xtensa: support DMA buffers in high memory
[cris-mirror.git] / drivers / media / rc / st_rc.c
blobd2efd7b2c3bcc71ecac638168903ec697868a6d3
1 /*
2 * Copyright (C) 2013 STMicroelectronics Limited
3 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 */
10 #include <linux/kernel.h>
11 #include <linux/clk.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <media/rc-core.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_wakeirq.h>
21 struct st_rc_device {
22 struct device *dev;
23 int irq;
24 int irq_wake;
25 struct clk *sys_clock;
26 void __iomem *base; /* Register base address */
27 void __iomem *rx_base;/* RX Register base address */
28 struct rc_dev *rdev;
29 bool overclocking;
30 int sample_mult;
31 int sample_div;
32 bool rxuhfmode;
33 struct reset_control *rstc;
36 /* Registers */
37 #define IRB_SAMPLE_RATE_COMM 0x64 /* sample freq divisor*/
38 #define IRB_CLOCK_SEL 0x70 /* clock select */
39 #define IRB_CLOCK_SEL_STATUS 0x74 /* clock status */
40 /* IRB IR/UHF receiver registers */
41 #define IRB_RX_ON 0x40 /* pulse time capture */
42 #define IRB_RX_SYS 0X44 /* sym period capture */
43 #define IRB_RX_INT_EN 0x48 /* IRQ enable (R/W) */
44 #define IRB_RX_INT_STATUS 0x4c /* IRQ status (R/W) */
45 #define IRB_RX_EN 0x50 /* Receive enable */
46 #define IRB_MAX_SYM_PERIOD 0x54 /* max sym value */
47 #define IRB_RX_INT_CLEAR 0x58 /* overrun status */
48 #define IRB_RX_STATUS 0x6c /* receive status */
49 #define IRB_RX_NOISE_SUPPR 0x5c /* noise suppression */
50 #define IRB_RX_POLARITY_INV 0x68 /* polarity inverter */
53 * IRQ set: Enable full FIFO 1 -> bit 3;
54 * Enable overrun IRQ 1 -> bit 2;
55 * Enable last symbol IRQ 1 -> bit 1:
56 * Enable RX interrupt 1 -> bit 0;
58 #define IRB_RX_INTS 0x0f
59 #define IRB_RX_OVERRUN_INT 0x04
60 /* maximum symbol period (microsecs),timeout to detect end of symbol train */
61 #define MAX_SYMB_TIME 0x5000
62 #define IRB_SAMPLE_FREQ 10000000
63 #define IRB_FIFO_NOT_EMPTY 0xff00
64 #define IRB_OVERFLOW 0x4
65 #define IRB_TIMEOUT 0xffff
66 #define IR_ST_NAME "st-rc"
68 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
70 DEFINE_IR_RAW_EVENT(ev);
71 ev.timeout = true;
72 ir_raw_event_store(rdev, &ev);
76 * RX graphical example to better understand the difference between ST IR block
77 * output and standard definition used by LIRC (and most of the world!)
79 * mark mark
80 * |-IRB_RX_ON-| |-IRB_RX_ON-|
81 * ___ ___ ___ ___ ___ ___ _
82 * | | | | | | | | | | | | |
83 * | | | | | | space 0 | | | | | | space 1 |
84 * _____| |__| |__| |____________________________| |__| |__| |_____________|
86 * |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
88 * |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
90 * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
91 * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
92 * The mark time represents the amount of time the carrier (usually 36-40kHz)
93 * is detected.The above examples shows Pulse Width Modulation encoding where
94 * bit 0 is represented by space>mark.
