2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
32 #include "md-bitmap.h"
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
98 static int max_queued_requests
= 1024;
100 static void allow_barrier(struct r10conf
*conf
);
101 static void lower_barrier(struct r10conf
*conf
);
102 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
103 static int enough(struct r10conf
*conf
, int ignore
);
104 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
106 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
107 static void end_reshape_write(struct bio
*bio
);
108 static void end_reshape(struct r10conf
*conf
);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 #include "raid1-10.c"
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
119 static inline struct r10bio
*get_resync_r10bio(struct bio
*bio
)
121 return get_resync_pages(bio
)->raid_bio
;
124 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
126 struct r10conf
*conf
= data
;
127 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
129 /* allocate a r10bio with room for raid_disks entries in the
131 return kzalloc(size
, gfp_flags
);
134 static void r10bio_pool_free(void *r10_bio
, void *data
)
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
154 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
156 struct r10conf
*conf
= data
;
157 struct r10bio
*r10_bio
;
160 int nalloc
, nalloc_rp
;
161 struct resync_pages
*rps
;
163 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
167 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
168 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
169 nalloc
= conf
->copies
; /* resync */
171 nalloc
= 2; /* recovery */
173 /* allocate once for all bios */
174 if (!conf
->have_replacement
)
177 nalloc_rp
= nalloc
* 2;
178 rps
= kmalloc(sizeof(struct resync_pages
) * nalloc_rp
, gfp_flags
);
180 goto out_free_r10bio
;
185 for (j
= nalloc
; j
-- ; ) {
186 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
189 r10_bio
->devs
[j
].bio
= bio
;
190 if (!conf
->have_replacement
)
192 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
195 r10_bio
->devs
[j
].repl_bio
= bio
;
198 * Allocate RESYNC_PAGES data pages and attach them
201 for (j
= 0; j
< nalloc
; j
++) {
202 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
203 struct resync_pages
*rp
, *rp_repl
;
207 rp_repl
= &rps
[nalloc
+ j
];
209 bio
= r10_bio
->devs
[j
].bio
;
211 if (!j
|| test_bit(MD_RECOVERY_SYNC
,
212 &conf
->mddev
->recovery
)) {
213 if (resync_alloc_pages(rp
, gfp_flags
))
216 memcpy(rp
, &rps
[0], sizeof(*rp
));
217 resync_get_all_pages(rp
);
220 rp
->raid_bio
= r10_bio
;
221 bio
->bi_private
= rp
;
223 memcpy(rp_repl
, rp
, sizeof(*rp
));
224 rbio
->bi_private
= rp_repl
;
232 resync_free_pages(&rps
[j
* 2]);
236 for ( ; j
< nalloc
; j
++) {
237 if (r10_bio
->devs
[j
].bio
)
238 bio_put(r10_bio
->devs
[j
].bio
);
239 if (r10_bio
->devs
[j
].repl_bio
)
240 bio_put(r10_bio
->devs
[j
].repl_bio
);
244 r10bio_pool_free(r10_bio
, conf
);
248 static void r10buf_pool_free(void *__r10_bio
, void *data
)
250 struct r10conf
*conf
= data
;
251 struct r10bio
*r10bio
= __r10_bio
;
253 struct resync_pages
*rp
= NULL
;
255 for (j
= conf
->copies
; j
--; ) {
256 struct bio
*bio
= r10bio
->devs
[j
].bio
;
258 rp
= get_resync_pages(bio
);
259 resync_free_pages(rp
);
262 bio
= r10bio
->devs
[j
].repl_bio
;
267 /* resync pages array stored in the 1st bio's .bi_private */
270 r10bio_pool_free(r10bio
, conf
);
273 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
277 for (i
= 0; i
< conf
->copies
; i
++) {
278 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
279 if (!BIO_SPECIAL(*bio
))
282 bio
= &r10_bio
->devs
[i
].repl_bio
;
283 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
289 static void free_r10bio(struct r10bio
*r10_bio
)
291 struct r10conf
*conf
= r10_bio
->mddev
->private;
293 put_all_bios(conf
, r10_bio
);
294 mempool_free(r10_bio
, conf
->r10bio_pool
);
297 static void put_buf(struct r10bio
*r10_bio
)
299 struct r10conf
*conf
= r10_bio
->mddev
->private;
301 mempool_free(r10_bio
, conf
->r10buf_pool
);
306 static void reschedule_retry(struct r10bio
*r10_bio
)
309 struct mddev
*mddev
= r10_bio
->mddev
;
310 struct r10conf
*conf
= mddev
->private;
312 spin_lock_irqsave(&conf
->device_lock
, flags
);
313 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
315 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
317 /* wake up frozen array... */
318 wake_up(&conf
->wait_barrier
);
320 md_wakeup_thread(mddev
->thread
);
324 * raid_end_bio_io() is called when we have finished servicing a mirrored
325 * operation and are ready to return a success/failure code to the buffer
328 static void raid_end_bio_io(struct r10bio
*r10_bio
)
330 struct bio
*bio
= r10_bio
->master_bio
;
331 struct r10conf
*conf
= r10_bio
->mddev
->private;
333 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
334 bio
->bi_status
= BLK_STS_IOERR
;
338 * Wake up any possible resync thread that waits for the device
343 free_r10bio(r10_bio
);
347 * Update disk head position estimator based on IRQ completion info.
349 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
351 struct r10conf
*conf
= r10_bio
->mddev
->private;
353 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
354 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
358 * Find the disk number which triggered given bio
360 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
361 struct bio
*bio
, int *slotp
, int *replp
)
366 for (slot
= 0; slot
< conf
->copies
; slot
++) {
367 if (r10_bio
->devs
[slot
].bio
== bio
)
369 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
375 BUG_ON(slot
== conf
->copies
);
376 update_head_pos(slot
, r10_bio
);
382 return r10_bio
->devs
[slot
].devnum
;
385 static void raid10_end_read_request(struct bio
*bio
)
387 int uptodate
= !bio
->bi_status
;
388 struct r10bio
*r10_bio
= bio
->bi_private
;
390 struct md_rdev
*rdev
;
391 struct r10conf
*conf
= r10_bio
->mddev
->private;
393 slot
= r10_bio
->read_slot
;
394 rdev
= r10_bio
->devs
[slot
].rdev
;
396 * this branch is our 'one mirror IO has finished' event handler:
398 update_head_pos(slot
, r10_bio
);
402 * Set R10BIO_Uptodate in our master bio, so that
403 * we will return a good error code to the higher
404 * levels even if IO on some other mirrored buffer fails.
406 * The 'master' represents the composite IO operation to
407 * user-side. So if something waits for IO, then it will
408 * wait for the 'master' bio.
410 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
412 /* If all other devices that store this block have
413 * failed, we want to return the error upwards rather
414 * than fail the last device. Here we redefine
415 * "uptodate" to mean "Don't want to retry"
417 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
422 raid_end_bio_io(r10_bio
);
423 rdev_dec_pending(rdev
, conf
->mddev
);
426 * oops, read error - keep the refcount on the rdev
428 char b
[BDEVNAME_SIZE
];
429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
431 bdevname(rdev
->bdev
, b
),
432 (unsigned long long)r10_bio
->sector
);
433 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
434 reschedule_retry(r10_bio
);
438 static void close_write(struct r10bio
*r10_bio
)
440 /* clear the bitmap if all writes complete successfully */
441 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
443 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
445 md_write_end(r10_bio
->mddev
);
448 static void one_write_done(struct r10bio
*r10_bio
)
450 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
451 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
452 reschedule_retry(r10_bio
);
454 close_write(r10_bio
);
455 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
456 reschedule_retry(r10_bio
);
458 raid_end_bio_io(r10_bio
);
463 static void raid10_end_write_request(struct bio
*bio
)
465 struct r10bio
*r10_bio
= bio
->bi_private
;
468 struct r10conf
*conf
= r10_bio
->mddev
->private;
470 struct md_rdev
*rdev
= NULL
;
471 struct bio
*to_put
= NULL
;
474 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
476 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
479 rdev
= conf
->mirrors
[dev
].replacement
;
483 rdev
= conf
->mirrors
[dev
].rdev
;
486 * this branch is our 'one mirror IO has finished' event handler:
488 if (bio
->bi_status
&& !discard_error
) {
490 /* Never record new bad blocks to replacement,
493 md_error(rdev
->mddev
, rdev
);
495 set_bit(WriteErrorSeen
, &rdev
->flags
);
496 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
497 set_bit(MD_RECOVERY_NEEDED
,
498 &rdev
->mddev
->recovery
);
501 if (test_bit(FailFast
, &rdev
->flags
) &&
502 (bio
->bi_opf
& MD_FAILFAST
)) {
503 md_error(rdev
->mddev
, rdev
);
504 if (!test_bit(Faulty
, &rdev
->flags
))
505 /* This is the only remaining device,
506 * We need to retry the write without
509 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
511 r10_bio
->devs
[slot
].bio
= NULL
;
516 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
520 * Set R10BIO_Uptodate in our master bio, so that
521 * we will return a good error code for to the higher
522 * levels even if IO on some other mirrored buffer fails.
524 * The 'master' represents the composite IO operation to
525 * user-side. So if something waits for IO, then it will
526 * wait for the 'master' bio.
532 * Do not set R10BIO_Uptodate if the current device is
533 * rebuilding or Faulty. This is because we cannot use
534 * such device for properly reading the data back (we could
535 * potentially use it, if the current write would have felt
536 * before rdev->recovery_offset, but for simplicity we don't
539 if (test_bit(In_sync
, &rdev
->flags
) &&
540 !test_bit(Faulty
, &rdev
->flags
))
541 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
543 /* Maybe we can clear some bad blocks. */
544 if (is_badblock(rdev
,
545 r10_bio
->devs
[slot
].addr
,
547 &first_bad
, &bad_sectors
) && !discard_error
) {
550 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
552 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
554 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
560 * Let's see if all mirrored write operations have finished
563 one_write_done(r10_bio
);
565 rdev_dec_pending(rdev
, conf
->mddev
);
571 * RAID10 layout manager
572 * As well as the chunksize and raid_disks count, there are two
573 * parameters: near_copies and far_copies.
574 * near_copies * far_copies must be <= raid_disks.
575 * Normally one of these will be 1.
576 * If both are 1, we get raid0.
577 * If near_copies == raid_disks, we get raid1.
579 * Chunks are laid out in raid0 style with near_copies copies of the
580 * first chunk, followed by near_copies copies of the next chunk and
582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
583 * as described above, we start again with a device offset of near_copies.
584 * So we effectively have another copy of the whole array further down all
585 * the drives, but with blocks on different drives.
586 * With this layout, and block is never stored twice on the one device.
588 * raid10_find_phys finds the sector offset of a given virtual sector
589 * on each device that it is on.
591 * raid10_find_virt does the reverse mapping, from a device and a
592 * sector offset to a virtual address
595 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
603 int last_far_set_start
, last_far_set_size
;
605 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
606 last_far_set_start
*= geo
->far_set_size
;
608 last_far_set_size
= geo
->far_set_size
;
609 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
611 /* now calculate first sector/dev */
612 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
613 sector
= r10bio
->sector
& geo
->chunk_mask
;
615 chunk
*= geo
->near_copies
;
617 dev
= sector_div(stripe
, geo
->raid_disks
);
619 stripe
*= geo
->far_copies
;
621 sector
+= stripe
<< geo
->chunk_shift
;
623 /* and calculate all the others */
624 for (n
= 0; n
< geo
->near_copies
; n
++) {
628 r10bio
->devs
[slot
].devnum
= d
;
629 r10bio
->devs
[slot
].addr
= s
;
632 for (f
= 1; f
< geo
->far_copies
; f
++) {
633 set
= d
/ geo
->far_set_size
;
634 d
+= geo
->near_copies
;
636 if ((geo
->raid_disks
% geo
->far_set_size
) &&
637 (d
> last_far_set_start
)) {
638 d
-= last_far_set_start
;
639 d
%= last_far_set_size
;
640 d
+= last_far_set_start
;
642 d
%= geo
->far_set_size
;
643 d
+= geo
->far_set_size
* set
;
646 r10bio
->devs
[slot
].devnum
= d
;
647 r10bio
->devs
[slot
].addr
= s
;
651 if (dev
>= geo
->raid_disks
) {
653 sector
+= (geo
->chunk_mask
+ 1);
658 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
660 struct geom
*geo
= &conf
->geo
;
662 if (conf
->reshape_progress
!= MaxSector
&&
663 ((r10bio
->sector
>= conf
->reshape_progress
) !=
664 conf
->mddev
->reshape_backwards
)) {
665 set_bit(R10BIO_Previous
, &r10bio
->state
);
668 clear_bit(R10BIO_Previous
, &r10bio
->state
);
670 __raid10_find_phys(geo
, r10bio
);
673 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
675 sector_t offset
, chunk
, vchunk
;
676 /* Never use conf->prev as this is only called during resync
677 * or recovery, so reshape isn't happening
679 struct geom
*geo
= &conf
->geo
;
680 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
681 int far_set_size
= geo
->far_set_size
;
682 int last_far_set_start
;
684 if (geo
->raid_disks
% geo
->far_set_size
) {
685 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
686 last_far_set_start
*= geo
->far_set_size
;
688 if (dev
>= last_far_set_start
) {
689 far_set_size
= geo
->far_set_size
;
690 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
691 far_set_start
= last_far_set_start
;
695 offset
= sector
& geo
->chunk_mask
;
696 if (geo
->far_offset
) {
698 chunk
= sector
>> geo
->chunk_shift
;
699 fc
= sector_div(chunk
, geo
->far_copies
);
700 dev
-= fc
* geo
->near_copies
;
701 if (dev
< far_set_start
)
704 while (sector
>= geo
->stride
) {
705 sector
-= geo
->stride
;
706 if (dev
< (geo
->near_copies
+ far_set_start
))
707 dev
+= far_set_size
- geo
->near_copies
;
709 dev
-= geo
->near_copies
;
711 chunk
= sector
>> geo
->chunk_shift
;
713 vchunk
= chunk
* geo
->raid_disks
+ dev
;
714 sector_div(vchunk
, geo
->near_copies
);
715 return (vchunk
<< geo
->chunk_shift
) + offset
;
719 * This routine returns the disk from which the requested read should
720 * be done. There is a per-array 'next expected sequential IO' sector
721 * number - if this matches on the next IO then we use the last disk.
722 * There is also a per-disk 'last know head position' sector that is
723 * maintained from IRQ contexts, both the normal and the resync IO
724 * completion handlers update this position correctly. If there is no
725 * perfect sequential match then we pick the disk whose head is closest.
727 * If there are 2 mirrors in the same 2 devices, performance degrades
728 * because position is mirror, not device based.
730 * The rdev for the device selected will have nr_pending incremented.
734 * FIXME: possibly should rethink readbalancing and do it differently
735 * depending on near_copies / far_copies geometry.
737 static struct md_rdev
*read_balance(struct r10conf
*conf
,
738 struct r10bio
*r10_bio
,
741 const sector_t this_sector
= r10_bio
->sector
;
743 int sectors
= r10_bio
->sectors
;
744 int best_good_sectors
;
745 sector_t new_distance
, best_dist
;
746 struct md_rdev
*best_rdev
, *rdev
= NULL
;
749 struct geom
*geo
= &conf
->geo
;
751 raid10_find_phys(conf
, r10_bio
);
755 best_dist
= MaxSector
;
756 best_good_sectors
= 0;
758 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
760 * Check if we can balance. We can balance on the whole
761 * device if no resync is going on (recovery is ok), or below
762 * the resync window. We take the first readable disk when
763 * above the resync window.
