xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / media / rc / rc-main.c
blob1db8d38fed7ce56c54be9f105f82ac66971ea797
1 // SPDX-License-Identifier: GPL-2.0
2 // rc-main.c - Remote Controller core module
3 //
4 // Copyright (C) 2009-2010 by Mauro Carvalho Chehab
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <media/rc-core.h>
9 #include <linux/bsearch.h>
10 #include <linux/spinlock.h>
11 #include <linux/delay.h>
12 #include <linux/input.h>
13 #include <linux/leds.h>
14 #include <linux/slab.h>
15 #include <linux/idr.h>
16 #include <linux/device.h>
17 #include <linux/module.h>
18 #include "rc-core-priv.h"
20 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
21 #define IR_TAB_MIN_SIZE 256
22 #define IR_TAB_MAX_SIZE 8192
24 static const struct {
25 const char *name;
26 unsigned int repeat_period;
27 unsigned int scancode_bits;
28 } protocols[] = {
29 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
30 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
31 [RC_PROTO_RC5] = { .name = "rc-5",
32 .scancode_bits = 0x1f7f, .repeat_period = 250 },
33 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
34 .scancode_bits = 0x1f7f3f, .repeat_period = 250 },
35 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
36 .scancode_bits = 0x2fff, .repeat_period = 250 },
37 [RC_PROTO_JVC] = { .name = "jvc",
38 .scancode_bits = 0xffff, .repeat_period = 250 },
39 [RC_PROTO_SONY12] = { .name = "sony-12",
40 .scancode_bits = 0x1f007f, .repeat_period = 250 },
41 [RC_PROTO_SONY15] = { .name = "sony-15",
42 .scancode_bits = 0xff007f, .repeat_period = 250 },
43 [RC_PROTO_SONY20] = { .name = "sony-20",
44 .scancode_bits = 0x1fff7f, .repeat_period = 250 },
45 [RC_PROTO_NEC] = { .name = "nec",
46 .scancode_bits = 0xffff, .repeat_period = 250 },
47 [RC_PROTO_NECX] = { .name = "nec-x",
48 .scancode_bits = 0xffffff, .repeat_period = 250 },
49 [RC_PROTO_NEC32] = { .name = "nec-32",
50 .scancode_bits = 0xffffffff, .repeat_period = 250 },
51 [RC_PROTO_SANYO] = { .name = "sanyo",
52 .scancode_bits = 0x1fffff, .repeat_period = 250 },
53 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
54 .scancode_bits = 0xffff, .repeat_period = 250 },
55 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
56 .scancode_bits = 0x1fffff, .repeat_period = 250 },
57 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
58 .scancode_bits = 0xffff, .repeat_period = 250 },
59 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
60 .scancode_bits = 0xfffff, .repeat_period = 250 },
61 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
62 .scancode_bits = 0xffffff, .repeat_period = 250 },
63 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
64 .scancode_bits = 0xffffffff, .repeat_period = 250 },
65 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
66 .scancode_bits = 0xffff7fff, .repeat_period = 250 },
67 [RC_PROTO_SHARP] = { .name = "sharp",
68 .scancode_bits = 0x1fff, .repeat_period = 250 },
69 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
70 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
73 /* Used to keep track of known keymaps */
74 static LIST_HEAD(rc_map_list);
75 static DEFINE_SPINLOCK(rc_map_lock);
76 static struct led_trigger *led_feedback;
78 /* Used to keep track of rc devices */
79 static DEFINE_IDA(rc_ida);
81 static struct rc_map_list *seek_rc_map(const char *name)
83 struct rc_map_list *map = NULL;
85 spin_lock(&rc_map_lock);
86 list_for_each_entry(map, &rc_map_list, list) {
87 if (!strcmp(name, map->map.name)) {
88 spin_unlock(&rc_map_lock);
89 return map;
92 spin_unlock(&rc_map_lock);
94 return NULL;
97 struct rc_map *rc_map_get(const char *name)
100 struct rc_map_list *map;
102 map = seek_rc_map(name);
103 #ifdef CONFIG_MODULES
104 if (!map) {
105 int rc = request_module("%s", name);
106 if (rc < 0) {
107 pr_err("Couldn't load IR keymap %s\n", name);
108 return NULL;
110 msleep(20); /* Give some time for IR to register */
112 map = seek_rc_map(name);
114 #endif
115 if (!map) {
116 pr_err("IR keymap %s not found\n", name);
117 return NULL;
120 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
122 return &map->map;
124 EXPORT_SYMBOL_GPL(rc_map_get);
126 int rc_map_register(struct rc_map_list *map)
128 spin_lock(&rc_map_lock);
129 list_add_tail(&map->list, &rc_map_list);
130 spin_unlock(&rc_map_lock);
131 return 0;
133 EXPORT_SYMBOL_GPL(rc_map_register);
135 void rc_map_unregister(struct rc_map_list *map)
137 spin_lock(&rc_map_lock);
138 list_del(&map->list);
139 spin_unlock(&rc_map_lock);
141 EXPORT_SYMBOL_GPL(rc_map_unregister);
144 static struct rc_map_table empty[] = {
145 { 0x2a, KEY_COFFEE },
148 static struct rc_map_list empty_map = {
149 .map = {
150 .scan = empty,
151 .size = ARRAY_SIZE(empty),
152 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
153 .name = RC_MAP_EMPTY,
158 * ir_create_table() - initializes a scancode table
159 * @rc_map: the rc_map to initialize
160 * @name: name to assign to the table
161 * @rc_proto: ir type to assign to the new table
162 * @size: initial size of the table
164 * This routine will initialize the rc_map and will allocate
165 * memory to hold at least the specified number of elements.
167 * return: zero on success or a negative error code
169 static int ir_create_table(struct rc_map *rc_map,
170 const char *name, u64 rc_proto, size_t size)
172 rc_map->name = kstrdup(name, GFP_KERNEL);
173 if (!rc_map->name)
174 return -ENOMEM;
175 rc_map->rc_proto = rc_proto;
176 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
177 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
178 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
179 if (!rc_map->scan) {
180 kfree(rc_map->name);
181 rc_map->name = NULL;
182 return -ENOMEM;
185 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
186 rc_map->size, rc_map->alloc);
187 return 0;
191 * ir_free_table() - frees memory allocated by a scancode table
192 * @rc_map: the table whose mappings need to be freed
194 * This routine will free memory alloctaed for key mappings used by given
195 * scancode table.
197 static void ir_free_table(struct rc_map *rc_map)
199 rc_map->size = 0;
200 kfree(rc_map->name);
201 rc_map->name = NULL;
202 kfree(rc_map->scan);
203 rc_map->scan = NULL;
207 * ir_resize_table() - resizes a scancode table if necessary
208 * @rc_map: the rc_map to resize
209 * @gfp_flags: gfp flags to use when allocating memory
211 * This routine will shrink the rc_map if it has lots of
212 * unused entries and grow it if it is full.
