xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / media / i2c / mt9v011.c
blob5e29064fae91cd70876f0b91dc8710982465fbf2
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
4 //
5 // Copyright (c) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>
7 #include <linux/i2c.h>
8 #include <linux/slab.h>
9 #include <linux/videodev2.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <asm/div64.h>
13 #include <media/v4l2-device.h>
14 #include <media/v4l2-ctrls.h>
15 #include <media/i2c/mt9v011.h>
17 MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
18 MODULE_AUTHOR("Mauro Carvalho Chehab");
19 MODULE_LICENSE("GPL v2");
21 static int debug;
22 module_param(debug, int, 0);
23 MODULE_PARM_DESC(debug, "Debug level (0-2)");
25 #define R00_MT9V011_CHIP_VERSION 0x00
26 #define R01_MT9V011_ROWSTART 0x01
27 #define R02_MT9V011_COLSTART 0x02
28 #define R03_MT9V011_HEIGHT 0x03
29 #define R04_MT9V011_WIDTH 0x04
30 #define R05_MT9V011_HBLANK 0x05
31 #define R06_MT9V011_VBLANK 0x06
32 #define R07_MT9V011_OUT_CTRL 0x07
33 #define R09_MT9V011_SHUTTER_WIDTH 0x09
34 #define R0A_MT9V011_CLK_SPEED 0x0a
35 #define R0B_MT9V011_RESTART 0x0b
36 #define R0C_MT9V011_SHUTTER_DELAY 0x0c
37 #define R0D_MT9V011_RESET 0x0d
38 #define R1E_MT9V011_DIGITAL_ZOOM 0x1e
39 #define R20_MT9V011_READ_MODE 0x20
40 #define R2B_MT9V011_GREEN_1_GAIN 0x2b
41 #define R2C_MT9V011_BLUE_GAIN 0x2c
42 #define R2D_MT9V011_RED_GAIN 0x2d
43 #define R2E_MT9V011_GREEN_2_GAIN 0x2e
44 #define R35_MT9V011_GLOBAL_GAIN 0x35
45 #define RF1_MT9V011_CHIP_ENABLE 0xf1
47 #define MT9V011_VERSION 0x8232
48 #define MT9V011_REV_B_VERSION 0x8243
50 struct mt9v011 {
51 struct v4l2_subdev sd;
52 #ifdef CONFIG_MEDIA_CONTROLLER
53 struct media_pad pad;
54 #endif
55 struct v4l2_ctrl_handler ctrls;
56 unsigned width, height;
57 unsigned xtal;
58 unsigned hflip:1;
59 unsigned vflip:1;
61 u16 global_gain, exposure;
62 s16 red_bal, blue_bal;
65 static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
67 return container_of(sd, struct mt9v011, sd);
70 static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
72 struct i2c_client *c = v4l2_get_subdevdata(sd);
73 __be16 buffer;
74 int rc, val;
76 rc = i2c_master_send(c, &addr, 1);
77 if (rc != 1)
78 v4l2_dbg(0, debug, sd,
79 "i2c i/o error: rc == %d (should be 1)\n", rc);
81 msleep(10);
83 rc = i2c_master_recv(c, (char *)&buffer, 2);
84 if (rc != 2)
85 v4l2_dbg(0, debug, sd,
86 "i2c i/o error: rc == %d (should be 2)\n", rc);
88 val = be16_to_cpu(buffer);
90 v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
92 return val;
95 static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
96 u16 value)
98 struct i2c_client *c = v4l2_get_subdevdata(sd);
99 unsigned char buffer[3];
100 int rc;
102 buffer[0] = addr;
103 buffer[1] = value >> 8;
104 buffer[2] = value & 0xff;
106 v4l2_dbg(2, debug, sd,
107 "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
108 rc = i2c_master_send(c, buffer, 3);
109 if (rc != 3)
110 v4l2_dbg(0, debug, sd,
111 "i2c i/o error: rc == %d (should be 3)\n", rc);
115 struct i2c_reg_value {
116 unsigned char reg;
117 u16 value;
121 * Values used at the original driver
122 * Some values are marked as Reserved at the datasheet
124 static const struct i2c_reg_value mt9v011_init_default[] = {
125 { R0D_MT9V011_RESET, 0x0001 },
126 { R0D_MT9V011_RESET, 0x0000 },
128 { R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
129 { R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
131 { R0A_MT9V011_CLK_SPEED, 0x0000 },
132 { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
134 { R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */
138 static u16 calc_mt9v011_gain(s16 lineargain)
141 u16 digitalgain = 0;
142 u16 analogmult = 0;
143 u16 analoginit = 0;
145 if (lineargain < 0)
146 lineargain = 0;
148 /* recommended minimum */
149 lineargain += 0x0020;