97 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
99 unsigned int symbol, mark = 0;
100 struct st_rc_device *dev = data;
101 int last_symbol = 0;
102 u32 status;
103 DEFINE_IR_RAW_EVENT(ev);
105 if (dev->irq_wake)
106 pm_wakeup_event(dev->dev, 0);
108 status = readl(dev->rx_base + IRB_RX_STATUS);
110 while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) {
111 u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
112 if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
113 /* discard the entire collection in case of errors! */
114 ir_raw_event_reset(dev->rdev);
115 dev_info(dev->dev, "IR RX overrun\n");
116 writel(IRB_RX_OVERRUN_INT,
117 dev->rx_base + IRB_RX_INT_CLEAR);
118 continue;
121 symbol = readl(dev->rx_base + IRB_RX_SYS);
122 mark = readl(dev->rx_base + IRB_RX_ON);
124 if (symbol == IRB_TIMEOUT)
125 last_symbol = 1;
127 /* Ignore any noise */
128 if ((mark > 2) && (symbol > 1)) {
129 symbol -= mark;
130 if (dev->overclocking) { /* adjustments to timings */
131 symbol *= dev->sample_mult;
132 symbol /= dev->sample_div;
133 mark *= dev->sample_mult;
134 mark /= dev->sample_div;
137 ev.duration = US_TO_NS(mark);
138 ev.pulse = true;
139 ir_raw_event_store(dev->rdev, &ev);
141 if (!last_symbol) {
142 ev.duration = US_TO_NS(symbol);
143 ev.pulse = false;
144 ir_raw_event_store(dev->rdev, &ev);
145 } else {
146 st_rc_send_lirc_timeout(dev->rdev);
150 last_symbol = 0;
151 status = readl(dev->rx_base + IRB_RX_STATUS);
154 writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
156 /* Empty software fifo */
157 ir_raw_event_handle(dev->rdev);
158 return IRQ_HANDLED;
161 static void st_rc_hardware_init(struct st_rc_device *dev)
163 int baseclock, freqdiff;
164 unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
165 unsigned int rx_sampling_freq_div;
167 /* Enable the IP */
168 reset_control_deassert(dev->rstc);
170 clk_prepare_enable(dev->sys_clock);
171 baseclock = clk_get_rate(dev->sys_clock);
173 /* IRB input pins are inverted internally from high to low. */
174 writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
176 rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
177 writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
179 freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
180 if (freqdiff) { /* over clocking, workout the adjustment factors */
181 dev->overclocking = true;
182 dev->sample_mult = 1000;
183 dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
184 rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
187 writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
190 static int st_rc_remove(struct platform_device *pdev)
192 struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
194 dev_pm_clear_wake_irq(&pdev->dev);
195 device_init_wakeup(&pdev->dev, false);
196 clk_disable_unprepare(rc_dev->sys_clock);
197 rc_unregister_device(rc_dev->rdev);
198 return 0;
201 static int st_rc_open(struct rc_dev *rdev)
203 struct st_rc_device *dev = rdev->priv;
204 unsigned long flags;
205 local_irq_save(flags);
206 /* enable interrupts and receiver */
207 writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
208 writel(0x01, dev->rx_base + IRB_RX_EN);
209 local_irq_restore(flags);
211 return 0;
214 static void st_rc_close(struct rc_dev *rdev)
216 struct st_rc_device *dev = rdev->priv;
217 /* disable interrupts and receiver */
218 writel(0x00, dev->rx_base + IRB_RX_EN);
219 writel(0x00, dev->rx_base + IRB_RX_INT_EN);
222 static int st_rc_probe(struct platform_device *pdev)
224 int ret = -EINVAL;
225 struct rc_dev *rdev;
226 struct device *dev = &pdev->dev;
227 struct resource *res;
228 struct st_rc_device *rc_dev;
229 struct device_node *np = pdev->dev.of_node;
230 const char *rx_mode;
232 rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
234 if (!rc_dev)
235 return -ENOMEM;