214 * return: zero on success or a negative error code
216 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
218 unsigned int oldalloc = rc_map->alloc;
219 unsigned int newalloc = oldalloc;
220 struct rc_map_table *oldscan = rc_map->scan;
221 struct rc_map_table *newscan;
223 if (rc_map->size == rc_map->len) {
224 /* All entries in use -> grow keytable */
225 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
226 return -ENOMEM;
228 newalloc *= 2;
229 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
232 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
233 /* Less than 1/3 of entries in use -> shrink keytable */
234 newalloc /= 2;
235 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
238 if (newalloc == oldalloc)
239 return 0;
241 newscan = kmalloc(newalloc, gfp_flags);
242 if (!newscan) {
243 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
244 return -ENOMEM;
247 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
248 rc_map->scan = newscan;
249 rc_map->alloc = newalloc;
250 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
251 kfree(oldscan);
252 return 0;
256 * ir_update_mapping() - set a keycode in the scancode->keycode table
257 * @dev: the struct rc_dev device descriptor
258 * @rc_map: scancode table to be adjusted
259 * @index: index of the mapping that needs to be updated
260 * @new_keycode: the desired keycode
262 * This routine is used to update scancode->keycode mapping at given
263 * position.
265 * return: previous keycode assigned to the mapping
268 static unsigned int ir_update_mapping(struct rc_dev *dev,
269 struct rc_map *rc_map,
270 unsigned int index,
271 unsigned int new_keycode)
273 int old_keycode = rc_map->scan[index].keycode;
274 int i;
276 /* Did the user wish to remove the mapping? */
277 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
278 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
279 index, rc_map->scan[index].scancode);
280 rc_map->len--;
281 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
282 (rc_map->len - index) * sizeof(struct rc_map_table));
283 } else {
284 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
285 index,
286 old_keycode == KEY_RESERVED ? "New" : "Replacing",
287 rc_map->scan[index].scancode, new_keycode);
288 rc_map->scan[index].keycode = new_keycode;
289 __set_bit(new_keycode, dev->input_dev->keybit);
292 if (old_keycode != KEY_RESERVED) {
293 /* A previous mapping was updated... */
294 __clear_bit(old_keycode, dev->input_dev->keybit);
295 /* ... but another scancode might use the same keycode */
296 for (i = 0; i < rc_map->len; i++) {
297 if (rc_map->scan[i].keycode == old_keycode) {
298 __set_bit(old_keycode, dev->input_dev->keybit);
299 break;
303 /* Possibly shrink the keytable, failure is not a problem */
304 ir_resize_table(rc_map, GFP_ATOMIC);
307 return old_keycode;
311 * ir_establish_scancode() - set a keycode in the scancode->keycode table
312 * @dev: the struct rc_dev device descriptor
313 * @rc_map: scancode table to be searched
314 * @scancode: the desired scancode
315 * @resize: controls whether we allowed to resize the table to
316 * accommodate not yet present scancodes
318 * This routine is used to locate given scancode in rc_map.
319 * If scancode is not yet present the routine will allocate a new slot
320 * for it.
322 * return: index of the mapping containing scancode in question
323 * or -1U in case of failure.
325 static unsigned int ir_establish_scancode(struct rc_dev *dev,
326 struct rc_map *rc_map,
327 unsigned int scancode,
328 bool resize)
330 unsigned int i;
333 * Unfortunately, some hardware-based IR decoders don't provide
334 * all bits for the complete IR code. In general, they provide only
335 * the command part of the IR code. Yet, as it is possible to replace
336 * the provided IR with another one, it is needed to allow loading
337 * IR tables from other remotes. So, we support specifying a mask to
338 * indicate the valid bits of the scancodes.
340 if (dev->scancode_mask)
341 scancode &= dev->scancode_mask;
343 /* First check if we already have a mapping for this ir command */
344 for (i = 0; i < rc_map->len; i++) {
345 if (rc_map->scan[i].scancode == scancode)
346 return i;
348 /* Keytable is sorted from lowest to highest scancode */
349 if (rc_map->scan[i].scancode >= scancode)
350 break;
353 /* No previous mapping found, we might need to grow the table */
354 if (rc_map->size == rc_map->len) {
355 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
356 return -1U;
359 /* i is the proper index to insert our new keycode */
360 if (i < rc_map->len)
361 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
362 (rc_map->len - i) * sizeof(struct rc_map_table));
363 rc_map->scan[i].scancode = scancode;
364 rc_map->scan[i].keycode = KEY_RESERVED;
365 rc_map->len++;
367 return i;
371 * ir_setkeycode() - set a keycode in the scancode->keycode table
372 * @idev: the struct input_dev device descriptor
373 * @ke: Input keymap entry
374 * @old_keycode: result
376 * This routine is used to handle evdev EVIOCSKEY ioctl.
378 * return: -EINVAL if the keycode could not be inserted, otherwise zero.
380 static int ir_setkeycode(struct input_dev *idev,
381 const struct input_keymap_entry *ke,
382 unsigned int *old_keycode)
384 struct rc_dev *rdev = input_get_drvdata(idev);
385 struct rc_map *rc_map = &rdev->rc_map;
386 unsigned int index;
387 unsigned int scancode;
388 int retval = 0;
389 unsigned long flags;
391 spin_lock_irqsave(&rc_map->lock, flags);
393 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
394 index = ke->index;
395 if (index >= rc_map->len) {
396 retval = -EINVAL;
397 goto out;
399 } else {
400 retval = input_scancode_to_scalar(ke, &scancode);
401 if (retval)
402 goto out;
404 index = ir_establish_scancode(rdev, rc_map, scancode, true);
405 if (index >= rc_map->len) {
406 retval = -ENOMEM;
407 goto out;
411 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
413 out:
414 spin_unlock_irqrestore(&rc_map->lock, flags);
415 return retval;
419 * ir_setkeytable() - sets several entries in the scancode->keycode table
420 * @dev: the struct rc_dev device descriptor
421 * @from: the struct rc_map to copy entries from
423 * This routine is used to handle table initialization.
425 * return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
427 static int ir_setkeytable(struct rc_dev *dev,
428 const struct rc_map *from)
430 struct rc_map *rc_map = &dev->rc_map;
431 unsigned int i, index;
432 int rc;
434 rc = ir_create_table(rc_map, from->name,
435 from->rc_proto, from->size);
436 if (rc)
437 return rc;
439 for (i = 0; i < from->size; i++) {
440 index = ir_establish_scancode(dev, rc_map,
441 from->scan[i].scancode, false);
442 if (index >= rc_map->len) {
443 rc = -ENOMEM;
444 break;
447 ir_update_mapping(dev, rc_map, index,
448 from->scan[i].keycode);
451 if (rc)
452 ir_free_table(rc_map);
454 return rc;
457 static int rc_map_cmp(const void *key, const void *elt)
459 const unsigned int *scancode = key;
460 const struct rc_map_table *e = elt;
462 if (*scancode < e->scancode)
463 return -1;
464 else if (*scancode > e->scancode)
465 return 1;
466 return 0;
470 * ir_lookup_by_scancode() - locate mapping by scancode
471 * @rc_map: the struct rc_map to search
472 * @scancode: scancode to look for in the table
474 * This routine performs binary search in RC keykeymap table for
475 * given scancode.