151 if (lineargain > 2047)
152 lineargain = 2047;
154 if (lineargain > 1023) {
155 digitalgain = 3;
156 analogmult = 3;
157 analoginit = lineargain / 16;
158 } else if (lineargain > 511) {
159 digitalgain = 1;
160 analogmult = 3;
161 analoginit = lineargain / 8;
162 } else if (lineargain > 255) {
163 analogmult = 3;
164 analoginit = lineargain / 4;
165 } else if (lineargain > 127) {
166 analogmult = 1;
167 analoginit = lineargain / 2;
168 } else
169 analoginit = lineargain;
171 return analoginit + (analogmult << 7) + (digitalgain << 9);
175 static void set_balance(struct v4l2_subdev *sd)
177 struct mt9v011 *core = to_mt9v011(sd);
178 u16 green_gain, blue_gain, red_gain;
179 u16 exposure;
180 s16 bal;
182 exposure = core->exposure;
184 green_gain = calc_mt9v011_gain(core->global_gain);
186 bal = core->global_gain;
187 bal += (core->blue_bal * core->global_gain / (1 << 7));
188 blue_gain = calc_mt9v011_gain(bal);
190 bal = core->global_gain;
191 bal += (core->red_bal * core->global_gain / (1 << 7));
192 red_gain = calc_mt9v011_gain(bal);
194 mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
195 mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
196 mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
197 mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
198 mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
201 static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
203 struct mt9v011 *core = to_mt9v011(sd);
204 unsigned height, width, hblank, vblank, speed;
205 unsigned row_time, t_time;
206 u64 frames_per_ms;
207 unsigned tmp;
209 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
210 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
211 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
212 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
213 speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
215 row_time = (width + 113 + hblank) * (speed + 2);
216 t_time = row_time * (height + vblank + 1);
218 frames_per_ms = core->xtal * 1000l;
219 do_div(frames_per_ms, t_time);
220 tmp = frames_per_ms;
222 v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
223 tmp / 1000, tmp % 1000, t_time);
225 if (numerator && denominator) {
226 *numerator = 1000;
227 *denominator = (u32)frames_per_ms;
231 static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
233 struct mt9v011 *core = to_mt9v011(sd);
234 unsigned height, width, hblank, vblank;
235 unsigned row_time, line_time;
236 u64 t_time, speed;
238 /* Avoid bogus calculus */
239 if (!numerator || !denominator)
240 return 0;
242 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
243 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
244 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
245 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
247 row_time = width + 113 + hblank;
248 line_time = height + vblank + 1;
250 t_time = core->xtal * ((u64)numerator);
251 /* round to the closest value */
252 t_time += denominator / 2;
253 do_div(t_time, denominator);
255 speed = t_time;
256 do_div(speed, row_time * line_time);
258 /* Avoid having a negative value for speed */
259 if (speed < 2)
260 speed = 0;
261 else
262 speed -= 2;
264 /* Avoid speed overflow */
265 if (speed > 15)
266 return 15;
268 return (u16)speed;
271 static void set_res(struct v4l2_subdev *sd)
273 struct mt9v011 *core = to_mt9v011(sd);
274 unsigned vstart, hstart;
277 * The mt9v011 doesn't have scaling. So, in order to select the desired
278 * resolution, we're cropping at the middle of the sensor.
279 * hblank and vblank should be adjusted, in order to warrant that
280 * we'll preserve the line timings for 30 fps, no matter what resolution
281 * is selected.
282 * NOTE: datasheet says that width (and height) should be filled with
283 * width-1. However, this doesn't work, since one pixel per line will
284 * be missing.
