md_wakeup_thread(mddev->thread);
4516 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4517 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4518 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4519 allow_barrier(conf);
4520 return sectors_done;
4522 conf->reshape_safe = mddev->reshape_position;
4523 allow_barrier(conf);
4526 read_more:
4527 /* Now schedule reads for blocks from sector_nr to last */
4528 r10_bio = raid10_alloc_init_r10buf(conf);
4529 r10_bio->state = 0;
4530 raise_barrier(conf, sectors_done != 0);
4531 atomic_set(&r10_bio->remaining, 0);
4532 r10_bio->mddev = mddev;
4533 r10_bio->sector = sector_nr;
4534 set_bit(R10BIO_IsReshape, &r10_bio->state);
4535 r10_bio->sectors = last - sector_nr + 1;
4536 rdev = read_balance(conf, r10_bio, &max_sectors);
4537 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4539 if (!rdev) {
4540 /* Cannot read from here, so need to record bad blocks
4541 * on all the target devices.
4543 // FIXME
4544 mempool_free(r10_bio, conf->r10buf_pool);
4545 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4546 return sectors_done;
4549 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4551 bio_set_dev(read_bio, rdev->bdev);
4552 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4553 + rdev->data_offset);
4554 read_bio->bi_private = r10_bio;
4555 read_bio->bi_end_io = end_reshape_read;
4556 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4557 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4558 read_bio->bi_status = 0;
4559 read_bio->bi_vcnt = 0;
4560 read_bio->bi_iter.bi_size = 0;
4561 r10_bio->master_bio = read_bio;
4562 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4564 /* Now find the locations in the new layout */
4565 __raid10_find_phys(&conf->geo, r10_bio);
4567 blist = read_bio;
4568 read_bio->bi_next = NULL;
4570 rcu_read_lock();
4571 for (s = 0; s < conf->copies*2; s++) {
4572 struct bio *b;
4573 int d = r10_bio->devs[s/2].devnum;
4574 struct md_rdev *rdev2;
4575 if (s&1) {
4576 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4577 b = r10_bio->devs[s/2].repl_bio;
4578 } else {
4579 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4580 b = r10_bio->devs[s/2].bio;
4582 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4583 continue;
4585 bio_set_dev(b, rdev2->bdev);
4586 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4587 rdev2->new_data_offset;
4588 b->bi_end_io = end_reshape_write;
4589 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4590 b->bi_next = blist;
4591 blist = b;
4594 /* Now add as many pages as possible to all of these bios. */
4596 nr_sectors = 0;
4597 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4598 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4599 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4600 int len = (max_sectors - s) << 9;
4601 if (len > PAGE_SIZE)
4602 len = PAGE_SIZE;
4603 for (bio = blist; bio ; bio = bio->bi_next) {
4605 * won't fail because the vec table is big enough
4606 * to hold all these pages
4608 bio_add_page(bio, page, len, 0);
4610 sector_nr += len >> 9;
4611 nr_sectors += len >> 9;
4613 rcu_read_unlock();
4614 r10_bio->sectors = nr_sectors;
4616 /* Now submit the read */
4617 md_sync_acct_bio(read_bio, r10_bio->sectors);
4618 atomic_inc(&r10_bio->remaining);
4619 read_bio->bi_next = NULL;
4620 generic_make_request(read_bio);
4621 sector_nr += nr_sectors;
4622 sectors_done += nr_sectors;
4623 if (sector_nr <= last)
4624 goto read_more;
4626 /* Now that we have done the whole section we can
4627 * update reshape_progress
4629 if (mddev->reshape_backwards)
4630 conf->reshape_progress -= sectors_done;
4631 else
4632 conf->reshape_progress += sectors_done;
4634 return sectors_done;
4637 static void end_reshape_request(struct r10bio *r10_bio);
4638 static int handle_reshape_read_error(struct mddev *mddev,
4639 struct r10bio *r10_bio);
4640 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4642 /* Reshape read completed. Hopefully we have a block
4643 * to write out.