477 * return: index in the table, -1U if not found
479 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
480 unsigned int scancode)
482 struct rc_map_table *res;
484 res = bsearch(&scancode, rc_map->scan, rc_map->len,
485 sizeof(struct rc_map_table), rc_map_cmp);
486 if (!res)
487 return -1U;
488 else
489 return res - rc_map->scan;
493 * ir_getkeycode() - get a keycode from the scancode->keycode table
494 * @idev: the struct input_dev device descriptor
495 * @ke: Input keymap entry
497 * This routine is used to handle evdev EVIOCGKEY ioctl.
499 * return: always returns zero.
501 static int ir_getkeycode(struct input_dev *idev,
502 struct input_keymap_entry *ke)
504 struct rc_dev *rdev = input_get_drvdata(idev);
505 struct rc_map *rc_map = &rdev->rc_map;
506 struct rc_map_table *entry;
507 unsigned long flags;
508 unsigned int index;
509 unsigned int scancode;
510 int retval;
512 spin_lock_irqsave(&rc_map->lock, flags);
514 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
515 index = ke->index;
516 } else {
517 retval = input_scancode_to_scalar(ke, &scancode);
518 if (retval)
519 goto out;
521 index = ir_lookup_by_scancode(rc_map, scancode);
524 if (index < rc_map->len) {
525 entry = &rc_map->scan[index];
527 ke->index = index;
528 ke->keycode = entry->keycode;
529 ke->len = sizeof(entry->scancode);
530 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
532 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
534 * We do not really know the valid range of scancodes
535 * so let's respond with KEY_RESERVED to anything we
536 * do not have mapping for [yet].
538 ke->index = index;
539 ke->keycode = KEY_RESERVED;
540 } else {
541 retval = -EINVAL;
542 goto out;
545 retval = 0;
547 out:
548 spin_unlock_irqrestore(&rc_map->lock, flags);
549 return retval;
553 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
554 * @dev: the struct rc_dev descriptor of the device
555 * @scancode: the scancode to look for
557 * This routine is used by drivers which need to convert a scancode to a
558 * keycode. Normally it should not be used since drivers should have no
559 * interest in keycodes.
561 * return: the corresponding keycode, or KEY_RESERVED
563 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
565 struct rc_map *rc_map = &dev->rc_map;
566 unsigned int keycode;
567 unsigned int index;
568 unsigned long flags;
570 spin_lock_irqsave(&rc_map->lock, flags);
572 index = ir_lookup_by_scancode(rc_map, scancode);
573 keycode = index < rc_map->len ?
574 rc_map->scan[index].keycode : KEY_RESERVED;
576 spin_unlock_irqrestore(&rc_map->lock, flags);
578 if (keycode != KEY_RESERVED)
579 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
580 dev->device_name, scancode, keycode);
582 return keycode;
584 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
587 * ir_do_keyup() - internal function to signal the release of a keypress
588 * @dev: the struct rc_dev descriptor of the device
589 * @sync: whether or not to call input_sync
591 * This function is used internally to release a keypress, it must be
592 * called with keylock held.
594 static void ir_do_keyup(struct rc_dev *dev, bool sync)
596 if (!dev->keypressed)
597 return;
599 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
600 del_timer(&dev->timer_repeat);
601 input_report_key(dev->input_dev, dev->last_keycode, 0);
602 led_trigger_event(led_feedback, LED_OFF);
603 if (sync)
604 input_sync(dev->input_dev);
605 dev->keypressed = false;
609 * rc_keyup() - signals the release of a keypress
610 * @dev: the struct rc_dev descriptor of the device
612 * This routine is used to signal that a key has been released on the
613 * remote control.
615 void rc_keyup(struct rc_dev *dev)
617 unsigned long flags;
619 spin_lock_irqsave(&dev->keylock, flags);
620 ir_do_keyup(dev, true);
621 spin_unlock_irqrestore(&dev->keylock, flags);
623 EXPORT_SYMBOL_GPL(rc_keyup);
626 * ir_timer_keyup() - generates a keyup event after a timeout
628 * @t: a pointer to the struct timer_list
630 * This routine will generate a keyup event some time after a keydown event
631 * is generated when no further activity has been detected.
633 static void ir_timer_keyup(struct timer_list *t)
635 struct rc_dev *dev = from_timer(dev, t, timer_keyup);
636 unsigned long flags;
639 * ir->keyup_jiffies is used to prevent a race condition if a
640 * hardware interrupt occurs at this point and the keyup timer
641 * event is moved further into the future as a result.
643 * The timer will then be reactivated and this function called
644 * again in the future. We need to exit gracefully in that case
645 * to allow the input subsystem to do its auto-repeat magic or
646 * a keyup event might follow immediately after the keydown.
648 spin_lock_irqsave(&dev->keylock, flags);
649 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
650 ir_do_keyup(dev, true);
651 spin_unlock_irqrestore(&dev->keylock, flags);
655 * ir_timer_repeat() - generates a repeat event after a timeout
657 * @t: a pointer to the struct timer_list
659 * This routine will generate a soft repeat event every REP_PERIOD
660 * milliseconds.
662 static void ir_timer_repeat(struct timer_list *t)
664 struct rc_dev *dev = from_timer(dev, t, timer_repeat);
665 struct input_dev *input = dev->input_dev;
666 unsigned long flags;
668 spin_lock_irqsave(&dev->keylock, flags);
669 if (dev->keypressed) {
670 input_event(input, EV_KEY, dev->last_keycode, 2);
671 input_sync(input);
672 if (input->rep[REP_PERIOD])
673 mod_timer(&dev->timer_repeat, jiffies +
674 msecs_to_jiffies(input->rep[REP_PERIOD]));
676 spin_unlock_irqrestore(&dev->keylock, flags);
680 * rc_repeat() - signals that a key is still pressed
681 * @dev: the struct rc_dev descriptor of the device
683 * This routine is used by IR decoders when a repeat message which does
684 * not include the necessary bits to reproduce the scancode has been
685 * received.
687 void rc_repeat(struct rc_dev *dev)
689 unsigned long flags;
690 unsigned int timeout = protocols[dev->last_protocol].repeat_period;
691 struct lirc_scancode sc = {
692 .scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
693 .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
694 .flags = LIRC_SCANCODE_FLAG_REPEAT |
695 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
698 ir_lirc_scancode_event(dev, &sc);
700 spin_lock_irqsave(&dev->keylock, flags);
702 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
703 input_sync(dev->input_dev);
705 if (dev->keypressed) {
706 dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
707 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
710 spin_unlock_irqrestore(&dev->keylock, flags);
712 EXPORT_SYMBOL_GPL(rc_repeat);
715 * ir_do_keydown() - internal function to process a keypress
716 * @dev: the struct rc_dev descriptor of the device
717 * @protocol: the protocol of the keypress
718 * @scancode: the scancode of the keypress
719 * @keycode: the keycode of the keypress
720 * @toggle: the toggle value of the keypress
722 * This function is used internally to register a keypress, it must be
723 * called with keylock held.