287 hstart = 20 + (640 - core->width) / 2;
288 mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
289 mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
290 mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
292 vstart = 8 + (480 - core->height) / 2;
293 mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
294 mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
295 mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
297 calc_fps(sd, NULL, NULL);
300 static void set_read_mode(struct v4l2_subdev *sd)
302 struct mt9v011 *core = to_mt9v011(sd);
303 unsigned mode = 0x1000;
305 if (core->hflip)
306 mode |= 0x4000;
308 if (core->vflip)
309 mode |= 0x8000;
311 mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
314 static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
316 int i;
318 for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
319 mt9v011_write(sd, mt9v011_init_default[i].reg,
320 mt9v011_init_default[i].value);
322 set_balance(sd);
323 set_res(sd);
324 set_read_mode(sd);
326 return 0;
329 static int mt9v011_enum_mbus_code(struct v4l2_subdev *sd,
330 struct v4l2_subdev_pad_config *cfg,
331 struct v4l2_subdev_mbus_code_enum *code)
333 if (code->pad || code->index > 0)
334 return -EINVAL;
336 code->code = MEDIA_BUS_FMT_SGRBG8_1X8;
337 return 0;
340 static int mt9v011_set_fmt(struct v4l2_subdev *sd,
341 struct v4l2_subdev_pad_config *cfg,
342 struct v4l2_subdev_format *format)
344 struct v4l2_mbus_framefmt *fmt = &format->format;
345 struct mt9v011 *core = to_mt9v011(sd);
347 if (format->pad || fmt->code != MEDIA_BUS_FMT_SGRBG8_1X8)
348 return -EINVAL;
350 v4l_bound_align_image(&fmt->width, 48, 639, 1,
351 &fmt->height, 32, 480, 1, 0);
352 fmt->field = V4L2_FIELD_NONE;
353 fmt->colorspace = V4L2_COLORSPACE_SRGB;
355 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
356 core->width = fmt->width;
357 core->height = fmt->height;
359 set_res(sd);
360 } else {
361 cfg->try_fmt = *fmt;
364 return 0;
367 static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
369 struct v4l2_captureparm *cp = &parms->parm.capture;
371 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
372 return -EINVAL;
374 memset(cp, 0, sizeof(struct v4l2_captureparm));
375 cp->capability = V4L2_CAP_TIMEPERFRAME;
376 calc_fps(sd,
377 &cp->timeperframe.numerator,
378 &cp->timeperframe.denominator);
380 return 0;
383 static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
385 struct v4l2_captureparm *cp = &parms->parm.capture;
386 struct v4l2_fract *tpf = &cp->timeperframe;
387 u16 speed;
389 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
390 return -EINVAL;
391 if (cp->extendedmode != 0)
392 return -EINVAL;
394 speed = calc_speed(sd, tpf->numerator, tpf->denominator);
396 mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
397 v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
399 /* Recalculate and update fps info */
400 calc_fps(sd, &tpf->numerator, &tpf->denominator);
402 return 0;
405 #ifdef CONFIG_VIDEO_ADV_DEBUG
406 static int mt9v011_g_register(struct v4l2_subdev *sd,
407 struct v4l2_dbg_register *reg)
409 reg->val = mt9v011_read(sd, reg->reg & 0xff);
410 reg->size = 2;
412 return 0;
415 static int mt9v011_s_register(struct v4l2_subdev *sd,
416 const struct v4l2_dbg_register *reg)
418 mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
420 return 0;
422 #endif
424 static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
426 struct mt9v011 *core =
427 container_of(ctrl->handler, struct mt9v011, ctrls);
428 struct v4l2_subdev *sd = &core->sd;
430 switch (ctrl->id) {
431 case V4L2_CID_GAIN:
432 core->global_gain = ctrl->val;
433 break;
434 case V4L2_CID_EXPOSURE:
435 core->exposure = ctrl->val;
436 break;
437 case V4L2_CID_RED_BALANCE:
438 core->red_bal = ctrl->val;
439 break;
440 case V4L2_CID_BLUE_BALANCE:
441 core->blue_bal = ctrl->val;
442 break;
443 case V4L2_CID_HFLIP:
444 core->hflip = ctrl->val;
445 set_read_mode(sd);
446 return 0;
447 case V4L2_CID_VFLIP:
448 core->vflip = ctrl->val;
449 set_read_mode(sd);
450 return 0;
451 default:
452 return -EINVAL;
455 set_balance(sd);
456 return 0;
459 static const struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