765 if ((conf
->mddev
->recovery_cp
< MaxSector
766 && (this_sector
+ sectors
>= conf
->next_resync
)) ||
767 (mddev_is_clustered(conf
->mddev
) &&
768 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
769 this_sector
+ sectors
)))
772 for (slot
= 0; slot
< conf
->copies
; slot
++) {
777 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
779 disk
= r10_bio
->devs
[slot
].devnum
;
780 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
781 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
782 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
783 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
785 test_bit(Faulty
, &rdev
->flags
))
787 if (!test_bit(In_sync
, &rdev
->flags
) &&
788 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
791 dev_sector
= r10_bio
->devs
[slot
].addr
;
792 if (is_badblock(rdev
, dev_sector
, sectors
,
793 &first_bad
, &bad_sectors
)) {
794 if (best_dist
< MaxSector
)
795 /* Already have a better slot */
797 if (first_bad
<= dev_sector
) {
798 /* Cannot read here. If this is the
799 * 'primary' device, then we must not read
800 * beyond 'bad_sectors' from another device.
802 bad_sectors
-= (dev_sector
- first_bad
);
803 if (!do_balance
&& sectors
> bad_sectors
)
804 sectors
= bad_sectors
;
805 if (best_good_sectors
> sectors
)
806 best_good_sectors
= sectors
;
808 sector_t good_sectors
=
809 first_bad
- dev_sector
;
810 if (good_sectors
> best_good_sectors
) {
811 best_good_sectors
= good_sectors
;
816 /* Must read from here */
821 best_good_sectors
= sectors
;
827 /* At least 2 disks to choose from so failfast is OK */
828 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
829 /* This optimisation is debatable, and completely destroys
830 * sequential read speed for 'far copies' arrays. So only
831 * keep it for 'near' arrays, and review those later.
833 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
836 /* for far > 1 always use the lowest address */
837 else if (geo
->far_copies
> 1)
838 new_distance
= r10_bio
->devs
[slot
].addr
;
840 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
841 conf
->mirrors
[disk
].head_position
);
842 if (new_distance
< best_dist
) {
843 best_dist
= new_distance
;
848 if (slot
>= conf
->copies
) {
854 atomic_inc(&rdev
->nr_pending
);
855 r10_bio
->read_slot
= slot
;
859 *max_sectors
= best_good_sectors
;
864 static int raid10_congested(struct mddev
*mddev
, int bits
)
866 struct r10conf
*conf
= mddev
->private;
869 if ((bits
& (1 << WB_async_congested
)) &&
870 conf
->pending_count
>= max_queued_requests
)
875 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
878 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
879 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
880 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
882 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
889 static void flush_pending_writes(struct r10conf
*conf
)
891 /* Any writes that have been queued but are awaiting
892 * bitmap updates get flushed here.
894 spin_lock_irq(&conf
->device_lock
);
896 if (conf
->pending_bio_list
.head
) {
897 struct blk_plug plug
;
900 bio
= bio_list_get(&conf
->pending_bio_list
);
901 conf
->pending_count
= 0;
902 spin_unlock_irq(&conf
->device_lock
);
905 * As this is called in a wait_event() loop (see freeze_array),
906 * current->state might be TASK_UNINTERRUPTIBLE which will
907 * cause a warning when we prepare to wait again. As it is
908 * rare that this path is taken, it is perfectly safe to force
909 * us to go around the wait_event() loop again, so the warning
910 * is a false-positive. Silence the warning by resetting
913 __set_current_state(TASK_RUNNING
);
915 blk_start_plug(&plug
);
916 /* flush any pending bitmap writes to disk
917 * before proceeding w/ I/O */
918 bitmap_unplug(conf
->mddev
->bitmap
);
919 wake_up(&conf
->wait_barrier
);
921 while (bio
) { /* submit pending writes */
922 struct bio
*next
= bio
->bi_next
;
923 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
925 bio_set_dev(bio
, rdev
->bdev
);
926 if (test_bit(Faulty
, &rdev
->flags
)) {
928 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
929 !blk_queue_discard(bio
->bi_disk
->queue
)))
933 generic_make_request(bio
);
936 blk_finish_plug(&plug
);
938 spin_unlock_irq(&conf
->device_lock
);
942 * Sometimes we need to suspend IO while we do something else,
943 * either some resync/recovery, or reconfigure the array.
944 * To do this we raise a 'barrier'.
945 * The 'barrier' is a counter that can be raised multiple times
946 * to count how many activities are happening which preclude
948 * We can only raise the barrier if there is no pending IO.
949 * i.e. if nr_pending == 0.
950 * We choose only to raise the barrier if no-one is waiting for the
951 * barrier to go down. This means that as soon as an IO request
952 * is ready, no other operations which require a barrier will start
953 * until the IO request has had a chance.
955 * So: regular IO calls 'wait_barrier'. When that returns there
956 * is no backgroup IO happening, It must arrange to call
957 * allow_barrier when it has finished its IO.
958 * backgroup IO calls must call raise_barrier. Once that returns
959 * there is no normal IO happeing. It must arrange to call
960 * lower_barrier when the particular background IO completes.
963 static void raise_barrier(struct r10conf
*conf
, int force
)
965 BUG_ON(force
&& !conf
->barrier
);
966 spin_lock_irq(&conf
->resync_lock
);
968 /* Wait until no block IO is waiting (unless 'force') */
969 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
972 /* block any new IO from starting */
975 /* Now wait for all pending IO to complete */
976 wait_event_lock_irq(conf
->wait_barrier
,
977 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
980 spin_unlock_irq(&conf
->resync_lock
);
983 static void lower_barrier(struct r10conf
*conf
)
986 spin_lock_irqsave(&conf
->resync_lock
, flags
);
988 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
989 wake_up(&conf
->wait_barrier
);
992 static void wait_barrier(struct r10conf
*conf
)
994 spin_lock_irq(&conf
->resync_lock
);
997 /* Wait for the barrier to drop.
998 * However if there are already pending
999 * requests (preventing the barrier from
1000 * rising completely), and the
1001 * pre-process bio queue isn't empty,
1002 * then don't wait, as we need to empty
1003 * that queue to get the nr_pending
1006 raid10_log(conf
->mddev
, "wait barrier");
1007 wait_event_lock_irq(conf
->wait_barrier
,
1009 (atomic_read(&conf
->nr_pending
) &&
1010 current
->bio_list
&&
1011 (!bio_list_empty(¤t
->bio_list
[0]) ||
1012 !bio_list_empty(¤t
->bio_list
[1]))),
1015 if (!conf
->nr_waiting
)
1016 wake_up(&conf
->wait_barrier
);
1018 atomic_inc(&conf
->nr_pending
);
1019 spin_unlock_irq(&conf
->resync_lock
);
1022 static void allow_barrier(struct r10conf
*conf
)
1024 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
1025 (conf
->array_freeze_pending
))
1026 wake_up(&conf
->wait_barrier
);
1029 static void freeze_array(struct r10conf
*conf
, int extra
)
1031 /* stop syncio and normal IO and wait for everything to
1033 * We increment barrier and nr_waiting, and then
1034 * wait until nr_pending match nr_queued+extra
1035 * This is called in the context of one normal IO request
1036 * that has failed. Thus any sync request that might be pending
1037 * will be blocked by nr_pending, and we need to wait for
1038 * pending IO requests to complete or be queued for re-try.
1039 * Thus the number queued (nr_queued) plus this request (extra)
1040 * must match the number of pending IOs (nr_pending) before
1043 spin_lock_irq(&conf
->resync_lock
);
1044 conf
->array_freeze_pending
++;
1047 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1048 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1050 flush_pending_writes(conf
));
1052 conf
->array_freeze_pending
--;
1053 spin_unlock_irq(&conf
->resync_lock
);
1056 static void unfreeze_array(struct r10conf
*conf
)
1058 /* reverse the effect of the freeze */
1059 spin_lock_irq(&conf
->resync_lock
);
1062 wake_up(&conf
->wait_barrier
);
1063 spin_unlock_irq(&conf
->resync_lock
);
1066 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1067 struct md_rdev
*rdev
)
1069 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1070 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1071 return rdev
->data_offset
;
1073 return rdev
->new_data_offset
;
1076 struct raid10_plug_cb
{
1077 struct blk_plug_cb cb
;
1078 struct bio_list pending
;
1082 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1084 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1086 struct mddev
*mddev
= plug
->cb
.data
;
1087 struct r10conf
*conf
= mddev
->private;
1090 if (from_schedule
|| current
->bio_list
) {
1091 spin_lock_irq(&conf
->device_lock
);
1092 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1093 conf
->pending_count
+= plug
->pending_cnt
;
1094 spin_unlock_irq(&conf
->device_lock
);
1095 wake_up(&conf
->wait_barrier
);
1096 md_wakeup_thread(mddev
->thread
);
1101 /* we aren't scheduling, so we can do the write-out directly. */
1102 bio
= bio_list_get(&plug
->pending
);
1103 bitmap_unplug(mddev
->bitmap
);
1104 wake_up(&conf
->wait_barrier
);
1106 while (bio
) { /* submit pending writes */
1107 struct bio
*next
= bio
->bi_next
;
1108 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
1109 bio
->bi_next
= NULL
;
1110 bio_set_dev(bio
, rdev
->bdev
);
1111 if (test_bit(Faulty
, &rdev
->flags
)) {
1113 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1114 !blk_queue_discard(bio
->bi_disk
->queue
)))
1115 /* Just ignore it */
1118 generic_make_request(bio
);
1124 static void raid10_read_request(struct mddev
*mddev
, struct bio
*bio
,
1125 struct r10bio
*r10_bio
)
1127 struct r10conf
*conf
= mddev
->private;
1128 struct bio
*read_bio
;
1129 const int op
= bio_op(bio
);
1130 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1133 struct md_rdev
*rdev
;
1134 char b
[BDEVNAME_SIZE
];
1135 int slot
= r10_bio
->read_slot
;
1136 struct md_rdev
*err_rdev
= NULL
;
1137 gfp_t gfp
= GFP_NOIO
;
1139 if (r10_bio
->devs
[slot
].rdev
) {
1141 * This is an error retry, but we cannot
1142 * safely dereference the rdev in the r10_bio,
1143 * we must use the one in conf.
1144 * If it has already been disconnected (unlikely)
1145 * we lose the device name in error messages.
1149 * As we are blocking raid10, it is a little safer to
1152 gfp
= GFP_NOIO
| __GFP_HIGH
;
1155 disk
= r10_bio
->devs
[slot
].devnum
;
1156 err_rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
1158 bdevname(err_rdev
->bdev
, b
);
1161 /* This never gets dereferenced */
1162 err_rdev
= r10_bio
->devs
[slot
].rdev
;
1167 * Register the new request and wait if the reconstruction
1168 * thread has put up a bar for new requests.
1169 * Continue immediately if no resync is active currently.
1173 sectors
= r10_bio
->sectors
;
1174 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1175 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1176 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1178 * IO spans the reshape position. Need to wait for reshape to
1181 raid10_log(conf
->mddev
, "wait reshape");
1182 allow_barrier(conf
);
1183 wait_event(conf
->wait_barrier
,
1184 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1185 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1190 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1193 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1195 (unsigned long long)r10_bio
->sector
);
1197 raid_end_bio_io(r10_bio
);
1201 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1203 bdevname(rdev
->bdev
, b
),
1204 (unsigned long long)r10_bio
->sector
);
1205 if (max_sectors
< bio_sectors(bio
)) {
1206 struct bio
*split
= bio_split(bio
, max_sectors
,
1207 gfp
, conf
->bio_split
);
1208 bio_chain(split
, bio
);
1209 generic_make_request(bio
);
1211 r10_bio
->master_bio
= bio
;
1212 r10_bio
->sectors
= max_sectors
;
1214 slot
= r10_bio
->read_slot
;
1216 read_bio
= bio_clone_fast(bio
, gfp
, mddev
->bio_set
);
1218 r10_bio
->devs
[slot
].bio
= read_bio
;
1219 r10_bio
->devs
[slot
].rdev
= rdev
;
1221 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1222 choose_data_offset(r10_bio
, rdev
);
1223 bio_set_dev(read_bio
, rdev
->bdev
);
1224 read_bio
->bi_end_io
= raid10_end_read_request
;
1225 bio_set_op_attrs(read_bio
, op
, do_sync
);
1226 if (test_bit(FailFast
, &rdev
->flags
) &&
1227 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1228 read_bio
->bi_opf
|= MD_FAILFAST
;
1229 read_bio
->bi_private
= r10_bio
;
1232 trace_block_bio_remap(read_bio
->bi_disk
->queue
,
1233 read_bio
, disk_devt(mddev
->gendisk
),
1235 generic_make_request(read_bio
);
1239 static void raid10_write_one_disk(struct mddev
*mddev
, struct r10bio
*r10_bio
,
1240 struct bio
*bio
, bool replacement
,
1243 const int op
= bio_op(bio
);
1244 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1245 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1246 unsigned long flags
;
1247 struct blk_plug_cb
*cb
;
1248 struct raid10_plug_cb
*plug
= NULL
;
1249 struct r10conf
*conf
= mddev
->private;
1250 struct md_rdev
*rdev
;
1251 int devnum
= r10_bio
->devs
[n_copy
].devnum
;
1255 rdev
= conf
->mirrors
[devnum
].replacement
;
1257 /* Replacement just got moved to main 'rdev' */
1259 rdev
= conf
->mirrors
[devnum
].rdev
;
1262 rdev
= conf
->mirrors
[devnum
].rdev
;
1264 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1266 r10_bio
->devs
[n_copy
].repl_bio
= mbio
;
1268 r10_bio
->devs
[n_copy
].bio
= mbio
;
1270 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[n_copy
].addr
+
1271 choose_data_offset(r10_bio
, rdev
));
1272 bio_set_dev(mbio
, rdev
->bdev
);
1273 mbio
->bi_end_io
= raid10_end_write_request
;
1274 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1275 if (!replacement
&& test_bit(FailFast
,
1276 &conf
->mirrors
[devnum
].rdev
->flags
)
1277 && enough(conf
, devnum
))
1278 mbio
->bi_opf
|= MD_FAILFAST
;
1279 mbio
->bi_private
= r10_bio
;
1281 if (conf
->mddev
->gendisk
)
1282 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1283 mbio
, disk_devt(conf
->mddev
->gendisk
),
1285 /* flush_pending_writes() needs access to the rdev so...*/
1286 mbio
->bi_disk
= (void *)rdev
;
1288 atomic_inc(&r10_bio
->remaining
);
1290 cb
= blk_check_plugged(raid10_unplug
, mddev
, sizeof(*plug
));
1292 plug
= container_of(cb
, struct raid10_plug_cb
, cb
);
1296 bio_list_add(&plug
->pending
, mbio
);
1297 plug
->pending_cnt
++;
1299 spin_lock_irqsave(&conf
->device_lock
, flags
);
1300 bio_list_add(&conf
->pending_bio_list
, mbio
);
1301 conf
->pending_count
++;
1302 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1303 md_wakeup_thread(mddev
->thread
);
1307 static void raid10_write_request(struct mddev
*mddev
, struct bio
*bio
,
1308 struct r10bio
*r10_bio
)
1310 struct r10conf
*conf
= mddev
->private;
1312 struct md_rdev
*blocked_rdev
;
1316 if ((mddev_is_clustered(mddev
) &&
1317 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1318 bio
->bi_iter
.bi_sector
,
1319 bio_end_sector(bio
)))) {
1322 prepare_to_wait(&conf
->wait_barrier
,
1324 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1325 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
)))
1329 finish_wait(&conf
->wait_barrier
, &w
);
1333 * Register the new request and wait if the reconstruction
1334 * thread has put up a bar for new requests.