725 static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
726 u32 scancode, u32 keycode, u8 toggle)
728 bool new_event = (!dev->keypressed ||
729 dev->last_protocol != protocol ||
730 dev->last_scancode != scancode ||
731 dev->last_toggle != toggle);
732 struct lirc_scancode sc = {
733 .scancode = scancode, .rc_proto = protocol,
734 .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
735 .keycode = keycode
738 ir_lirc_scancode_event(dev, &sc);
740 if (new_event && dev->keypressed)
741 ir_do_keyup(dev, false);
743 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
745 dev->last_protocol = protocol;
746 dev->last_scancode = scancode;
747 dev->last_toggle = toggle;
748 dev->last_keycode = keycode;
750 if (new_event && keycode != KEY_RESERVED) {
751 /* Register a keypress */
752 dev->keypressed = true;
754 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
755 dev->device_name, keycode, protocol, scancode);
756 input_report_key(dev->input_dev, keycode, 1);
758 led_trigger_event(led_feedback, LED_FULL);
762 * For CEC, start sending repeat messages as soon as the first
763 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
764 * is non-zero. Otherwise, the input layer will generate repeat
765 * messages.
767 if (!new_event && keycode != KEY_RESERVED &&
768 dev->allowed_protocols == RC_PROTO_BIT_CEC &&
769 !timer_pending(&dev->timer_repeat) &&
770 dev->input_dev->rep[REP_PERIOD] &&
771 !dev->input_dev->rep[REP_DELAY]) {
772 input_event(dev->input_dev, EV_KEY, keycode, 2);
773 mod_timer(&dev->timer_repeat, jiffies +
774 msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
777 input_sync(dev->input_dev);
781 * rc_keydown() - generates input event for a key press
782 * @dev: the struct rc_dev descriptor of the device
783 * @protocol: the protocol for the keypress
784 * @scancode: the scancode for the keypress
785 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
786 * support toggle values, this should be set to zero)
788 * This routine is used to signal that a key has been pressed on the
789 * remote control.
791 void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
792 u8 toggle)
794 unsigned long flags;
795 u32 keycode = rc_g_keycode_from_table(dev, scancode);
797 spin_lock_irqsave(&dev->keylock, flags);
798 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
800 if (dev->keypressed) {
801 dev->keyup_jiffies = jiffies +
802 msecs_to_jiffies(protocols[protocol].repeat_period);
803 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
805 spin_unlock_irqrestore(&dev->keylock, flags);
807 EXPORT_SYMBOL_GPL(rc_keydown);
810 * rc_keydown_notimeout() - generates input event for a key press without
811 * an automatic keyup event at a later time
812 * @dev: the struct rc_dev descriptor of the device
813 * @protocol: the protocol for the keypress
814 * @scancode: the scancode for the keypress
815 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
816 * support toggle values, this should be set to zero)
818 * This routine is used to signal that a key has been pressed on the
819 * remote control. The driver must manually call rc_keyup() at a later stage.
821 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
822 u32 scancode, u8 toggle)
824 unsigned long flags;
825 u32 keycode = rc_g_keycode_from_table(dev, scancode);
827 spin_lock_irqsave(&dev->keylock, flags);
828 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
829 spin_unlock_irqrestore(&dev->keylock, flags);
831 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
834 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
835 * For nec, it should do the opposite of ir_nec_bytes_to_scancode()
836 * @proto: protocol
837 * @scancode: scancode
839 bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
841 switch (proto) {
843 * NECX has a 16-bit address; if the lower 8 bits match the upper
844 * 8 bits inverted, then the address would match regular nec.
846 case RC_PROTO_NECX:
847 if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
848 return false;
849 break;
851 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
852 * of the command match the upper 8 bits inverted, then it would
853 * be either NEC or NECX.
855 case RC_PROTO_NEC32:
856 if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
857 return false;
858 break;
860 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
861 * is regular mode-6a 32 bit
863 case RC_PROTO_RC6_MCE:
864 if ((scancode & 0xffff0000) != 0x800f0000)
865 return false;
866 break;
867 case RC_PROTO_RC6_6A_32:
868 if ((scancode & 0xffff0000) == 0x800f0000)
869 return false;
870 break;
871 default:
872 break;
875 return true;
879 * rc_validate_filter() - checks that the scancode and mask are valid and
880 * provides sensible defaults
881 * @dev: the struct rc_dev descriptor of the device
882 * @filter: the scancode and mask
884 * return: 0 or -EINVAL if the filter is not valid
886 static int rc_validate_filter(struct rc_dev *dev,
887 struct rc_scancode_filter *filter)
889 u32 mask, s = filter->data;
890 enum rc_proto protocol = dev->wakeup_protocol;
892 if (protocol >= ARRAY_SIZE(protocols))
893 return -EINVAL;
895 mask = protocols[protocol].scancode_bits;
897 if (!rc_validate_scancode(protocol, s))
898 return -EINVAL;
900 filter->data &= mask;
901 filter->mask &= mask;
904 * If we have to raw encode the IR for wakeup, we cannot have a mask
906 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
907 return -EINVAL;
909 return 0;
912 int rc_open(struct rc_dev *rdev)
914 int rval = 0;
916 if (!rdev)
917 return -EINVAL;
919 mutex_lock(&rdev->lock);
921 if (!rdev->registered) {
922 rval = -ENODEV;
923 } else {
924 if (!rdev->users++ && rdev->open)
925 rval = rdev->open(rdev);
927 if (rval)
928 rdev->users--;
931 mutex_unlock(&rdev->lock);
933 return rval;
936 static int ir_open(struct input_dev *idev)
938 struct rc_dev *rdev = input_get_drvdata(idev);
940 return rc_open(rdev);
943 void rc_close(struct rc_dev *rdev)
945 if (rdev) {
946 mutex_lock(&rdev->lock);
948 if (!--rdev->users && rdev->close && rdev->registered)
949 rdev->close(rdev);
951 mutex_unlock(&rdev->lock);
955 static void ir_close(struct input_dev *idev)
957 struct rc_dev *rdev = input_get_drvdata(idev);
958 rc_close(rdev);
961 /* class for /sys/class/rc */
962 static char *rc_devnode(struct device *dev, umode_t *mode)
964 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
967 static struct class rc_class = {
968 .name = "rc",
969 .devnode = rc_devnode,
973 * These are the protocol textual descriptions that are
974 * used by the sysfs protocols file. Note that the order
975 * of the entries is relevant.