460 .s_ctrl = mt9v011_s_ctrl,
463 static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
464 .reset = mt9v011_reset,
465 #ifdef CONFIG_VIDEO_ADV_DEBUG
466 .g_register = mt9v011_g_register,
467 .s_register = mt9v011_s_register,
468 #endif
471 static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
472 .g_parm = mt9v011_g_parm,
473 .s_parm = mt9v011_s_parm,
476 static const struct v4l2_subdev_pad_ops mt9v011_pad_ops = {
477 .enum_mbus_code = mt9v011_enum_mbus_code,
478 .set_fmt = mt9v011_set_fmt,
481 static const struct v4l2_subdev_ops mt9v011_ops = {
482 .core = &mt9v011_core_ops,
483 .video = &mt9v011_video_ops,
484 .pad = &mt9v011_pad_ops,
488 /****************************************************************************
489 I2C Client & Driver
490 ****************************************************************************/
492 static int mt9v011_probe(struct i2c_client *c,
493 const struct i2c_device_id *id)
495 u16 version;
496 struct mt9v011 *core;
497 struct v4l2_subdev *sd;
498 #ifdef CONFIG_MEDIA_CONTROLLER
499 int ret;
500 #endif
502 /* Check if the adapter supports the needed features */
503 if (!i2c_check_functionality(c->adapter,
504 I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
505 return -EIO;
507 core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
508 if (!core)
509 return -ENOMEM;
511 sd = &core->sd;
512 v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
514 #ifdef CONFIG_MEDIA_CONTROLLER
515 core->pad.flags = MEDIA_PAD_FL_SOURCE;
516 sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
518 ret = media_entity_pads_init(&sd->entity, 1, &core->pad);
519 if (ret < 0)
520 return ret;
521 #endif
523 /* Check if the sensor is really a MT9V011 */
524 version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
525 if ((version != MT9V011_VERSION) &&
526 (version != MT9V011_REV_B_VERSION)) {
527 v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
528 version);
529 return -EINVAL;
532 v4l2_ctrl_handler_init(&core->ctrls, 5);
533 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
534 V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
535 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
536 V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
537 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
538 V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
539 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
540 V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
541 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
542 V4L2_CID_HFLIP, 0, 1, 1, 0);
543 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
544 V4L2_CID_VFLIP, 0, 1, 1, 0);
546 if (core->ctrls.error) {
547 int ret = core->ctrls.error;
549 v4l2_err(sd, "control initialization error %d\n", ret);
550 v4l2_ctrl_handler_free(&core->ctrls);
551 return ret;
553 core->sd.ctrl_handler = &core->ctrls;
555 core->global_gain = 0x0024;
556 core->exposure = 0x01fc;
557 core->width = 640;
558 core->height = 480;
559 core->xtal = 27000000; /* Hz */
561 if (c->dev.platform_data) {
562 struct mt9v011_platform_data *pdata = c->dev.platform_data;
564 core->xtal = pdata->xtal;
565 v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
566 core->xtal / 1000000, (core->xtal / 1000) % 1000);
569 v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
570 c->addr << 1, c->adapter->name, version);
572 return 0;
575 static int mt9v011_remove(struct i2c_client *c)
577 struct v4l2_subdev *sd = i2c_get_clientdata(c);
578 struct mt9v011 *core = to_mt9v011(sd);
580 v4l2_dbg(1, debug, sd,
581 "mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
582 c->addr << 1);
584 v4l2_device_unregister_subdev(sd);
585 v4l2_ctrl_handler_free(&core->ctrls);
587 return 0;
590 /* ----------------------------------------------------------------------- */
592 static const struct i2c_device_id mt9v011_id[] = {
593 { "mt9v011", 0 },
596 MODULE_DEVICE_TABLE(i2c, mt9v011_id);
598 static struct i2c_driver mt9v011_driver = {
599 .driver = {
600 .name = "mt9v011",
602 .probe = mt9v011_probe,
603 .remove = mt9v011_remove,
604 .id_table = mt9v011_id,
607 module_i2c_driver(mt9v011_driver);