1335 * Continue immediately if no resync is active currently.
1339 sectors
= r10_bio
->sectors
;
1340 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1341 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1342 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1344 * IO spans the reshape position. Need to wait for reshape to
1347 raid10_log(conf
->mddev
, "wait reshape");
1348 allow_barrier(conf
);
1349 wait_event(conf
->wait_barrier
,
1350 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1351 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1356 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1357 (mddev
->reshape_backwards
1358 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1359 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1360 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1361 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1362 /* Need to update reshape_position in metadata */
1363 mddev
->reshape_position
= conf
->reshape_progress
;
1364 set_mask_bits(&mddev
->sb_flags
, 0,
1365 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1366 md_wakeup_thread(mddev
->thread
);
1367 raid10_log(conf
->mddev
, "wait reshape metadata");
1368 wait_event(mddev
->sb_wait
,
1369 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1371 conf
->reshape_safe
= mddev
->reshape_position
;
1374 if (conf
->pending_count
>= max_queued_requests
) {
1375 md_wakeup_thread(mddev
->thread
);
1376 raid10_log(mddev
, "wait queued");
1377 wait_event(conf
->wait_barrier
,
1378 conf
->pending_count
< max_queued_requests
);
1380 /* first select target devices under rcu_lock and
1381 * inc refcount on their rdev. Record them by setting
1383 * If there are known/acknowledged bad blocks on any device
1384 * on which we have seen a write error, we want to avoid
1385 * writing to those blocks. This potentially requires several
1386 * writes to write around the bad blocks. Each set of writes
1387 * gets its own r10_bio with a set of bios attached.
1390 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1391 raid10_find_phys(conf
, r10_bio
);
1393 blocked_rdev
= NULL
;
1395 max_sectors
= r10_bio
->sectors
;
1397 for (i
= 0; i
< conf
->copies
; i
++) {
1398 int d
= r10_bio
->devs
[i
].devnum
;
1399 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1400 struct md_rdev
*rrdev
= rcu_dereference(
1401 conf
->mirrors
[d
].replacement
);
1404 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1405 atomic_inc(&rdev
->nr_pending
);
1406 blocked_rdev
= rdev
;
1409 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1410 atomic_inc(&rrdev
->nr_pending
);
1411 blocked_rdev
= rrdev
;
1414 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1416 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1419 r10_bio
->devs
[i
].bio
= NULL
;
1420 r10_bio
->devs
[i
].repl_bio
= NULL
;
1422 if (!rdev
&& !rrdev
) {
1423 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1426 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1428 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1432 is_bad
= is_badblock(rdev
, dev_sector
, max_sectors
,
1433 &first_bad
, &bad_sectors
);
1435 /* Mustn't write here until the bad block
1438 atomic_inc(&rdev
->nr_pending
);
1439 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1440 blocked_rdev
= rdev
;
1443 if (is_bad
&& first_bad
<= dev_sector
) {
1444 /* Cannot write here at all */
1445 bad_sectors
-= (dev_sector
- first_bad
);
1446 if (bad_sectors
< max_sectors
)
1447 /* Mustn't write more than bad_sectors
1448 * to other devices yet
1450 max_sectors
= bad_sectors
;
1451 /* We don't set R10BIO_Degraded as that
1452 * only applies if the disk is missing,
1453 * so it might be re-added, and we want to
1454 * know to recover this chunk.
1455 * In this case the device is here, and the
1456 * fact that this chunk is not in-sync is
1457 * recorded in the bad block log.
1462 int good_sectors
= first_bad
- dev_sector
;
1463 if (good_sectors
< max_sectors
)
1464 max_sectors
= good_sectors
;
1468 r10_bio
->devs
[i
].bio
= bio
;
1469 atomic_inc(&rdev
->nr_pending
);
1472 r10_bio
->devs
[i
].repl_bio
= bio
;
1473 atomic_inc(&rrdev
->nr_pending
);
1478 if (unlikely(blocked_rdev
)) {
1479 /* Have to wait for this device to get unblocked, then retry */
1483 for (j
= 0; j
< i
; j
++) {
1484 if (r10_bio
->devs
[j
].bio
) {
1485 d
= r10_bio
->devs
[j
].devnum
;
1486 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1488 if (r10_bio
->devs
[j
].repl_bio
) {
1489 struct md_rdev
*rdev
;
1490 d
= r10_bio
->devs
[j
].devnum
;
1491 rdev
= conf
->mirrors
[d
].replacement
;
1493 /* Race with remove_disk */
1495 rdev
= conf
->mirrors
[d
].rdev
;
1497 rdev_dec_pending(rdev
, mddev
);
1500 allow_barrier(conf
);
1501 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1502 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1507 if (max_sectors
< r10_bio
->sectors
)
1508 r10_bio
->sectors
= max_sectors
;
1510 if (r10_bio
->sectors
< bio_sectors(bio
)) {
1511 struct bio
*split
= bio_split(bio
, r10_bio
->sectors
,
1512 GFP_NOIO
, conf
->bio_split
);
1513 bio_chain(split
, bio
);
1514 generic_make_request(bio
);
1516 r10_bio
->master_bio
= bio
;
1519 atomic_set(&r10_bio
->remaining
, 1);
1520 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1522 for (i
= 0; i
< conf
->copies
; i
++) {
1523 if (r10_bio
->devs
[i
].bio
)
1524 raid10_write_one_disk(mddev
, r10_bio
, bio
, false, i
);
1525 if (r10_bio
->devs
[i
].repl_bio
)
1526 raid10_write_one_disk(mddev
, r10_bio
, bio
, true, i
);
1528 one_write_done(r10_bio
);
1531 static void __make_request(struct mddev
*mddev
, struct bio
*bio
, int sectors
)
1533 struct r10conf
*conf
= mddev
->private;
1534 struct r10bio
*r10_bio
;
1536 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1538 r10_bio
->master_bio
= bio
;
1539 r10_bio
->sectors
= sectors
;
1541 r10_bio
->mddev
= mddev
;
1542 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1544 memset(r10_bio
->devs
, 0, sizeof(r10_bio
->devs
[0]) * conf
->copies
);
1546 if (bio_data_dir(bio
) == READ
)
1547 raid10_read_request(mddev
, bio
, r10_bio
);
1549 raid10_write_request(mddev
, bio
, r10_bio
);
1552 static bool raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1554 struct r10conf
*conf
= mddev
->private;
1555 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1556 int chunk_sects
= chunk_mask
+ 1;
1557 int sectors
= bio_sectors(bio
);
1559 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1560 md_flush_request(mddev
, bio
);
1564 if (!md_write_start(mddev
, bio
))
1568 * If this request crosses a chunk boundary, we need to split
1571 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1572 sectors
> chunk_sects
1573 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1574 || conf
->prev
.near_copies
<
1575 conf
->prev
.raid_disks
)))
1576 sectors
= chunk_sects
-
1577 (bio
->bi_iter
.bi_sector
&
1579 __make_request(mddev
, bio
, sectors
);
1581 /* In case raid10d snuck in to freeze_array */
1582 wake_up(&conf
->wait_barrier
);
1586 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1588 struct r10conf
*conf
= mddev
->private;
1591 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1592 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1593 if (conf
->geo
.near_copies
> 1)
1594 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1595 if (conf
->geo
.far_copies
> 1) {
1596 if (conf
->geo
.far_offset
)
1597 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1599 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1600 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1601 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1603 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1604 conf
->geo
.raid_disks
- mddev
->degraded
);
1606 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1607 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1608 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1611 seq_printf(seq
, "]");
1614 /* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1619 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1625 disks
= conf
->prev
.raid_disks
;
1626 ncopies
= conf
->prev
.near_copies
;
1628 disks
= conf
->geo
.raid_disks
;
1629 ncopies
= conf
->geo
.near_copies
;
1634 int n
= conf
->copies
;
1638 struct md_rdev
*rdev
;
1639 if (this != ignore
&&
1640 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1641 test_bit(In_sync
, &rdev
->flags
))
1643 this = (this+1) % disks
;
1647 first
= (first
+ ncopies
) % disks
;
1648 } while (first
!= 0);
1655 static int enough(struct r10conf
*conf
, int ignore
)
1657 /* when calling 'enough', both 'prev' and 'geo' must
1659 * This is ensured if ->reconfig_mutex or ->device_lock
1662 return _enough(conf
, 0, ignore
) &&
1663 _enough(conf
, 1, ignore
);
1666 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1668 char b
[BDEVNAME_SIZE
];
1669 struct r10conf
*conf
= mddev
->private;
1670 unsigned long flags
;
1673 * If it is not operational, then we have already marked it as dead
1674 * else if it is the last working disks, ignore the error, let the
1675 * next level up know.
1676 * else mark the drive as failed
1678 spin_lock_irqsave(&conf
->device_lock
, flags
);
1679 if (test_bit(In_sync
, &rdev
->flags
)
1680 && !enough(conf
, rdev
->raid_disk
)) {
1682 * Don't fail the drive, just return an IO error.
1684 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1687 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1690 * If recovery is running, make sure it aborts.
1692 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1693 set_bit(Blocked
, &rdev
->flags
);
1694 set_bit(Faulty
, &rdev
->flags
);
1695 set_mask_bits(&mddev
->sb_flags
, 0,
1696 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1697 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1698 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1699 "md/raid10:%s: Operation continuing on %d devices.\n",
1700 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1701 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1704 static void print_conf(struct r10conf
*conf
)
1707 struct md_rdev
*rdev
;
1709 pr_debug("RAID10 conf printout:\n");
1711 pr_debug("(!conf)\n");
1714 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1715 conf
->geo
.raid_disks
);
1717 /* This is only called with ->reconfix_mutex held, so
1718 * rcu protection of rdev is not needed */
1719 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1720 char b
[BDEVNAME_SIZE
];
1721 rdev
= conf
->mirrors
[i
].rdev
;
1723 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1724 i
, !test_bit(In_sync
, &rdev
->flags
),
1725 !test_bit(Faulty
, &rdev
->flags
),
1726 bdevname(rdev
->bdev
,b
));
1730 static void close_sync(struct r10conf
*conf
)
1733 allow_barrier(conf
);
1735 mempool_destroy(conf
->r10buf_pool
);
1736 conf
->r10buf_pool
= NULL
;
1739 static int raid10_spare_active(struct mddev
*mddev
)
1742 struct r10conf
*conf
= mddev
->private;
1743 struct raid10_info
*tmp
;
1745 unsigned long flags
;
1748 * Find all non-in_sync disks within the RAID10 configuration
1749 * and mark them in_sync
1751 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1752 tmp
= conf
->mirrors
+ i
;
1753 if (tmp
->replacement
1754 && tmp
->replacement
->recovery_offset
== MaxSector
1755 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1756 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1757 /* Replacement has just become active */
1759 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1762 /* Replaced device not technically faulty,
1763 * but we need to be sure it gets removed
1764 * and never re-added.
1766 set_bit(Faulty
, &tmp
->rdev
->flags
);
1767 sysfs_notify_dirent_safe(
1768 tmp
->rdev
->sysfs_state
);
1770 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1771 } else if (tmp
->rdev
1772 && tmp
->rdev
->recovery_offset
== MaxSector
1773 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1774 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1776 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1779 spin_lock_irqsave(&conf
->device_lock
, flags
);
1780 mddev
->degraded
-= count
;
1781 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1787 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1789 struct r10conf
*conf
= mddev
->private;
1793 int last
= conf
->geo
.raid_disks
- 1;
1795 if (mddev
->recovery_cp
< MaxSector
)
1796 /* only hot-add to in-sync arrays, as recovery is
1797 * very different from resync
1800 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1803 if (md_integrity_add_rdev(rdev
, mddev
))
1806 if (rdev
->raid_disk
>= 0)
1807 first
= last
= rdev
->raid_disk
;
1809 if (rdev
->saved_raid_disk
>= first
&&
1810 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1811 mirror
= rdev
->saved_raid_disk
;
1814 for ( ; mirror
<= last
; mirror
++) {
1815 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1816 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1819 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1820 p
->replacement
!= NULL
)
1822 clear_bit(In_sync
, &rdev
->flags
);
1823 set_bit(Replacement
, &rdev
->flags
);
1824 rdev
->raid_disk
= mirror
;
1827 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1828 rdev
->data_offset
<< 9);
1830 rcu_assign_pointer(p
->replacement
, rdev
);
1835 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1836 rdev
->data_offset
<< 9);
1838 p
->head_position
= 0;
1839 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1840 rdev
->raid_disk
= mirror
;
1842 if (rdev
->saved_raid_disk
!= mirror
)
1844 rcu_assign_pointer(p
->rdev
, rdev
);
1847 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1848 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1854 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1856 struct r10conf
*conf
= mddev
->private;
1858 int number
= rdev
->raid_disk
;
1859 struct md_rdev
**rdevp
;
1860 struct raid10_info
*p
= conf
->mirrors
+ number
;
1863 if (rdev
== p
->rdev
)
1865 else if (rdev
== p
->replacement
)
1866 rdevp
= &p
->replacement
;
1870 if (test_bit(In_sync
, &rdev
->flags
) ||
1871 atomic_read(&rdev
->nr_pending
)) {
1875 /* Only remove non-faulty devices if recovery
1878 if (!test_bit(Faulty
, &rdev
->flags
) &&
1879 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1880 (!p
->replacement
|| p
->replacement
== rdev
) &&
1881 number
< conf
->geo
.raid_disks
&&
1887 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1889 if (atomic_read(&rdev
->nr_pending
)) {
1890 /* lost the race, try later */
1896 if (p
->replacement
) {
1897 /* We must have just cleared 'rdev' */
1898 p
->rdev
= p
->replacement
;
1899 clear_bit(Replacement
, &p
->replacement
->flags
);
1900 smp_mb(); /* Make sure other CPUs may see both as identical
1901 * but will never see neither -- if they are careful.
1903 p
->replacement
= NULL
;
1906 clear_bit(WantReplacement
, &rdev
->flags
);
1907 err
= md_integrity_register(mddev
);
1915 static void __end_sync_read(struct r10bio
*r10_bio
, struct bio
*bio
, int d
)
1917 struct r10conf
*conf
= r10_bio
->mddev
->private;
1919 if (!bio
->bi_status
)
1920 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1922 /* The write handler will notice the lack of
1923 * R10BIO_Uptodate and record any errors etc
1925 atomic_add(r10_bio
->sectors
,
1926 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1928 /* for reconstruct, we always reschedule after a read.