977 static const struct {
978 u64 type;
979 const char *name;
980 const char *module_name;
981 } proto_names[] = {
982 { RC_PROTO_BIT_NONE, "none", NULL },
983 { RC_PROTO_BIT_OTHER, "other", NULL },
984 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
985 { RC_PROTO_BIT_RC5 |
986 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
987 { RC_PROTO_BIT_NEC |
988 RC_PROTO_BIT_NECX |
989 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
990 { RC_PROTO_BIT_RC6_0 |
991 RC_PROTO_BIT_RC6_6A_20 |
992 RC_PROTO_BIT_RC6_6A_24 |
993 RC_PROTO_BIT_RC6_6A_32 |
994 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
995 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
996 { RC_PROTO_BIT_SONY12 |
997 RC_PROTO_BIT_SONY15 |
998 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
999 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
1000 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
1001 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
1002 { RC_PROTO_BIT_MCIR2_KBD |
1003 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
1004 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
1005 { RC_PROTO_BIT_CEC, "cec", NULL },
1009 * struct rc_filter_attribute - Device attribute relating to a filter type.
1010 * @attr: Device attribute.
1011 * @type: Filter type.
1012 * @mask: false for filter value, true for filter mask.
1014 struct rc_filter_attribute {
1015 struct device_attribute attr;
1016 enum rc_filter_type type;
1017 bool mask;
1019 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1021 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
1022 struct rc_filter_attribute dev_attr_##_name = { \
1023 .attr = __ATTR(_name, _mode, _show, _store), \
1024 .type = (_type), \
1025 .mask = (_mask), \
1029 * show_protocols() - shows the current IR protocol(s)
1030 * @device: the device descriptor
1031 * @mattr: the device attribute struct
1032 * @buf: a pointer to the output buffer
1034 * This routine is a callback routine for input read the IR protocol type(s).
1035 * it is trigged by reading /sys/class/rc/rc?/protocols.
1036 * It returns the protocol names of supported protocols.
1037 * Enabled protocols are printed in brackets.
1039 * dev->lock is taken to guard against races between
1040 * store_protocols and show_protocols.
1042 static ssize_t show_protocols(struct device *device,
1043 struct device_attribute *mattr, char *buf)
1045 struct rc_dev *dev = to_rc_dev(device);
1046 u64 allowed, enabled;
1047 char *tmp = buf;
1048 int i;
1050 mutex_lock(&dev->lock);
1052 enabled = dev->enabled_protocols;
1053 allowed = dev->allowed_protocols;
1054 if (dev->raw && !allowed)
1055 allowed = ir_raw_get_allowed_protocols();
1057 mutex_unlock(&dev->lock);
1059 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1060 __func__, (long long)allowed, (long long)enabled);
1062 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1063 if (allowed & enabled & proto_names[i].type)
1064 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1065 else if (allowed & proto_names[i].type)
1066 tmp += sprintf(tmp, "%s ", proto_names[i].name);
1068 if (allowed & proto_names[i].type)
1069 allowed &= ~proto_names[i].type;
1072 #ifdef CONFIG_LIRC
1073 if (dev->driver_type == RC_DRIVER_IR_RAW)
1074 tmp += sprintf(tmp, "[lirc] ");
1075 #endif
1077 if (tmp != buf)
1078 tmp--;
1079 *tmp = '\n';
1081 return tmp + 1 - buf;
1085 * parse_protocol_change() - parses a protocol change request
1086 * @protocols: pointer to the bitmask of current protocols
1087 * @buf: pointer to the buffer with a list of changes
1089 * Writing "+proto" will add a protocol to the protocol mask.
1090 * Writing "-proto" will remove a protocol from protocol mask.
1091 * Writing "proto" will enable only "proto".
1092 * Writing "none" will disable all protocols.
1093 * Returns the number of changes performed or a negative error code.
1095 static int parse_protocol_change(u64 *protocols, const char *buf)
1097 const char *tmp;
1098 unsigned count = 0;
1099 bool enable, disable;
1100 u64 mask;
1101 int i;
1103 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1104 if (!*tmp)
1105 break;
1107 if (*tmp == '+') {
1108 enable = true;
1109 disable = false;
1110 tmp++;
1111 } else if (*tmp == '-') {
1112 enable = false;
1113 disable = true;
1114 tmp++;
1115 } else {
1116 enable = false;
1117 disable = false;
1120 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1121 if (!strcasecmp(tmp, proto_names[i].name)) {
1122 mask = proto_names[i].type;
1123 break;
1127 if (i == ARRAY_SIZE(proto_names)) {
1128 if (!strcasecmp(tmp, "lirc"))
1129 mask = 0;
1130 else {
1131 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1132 return -EINVAL;
1136 count++;
1138 if (enable)
1139 *protocols |= mask;
1140 else if (disable)
1141 *protocols &= ~mask;
1142 else
1143 *protocols = mask;
1146 if (!count) {
1147 IR_dprintk(1, "Protocol not specified\n");
1148 return -EINVAL;
1151 return count;
1154 void ir_raw_load_modules(u64 *protocols)
1156 u64 available;
1157 int i, ret;
1159 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1160 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1161 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1162 RC_PROTO_BIT_UNKNOWN))
1163 continue;
1165 available = ir_raw_get_allowed_protocols();
1166 if (!(*protocols & proto_names[i].type & ~available))
1167 continue;
1169 if (!proto_names[i].module_name) {
1170 pr_err("Can't enable IR protocol %s\n",
1171 proto_names[i].name);
1172 *protocols &= ~proto_names[i].type;
1173 continue;
1176 ret = request_module("%s", proto_names[i].module_name);
1177 if (ret < 0) {
1178 pr_err("Couldn't load IR protocol module %s\n",
1179 proto_names[i].module_name);
1180 *protocols &= ~proto_names[i].type;
1181 continue;
1183 msleep(20);
1184 available = ir_raw_get_allowed_protocols();
1185 if (!(*protocols & proto_names[i].type & ~available))
1186 continue;
1188 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1189 proto_names[i].module_name,
1190 proto_names[i].name);
1191 *protocols &= ~proto_names[i].type;
1196 * store_protocols() - changes the current/wakeup IR protocol(s)
1197 * @device: the device descriptor
1198 * @mattr: the device attribute struct
1199 * @buf: a pointer to the input buffer
1200 * @len: length of the input buffer
1202 * This routine is for changing the IR protocol type.
1203 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1204 * See parse_protocol_change() for the valid commands.
1205 * Returns @len on success or a negative error code.
1207 * dev->lock is taken to guard against races between
1208 * store_protocols and show_protocols.