4644 * If we got a read error then we do sync 1-page reads from
4645 * elsewhere until we find the data - or give up.
4647 struct r10conf *conf = mddev->private;
4648 int s;
4650 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4651 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4652 /* Reshape has been aborted */
4653 md_done_sync(mddev, r10_bio->sectors, 0);
4654 return;
4657 /* We definitely have the data in the pages, schedule the
4658 * writes.
4660 atomic_set(&r10_bio->remaining, 1);
4661 for (s = 0; s < conf->copies*2; s++) {
4662 struct bio *b;
4663 int d = r10_bio->devs[s/2].devnum;
4664 struct md_rdev *rdev;
4665 rcu_read_lock();
4666 if (s&1) {
4667 rdev = rcu_dereference(conf->mirrors[d].replacement);
4668 b = r10_bio->devs[s/2].repl_bio;
4669 } else {
4670 rdev = rcu_dereference(conf->mirrors[d].rdev);
4671 b = r10_bio->devs[s/2].bio;
4673 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4674 rcu_read_unlock();
4675 continue;
4677 atomic_inc(&rdev->nr_pending);
4678 rcu_read_unlock();
4679 md_sync_acct_bio(b, r10_bio->sectors);
4680 atomic_inc(&r10_bio->remaining);
4681 b->bi_next = NULL;
4682 generic_make_request(b);
4684 end_reshape_request(r10_bio);
4687 static void end_reshape(struct r10conf *conf)
4689 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4690 return;
4692 spin_lock_irq(&conf->device_lock);
4693 conf->prev = conf->geo;
4694 md_finish_reshape(conf->mddev);
4695 smp_wmb();
4696 conf->reshape_progress = MaxSector;
4697 conf->reshape_safe = MaxSector;
4698 spin_unlock_irq(&conf->device_lock);
4700 /* read-ahead size must cover two whole stripes, which is
4701 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4703 if (conf->mddev->queue) {
4704 int stripe = conf->geo.raid_disks *
4705 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4706 stripe /= conf->geo.near_copies;
4707 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4708 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4710 conf->fullsync = 0;
4713 static int handle_reshape_read_error(struct mddev *mddev,
4714 struct r10bio *r10_bio)
4716 /* Use sync reads to get the blocks from somewhere else */
4717 int sectors = r10_bio->sectors;
4718 struct r10conf *conf = mddev->private;
4719 struct r10bio *r10b;
4720 int slot = 0;
4721 int idx = 0;
4722 struct page **pages;
4724 r10b = kmalloc(sizeof(*r10b) +
4725 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4726 if (!r10b) {
4727 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4728 return -ENOMEM;
4731 /* reshape IOs share pages from .devs[0].bio */
4732 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4734 r10b->sector = r10_bio->sector;
4735 __raid10_find_phys(&conf->prev, r10b);
4737 while (sectors) {
4738 int s = sectors;
4739 int success = 0;
4740 int first_slot = slot;
4742 if (s > (PAGE_SIZE >> 9))
4743 s = PAGE_SIZE >> 9;
4745 rcu_read_lock();
4746 while (!success) {
4747 int d = r10b->devs[slot].devnum;
4748 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4749 sector_t addr;
4750 if (rdev == NULL ||
4751 test_bit(Faulty, &rdev->flags) ||
4752 !test_bit(In_sync, &rdev->flags))
4753 goto failed;
4755 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4756 atomic_inc(&rdev->nr_pending);
4757 rcu_read_unlock();
4758 success = sync_page_io(rdev,
4759 addr,
4760 s << 9,
4761 pages[idx],
4762 REQ_OP_READ, 0, false);
4763 rdev_dec_pending(rdev, mddev);
4764 rcu_read_lock();
4765 if (success)
4766 break;
4767 failed:
4768 slot++;
4769 if (slot >= conf->copies)
4770 slot = 0;
4771 if (slot == first_slot)
4772 break;
4774 rcu_read_unlock();