1929 * for resync, only after all reads
1931 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1932 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1933 atomic_dec_and_test(&r10_bio
->remaining
)) {
1934 /* we have read all the blocks,
1935 * do the comparison in process context in raid10d
1937 reschedule_retry(r10_bio
);
1941 static void end_sync_read(struct bio
*bio
)
1943 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1944 struct r10conf
*conf
= r10_bio
->mddev
->private;
1945 int d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1947 __end_sync_read(r10_bio
, bio
, d
);
1950 static void end_reshape_read(struct bio
*bio
)
1952 /* reshape read bio isn't allocated from r10buf_pool */
1953 struct r10bio
*r10_bio
= bio
->bi_private
;
1955 __end_sync_read(r10_bio
, bio
, r10_bio
->read_slot
);
1958 static void end_sync_request(struct r10bio
*r10_bio
)
1960 struct mddev
*mddev
= r10_bio
->mddev
;
1962 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1963 if (r10_bio
->master_bio
== NULL
) {
1964 /* the primary of several recovery bios */
1965 sector_t s
= r10_bio
->sectors
;
1966 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1967 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1968 reschedule_retry(r10_bio
);
1971 md_done_sync(mddev
, s
, 1);
1974 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1975 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1976 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1977 reschedule_retry(r10_bio
);
1985 static void end_sync_write(struct bio
*bio
)
1987 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1988 struct mddev
*mddev
= r10_bio
->mddev
;
1989 struct r10conf
*conf
= mddev
->private;
1995 struct md_rdev
*rdev
= NULL
;
1997 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1999 rdev
= conf
->mirrors
[d
].replacement
;
2001 rdev
= conf
->mirrors
[d
].rdev
;
2003 if (bio
->bi_status
) {
2005 md_error(mddev
, rdev
);
2007 set_bit(WriteErrorSeen
, &rdev
->flags
);
2008 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2009 set_bit(MD_RECOVERY_NEEDED
,
2010 &rdev
->mddev
->recovery
);
2011 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
2013 } else if (is_badblock(rdev
,
2014 r10_bio
->devs
[slot
].addr
,
2016 &first_bad
, &bad_sectors
))
2017 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
2019 rdev_dec_pending(rdev
, mddev
);
2021 end_sync_request(r10_bio
);
2025 * Note: sync and recover and handled very differently for raid10
2026 * This code is for resync.
2027 * For resync, we read through virtual addresses and read all blocks.
2028 * If there is any error, we schedule a write. The lowest numbered
2029 * drive is authoritative.
2030 * However requests come for physical address, so we need to map.
2031 * For every physical address there are raid_disks/copies virtual addresses,
2032 * which is always are least one, but is not necessarly an integer.
2033 * This means that a physical address can span multiple chunks, so we may
2034 * have to submit multiple io requests for a single sync request.
2037 * We check if all blocks are in-sync and only write to blocks that
2040 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2042 struct r10conf
*conf
= mddev
->private;
2044 struct bio
*tbio
, *fbio
;
2046 struct page
**tpages
, **fpages
;
2048 atomic_set(&r10_bio
->remaining
, 1);
2050 /* find the first device with a block */
2051 for (i
=0; i
<conf
->copies
; i
++)
2052 if (!r10_bio
->devs
[i
].bio
->bi_status
)
2055 if (i
== conf
->copies
)
2059 fbio
= r10_bio
->devs
[i
].bio
;
2060 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2061 fbio
->bi_iter
.bi_idx
= 0;
2062 fpages
= get_resync_pages(fbio
)->pages
;
2064 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2065 /* now find blocks with errors */
2066 for (i
=0 ; i
< conf
->copies
; i
++) {
2068 struct md_rdev
*rdev
;
2069 struct resync_pages
*rp
;
2071 tbio
= r10_bio
->devs
[i
].bio
;
2073 if (tbio
->bi_end_io
!= end_sync_read
)
2078 tpages
= get_resync_pages(tbio
)->pages
;
2079 d
= r10_bio
->devs
[i
].devnum
;
2080 rdev
= conf
->mirrors
[d
].rdev
;
2081 if (!r10_bio
->devs
[i
].bio
->bi_status
) {
2082 /* We know that the bi_io_vec layout is the same for
2083 * both 'first' and 'i', so we just compare them.
2084 * All vec entries are PAGE_SIZE;
2086 int sectors
= r10_bio
->sectors
;
2087 for (j
= 0; j
< vcnt
; j
++) {
2088 int len
= PAGE_SIZE
;
2089 if (sectors
< (len
/ 512))
2090 len
= sectors
* 512;
2091 if (memcmp(page_address(fpages
[j
]),
2092 page_address(tpages
[j
]),
2099 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2100 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2101 /* Don't fix anything. */
2103 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2104 /* Just give up on this device */
2105 md_error(rdev
->mddev
, rdev
);
2108 /* Ok, we need to write this bio, either to correct an
2109 * inconsistency or to correct an unreadable block.
2110 * First we need to fixup bv_offset, bv_len and
2111 * bi_vecs, as the read request might have corrupted these
2113 rp
= get_resync_pages(tbio
);
2116 md_bio_reset_resync_pages(tbio
, rp
, fbio
->bi_iter
.bi_size
);
2118 rp
->raid_bio
= r10_bio
;
2119 tbio
->bi_private
= rp
;
2120 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2121 tbio
->bi_end_io
= end_sync_write
;
2122 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2124 bio_copy_data(tbio
, fbio
);
2126 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2127 atomic_inc(&r10_bio
->remaining
);
2128 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2130 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2131 tbio
->bi_opf
|= MD_FAILFAST
;
2132 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2133 bio_set_dev(tbio
, conf
->mirrors
[d
].rdev
->bdev
);
2134 generic_make_request(tbio
);
2137 /* Now write out to any replacement devices
2140 for (i
= 0; i
< conf
->copies
; i
++) {
2143 tbio
= r10_bio
->devs
[i
].repl_bio
;
2144 if (!tbio
|| !tbio
->bi_end_io
)
2146 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2147 && r10_bio
->devs
[i
].bio
!= fbio
)
2148 bio_copy_data(tbio
, fbio
);
2149 d
= r10_bio
->devs
[i
].devnum
;
2150 atomic_inc(&r10_bio
->remaining
);
2151 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2153 generic_make_request(tbio
);
2157 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2158 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2164 * Now for the recovery code.
2165 * Recovery happens across physical sectors.
2166 * We recover all non-is_sync drives by finding the virtual address of
2167 * each, and then choose a working drive that also has that virt address.
2168 * There is a separate r10_bio for each non-in_sync drive.
2169 * Only the first two slots are in use. The first for reading,
2170 * The second for writing.
2173 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2175 /* We got a read error during recovery.
2176 * We repeat the read in smaller page-sized sections.
2177 * If a read succeeds, write it to the new device or record
2178 * a bad block if we cannot.
2179 * If a read fails, record a bad block on both old and
2182 struct mddev
*mddev
= r10_bio
->mddev
;
2183 struct r10conf
*conf
= mddev
->private;
2184 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2186 int sectors
= r10_bio
->sectors
;
2188 int dr
= r10_bio
->devs
[0].devnum
;
2189 int dw
= r10_bio
->devs
[1].devnum
;
2190 struct page
**pages
= get_resync_pages(bio
)->pages
;
2194 struct md_rdev
*rdev
;
2198 if (s
> (PAGE_SIZE
>>9))
2201 rdev
= conf
->mirrors
[dr
].rdev
;
2202 addr
= r10_bio
->devs
[0].addr
+ sect
,
2203 ok
= sync_page_io(rdev
,
2207 REQ_OP_READ
, 0, false);
2209 rdev
= conf
->mirrors
[dw
].rdev
;
2210 addr
= r10_bio
->devs
[1].addr
+ sect
;
2211 ok
= sync_page_io(rdev
,
2215 REQ_OP_WRITE
, 0, false);
2217 set_bit(WriteErrorSeen
, &rdev
->flags
);
2218 if (!test_and_set_bit(WantReplacement
,
2220 set_bit(MD_RECOVERY_NEEDED
,
2221 &rdev
->mddev
->recovery
);
2225 /* We don't worry if we cannot set a bad block -
2226 * it really is bad so there is no loss in not
2229 rdev_set_badblocks(rdev
, addr
, s
, 0);
2231 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2232 /* need bad block on destination too */
2233 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2234 addr
= r10_bio
->devs
[1].addr
+ sect
;
2235 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2237 /* just abort the recovery */
2238 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2241 conf
->mirrors
[dw
].recovery_disabled
2242 = mddev
->recovery_disabled
;
2243 set_bit(MD_RECOVERY_INTR
,
2256 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2258 struct r10conf
*conf
= mddev
->private;
2260 struct bio
*wbio
, *wbio2
;
2262 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2263 fix_recovery_read_error(r10_bio
);
2264 end_sync_request(r10_bio
);
2269 * share the pages with the first bio
2270 * and submit the write request
2272 d
= r10_bio
->devs
[1].devnum
;
2273 wbio
= r10_bio
->devs
[1].bio
;
2274 wbio2
= r10_bio
->devs
[1].repl_bio
;
2275 /* Need to test wbio2->bi_end_io before we call
2276 * generic_make_request as if the former is NULL,
2277 * the latter is free to free wbio2.
2279 if (wbio2
&& !wbio2
->bi_end_io
)
2281 if (wbio
->bi_end_io
) {
2282 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2283 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2284 generic_make_request(wbio
);
2287 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2288 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2289 bio_sectors(wbio2
));
2290 generic_make_request(wbio2
);
2295 * Used by fix_read_error() to decay the per rdev read_errors.
2296 * We halve the read error count for every hour that has elapsed
2297 * since the last recorded read error.
2300 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2303 unsigned long hours_since_last
;
2304 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2306 cur_time_mon
= ktime_get_seconds();
2308 if (rdev
->last_read_error
== 0) {
2309 /* first time we've seen a read error */
2310 rdev
->last_read_error
= cur_time_mon
;
2314 hours_since_last
= (long)(cur_time_mon
-
2315 rdev
->last_read_error
) / 3600;
2317 rdev
->last_read_error
= cur_time_mon
;
2320 * if hours_since_last is > the number of bits in read_errors
2321 * just set read errors to 0. We do this to avoid
2322 * overflowing the shift of read_errors by hours_since_last.
2324 if (hours_since_last
>= 8 * sizeof(read_errors
))
2325 atomic_set(&rdev
->read_errors
, 0);
2327 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2330 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2331 int sectors
, struct page
*page
, int rw
)
2336 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2337 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2339 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2343 set_bit(WriteErrorSeen
, &rdev
->flags
);
2344 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2345 set_bit(MD_RECOVERY_NEEDED
,
2346 &rdev
->mddev
->recovery
);
2348 /* need to record an error - either for the block or the device */
2349 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2350 md_error(rdev
->mddev
, rdev
);
2355 * This is a kernel thread which:
2357 * 1. Retries failed read operations on working mirrors.
2358 * 2. Updates the raid superblock when problems encounter.
2359 * 3. Performs writes following reads for array synchronising.
2362 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2364 int sect
= 0; /* Offset from r10_bio->sector */
2365 int sectors
= r10_bio
->sectors
;
2366 struct md_rdev
*rdev
;
2367 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2368 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2370 /* still own a reference to this rdev, so it cannot
2371 * have been cleared recently.
2373 rdev
= conf
->mirrors
[d
].rdev
;
2375 if (test_bit(Faulty
, &rdev
->flags
))
2376 /* drive has already been failed, just ignore any
2377 more fix_read_error() attempts */
2380 check_decay_read_errors(mddev
, rdev
);
2381 atomic_inc(&rdev
->read_errors
);
2382 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2383 char b
[BDEVNAME_SIZE
];
2384 bdevname(rdev
->bdev
, b
);
2386 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2388 atomic_read(&rdev
->read_errors
), max_read_errors
);
2389 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2391 md_error(mddev
, rdev
);
2392 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2398 int sl
= r10_bio
->read_slot
;
2402 if (s
> (PAGE_SIZE
>>9))
2410 d
= r10_bio
->devs
[sl
].devnum
;
2411 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2413 test_bit(In_sync
, &rdev
->flags
) &&
2414 !test_bit(Faulty
, &rdev
->flags
) &&
2415 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2416 &first_bad
, &bad_sectors
) == 0) {
2417 atomic_inc(&rdev
->nr_pending
);
2419 success
= sync_page_io(rdev
,
2420 r10_bio
->devs
[sl
].addr
+
2424 REQ_OP_READ
, 0, false);
2425 rdev_dec_pending(rdev
, mddev
);
2431 if (sl
== conf
->copies
)
2433 } while (!success
&& sl
!= r10_bio
->read_slot
);
2437 /* Cannot read from anywhere, just mark the block
2438 * as bad on the first device to discourage future
2441 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2442 rdev
= conf
->mirrors
[dn
].rdev
;
2444 if (!rdev_set_badblocks(
2446 r10_bio
->devs
[r10_bio
->read_slot
].addr
2449 md_error(mddev
, rdev
);
2450 r10_bio
->devs
[r10_bio
->read_slot
].bio
2457 /* write it back and re-read */
2459 while (sl
!= r10_bio
->read_slot
) {
2460 char b
[BDEVNAME_SIZE
];
2465 d
= r10_bio
->devs
[sl
].devnum
;
2466 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2468 test_bit(Faulty
, &rdev
->flags
) ||
2469 !test_bit(In_sync
, &rdev
->flags
))
2472 atomic_inc(&rdev
->nr_pending
);
2474 if (r10_sync_page_io(rdev
,
2475 r10_bio
->devs
[sl
].addr
+
2477 s
, conf
->tmppage
, WRITE
)
2479 /* Well, this device is dead */
2480 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2482 (unsigned long long)(
2484 choose_data_offset(r10_bio
,
2486 bdevname(rdev
->bdev
, b
));
2487 pr_notice("md/raid10:%s: %s: failing drive\n",
2489 bdevname(rdev
->bdev
, b
));
2491 rdev_dec_pending(rdev
, mddev
);
2495 while (sl
!= r10_bio
->read_slot
) {
2496 char b
[BDEVNAME_SIZE
];
2501 d
= r10_bio
->devs
[sl
].devnum
;
2502 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2504 test_bit(Faulty
, &rdev
->flags
) ||
2505 !test_bit(In_sync
, &rdev
->flags
))
2508 atomic_inc(&rdev
->nr_pending
);
2510 switch (r10_sync_page_io(rdev
,
2511 r10_bio
->devs
[sl
].addr
+
2516 /* Well, this device is dead */
2517 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2519 (unsigned long long)(
2521 choose_data_offset(r10_bio
, rdev
)),
2522 bdevname(rdev
->bdev
, b
));
2523 pr_notice("md/raid10:%s: %s: failing drive\n",
2525 bdevname(rdev
->bdev
, b
));
2528 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2530 (unsigned long long)(
2532 choose_data_offset(r10_bio
, rdev
)),
2533 bdevname(rdev
->bdev
, b
));
2534 atomic_add(s
, &rdev
->corrected_errors
);
2537 rdev_dec_pending(rdev
, mddev
);
2547 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2549 struct bio
*bio
= r10_bio
->master_bio
;
2550 struct mddev
*mddev
= r10_bio
->mddev
;
2551 struct r10conf
*conf
= mddev
->private;
2552 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2553 /* bio has the data to be written to slot 'i' where
2554 * we just recently had a write error.
2555 * We repeatedly clone the bio and trim down to one block,
2556 * then try the write. Where the write fails we record
2558 * It is conceivable that the bio doesn't exactly align with
2559 * blocks. We must handle this.
2561 * We currently own a reference to the rdev.