1210 static ssize_t store_protocols(struct device *device,
1211 struct device_attribute *mattr,
1212 const char *buf, size_t len)
1214 struct rc_dev *dev = to_rc_dev(device);
1215 u64 *current_protocols;
1216 struct rc_scancode_filter *filter;
1217 u64 old_protocols, new_protocols;
1218 ssize_t rc;
1220 IR_dprintk(1, "Normal protocol change requested\n");
1221 current_protocols = &dev->enabled_protocols;
1222 filter = &dev->scancode_filter;
1224 if (!dev->change_protocol) {
1225 IR_dprintk(1, "Protocol switching not supported\n");
1226 return -EINVAL;
1229 mutex_lock(&dev->lock);
1231 old_protocols = *current_protocols;
1232 new_protocols = old_protocols;
1233 rc = parse_protocol_change(&new_protocols, buf);
1234 if (rc < 0)
1235 goto out;
1237 rc = dev->change_protocol(dev, &new_protocols);
1238 if (rc < 0) {
1239 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1240 (long long)new_protocols);
1241 goto out;
1244 if (dev->driver_type == RC_DRIVER_IR_RAW)
1245 ir_raw_load_modules(&new_protocols);
1247 if (new_protocols != old_protocols) {
1248 *current_protocols = new_protocols;
1249 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1250 (long long)new_protocols);
1254 * If a protocol change was attempted the filter may need updating, even
1255 * if the actual protocol mask hasn't changed (since the driver may have
1256 * cleared the filter).
1257 * Try setting the same filter with the new protocol (if any).
1258 * Fall back to clearing the filter.
1260 if (dev->s_filter && filter->mask) {
1261 if (new_protocols)
1262 rc = dev->s_filter(dev, filter);
1263 else
1264 rc = -1;
1266 if (rc < 0) {
1267 filter->data = 0;
1268 filter->mask = 0;
1269 dev->s_filter(dev, filter);
1273 rc = len;
1275 out:
1276 mutex_unlock(&dev->lock);
1277 return rc;
1281 * show_filter() - shows the current scancode filter value or mask
1282 * @device: the device descriptor
1283 * @attr: the device attribute struct
1284 * @buf: a pointer to the output buffer
1286 * This routine is a callback routine to read a scancode filter value or mask.
1287 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1288 * It prints the current scancode filter value or mask of the appropriate filter
1289 * type in hexadecimal into @buf and returns the size of the buffer.
1291 * Bits of the filter value corresponding to set bits in the filter mask are
1292 * compared against input scancodes and non-matching scancodes are discarded.
1294 * dev->lock is taken to guard against races between
1295 * store_filter and show_filter.
1297 static ssize_t show_filter(struct device *device,
1298 struct device_attribute *attr,
1299 char *buf)
1301 struct rc_dev *dev = to_rc_dev(device);
1302 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1303 struct rc_scancode_filter *filter;
1304 u32 val;
1306 mutex_lock(&dev->lock);
1308 if (fattr->type == RC_FILTER_NORMAL)
1309 filter = &dev->scancode_filter;
1310 else
1311 filter = &dev->scancode_wakeup_filter;
1313 if (fattr->mask)
1314 val = filter->mask;
1315 else
1316 val = filter->data;
1317 mutex_unlock(&dev->lock);
1319 return sprintf(buf, "%#x\n", val);
1323 * store_filter() - changes the scancode filter value
1324 * @device: the device descriptor
1325 * @attr: the device attribute struct
1326 * @buf: a pointer to the input buffer
1327 * @len: length of the input buffer
1329 * This routine is for changing a scancode filter value or mask.
1330 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1331 * Returns -EINVAL if an invalid filter value for the current protocol was
1332 * specified or if scancode filtering is not supported by the driver, otherwise
1333 * returns @len.
1335 * Bits of the filter value corresponding to set bits in the filter mask are
1336 * compared against input scancodes and non-matching scancodes are discarded.
1338 * dev->lock is taken to guard against races between
1339 * store_filter and show_filter.
1341 static ssize_t store_filter(struct device *device,
1342 struct device_attribute *attr,
1343 const char *buf, size_t len)
1345 struct rc_dev *dev = to_rc_dev(device);
1346 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1347 struct rc_scancode_filter new_filter, *filter;
1348 int ret;
1349 unsigned long val;
1350 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1352 ret = kstrtoul(buf, 0, &val);
1353 if (ret < 0)
1354 return ret;
1356 if (fattr->type == RC_FILTER_NORMAL) {
1357 set_filter = dev->s_filter;
1358 filter = &dev->scancode_filter;
1359 } else {
1360 set_filter = dev->s_wakeup_filter;
1361 filter = &dev->scancode_wakeup_filter;
1364 if (!set_filter)
1365 return -EINVAL;
1367 mutex_lock(&dev->lock);
1369 new_filter = *filter;
1370 if (fattr->mask)
1371 new_filter.mask = val;
1372 else
1373 new_filter.data = val;
1375 if (fattr->type == RC_FILTER_WAKEUP) {
1377 * Refuse to set a filter unless a protocol is enabled
1378 * and the filter is valid for that protocol
1380 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1381 ret = rc_validate_filter(dev, &new_filter);
1382 else
1383 ret = -EINVAL;
1385 if (ret != 0)
1386 goto unlock;
1389 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1390 val) {
1391 /* refuse to set a filter unless a protocol is enabled */
1392 ret = -EINVAL;
1393 goto unlock;
1396 ret = set_filter(dev, &new_filter);
1397 if (ret < 0)
1398 goto unlock;
1400 *filter = new_filter;
1402 unlock:
1403 mutex_unlock(&dev->lock);
1404 return (ret < 0) ? ret : len;
1408 * show_wakeup_protocols() - shows the wakeup IR protocol
1409 * @device: the device descriptor
1410 * @mattr: the device attribute struct
1411 * @buf: a pointer to the output buffer
1413 * This routine is a callback routine for input read the IR protocol type(s).
1414 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1415 * It returns the protocol names of supported protocols.
1416 * The enabled protocols are printed in brackets.
1418 * dev->lock is taken to guard against races between
1419 * store_wakeup_protocols and show_wakeup_protocols.
1421 static ssize_t show_wakeup_protocols(struct device *device,
1422 struct device_attribute *mattr,
1423 char *buf)
1425 struct rc_dev *dev = to_rc_dev(device);
1426 u64 allowed;
1427 enum rc_proto enabled;
1428 char *tmp = buf;
1429 int i;
1431 mutex_lock(&dev->lock);
1433 allowed = dev->allowed_wakeup_protocols;
1434 enabled = dev->wakeup_protocol;
1436 mutex_unlock(&dev->lock);
1438 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1439 __func__, (long long)allowed, enabled);
1441 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1442 if (allowed & (1ULL << i)) {
1443 if (i == enabled)
1444 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1445 else
1446 tmp += sprintf(tmp, "%s ", protocols[i].name);
1450 if (tmp != buf)
1451 tmp--;
1452 *tmp = '\n';
1454 return tmp + 1 - buf;
1458 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1459 * @device: the device descriptor
1460 * @mattr: the device attribute struct
1461 * @buf: a pointer to the input buffer
1462 * @len: length of the input buffer
1464 * This routine is for changing the IR protocol type.
1465 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1466 * Returns @len on success or a negative error code.