4775 if (!success) {
4776 /* couldn't read this block, must give up */
4777 set_bit(MD_RECOVERY_INTR,
4778 &mddev->recovery);
4779 kfree(r10b);
4780 return -EIO;
4782 sectors -= s;
4783 idx++;
4785 kfree(r10b);
4786 return 0;
4789 static void end_reshape_write(struct bio *bio)
4791 struct r10bio *r10_bio = get_resync_r10bio(bio);
4792 struct mddev *mddev = r10_bio->mddev;
4793 struct r10conf *conf = mddev->private;
4794 int d;
4795 int slot;
4796 int repl;
4797 struct md_rdev *rdev = NULL;
4799 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4800 if (repl)
4801 rdev = conf->mirrors[d].replacement;
4802 if (!rdev) {
4803 smp_mb();
4804 rdev = conf->mirrors[d].rdev;
4807 if (bio->bi_status) {
4808 /* FIXME should record badblock */
4809 md_error(mddev, rdev);
4812 rdev_dec_pending(rdev, mddev);
4813 end_reshape_request(r10_bio);
4816 static void end_reshape_request(struct r10bio *r10_bio)
4818 if (!atomic_dec_and_test(&r10_bio->remaining))
4819 return;
4820 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4821 bio_put(r10_bio->master_bio);
4822 put_buf(r10_bio);
4825 static void raid10_finish_reshape(struct mddev *mddev)
4827 struct r10conf *conf = mddev->private;
4829 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4830 return;
4832 if (mddev->delta_disks > 0) {
4833 sector_t size = raid10_size(mddev, 0, 0);
4834 md_set_array_sectors(mddev, size);
4835 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836 mddev->recovery_cp = mddev->resync_max_sectors;
4837 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4839 mddev->resync_max_sectors = size;
4840 if (mddev->queue) {
4841 set_capacity(mddev->gendisk, mddev->array_sectors);
4842 revalidate_disk(mddev->gendisk);
4844 } else {
4845 int d;
4846 rcu_read_lock();
4847 for (d = conf->geo.raid_disks ;
4848 d < conf->geo.raid_disks - mddev->delta_disks;
4849 d++) {
4850 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4851 if (rdev)
4852 clear_bit(In_sync, &rdev->flags);
4853 rdev = rcu_dereference(conf->mirrors[d].replacement);
4854 if (rdev)
4855 clear_bit(In_sync, &rdev->flags);
4857 rcu_read_unlock();
4859 mddev->layout = mddev->new_layout;
4860 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4861 mddev->reshape_position = MaxSector;
4862 mddev->delta_disks = 0;
4863 mddev->reshape_backwards = 0;
4866 static struct md_personality raid10_personality =
4868 .name = "raid10",
4869 .level = 10,
4870 .owner = THIS_MODULE,
4871 .make_request = raid10_make_request,
4872 .run = raid10_run,
4873 .free = raid10_free,
4874 .status = raid10_status,
4875 .error_handler = raid10_error,
4876 .hot_add_disk = raid10_add_disk,
4877 .hot_remove_disk= raid10_remove_disk,
4878 .spare_active = raid10_spare_active,
4879 .sync_request = raid10_sync_request,
4880 .quiesce = raid10_quiesce,
4881 .size = raid10_size,
4882 .resize = raid10_resize,
4883 .takeover = raid10_takeover,
4884 .check_reshape = raid10_check_reshape,
4885 .start_reshape = raid10_start_reshape,
4886 .finish_reshape = raid10_finish_reshape,
4887 .congested = raid10_congested,
4890 static int __init raid_init(void)
4892 return register_md_personality(&raid10_personality);
4895 static void raid_exit(void)
4897 unregister_md_personality(&raid10_personality);
4900 module_init(raid_init);
4901 module_exit(raid_exit);
4902 MODULE_LICENSE("GPL");
4903 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4904 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4905 MODULE_ALIAS("md-raid10");
4906 MODULE_ALIAS("md-level-10");
4908 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);