2567 int sect_to_write
= r10_bio
->sectors
;
2570 if (rdev
->badblocks
.shift
< 0)
2573 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2574 bdev_logical_block_size(rdev
->bdev
) >> 9);
2575 sector
= r10_bio
->sector
;
2576 sectors
= ((r10_bio
->sector
+ block_sectors
)
2577 & ~(sector_t
)(block_sectors
- 1))
2580 while (sect_to_write
) {
2583 if (sectors
> sect_to_write
)
2584 sectors
= sect_to_write
;
2585 /* Write at 'sector' for 'sectors' */
2586 wbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
2587 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2588 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2589 wbio
->bi_iter
.bi_sector
= wsector
+
2590 choose_data_offset(r10_bio
, rdev
);
2591 bio_set_dev(wbio
, rdev
->bdev
);
2592 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2594 if (submit_bio_wait(wbio
) < 0)
2596 ok
= rdev_set_badblocks(rdev
, wsector
,
2601 sect_to_write
-= sectors
;
2603 sectors
= block_sectors
;
2608 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2610 int slot
= r10_bio
->read_slot
;
2612 struct r10conf
*conf
= mddev
->private;
2613 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2615 /* we got a read error. Maybe the drive is bad. Maybe just
2616 * the block and we can fix it.
2617 * We freeze all other IO, and try reading the block from
2618 * other devices. When we find one, we re-write
2619 * and check it that fixes the read error.
2620 * This is all done synchronously while the array is
2623 bio
= r10_bio
->devs
[slot
].bio
;
2625 r10_bio
->devs
[slot
].bio
= NULL
;
2628 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2629 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2630 freeze_array(conf
, 1);
2631 fix_read_error(conf
, mddev
, r10_bio
);
2632 unfreeze_array(conf
);
2634 md_error(mddev
, rdev
);
2636 rdev_dec_pending(rdev
, mddev
);
2637 allow_barrier(conf
);
2639 raid10_read_request(mddev
, r10_bio
->master_bio
, r10_bio
);
2642 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2644 /* Some sort of write request has finished and it
2645 * succeeded in writing where we thought there was a
2646 * bad block. So forget the bad block.
2647 * Or possibly if failed and we need to record
2651 struct md_rdev
*rdev
;
2653 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2654 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2655 for (m
= 0; m
< conf
->copies
; m
++) {
2656 int dev
= r10_bio
->devs
[m
].devnum
;
2657 rdev
= conf
->mirrors
[dev
].rdev
;
2658 if (r10_bio
->devs
[m
].bio
== NULL
)
2660 if (!r10_bio
->devs
[m
].bio
->bi_status
) {
2661 rdev_clear_badblocks(
2663 r10_bio
->devs
[m
].addr
,
2664 r10_bio
->sectors
, 0);
2666 if (!rdev_set_badblocks(
2668 r10_bio
->devs
[m
].addr
,
2669 r10_bio
->sectors
, 0))
2670 md_error(conf
->mddev
, rdev
);
2672 rdev
= conf
->mirrors
[dev
].replacement
;
2673 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2676 if (!r10_bio
->devs
[m
].repl_bio
->bi_status
) {
2677 rdev_clear_badblocks(
2679 r10_bio
->devs
[m
].addr
,
2680 r10_bio
->sectors
, 0);
2682 if (!rdev_set_badblocks(
2684 r10_bio
->devs
[m
].addr
,
2685 r10_bio
->sectors
, 0))
2686 md_error(conf
->mddev
, rdev
);
2692 for (m
= 0; m
< conf
->copies
; m
++) {
2693 int dev
= r10_bio
->devs
[m
].devnum
;
2694 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2695 rdev
= conf
->mirrors
[dev
].rdev
;
2696 if (bio
== IO_MADE_GOOD
) {
2697 rdev_clear_badblocks(
2699 r10_bio
->devs
[m
].addr
,
2700 r10_bio
->sectors
, 0);
2701 rdev_dec_pending(rdev
, conf
->mddev
);
2702 } else if (bio
!= NULL
&& bio
->bi_status
) {
2704 if (!narrow_write_error(r10_bio
, m
)) {
2705 md_error(conf
->mddev
, rdev
);
2706 set_bit(R10BIO_Degraded
,
2709 rdev_dec_pending(rdev
, conf
->mddev
);
2711 bio
= r10_bio
->devs
[m
].repl_bio
;
2712 rdev
= conf
->mirrors
[dev
].replacement
;
2713 if (rdev
&& bio
== IO_MADE_GOOD
) {
2714 rdev_clear_badblocks(
2716 r10_bio
->devs
[m
].addr
,
2717 r10_bio
->sectors
, 0);
2718 rdev_dec_pending(rdev
, conf
->mddev
);
2722 spin_lock_irq(&conf
->device_lock
);
2723 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2725 spin_unlock_irq(&conf
->device_lock
);
2727 * In case freeze_array() is waiting for condition
2728 * nr_pending == nr_queued + extra to be true.
2730 wake_up(&conf
->wait_barrier
);
2731 md_wakeup_thread(conf
->mddev
->thread
);
2733 if (test_bit(R10BIO_WriteError
,
2735 close_write(r10_bio
);
2736 raid_end_bio_io(r10_bio
);
2741 static void raid10d(struct md_thread
*thread
)
2743 struct mddev
*mddev
= thread
->mddev
;
2744 struct r10bio
*r10_bio
;
2745 unsigned long flags
;
2746 struct r10conf
*conf
= mddev
->private;
2747 struct list_head
*head
= &conf
->retry_list
;
2748 struct blk_plug plug
;
2750 md_check_recovery(mddev
);
2752 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2753 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2755 spin_lock_irqsave(&conf
->device_lock
, flags
);
2756 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2757 while (!list_empty(&conf
->bio_end_io_list
)) {
2758 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2762 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2763 while (!list_empty(&tmp
)) {
2764 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2766 list_del(&r10_bio
->retry_list
);
2767 if (mddev
->degraded
)
2768 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2770 if (test_bit(R10BIO_WriteError
,
2772 close_write(r10_bio
);
2773 raid_end_bio_io(r10_bio
);
2777 blk_start_plug(&plug
);
2780 flush_pending_writes(conf
);
2782 spin_lock_irqsave(&conf
->device_lock
, flags
);
2783 if (list_empty(head
)) {
2784 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2787 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2788 list_del(head
->prev
);
2790 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2792 mddev
= r10_bio
->mddev
;
2793 conf
= mddev
->private;
2794 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2795 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2796 handle_write_completed(conf
, r10_bio
);
2797 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2798 reshape_request_write(mddev
, r10_bio
);
2799 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2800 sync_request_write(mddev
, r10_bio
);
2801 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2802 recovery_request_write(mddev
, r10_bio
);
2803 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2804 handle_read_error(mddev
, r10_bio
);
2809 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2810 md_check_recovery(mddev
);
2812 blk_finish_plug(&plug
);
2815 static int init_resync(struct r10conf
*conf
)
2820 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2821 BUG_ON(conf
->r10buf_pool
);
2822 conf
->have_replacement
= 0;
2823 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2824 if (conf
->mirrors
[i
].replacement
)
2825 conf
->have_replacement
= 1;
2826 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2827 if (!conf
->r10buf_pool
)
2829 conf
->next_resync
= 0;
2833 static struct r10bio
*raid10_alloc_init_r10buf(struct r10conf
*conf
)
2835 struct r10bio
*r10bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2836 struct rsync_pages
*rp
;
2841 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
2842 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
2843 nalloc
= conf
->copies
; /* resync */
2845 nalloc
= 2; /* recovery */
2847 for (i
= 0; i
< nalloc
; i
++) {
2848 bio
= r10bio
->devs
[i
].bio
;
2849 rp
= bio
->bi_private
;
2851 bio
->bi_private
= rp
;
2852 bio
= r10bio
->devs
[i
].repl_bio
;
2854 rp
= bio
->bi_private
;
2856 bio
->bi_private
= rp
;
2863 * Set cluster_sync_high since we need other nodes to add the
2864 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2866 static void raid10_set_cluster_sync_high(struct r10conf
*conf
)
2868 sector_t window_size
;
2869 int extra_chunk
, chunks
;
2872 * First, here we define "stripe" as a unit which across
2873 * all member devices one time, so we get chunks by use
2874 * raid_disks / near_copies. Otherwise, if near_copies is
2875 * close to raid_disks, then resync window could increases
2876 * linearly with the increase of raid_disks, which means
2877 * we will suspend a really large IO window while it is not
2878 * necessary. If raid_disks is not divisible by near_copies,
2879 * an extra chunk is needed to ensure the whole "stripe" is
2883 chunks
= conf
->geo
.raid_disks
/ conf
->geo
.near_copies
;
2884 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
== 0)
2888 window_size
= (chunks
+ extra_chunk
) * conf
->mddev
->chunk_sectors
;
2891 * At least use a 32M window to align with raid1's resync window
2893 window_size
= (CLUSTER_RESYNC_WINDOW_SECTORS
> window_size
) ?
2894 CLUSTER_RESYNC_WINDOW_SECTORS
: window_size
;
2896 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ window_size
;
2900 * perform a "sync" on one "block"
2902 * We need to make sure that no normal I/O request - particularly write
2903 * requests - conflict with active sync requests.
2905 * This is achieved by tracking pending requests and a 'barrier' concept
2906 * that can be installed to exclude normal IO requests.
2908 * Resync and recovery are handled very differently.
2909 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2911 * For resync, we iterate over virtual addresses, read all copies,
2912 * and update if there are differences. If only one copy is live,
2914 * For recovery, we iterate over physical addresses, read a good
2915 * value for each non-in_sync drive, and over-write.
2917 * So, for recovery we may have several outstanding complex requests for a
2918 * given address, one for each out-of-sync device. We model this by allocating
2919 * a number of r10_bio structures, one for each out-of-sync device.
2920 * As we setup these structures, we collect all bio's together into a list
2921 * which we then process collectively to add pages, and then process again
2922 * to pass to generic_make_request.
2924 * The r10_bio structures are linked using a borrowed master_bio pointer.
2925 * This link is counted in ->remaining. When the r10_bio that points to NULL
2926 * has its remaining count decremented to 0, the whole complex operation
2931 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2934 struct r10conf
*conf
= mddev
->private;
2935 struct r10bio
*r10_bio
;
2936 struct bio
*biolist
= NULL
, *bio
;
2937 sector_t max_sector
, nr_sectors
;
2940 sector_t sync_blocks
;
2941 sector_t sectors_skipped
= 0;
2942 int chunks_skipped
= 0;
2943 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2946 if (!conf
->r10buf_pool
)
2947 if (init_resync(conf
))
2951 * Allow skipping a full rebuild for incremental assembly
2952 * of a clean array, like RAID1 does.
2954 if (mddev
->bitmap
== NULL
&&
2955 mddev
->recovery_cp
== MaxSector
&&
2956 mddev
->reshape_position
== MaxSector
&&
2957 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2958 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2959 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2960 conf
->fullsync
== 0) {
2962 return mddev
->dev_sectors
- sector_nr
;
2966 max_sector
= mddev
->dev_sectors
;
2967 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2968 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2969 max_sector
= mddev
->resync_max_sectors
;
2970 if (sector_nr
>= max_sector
) {
2971 conf
->cluster_sync_low
= 0;
2972 conf
->cluster_sync_high
= 0;
2974 /* If we aborted, we need to abort the
2975 * sync on the 'current' bitmap chucks (there can
2976 * be several when recovering multiple devices).
2977 * as we may have started syncing it but not finished.
2978 * We can find the current address in
2979 * mddev->curr_resync, but for recovery,
2980 * we need to convert that to several
2981 * virtual addresses.
2983 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2989 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2990 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2991 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2993 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2995 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2996 bitmap_end_sync(mddev
->bitmap
, sect
,
3000 /* completed sync */
3001 if ((!mddev
->bitmap
|| conf
->fullsync
)
3002 && conf
->have_replacement
3003 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3004 /* Completed a full sync so the replacements
3005 * are now fully recovered.
3008 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3009 struct md_rdev
*rdev
=
3010 rcu_dereference(conf
->mirrors
[i
].replacement
);
3012 rdev
->recovery_offset
= MaxSector
;
3018 bitmap_close_sync(mddev
->bitmap
);
3021 return sectors_skipped
;
3024 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3025 return reshape_request(mddev
, sector_nr
, skipped
);
3027 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
3028 /* if there has been nothing to do on any drive,
3029 * then there is nothing to do at all..
3032 return (max_sector
- sector_nr
) + sectors_skipped
;
3035 if (max_sector
> mddev
->resync_max
)
3036 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
3038 /* make sure whole request will fit in a chunk - if chunks
3041 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
3042 max_sector
> (sector_nr
| chunk_mask
))
3043 max_sector
= (sector_nr
| chunk_mask
) + 1;
3046 * If there is non-resync activity waiting for a turn, then let it
3047 * though before starting on this new sync request.
3049 if (conf
->nr_waiting
)
3050 schedule_timeout_uninterruptible(1);
3052 /* Again, very different code for resync and recovery.
3053 * Both must result in an r10bio with a list of bios that
3054 * have bi_end_io, bi_sector, bi_disk set,
3055 * and bi_private set to the r10bio.
3056 * For recovery, we may actually create several r10bios
3057 * with 2 bios in each, that correspond to the bios in the main one.
3058 * In this case, the subordinate r10bios link back through a
3059 * borrowed master_bio pointer, and the counter in the master
3060 * includes a ref from each subordinate.
3062 /* First, we decide what to do and set ->bi_end_io
3063 * To end_sync_read if we want to read, and
3064 * end_sync_write if we will want to write.
3067 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3068 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3069 /* recovery... the complicated one */
3073 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3079 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3080 struct md_rdev
*mrdev
, *mreplace
;
3083 mrdev
= rcu_dereference(mirror
->rdev
);
3084 mreplace
= rcu_dereference(mirror
->replacement
);
3086 if ((mrdev
== NULL
||
3087 test_bit(Faulty
, &mrdev
->flags
) ||
3088 test_bit(In_sync
, &mrdev
->flags
)) &&
3089 (mreplace
== NULL
||
3090 test_bit(Faulty
, &mreplace
->flags
))) {
3096 /* want to reconstruct this device */
3098 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3099 if (sect
>= mddev
->resync_max_sectors
) {
3100 /* last stripe is not complete - don't
3101 * try to recover this sector.