1468 * dev->lock is taken to guard against races between
1469 * store_wakeup_protocols and show_wakeup_protocols.
1471 static ssize_t store_wakeup_protocols(struct device *device,
1472 struct device_attribute *mattr,
1473 const char *buf, size_t len)
1475 struct rc_dev *dev = to_rc_dev(device);
1476 enum rc_proto protocol;
1477 ssize_t rc;
1478 u64 allowed;
1479 int i;
1481 mutex_lock(&dev->lock);
1483 allowed = dev->allowed_wakeup_protocols;
1485 if (sysfs_streq(buf, "none")) {
1486 protocol = RC_PROTO_UNKNOWN;
1487 } else {
1488 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1489 if ((allowed & (1ULL << i)) &&
1490 sysfs_streq(buf, protocols[i].name)) {
1491 protocol = i;
1492 break;
1496 if (i == ARRAY_SIZE(protocols)) {
1497 rc = -EINVAL;
1498 goto out;
1501 if (dev->encode_wakeup) {
1502 u64 mask = 1ULL << protocol;
1504 ir_raw_load_modules(&mask);
1505 if (!mask) {
1506 rc = -EINVAL;
1507 goto out;
1512 if (dev->wakeup_protocol != protocol) {
1513 dev->wakeup_protocol = protocol;
1514 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1516 if (protocol == RC_PROTO_RC6_MCE)
1517 dev->scancode_wakeup_filter.data = 0x800f0000;
1518 else
1519 dev->scancode_wakeup_filter.data = 0;
1520 dev->scancode_wakeup_filter.mask = 0;
1522 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1523 if (rc == 0)
1524 rc = len;
1525 } else {
1526 rc = len;
1529 out:
1530 mutex_unlock(&dev->lock);
1531 return rc;
1534 static void rc_dev_release(struct device *device)
1536 struct rc_dev *dev = to_rc_dev(device);
1538 kfree(dev);
1541 #define ADD_HOTPLUG_VAR(fmt, val...) \
1542 do { \
1543 int err = add_uevent_var(env, fmt, val); \
1544 if (err) \
1545 return err; \
1546 } while (0)
1548 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1550 struct rc_dev *dev = to_rc_dev(device);
1552 if (dev->rc_map.name)
1553 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1554 if (dev->driver_name)
1555 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1556 if (dev->device_name)
1557 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1559 return 0;
1563 * Static device attribute struct with the sysfs attributes for IR's
1565 static struct device_attribute dev_attr_ro_protocols =
1566 __ATTR(protocols, 0444, show_protocols, NULL);
1567 static struct device_attribute dev_attr_rw_protocols =
1568 __ATTR(protocols, 0644, show_protocols, store_protocols);
1569 static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1570 store_wakeup_protocols);
1571 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1572 show_filter, store_filter, RC_FILTER_NORMAL, false);
1573 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1574 show_filter, store_filter, RC_FILTER_NORMAL, true);
1575 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1576 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1577 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1578 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1580 static struct attribute *rc_dev_rw_protocol_attrs[] = {
1581 &dev_attr_rw_protocols.attr,
1582 NULL,
1585 static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1586 .attrs = rc_dev_rw_protocol_attrs,
1589 static struct attribute *rc_dev_ro_protocol_attrs[] = {
1590 &dev_attr_ro_protocols.attr,
1591 NULL,
1594 static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1595 .attrs = rc_dev_ro_protocol_attrs,
1598 static struct attribute *rc_dev_filter_attrs[] = {
1599 &dev_attr_filter.attr.attr,
1600 &dev_attr_filter_mask.attr.attr,
1601 NULL,
1604 static const struct attribute_group rc_dev_filter_attr_grp = {
1605 .attrs = rc_dev_filter_attrs,
1608 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1609 &dev_attr_wakeup_filter.attr.attr,
1610 &dev_attr_wakeup_filter_mask.attr.attr,
1611 &dev_attr_wakeup_protocols.attr,
1612 NULL,
1615 static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1616 .attrs = rc_dev_wakeup_filter_attrs,
1619 static const struct device_type rc_dev_type = {
1620 .release = rc_dev_release,
1621 .uevent = rc_dev_uevent,
1624 struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1626 struct rc_dev *dev;
1628 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1629 if (!dev)
1630 return NULL;
1632 if (type != RC_DRIVER_IR_RAW_TX) {
1633 dev->input_dev = input_allocate_device();
1634 if (!dev->input_dev) {
1635 kfree(dev);
1636 return NULL;
1639 dev->input_dev->getkeycode = ir_getkeycode;
1640 dev->input_dev->setkeycode = ir_setkeycode;
1641 input_set_drvdata(dev->input_dev, dev);
1643 timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1644 timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1646 spin_lock_init(&dev->rc_map.lock);
1647 spin_lock_init(&dev->keylock);
1649 mutex_init(&dev->lock);
1651 dev->dev.type = &rc_dev_type;
1652 dev->dev.class = &rc_class;
1653 device_initialize(&dev->dev);
1655 dev->driver_type = type;
1657 __module_get(THIS_MODULE);
1658 return dev;
1660 EXPORT_SYMBOL_GPL(rc_allocate_device);
1662 void rc_free_device(struct rc_dev *dev)
1664 if (!dev)
1665 return;
1667 input_free_device(dev->input_dev);
1669 put_device(&dev->dev);
1671 /* kfree(dev) will be called by the callback function
1672 rc_dev_release() */
1674 module_put(THIS_MODULE);
1676 EXPORT_SYMBOL_GPL(rc_free_device);
1678 static void devm_rc_alloc_release(struct device *dev, void *res)
1680 rc_free_device(*(struct rc_dev **)res);
1683 struct rc_dev *devm_rc_allocate_device(struct device *dev,
1684 enum rc_driver_type type)
1686 struct rc_dev **dr, *rc;
1688 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1689 if (!dr)
1690 return NULL;
1692 rc = rc_allocate_device(type);
1693 if (!rc) {
1694 devres_free(dr);
1695 return NULL;
1698 rc->dev.parent = dev;
1699 rc->managed_alloc = true;
1700 *dr = rc;
1701 devres_add(dev, dr);
1703 return rc;
1705 EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1707 static int rc_prepare_rx_device(struct rc_dev *dev)
1709 int rc;
1710 struct rc_map *rc_map;
1711 u64 rc_proto;
1713 if (!dev->map_name)
1714 return -EINVAL;
1716 rc_map = rc_map_get(dev->map_name);
1717 if (!rc_map)
1718 rc_map = rc_map_get(RC_MAP_EMPTY);
1719 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1720 return -EINVAL;
1722 rc = ir_setkeytable(dev, rc_map);
1723 if (rc)
1724 return rc;
1726 rc_proto = BIT_ULL(rc_map->rc_proto);
1728 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1729 dev->enabled_protocols = dev->allowed_protocols;
1731 if (dev->change_protocol) {
1732 rc = dev->change_protocol(dev, &rc_proto);
1733 if (rc < 0)
1734 goto out_table;
1735 dev->enabled_protocols = rc_proto;
1738 if (dev->driver_type == RC_DRIVER_IR_RAW)
1739 ir_raw_load_modules(&rc_proto);
1741 set_bit(EV_KEY, dev->input_dev->evbit);
1742 set_bit(EV_REP, dev->input_dev->evbit);
1743 set_bit(EV_MSC, dev->input_dev->evbit);
1744 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1745 if (dev->open)
1746 dev->input_dev->open = ir_open;
1747 if (dev->close)
1748 dev->input_dev->close = ir_close;
1750 dev->input_dev->dev.parent = &dev->dev;
1751 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1752 dev->input_dev->phys = dev->input_phys;
1753 dev->input_dev->name = dev->device_name;
1755 return 0;
1757 out_table:
1758 ir_free_table(&dev->rc_map);
1760 return rc;
1763 static int rc_setup_rx_device(struct rc_dev *dev)
1765 int rc;
1767 /* rc_open will be called here */
1768 rc = input_register_device(dev->input_dev);
1769 if (rc)
1770 return rc;
1773 * Default delay of 250ms is too short for some protocols, especially
1774 * since the timeout is currently set to 250ms. Increase it to 500ms,
1775 * to avoid wrong repetition of the keycodes. Note that this must be
1776 * set after the call to input_register_device().