3106 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3108 /* Unless we are doing a full sync, or a replacement
3109 * we only need to recover the block if it is set in
3112 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3114 if (sync_blocks
< max_sync
)
3115 max_sync
= sync_blocks
;
3119 /* yep, skip the sync_blocks here, but don't assume
3120 * that there will never be anything to do here
3122 chunks_skipped
= -1;
3126 atomic_inc(&mrdev
->nr_pending
);
3128 atomic_inc(&mreplace
->nr_pending
);
3131 r10_bio
= raid10_alloc_init_r10buf(conf
);
3133 raise_barrier(conf
, rb2
!= NULL
);
3134 atomic_set(&r10_bio
->remaining
, 0);
3136 r10_bio
->master_bio
= (struct bio
*)rb2
;
3138 atomic_inc(&rb2
->remaining
);
3139 r10_bio
->mddev
= mddev
;
3140 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3141 r10_bio
->sector
= sect
;
3143 raid10_find_phys(conf
, r10_bio
);
3145 /* Need to check if the array will still be
3149 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3150 struct md_rdev
*rdev
= rcu_dereference(
3151 conf
->mirrors
[j
].rdev
);
3152 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3158 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3159 &sync_blocks
, still_degraded
);
3162 for (j
=0; j
<conf
->copies
;j
++) {
3164 int d
= r10_bio
->devs
[j
].devnum
;
3165 sector_t from_addr
, to_addr
;
3166 struct md_rdev
*rdev
=
3167 rcu_dereference(conf
->mirrors
[d
].rdev
);
3168 sector_t sector
, first_bad
;
3171 !test_bit(In_sync
, &rdev
->flags
))
3173 /* This is where we read from */
3175 sector
= r10_bio
->devs
[j
].addr
;
3177 if (is_badblock(rdev
, sector
, max_sync
,
3178 &first_bad
, &bad_sectors
)) {
3179 if (first_bad
> sector
)
3180 max_sync
= first_bad
- sector
;
3182 bad_sectors
-= (sector
3184 if (max_sync
> bad_sectors
)
3185 max_sync
= bad_sectors
;
3189 bio
= r10_bio
->devs
[0].bio
;
3190 bio
->bi_next
= biolist
;
3192 bio
->bi_end_io
= end_sync_read
;
3193 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3194 if (test_bit(FailFast
, &rdev
->flags
))
3195 bio
->bi_opf
|= MD_FAILFAST
;
3196 from_addr
= r10_bio
->devs
[j
].addr
;
3197 bio
->bi_iter
.bi_sector
= from_addr
+
3199 bio_set_dev(bio
, rdev
->bdev
);
3200 atomic_inc(&rdev
->nr_pending
);
3201 /* and we write to 'i' (if not in_sync) */
3203 for (k
=0; k
<conf
->copies
; k
++)
3204 if (r10_bio
->devs
[k
].devnum
== i
)
3206 BUG_ON(k
== conf
->copies
);
3207 to_addr
= r10_bio
->devs
[k
].addr
;
3208 r10_bio
->devs
[0].devnum
= d
;
3209 r10_bio
->devs
[0].addr
= from_addr
;
3210 r10_bio
->devs
[1].devnum
= i
;
3211 r10_bio
->devs
[1].addr
= to_addr
;
3213 if (!test_bit(In_sync
, &mrdev
->flags
)) {
3214 bio
= r10_bio
->devs
[1].bio
;
3215 bio
->bi_next
= biolist
;
3217 bio
->bi_end_io
= end_sync_write
;
3218 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3219 bio
->bi_iter
.bi_sector
= to_addr
3220 + mrdev
->data_offset
;
3221 bio_set_dev(bio
, mrdev
->bdev
);
3222 atomic_inc(&r10_bio
->remaining
);
3224 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3226 /* and maybe write to replacement */
3227 bio
= r10_bio
->devs
[1].repl_bio
;
3229 bio
->bi_end_io
= NULL
;
3230 /* Note: if mreplace != NULL, then bio
3231 * cannot be NULL as r10buf_pool_alloc will
3232 * have allocated it.
3233 * So the second test here is pointless.
3234 * But it keeps semantic-checkers happy, and
3235 * this comment keeps human reviewers
3238 if (mreplace
== NULL
|| bio
== NULL
||
3239 test_bit(Faulty
, &mreplace
->flags
))
3241 bio
->bi_next
= biolist
;
3243 bio
->bi_end_io
= end_sync_write
;
3244 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3245 bio
->bi_iter
.bi_sector
= to_addr
+
3246 mreplace
->data_offset
;
3247 bio_set_dev(bio
, mreplace
->bdev
);
3248 atomic_inc(&r10_bio
->remaining
);
3252 if (j
== conf
->copies
) {
3253 /* Cannot recover, so abort the recovery or
3254 * record a bad block */
3256 /* problem is that there are bad blocks
3257 * on other device(s)
3260 for (k
= 0; k
< conf
->copies
; k
++)
3261 if (r10_bio
->devs
[k
].devnum
== i
)
3263 if (!test_bit(In_sync
,
3265 && !rdev_set_badblocks(
3267 r10_bio
->devs
[k
].addr
,
3271 !rdev_set_badblocks(
3273 r10_bio
->devs
[k
].addr
,
3278 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3280 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3282 mirror
->recovery_disabled
3283 = mddev
->recovery_disabled
;
3287 atomic_dec(&rb2
->remaining
);
3289 rdev_dec_pending(mrdev
, mddev
);
3291 rdev_dec_pending(mreplace
, mddev
);
3294 rdev_dec_pending(mrdev
, mddev
);
3296 rdev_dec_pending(mreplace
, mddev
);
3297 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3298 /* Only want this if there is elsewhere to
3299 * read from. 'j' is currently the first
3303 for (; j
< conf
->copies
; j
++) {
3304 int d
= r10_bio
->devs
[j
].devnum
;
3305 if (conf
->mirrors
[d
].rdev
&&
3307 &conf
->mirrors
[d
].rdev
->flags
))
3311 r10_bio
->devs
[0].bio
->bi_opf
3315 if (biolist
== NULL
) {
3317 struct r10bio
*rb2
= r10_bio
;
3318 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3319 rb2
->master_bio
= NULL
;
3325 /* resync. Schedule a read for every block at this virt offset */
3329 * Since curr_resync_completed could probably not update in
3330 * time, and we will set cluster_sync_low based on it.
3331 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3332 * safety reason, which ensures curr_resync_completed is
3333 * updated in bitmap_cond_end_sync.
3335 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
3336 mddev_is_clustered(mddev
) &&
3337 (sector_nr
+ 2 * RESYNC_SECTORS
>
3338 conf
->cluster_sync_high
));
3340 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3341 &sync_blocks
, mddev
->degraded
) &&
3342 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3343 &mddev
->recovery
)) {
3344 /* We can skip this block */
3346 return sync_blocks
+ sectors_skipped
;
3348 if (sync_blocks
< max_sync
)
3349 max_sync
= sync_blocks
;
3350 r10_bio
= raid10_alloc_init_r10buf(conf
);
3353 r10_bio
->mddev
= mddev
;
3354 atomic_set(&r10_bio
->remaining
, 0);
3355 raise_barrier(conf
, 0);
3356 conf
->next_resync
= sector_nr
;
3358 r10_bio
->master_bio
= NULL
;
3359 r10_bio
->sector
= sector_nr
;
3360 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3361 raid10_find_phys(conf
, r10_bio
);
3362 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3364 for (i
= 0; i
< conf
->copies
; i
++) {
3365 int d
= r10_bio
->devs
[i
].devnum
;
3366 sector_t first_bad
, sector
;
3368 struct md_rdev
*rdev
;
3370 if (r10_bio
->devs
[i
].repl_bio
)
3371 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3373 bio
= r10_bio
->devs
[i
].bio
;
3374 bio
->bi_status
= BLK_STS_IOERR
;
3376 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3377 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3381 sector
= r10_bio
->devs
[i
].addr
;
3382 if (is_badblock(rdev
, sector
, max_sync
,
3383 &first_bad
, &bad_sectors
)) {
3384 if (first_bad
> sector
)
3385 max_sync
= first_bad
- sector
;
3387 bad_sectors
-= (sector
- first_bad
);
3388 if (max_sync
> bad_sectors
)
3389 max_sync
= bad_sectors
;
3394 atomic_inc(&rdev
->nr_pending
);
3395 atomic_inc(&r10_bio
->remaining
);
3396 bio
->bi_next
= biolist
;
3398 bio
->bi_end_io
= end_sync_read
;
3399 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3400 if (test_bit(FailFast
, &rdev
->flags
))
3401 bio
->bi_opf
|= MD_FAILFAST
;
3402 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3403 bio_set_dev(bio
, rdev
->bdev
);
3406 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3407 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3411 atomic_inc(&rdev
->nr_pending
);
3413 /* Need to set up for writing to the replacement */
3414 bio
= r10_bio
->devs
[i
].repl_bio
;
3415 bio
->bi_status
= BLK_STS_IOERR
;
3417 sector
= r10_bio
->devs
[i
].addr
;
3418 bio
->bi_next
= biolist
;
3420 bio
->bi_end_io
= end_sync_write
;
3421 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3422 if (test_bit(FailFast
, &rdev
->flags
))
3423 bio
->bi_opf
|= MD_FAILFAST
;
3424 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3425 bio_set_dev(bio
, rdev
->bdev
);
3431 for (i
=0; i
<conf
->copies
; i
++) {
3432 int d
= r10_bio
->devs
[i
].devnum
;
3433 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3434 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3436 if (r10_bio
->devs
[i
].repl_bio
&&
3437 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3439 conf
->mirrors
[d
].replacement
,
3449 if (sector_nr
+ max_sync
< max_sector
)
3450 max_sector
= sector_nr
+ max_sync
;
3453 int len
= PAGE_SIZE
;
3454 if (sector_nr
+ (len
>>9) > max_sector
)
3455 len
= (max_sector
- sector_nr
) << 9;
3458 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3459 struct resync_pages
*rp
= get_resync_pages(bio
);
3460 page
= resync_fetch_page(rp
, page_idx
);
3462 * won't fail because the vec table is big enough
3463 * to hold all these pages
3465 bio_add_page(bio
, page
, len
, 0);
3467 nr_sectors
+= len
>>9;
3468 sector_nr
+= len
>>9;
3469 } while (++page_idx
< RESYNC_PAGES
);
3470 r10_bio
->sectors
= nr_sectors
;
3472 if (mddev_is_clustered(mddev
) &&
3473 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3474 /* It is resync not recovery */
3475 if (conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
3476 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
3477 raid10_set_cluster_sync_high(conf
);
3478 /* Send resync message */
3479 md_cluster_ops
->resync_info_update(mddev
,
3480 conf
->cluster_sync_low
,
3481 conf
->cluster_sync_high
);
3483 } else if (mddev_is_clustered(mddev
)) {
3484 /* This is recovery not resync */
3485 sector_t sect_va1
, sect_va2
;
3486 bool broadcast_msg
= false;
3488 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
3490 * sector_nr is a device address for recovery, so we
3491 * need translate it to array address before compare
3492 * with cluster_sync_high.
3494 sect_va1
= raid10_find_virt(conf
, sector_nr
, i
);
3496 if (conf
->cluster_sync_high
< sect_va1
+ nr_sectors
) {
3497 broadcast_msg
= true;
3499 * curr_resync_completed is similar as
3500 * sector_nr, so make the translation too.
3502 sect_va2
= raid10_find_virt(conf
,
3503 mddev
->curr_resync_completed
, i
);
3505 if (conf
->cluster_sync_low
== 0 ||
3506 conf
->cluster_sync_low
> sect_va2
)
3507 conf
->cluster_sync_low
= sect_va2
;
3510 if (broadcast_msg
) {
3511 raid10_set_cluster_sync_high(conf
);
3512 md_cluster_ops
->resync_info_update(mddev
,
3513 conf
->cluster_sync_low
,
3514 conf
->cluster_sync_high
);
3520 biolist
= biolist
->bi_next
;
3522 bio
->bi_next
= NULL
;
3523 r10_bio
= get_resync_r10bio(bio
);
3524 r10_bio
->sectors
= nr_sectors
;
3526 if (bio
->bi_end_io
== end_sync_read
) {
3527 md_sync_acct_bio(bio
, nr_sectors
);
3529 generic_make_request(bio
);
3533 if (sectors_skipped
)
3534 /* pretend they weren't skipped, it makes
3535 * no important difference in this case
3537 md_done_sync(mddev
, sectors_skipped
, 1);
3539 return sectors_skipped
+ nr_sectors
;
3541 /* There is nowhere to write, so all non-sync
3542 * drives must be failed or in resync, all drives
3543 * have a bad block, so try the next chunk...
3545 if (sector_nr
+ max_sync
< max_sector
)
3546 max_sector
= sector_nr
+ max_sync
;
3548 sectors_skipped
+= (max_sector
- sector_nr
);
3550 sector_nr
= max_sector
;
3555 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3558 struct r10conf
*conf
= mddev
->private;
3561 raid_disks
= min(conf
->geo
.raid_disks
,
3562 conf
->prev
.raid_disks
);
3564 sectors
= conf
->dev_sectors
;
3566 size
= sectors
>> conf
->geo
.chunk_shift
;
3567 sector_div(size
, conf
->geo
.far_copies
);
3568 size
= size
* raid_disks
;
3569 sector_div(size
, conf
->geo
.near_copies
);
3571 return size
<< conf
->geo
.chunk_shift
;
3574 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3576 /* Calculate the number of sectors-per-device that will
3577 * actually be used, and set conf->dev_sectors and
3581 size
= size
>> conf
->geo
.chunk_shift
;
3582 sector_div(size
, conf
->geo
.far_copies
);
3583 size
= size
* conf
->geo
.raid_disks
;
3584 sector_div(size
, conf
->geo
.near_copies
);
3585 /* 'size' is now the number of chunks in the array */
3586 /* calculate "used chunks per device" */
3587 size
= size
* conf
->copies
;
3589 /* We need to round up when dividing by raid_disks to
3590 * get the stride size.
3592 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3594 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3596 if (conf
->geo
.far_offset
)
3597 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3599 sector_div(size
, conf
->geo
.far_copies
);
3600 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3604 enum geo_type
{geo_new
, geo_old
, geo_start
};
3605 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3608 int layout
, chunk
, disks
;
3611 layout
= mddev
->layout
;
3612 chunk
= mddev
->chunk_sectors
;
3613 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3616 layout
= mddev
->new_layout
;
3617 chunk
= mddev
->new_chunk_sectors
;
3618 disks
= mddev
->raid_disks
;
3620 default: /* avoid 'may be unused' warnings */
3621 case geo_start
: /* new when starting reshape - raid_disks not
3623 layout
= mddev
->new_layout
;
3624 chunk
= mddev
->new_chunk_sectors
;
3625 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3630 if (chunk
< (PAGE_SIZE
>> 9) ||
3631 !is_power_of_2(chunk
))
3634 fc
= (layout
>> 8) & 255;
3635 fo
= layout
& (1<<16);
3636 geo
->raid_disks
= disks
;
3637 geo
->near_copies
= nc
;
3638 geo
->far_copies
= fc
;
3639 geo
->far_offset
= fo
;
3640 switch (layout
>> 17) {
3641 case 0: /* original layout. simple but not always optimal */
3642 geo
->far_set_size
= disks
;
3644 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3645 * actually using this, but leave code here just in case.*/
3646 geo
->far_set_size
= disks
/fc
;
3647 WARN(geo
->far_set_size
< fc
,
3648 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3650 case 2: /* "improved" layout fixed to match documentation */
3651 geo
->far_set_size
= fc
* nc
;
3653 default: /* Not a valid layout */
3656 geo
->chunk_mask
= chunk
- 1;
3657 geo
->chunk_shift
= ffz(~chunk
);
3661 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3663 struct r10conf
*conf
= NULL
;
3668 copies
= setup_geo(&geo
, mddev
, geo_new
);
3671 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3672 mdname(mddev
), PAGE_SIZE
);
3676 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3677 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3678 mdname(mddev
), mddev
->new_layout
);
3683 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3687 /* FIXME calc properly */
3688 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3689 max(0,-mddev
->delta_disks
)),
3694 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3699 conf
->copies
= copies
;
3700 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3701 r10bio_pool_free
, conf
);
3702 if (!conf
->r10bio_pool
)
3705 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
3706 if (!conf
->bio_split
)
3709 calc_sectors(conf
, mddev
->dev_sectors
);
3710 if (mddev
->reshape_position
== MaxSector
) {
3711 conf
->prev
= conf
->geo
;
3712 conf
->reshape_progress
= MaxSector
;
3714 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3718 conf
->reshape_progress
= mddev
->reshape_position
;
3719 if (conf
->prev
.far_offset
)
3720 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3722 /* far_copies must be 1 */
3723 conf
->prev
.stride
= conf
->dev_sectors
;
3725 conf
->reshape_safe
= conf
->reshape_progress
;
3726 spin_lock_init(&conf
->device_lock
);
3727 INIT_LIST_HEAD(&conf
->retry_list
);
3728 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3730 spin_lock_init(&conf
->resync_lock
);
3731 init_waitqueue_head(&conf
->wait_barrier
);
3732 atomic_set(&conf
->nr_pending
, 0);
3734 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3738 conf
->mddev
= mddev
;
3743 mempool_destroy(conf
->r10bio_pool
);
3744 kfree(conf
->mirrors
);
3745 safe_put_page(conf
->tmppage
);
3746 if (conf
->bio_split
)
3747 bioset_free(conf
->bio_split
);
3750 return ERR_PTR(err
);
3753 static int raid10_run(struct mddev
*mddev
)
3755 struct r10conf
*conf
;
3756 int i
, disk_idx
, chunk_size
;
3757 struct raid10_info
*disk
;
3758 struct md_rdev
*rdev
;
3760 sector_t min_offset_diff
= 0;
3762 bool discard_supported
= false;
3764 if (mddev_init_writes_pending(mddev
) < 0)
3767 if (mddev
->private == NULL
) {
3768 conf
= setup_conf(mddev
);
3770 return PTR_ERR(conf
);
3771 mddev
->private = conf
;
3773 conf
= mddev
->private;
3777 if (mddev_is_clustered(conf
->mddev
)) {
3780 fc
= (mddev
->layout
>> 8) & 255;
3781 fo
= mddev
->layout
& (1<<16);
3782 if (fc
> 1 || fo
> 0) {
3783 pr_err("only near layout is supported by clustered"
3789 mddev
->thread
= conf
->thread
;
3790 conf
->thread
= NULL
;
3792 chunk_size
= mddev
->chunk_sectors
<< 9;
3794 blk_queue_max_discard_sectors(mddev
->queue
,
3795 mddev
->chunk_sectors
);
3796 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3797 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3798 blk_queue_io_min(mddev
->queue
, chunk_size
);
3799 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3800 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3802 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3803 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3806 rdev_for_each(rdev
, mddev
) {
3809 disk_idx
= rdev
->raid_disk
;
3812 if (disk_idx
>= conf
->geo
.raid_disks
&&
3813 disk_idx
>= conf
->prev
.raid_disks
)
3815 disk
= conf
->mirrors
+ disk_idx
;
3817 if (test_bit(Replacement
, &rdev
->flags
)) {
3818 if (disk
->replacement
)
3820 disk
->replacement
= rdev
;
3826 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3827 if (!mddev
->reshape_backwards
)
3831 if (first
|| diff
< min_offset_diff
)
3832 min_offset_diff
= diff
;
3835 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3836 rdev
->data_offset
<< 9);
3838 disk
->head_position
= 0;
3840 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3841 discard_supported
= true;
3846 if (discard_supported
)
3847 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3850 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3853 /* need to check that every block has at least one working mirror */
3854 if (!enough(conf
, -1)) {
3855 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3860 if (conf
->reshape_progress
!= MaxSector
) {
3861 /* must ensure that shape change is supported */
3862 if (conf
->geo
.far_copies
!= 1 &&
3863 conf
->geo
.far_offset
== 0)
3865 if (conf
->prev
.far_copies
!= 1 &&
3866 conf
->prev
.far_offset
== 0)
3870 mddev
->degraded
= 0;
3872 i
< conf
->geo
.raid_disks
3873 || i
< conf
->prev
.raid_disks
;
3876 disk
= conf
->mirrors
+ i
;
3878 if (!disk
->rdev
&& disk
->replacement
) {
3879 /* The replacement is all we have - use it */
3880 disk
->rdev
= disk
->replacement
;
3881 disk
->replacement
= NULL
;
3882 clear_bit(Replacement
, &disk
->rdev
->flags
);
3886 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3887 disk
->head_position
= 0;
3890 disk
->rdev
->saved_raid_disk
< 0)
3893 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3896 if (mddev
->recovery_cp
!= MaxSector
)
3897 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3899 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3900 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3901 conf
->geo
.raid_disks
);
3903 * Ok, everything is just fine now
3905 mddev
->dev_sectors
= conf
->dev_sectors
;
3906 size
= raid10_size(mddev
, 0, 0);
3907 md_set_array_sectors(mddev
, size
);
3908 mddev
->resync_max_sectors
= size
;
3909 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3912 int stripe
= conf
->geo
.raid_disks
*
3913 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3915 /* Calculate max read-ahead size.
3916 * We need to readahead at least twice a whole stripe....
3919 stripe
/= conf
->geo
.near_copies
;
3920 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
3921 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
3924 if (md_integrity_register(mddev
))
3927 if (conf
->reshape_progress
!= MaxSector
) {
3928 unsigned long before_length
, after_length
;
3930 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3931 conf
->prev
.far_copies
);
3932 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3933 conf
->geo
.far_copies
);
3935 if (max(before_length
, after_length
) > min_offset_diff
) {
3936 /* This cannot work */
3937 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3940 conf
->offset_diff
= min_offset_diff
;
3942 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3943 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3944 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3945 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3946 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3953 md_unregister_thread(&mddev
->thread
);
3954 mempool_destroy(conf
->r10bio_pool
);
3955 safe_put_page(conf
->tmppage
);
3956 kfree(conf
->mirrors
);
3958 mddev
->private = NULL
;
3963 static void raid10_free(struct mddev
*mddev
, void *priv
)
3965 struct r10conf
*conf
= priv
;
3967 mempool_destroy(conf
->r10bio_pool
);
3968 safe_put_page(conf
->tmppage
);
3969 kfree(conf
->mirrors
);
3970 kfree(conf
->mirrors_old
);
3971 kfree(conf
->mirrors_new
);
3972 if (conf
->bio_split
)
3973 bioset_free(conf
->bio_split
);
3977 static void raid10_quiesce(struct mddev
*mddev
, int quiesce
)
3979 struct r10conf
*conf
= mddev
->private;
3982 raise_barrier(conf
, 0);
3984 lower_barrier(conf
);
3987 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3989 /* Resize of 'far' arrays is not supported.
3990 * For 'near' and 'offset' arrays we can set the
3991 * number of sectors used to be an appropriate multiple
3992 * of the chunk size.
3993 * For 'offset', this is far_copies*chunksize.
3994 * For 'near' the multiplier is the LCM of
3995 * near_copies and raid_disks.
3996 * So if far_copies > 1 && !far_offset, fail.
3997 * Else find LCM(raid_disks, near_copy)*far_copies and
3998 * multiply by chunk_size. Then round to this number.
3999 * This is mostly done by raid10_size()
4001 struct r10conf
*conf
= mddev
->private;
4002 sector_t oldsize
, size
;
4004 if (mddev
->reshape_position
!= MaxSector
)
4007 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
4010 oldsize
= raid10_size(mddev
, 0, 0);
4011 size
= raid10_size(mddev
, sectors
, 0);
4012 if (mddev
->external_size
&&
4013 mddev
->array_sectors
> size
)
4015 if (mddev
->bitmap
) {
4016 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
4020 md_set_array_sectors(mddev
, size
);
4021 if (sectors
> mddev
->dev_sectors
&&
4022 mddev
->recovery_cp
> oldsize
) {
4023 mddev
->recovery_cp
= oldsize
;
4024 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4026 calc_sectors(conf
, sectors
);
4027 mddev
->dev_sectors
= conf
->dev_sectors
;
4028 mddev
->resync_max_sectors
= size
;
4032 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
4034 struct md_rdev
*rdev
;
4035 struct r10conf
*conf
;
4037 if (mddev
->degraded
> 0) {
4038 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4040 return ERR_PTR(-EINVAL
);
4042 sector_div(size
, devs
);
4044 /* Set new parameters */
4045 mddev
->new_level
= 10;
4046 /* new layout: far_copies = 1, near_copies = 2 */
4047 mddev
->new_layout
= (1<<8) + 2;
4048 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4049 mddev
->delta_disks
= mddev
->raid_disks
;
4050 mddev
->raid_disks
*= 2;
4051 /* make sure it will be not marked as dirty */
4052 mddev
->recovery_cp
= MaxSector
;
4053 mddev
->dev_sectors
= size
;
4055 conf
= setup_conf(mddev
);
4056 if (!IS_ERR(conf
)) {
4057 rdev_for_each(rdev
, mddev
)
4058 if (rdev
->raid_disk
>= 0) {
4059 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
4060 rdev
->sectors
= size
;
4068 static void *raid10_takeover(struct mddev
*mddev
)
4070 struct r0conf
*raid0_conf
;
4072 /* raid10 can take over:
4073 * raid0 - providing it has only two drives
4075 if (mddev
->level
== 0) {
4076 /* for raid0 takeover only one zone is supported */
4077 raid0_conf
= mddev
->private;
4078 if (raid0_conf
->nr_strip_zones
> 1) {
4079 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4081 return ERR_PTR(-EINVAL
);
4083 return raid10_takeover_raid0(mddev
,
4084 raid0_conf
->strip_zone
->zone_end
,
4085 raid0_conf
->strip_zone
->nb_dev
);
4087 return ERR_PTR(-EINVAL
);
4090 static int raid10_check_reshape(struct mddev
*mddev
)
4092 /* Called when there is a request to change
4093 * - layout (to ->new_layout)
4094 * - chunk size (to ->new_chunk_sectors)
4095 * - raid_disks (by delta_disks)
4096 * or when trying to restart a reshape that was ongoing.
4098 * We need to validate the request and possibly allocate
4099 * space if that might be an issue later.
4101 * Currently we reject any reshape of a 'far' mode array,
4102 * allow chunk size to change if new is generally acceptable,
4103 * allow raid_disks to increase, and allow
4104 * a switch between 'near' mode and 'offset' mode.
4106 struct r10conf
*conf
= mddev
->private;
4109 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
4112 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
4113 /* mustn't change number of copies */
4115 if (geo
.far_copies
> 1 && !geo
.far_offset
)
4116 /* Cannot switch to 'far' mode */
4119 if (mddev
->array_sectors
& geo
.chunk_mask
)
4120 /* not factor of array size */
4123 if (!enough(conf
, -1))
4126 kfree(conf
->mirrors_new
);
4127 conf
->mirrors_new
= NULL
;
4128 if (mddev
->delta_disks
> 0) {
4129 /* allocate new 'mirrors' list */
4130 conf
->mirrors_new
= kzalloc(
4131 sizeof(struct raid10_info
)
4132 *(mddev
->raid_disks
+
4133 mddev
->delta_disks
),
4135 if (!conf
->mirrors_new
)
4142 * Need to check if array has failed when deciding whether to:
4144 * - remove non-faulty devices
4147 * This determination is simple when no reshape is happening.
4148 * However if there is a reshape, we need to carefully check
4149 * both the before and after sections.
4150 * This is because some failed devices may only affect one
4151 * of the two sections, and some non-in_sync devices may
4152 * be insync in the section most affected by failed devices.
4154 static int calc_degraded(struct r10conf
*conf
)
4156 int degraded
, degraded2
;
4161 /* 'prev' section first */
4162 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4163 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4164 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4166 else if (!test_bit(In_sync
, &rdev
->flags
))
4167 /* When we can reduce the number of devices in
4168 * an array, this might not contribute to
4169 * 'degraded'. It does now.
4174 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4178 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4179 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4180 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4182 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4183 /* If reshape is increasing the number of devices,
4184 * this section has already been recovered, so
4185 * it doesn't contribute to degraded.
4188 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4193 if (degraded2
> degraded
)
4198 static int raid10_start_reshape(struct mddev
*mddev
)
4200 /* A 'reshape' has been requested. This commits
4201 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4202 * This also checks if there are enough spares and adds them
4204 * We currently require enough spares to make the final
4205 * array non-degraded. We also require that the difference
4206 * between old and new data_offset - on each device - is
4207 * enough that we never risk over-writing.
4210 unsigned long before_length
, after_length
;
4211 sector_t min_offset_diff
= 0;
4214 struct r10conf
*conf
= mddev
->private;
4215 struct md_rdev
*rdev
;
4219 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4222 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4225 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4226 conf
->prev
.far_copies
);
4227 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4228 conf
->geo
.far_copies
);
4230 rdev_for_each(rdev
, mddev
) {
4231 if (!test_bit(In_sync
, &rdev
->flags
)
4232 && !test_bit(Faulty
, &rdev
->flags
))
4234 if (rdev
->raid_disk
>= 0) {
4235 long long diff
= (rdev
->new_data_offset
4236 - rdev
->data_offset
);
4237 if (!mddev
->reshape_backwards
)
4241 if (first
|| diff
< min_offset_diff
)
4242 min_offset_diff
= diff
;
4247 if (max(before_length
, after_length
) > min_offset_diff
)
4250 if (spares
< mddev
->delta_disks
)
4253 conf
->offset_diff
= min_offset_diff
;
4254 spin_lock_irq(&conf
->device_lock
);
4255 if (conf
->mirrors_new
) {
4256 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4257 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4259 kfree(conf
->mirrors_old
);
4260 conf
->mirrors_old
= conf
->mirrors
;
4261 conf
->mirrors
= conf
->mirrors_new
;
4262 conf
->mirrors_new
= NULL
;
4264 setup_geo(&conf
->geo
, mddev
, geo_start
);
4266 if (mddev
->reshape_backwards
) {
4267 sector_t size
= raid10_size(mddev
, 0, 0);
4268 if (size
< mddev
->array_sectors
) {
4269 spin_unlock_irq(&conf
->device_lock
);
4270 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4274 mddev
->resync_max_sectors
= size
;
4275 conf
->reshape_progress
= size
;
4277 conf
->reshape_progress
= 0;
4278 conf
->reshape_safe
= conf
->reshape_progress
;
4279 spin_unlock_irq(&conf
->device_lock
);
4281 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4282 ret
= bitmap_resize(mddev
->bitmap
,
4283 raid10_size(mddev
, 0,
4284 conf
->geo
.raid_disks
),
4289 if (mddev
->delta_disks
> 0) {
4290 rdev_for_each(rdev
, mddev
)
4291 if (rdev
->raid_disk
< 0 &&
4292 !test_bit(Faulty
, &rdev
->flags
)) {
4293 if (raid10_add_disk(mddev
, rdev
) == 0) {
4294 if (rdev
->raid_disk
>=
4295 conf
->prev
.raid_disks
)
4296 set_bit(In_sync
, &rdev
->flags
);
4298 rdev
->recovery_offset
= 0;
4300 if (sysfs_link_rdev(mddev
, rdev
))
4301 /* Failure here is OK */;
4303 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4304 && !test_bit(Faulty
, &rdev
->flags
)) {
4305 /* This is a spare that was manually added */
4306 set_bit(In_sync
, &rdev
->flags
);
4309 /* When a reshape changes the number of devices,
4310 * ->degraded is measured against the larger of the
4311 * pre and post numbers.