1778 if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1779 dev->input_dev->rep[REP_DELAY] = 0;
1780 else
1781 dev->input_dev->rep[REP_DELAY] = 500;
1784 * As a repeat event on protocols like RC-5 and NEC take as long as
1785 * 110/114ms, using 33ms as a repeat period is not the right thing
1786 * to do.
1788 dev->input_dev->rep[REP_PERIOD] = 125;
1790 return 0;
1793 static void rc_free_rx_device(struct rc_dev *dev)
1795 if (!dev)
1796 return;
1798 if (dev->input_dev) {
1799 input_unregister_device(dev->input_dev);
1800 dev->input_dev = NULL;
1803 ir_free_table(&dev->rc_map);
1806 int rc_register_device(struct rc_dev *dev)
1808 const char *path;
1809 int attr = 0;
1810 int minor;
1811 int rc;
1813 if (!dev)
1814 return -EINVAL;
1816 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1817 if (minor < 0)
1818 return minor;
1820 dev->minor = minor;
1821 dev_set_name(&dev->dev, "rc%u", dev->minor);
1822 dev_set_drvdata(&dev->dev, dev);
1824 dev->dev.groups = dev->sysfs_groups;
1825 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1826 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1827 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1828 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1829 if (dev->s_filter)
1830 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1831 if (dev->s_wakeup_filter)
1832 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1833 dev->sysfs_groups[attr++] = NULL;
1835 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1836 rc = ir_raw_event_prepare(dev);
1837 if (rc < 0)
1838 goto out_minor;
1841 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1842 rc = rc_prepare_rx_device(dev);
1843 if (rc)
1844 goto out_raw;
1847 rc = device_add(&dev->dev);
1848 if (rc)
1849 goto out_rx_free;
1851 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1852 dev_info(&dev->dev, "%s as %s\n",
1853 dev->device_name ?: "Unspecified device", path ?: "N/A");
1854 kfree(path);
1856 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1857 rc = rc_setup_rx_device(dev);
1858 if (rc)
1859 goto out_dev;
1862 /* Ensure that the lirc kfifo is setup before we start the thread */
1863 if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1864 rc = ir_lirc_register(dev);
1865 if (rc < 0)
1866 goto out_rx;
1869 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1870 rc = ir_raw_event_register(dev);
1871 if (rc < 0)
1872 goto out_lirc;
1875 dev->registered = true;
1877 IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1878 dev->minor,
1879 dev->driver_name ? dev->driver_name : "unknown");
1881 return 0;
1883 out_lirc:
1884 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1885 ir_lirc_unregister(dev);
1886 out_rx:
1887 rc_free_rx_device(dev);
1888 out_dev:
1889 device_del(&dev->dev);
1890 out_rx_free:
1891 ir_free_table(&dev->rc_map);
1892 out_raw:
1893 ir_raw_event_free(dev);
1894 out_minor:
1895 ida_simple_remove(&rc_ida, minor);
1896 return rc;
1898 EXPORT_SYMBOL_GPL(rc_register_device);
1900 static void devm_rc_release(struct device *dev, void *res)
1902 rc_unregister_device(*(struct rc_dev **)res);
1905 int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1907 struct rc_dev **dr;
1908 int ret;
1910 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1911 if (!dr)
1912 return -ENOMEM;
1914 ret = rc_register_device(dev);
1915 if (ret) {
1916 devres_free(dr);
1917 return ret;
1920 *dr = dev;
1921 devres_add(parent, dr);
1923 return 0;
1925 EXPORT_SYMBOL_GPL(devm_rc_register_device);
1927 void rc_unregister_device(struct rc_dev *dev)
1929 if (!dev)
1930 return;
1932 del_timer_sync(&dev->timer_keyup);
1933 del_timer_sync(&dev->timer_repeat);
1935 if (dev->driver_type == RC_DRIVER_IR_RAW)
1936 ir_raw_event_unregister(dev);
1938 rc_free_rx_device(dev);
1940 mutex_lock(&dev->lock);
1941 dev->registered = false;
1942 mutex_unlock(&dev->lock);
1945 * lirc device should be freed with dev->registered = false, so
1946 * that userspace polling will get notified.
1948 if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1949 ir_lirc_unregister(dev);
1951 device_del(&dev->dev);
1953 ida_simple_remove(&rc_ida, dev->minor);
1955 if (!dev->managed_alloc)
1956 rc_free_device(dev);
1959 EXPORT_SYMBOL_GPL(rc_unregister_device);
1962 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1965 static int __init rc_core_init(void)
1967 int rc = class_register(&rc_class);
1968 if (rc) {
1969 pr_err("rc_core: unable to register rc class\n");
1970 return rc;
1973 rc = lirc_dev_init();
1974 if (rc) {
1975 pr_err("rc_core: unable to init lirc\n");
1976 class_unregister(&rc_class);
1977 return 0;
1980 led_trigger_register_simple("rc-feedback", &led_feedback);
1981 rc_map_register(&empty_map);
1983 return 0;
1986 static void __exit rc_core_exit(void)
1988 lirc_dev_exit();
1989 class_unregister(&rc_class);
1990 led_trigger_unregister_simple(led_feedback);
1991 rc_map_unregister(&empty_map);
1994 subsys_initcall(rc_core_init);
1995 module_exit(rc_core_exit);
1997 int rc_core_debug; /* ir_debug level (0,1,2) */
1998 EXPORT_SYMBOL_GPL(rc_core_debug);
1999 module_param_named(debug, rc_core_debug, int, 0644);
2001 MODULE_AUTHOR("Mauro Carvalho Chehab");
2002 MODULE_LICENSE("GPL v2");