4313 spin_lock_irq(&conf
->device_lock
);
4314 mddev
->degraded
= calc_degraded(conf
);
4315 spin_unlock_irq(&conf
->device_lock
);
4316 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4317 mddev
->reshape_position
= conf
->reshape_progress
;
4318 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4320 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4321 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4322 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4323 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4324 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4326 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4328 if (!mddev
->sync_thread
) {
4332 conf
->reshape_checkpoint
= jiffies
;
4333 md_wakeup_thread(mddev
->sync_thread
);
4334 md_new_event(mddev
);
4338 mddev
->recovery
= 0;
4339 spin_lock_irq(&conf
->device_lock
);
4340 conf
->geo
= conf
->prev
;
4341 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4342 rdev_for_each(rdev
, mddev
)
4343 rdev
->new_data_offset
= rdev
->data_offset
;
4345 conf
->reshape_progress
= MaxSector
;
4346 conf
->reshape_safe
= MaxSector
;
4347 mddev
->reshape_position
= MaxSector
;
4348 spin_unlock_irq(&conf
->device_lock
);
4352 /* Calculate the last device-address that could contain
4353 * any block from the chunk that includes the array-address 's'
4354 * and report the next address.
4355 * i.e. the address returned will be chunk-aligned and after
4356 * any data that is in the chunk containing 's'.
4358 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4360 s
= (s
| geo
->chunk_mask
) + 1;
4361 s
>>= geo
->chunk_shift
;
4362 s
*= geo
->near_copies
;
4363 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4364 s
*= geo
->far_copies
;
4365 s
<<= geo
->chunk_shift
;
4369 /* Calculate the first device-address that could contain
4370 * any block from the chunk that includes the array-address 's'.
4371 * This too will be the start of a chunk
4373 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4375 s
>>= geo
->chunk_shift
;
4376 s
*= geo
->near_copies
;
4377 sector_div(s
, geo
->raid_disks
);
4378 s
*= geo
->far_copies
;
4379 s
<<= geo
->chunk_shift
;
4383 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4386 /* We simply copy at most one chunk (smallest of old and new)
4387 * at a time, possibly less if that exceeds RESYNC_PAGES,
4388 * or we hit a bad block or something.
4389 * This might mean we pause for normal IO in the middle of
4390 * a chunk, but that is not a problem as mddev->reshape_position
4391 * can record any location.
4393 * If we will want to write to a location that isn't
4394 * yet recorded as 'safe' (i.e. in metadata on disk) then
4395 * we need to flush all reshape requests and update the metadata.
4397 * When reshaping forwards (e.g. to more devices), we interpret
4398 * 'safe' as the earliest block which might not have been copied
4399 * down yet. We divide this by previous stripe size and multiply
4400 * by previous stripe length to get lowest device offset that we
4401 * cannot write to yet.
4402 * We interpret 'sector_nr' as an address that we want to write to.
4403 * From this we use last_device_address() to find where we might
4404 * write to, and first_device_address on the 'safe' position.
4405 * If this 'next' write position is after the 'safe' position,
4406 * we must update the metadata to increase the 'safe' position.
4408 * When reshaping backwards, we round in the opposite direction
4409 * and perform the reverse test: next write position must not be
4410 * less than current safe position.
4412 * In all this the minimum difference in data offsets
4413 * (conf->offset_diff - always positive) allows a bit of slack,
4414 * so next can be after 'safe', but not by more than offset_diff
4416 * We need to prepare all the bios here before we start any IO
4417 * to ensure the size we choose is acceptable to all devices.
4418 * The means one for each copy for write-out and an extra one for
4420 * We store the read-in bio in ->master_bio and the others in
4421 * ->devs[x].bio and ->devs[x].repl_bio.
4423 struct r10conf
*conf
= mddev
->private;
4424 struct r10bio
*r10_bio
;
4425 sector_t next
, safe
, last
;
4429 struct md_rdev
*rdev
;
4432 struct bio
*bio
, *read_bio
;
4433 int sectors_done
= 0;
4434 struct page
**pages
;
4436 if (sector_nr
== 0) {
4437 /* If restarting in the middle, skip the initial sectors */
4438 if (mddev
->reshape_backwards
&&
4439 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4440 sector_nr
= (raid10_size(mddev
, 0, 0)
4441 - conf
->reshape_progress
);
4442 } else if (!mddev
->reshape_backwards
&&
4443 conf
->reshape_progress
> 0)
4444 sector_nr
= conf
->reshape_progress
;
4446 mddev
->curr_resync_completed
= sector_nr
;
4447 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4453 /* We don't use sector_nr to track where we are up to
4454 * as that doesn't work well for ->reshape_backwards.
4455 * So just use ->reshape_progress.
4457 if (mddev
->reshape_backwards
) {
4458 /* 'next' is the earliest device address that we might
4459 * write to for this chunk in the new layout
4461 next
= first_dev_address(conf
->reshape_progress
- 1,
4464 /* 'safe' is the last device address that we might read from
4465 * in the old layout after a restart
4467 safe
= last_dev_address(conf
->reshape_safe
- 1,
4470 if (next
+ conf
->offset_diff
< safe
)
4473 last
= conf
->reshape_progress
- 1;
4474 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4475 & conf
->prev
.chunk_mask
);
4476 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4477 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4479 /* 'next' is after the last device address that we
4480 * might write to for this chunk in the new layout
4482 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4484 /* 'safe' is the earliest device address that we might
4485 * read from in the old layout after a restart
4487 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4489 /* Need to update metadata if 'next' might be beyond 'safe'
4490 * as that would possibly corrupt data
4492 if (next
> safe
+ conf
->offset_diff
)
4495 sector_nr
= conf
->reshape_progress
;
4496 last
= sector_nr
| (conf
->geo
.chunk_mask
4497 & conf
->prev
.chunk_mask
);
4499 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4500 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4504 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4505 /* Need to update reshape_position in metadata */
4507 mddev
->reshape_position
= conf
->reshape_progress
;
4508 if (mddev
->reshape_backwards
)
4509 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4510 - conf
->reshape_progress
;
4512 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4513 conf
->reshape_checkpoint
= jiffies
;
4514 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4515 md_wakeup_thread(mddev
->thread
);
4516 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4517 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4518 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4519 allow_barrier(conf
);
4520 return sectors_done
;
4522 conf
->reshape_safe
= mddev
->reshape_position
;
4523 allow_barrier(conf
);
4527 /* Now schedule reads for blocks from sector_nr to last */
4528 r10_bio
= raid10_alloc_init_r10buf(conf
);
4530 raise_barrier(conf
, sectors_done
!= 0);
4531 atomic_set(&r10_bio
->remaining
, 0);
4532 r10_bio
->mddev
= mddev
;
4533 r10_bio
->sector
= sector_nr
;
4534 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4535 r10_bio
->sectors
= last
- sector_nr
+ 1;
4536 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4537 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4540 /* Cannot read from here, so need to record bad blocks
4541 * on all the target devices.
4544 mempool_free(r10_bio
, conf
->r10buf_pool
);
4545 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4546 return sectors_done
;
4549 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4551 bio_set_dev(read_bio
, rdev
->bdev
);
4552 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4553 + rdev
->data_offset
);
4554 read_bio
->bi_private
= r10_bio
;
4555 read_bio
->bi_end_io
= end_reshape_read
;
4556 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4557 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4558 read_bio
->bi_status
= 0;
4559 read_bio
->bi_vcnt
= 0;
4560 read_bio
->bi_iter
.bi_size
= 0;
4561 r10_bio
->master_bio
= read_bio
;
4562 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4564 /* Now find the locations in the new layout */
4565 __raid10_find_phys(&conf
->geo
, r10_bio
);
4568 read_bio
->bi_next
= NULL
;
4571 for (s
= 0; s
< conf
->copies
*2; s
++) {
4573 int d
= r10_bio
->devs
[s
/2].devnum
;
4574 struct md_rdev
*rdev2
;
4576 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4577 b
= r10_bio
->devs
[s
/2].repl_bio
;
4579 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4580 b
= r10_bio
->devs
[s
/2].bio
;
4582 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4585 bio_set_dev(b
, rdev2
->bdev
);
4586 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4587 rdev2
->new_data_offset
;
4588 b
->bi_end_io
= end_reshape_write
;
4589 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4594 /* Now add as many pages as possible to all of these bios. */
4597 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4598 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4599 struct page
*page
= pages
[s
/ (PAGE_SIZE
>> 9)];
4600 int len
= (max_sectors
- s
) << 9;
4601 if (len
> PAGE_SIZE
)
4603 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4605 * won't fail because the vec table is big enough
4606 * to hold all these pages
4608 bio_add_page(bio
, page
, len
, 0);
4610 sector_nr
+= len
>> 9;
4611 nr_sectors
+= len
>> 9;
4614 r10_bio
->sectors
= nr_sectors
;
4616 /* Now submit the read */
4617 md_sync_acct_bio(read_bio
, r10_bio
->sectors
);
4618 atomic_inc(&r10_bio
->remaining
);
4619 read_bio
->bi_next
= NULL
;
4620 generic_make_request(read_bio
);
4621 sector_nr
+= nr_sectors
;
4622 sectors_done
+= nr_sectors
;
4623 if (sector_nr
<= last
)
4626 /* Now that we have done the whole section we can
4627 * update reshape_progress
4629 if (mddev
->reshape_backwards
)
4630 conf
->reshape_progress
-= sectors_done
;
4632 conf
->reshape_progress
+= sectors_done
;
4634 return sectors_done
;
4637 static void end_reshape_request(struct r10bio
*r10_bio
);
4638 static int handle_reshape_read_error(struct mddev
*mddev
,
4639 struct r10bio
*r10_bio
);
4640 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4642 /* Reshape read completed. Hopefully we have a block
4644 * If we got a read error then we do sync 1-page reads from
4645 * elsewhere until we find the data - or give up.
4647 struct r10conf
*conf
= mddev
->private;
4650 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4651 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4652 /* Reshape has been aborted */
4653 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4657 /* We definitely have the data in the pages, schedule the
4660 atomic_set(&r10_bio
->remaining
, 1);
4661 for (s
= 0; s
< conf
->copies
*2; s
++) {
4663 int d
= r10_bio
->devs
[s
/2].devnum
;
4664 struct md_rdev
*rdev
;
4667 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4668 b
= r10_bio
->devs
[s
/2].repl_bio
;
4670 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4671 b
= r10_bio
->devs
[s
/2].bio
;
4673 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4677 atomic_inc(&rdev
->nr_pending
);
4679 md_sync_acct_bio(b
, r10_bio
->sectors
);
4680 atomic_inc(&r10_bio
->remaining
);
4682 generic_make_request(b
);
4684 end_reshape_request(r10_bio
);
4687 static void end_reshape(struct r10conf
*conf
)
4689 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4692 spin_lock_irq(&conf
->device_lock
);
4693 conf
->prev
= conf
->geo
;
4694 md_finish_reshape(conf
->mddev
);
4696 conf
->reshape_progress
= MaxSector
;
4697 conf
->reshape_safe
= MaxSector
;
4698 spin_unlock_irq(&conf
->device_lock
);
4700 /* read-ahead size must cover two whole stripes, which is
4701 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4703 if (conf
->mddev
->queue
) {
4704 int stripe
= conf
->geo
.raid_disks
*
4705 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4706 stripe
/= conf
->geo
.near_copies
;
4707 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
4708 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
4713 static int handle_reshape_read_error(struct mddev
*mddev
,
4714 struct r10bio
*r10_bio
)
4716 /* Use sync reads to get the blocks from somewhere else */
4717 int sectors
= r10_bio
->sectors
;
4718 struct r10conf
*conf
= mddev
->private;
4719 struct r10bio
*r10b
;
4722 struct page
**pages
;
4724 r10b
= kmalloc(sizeof(*r10b
) +
4725 sizeof(struct r10dev
) * conf
->copies
, GFP_NOIO
);
4727 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4731 /* reshape IOs share pages from .devs[0].bio */
4732 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4734 r10b
->sector
= r10_bio
->sector
;
4735 __raid10_find_phys(&conf
->prev
, r10b
);
4740 int first_slot
= slot
;
4742 if (s
> (PAGE_SIZE
>> 9))
4747 int d
= r10b
->devs
[slot
].devnum
;
4748 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4751 test_bit(Faulty
, &rdev
->flags
) ||
4752 !test_bit(In_sync
, &rdev
->flags
))
4755 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4756 atomic_inc(&rdev
->nr_pending
);
4758 success
= sync_page_io(rdev
,
4762 REQ_OP_READ
, 0, false);
4763 rdev_dec_pending(rdev
, mddev
);
4769 if (slot
>= conf
->copies
)
4771 if (slot
== first_slot
)
4776 /* couldn't read this block, must give up */
4777 set_bit(MD_RECOVERY_INTR
,
4789 static void end_reshape_write(struct bio
*bio
)
4791 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
4792 struct mddev
*mddev
= r10_bio
->mddev
;
4793 struct r10conf
*conf
= mddev
->private;
4797 struct md_rdev
*rdev
= NULL
;
4799 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4801 rdev
= conf
->mirrors
[d
].replacement
;
4804 rdev
= conf
->mirrors
[d
].rdev
;
4807 if (bio
->bi_status
) {
4808 /* FIXME should record badblock */
4809 md_error(mddev
, rdev
);
4812 rdev_dec_pending(rdev
, mddev
);
4813 end_reshape_request(r10_bio
);
4816 static void end_reshape_request(struct r10bio
*r10_bio
)
4818 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4820 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4821 bio_put(r10_bio
->master_bio
);
4825 static void raid10_finish_reshape(struct mddev
*mddev
)
4827 struct r10conf
*conf
= mddev
->private;
4829 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4832 if (mddev
->delta_disks
> 0) {
4833 sector_t size
= raid10_size(mddev
, 0, 0);
4834 md_set_array_sectors(mddev
, size
);
4835 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4836 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4837 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4839 mddev
->resync_max_sectors
= size
;
4841 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4842 revalidate_disk(mddev
->gendisk
);
4847 for (d
= conf
->geo
.raid_disks
;
4848 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4850 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4852 clear_bit(In_sync
, &rdev
->flags
);
4853 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4855 clear_bit(In_sync
, &rdev
->flags
);
4859 mddev
->layout
= mddev
->new_layout
;
4860 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4861 mddev
->reshape_position
= MaxSector
;
4862 mddev
->delta_disks
= 0;
4863 mddev
->reshape_backwards
= 0;
4866 static struct md_personality raid10_personality
=
4870 .owner
= THIS_MODULE
,
4871 .make_request
= raid10_make_request
,
4873 .free
= raid10_free
,
4874 .status
= raid10_status
,
4875 .error_handler
= raid10_error
,
4876 .hot_add_disk
= raid10_add_disk
,
4877 .hot_remove_disk
= raid10_remove_disk
,
4878 .spare_active
= raid10_spare_active
,
4879 .sync_request
= raid10_sync_request
,
4880 .quiesce
= raid10_quiesce
,
4881 .size
= raid10_size
,
4882 .resize
= raid10_resize
,
4883 .takeover
= raid10_takeover
,
4884 .check_reshape
= raid10_check_reshape
,
4885 .start_reshape
= raid10_start_reshape
,
4886 .finish_reshape
= raid10_finish_reshape
,
4887 .congested
= raid10_congested
,
4890 static int __init
raid_init(void)
4892 return register_md_personality(&raid10_personality
);
4895 static void raid_exit(void)
4897 unregister_md_personality(&raid10_personality
);
4900 module_init(raid_init
);
4901 module_exit(raid_exit
);
4902 MODULE_LICENSE("GPL");
4903 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4904 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4905 MODULE_ALIAS("md-raid10");
4906 MODULE_ALIAS("md-level-10");
4908 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);