237 rdev = rc_allocate_device(RC_DRIVER_IR_RAW);
239 if (!rdev)
240 return -ENOMEM;
242 if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
244 if (!strcmp(rx_mode, "uhf")) {
245 rc_dev->rxuhfmode = true;
246 } else if (!strcmp(rx_mode, "infrared")) {
247 rc_dev->rxuhfmode = false;
248 } else {
249 dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
250 goto err;
253 } else {
254 goto err;
257 rc_dev->sys_clock = devm_clk_get(dev, NULL);
258 if (IS_ERR(rc_dev->sys_clock)) {
259 dev_err(dev, "System clock not found\n");
260 ret = PTR_ERR(rc_dev->sys_clock);
261 goto err;
264 rc_dev->irq = platform_get_irq(pdev, 0);
265 if (rc_dev->irq < 0) {
266 ret = rc_dev->irq;
267 goto err;
270 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
272 rc_dev->base = devm_ioremap_resource(dev, res);
273 if (IS_ERR(rc_dev->base)) {
274 ret = PTR_ERR(rc_dev->base);
275 goto err;
278 if (rc_dev->rxuhfmode)
279 rc_dev->rx_base = rc_dev->base + 0x40;
280 else
281 rc_dev->rx_base = rc_dev->base;
283 rc_dev->rstc = reset_control_get_optional_exclusive(dev, NULL);
284 if (IS_ERR(rc_dev->rstc)) {
285 ret = PTR_ERR(rc_dev->rstc);
286 goto err;
289 rc_dev->dev = dev;
290 platform_set_drvdata(pdev, rc_dev);
291 st_rc_hardware_init(rc_dev);
293 rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
294 /* rx sampling rate is 10Mhz */
295 rdev->rx_resolution = 100;
296 rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
297 rdev->priv = rc_dev;
298 rdev->open = st_rc_open;
299 rdev->close = st_rc_close;
300 rdev->driver_name = IR_ST_NAME;
301 rdev->map_name = RC_MAP_EMPTY;
302 rdev->device_name = "ST Remote Control Receiver";
304 ret = rc_register_device(rdev);
305 if (ret < 0)
306 goto clkerr;
308 rc_dev->rdev = rdev;
309 if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
310 0, IR_ST_NAME, rc_dev) < 0) {
311 dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
312 ret = -EINVAL;
313 goto rcerr;
316 /* enable wake via this device */
317 device_init_wakeup(dev, true);
318 dev_pm_set_wake_irq(dev, rc_dev->irq);
321 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
322 * lircd expects a long space first before a signal train to sync.
324 st_rc_send_lirc_timeout(rdev);
326 dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
328 return ret;
329 rcerr:
330 rc_unregister_device(rdev);
331 rdev = NULL;
332 clkerr:
333 clk_disable_unprepare(rc_dev->sys_clock);
334 err:
335 rc_free_device(rdev);
336 dev_err(dev, "Unable to register device (%d)\n", ret);
337 return ret;
340 #ifdef CONFIG_PM_SLEEP
341 static int st_rc_suspend(struct device *dev)
343 struct st_rc_device *rc_dev = dev_get_drvdata(dev);
345 if (device_may_wakeup(dev)) {
346 if (!enable_irq_wake(rc_dev->irq))
347 rc_dev->irq_wake = 1;
348 else
349 return -EINVAL;
350 } else {
351 pinctrl_pm_select_sleep_state(dev);
352 writel(0x00, rc_dev->rx_base + IRB_RX_EN);
353 writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
354 clk_disable_unprepare(rc_dev->sys_clock);
355 reset_control_assert(rc_dev->rstc);
358 return 0;
361 static int st_rc_resume(struct device *dev)
363 struct st_rc_device *rc_dev = dev_get_drvdata(dev);
364 struct rc_dev *rdev = rc_dev->rdev;
366 if (rc_dev->irq_wake) {
367 disable_irq_wake(rc_dev->irq);
368 rc_dev->irq_wake = 0;
369 } else {
370 pinctrl_pm_select_default_state(dev);
371 st_rc_hardware_init(rc_dev);
372 if (rdev->users) {
373 writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
374 writel(0x01, rc_dev->rx_base + IRB_RX_EN);
378 return 0;
381 #endif
383 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
385 #ifdef CONFIG_OF
386 static const struct of_device_id st_rc_match[] = {
387 { .compatible = "st,comms-irb", },
391 MODULE_DEVICE_TABLE(of, st_rc_match);
392 #endif
394 static struct platform_driver st_rc_driver = {
395 .driver = {
396 .name = IR_ST_NAME,
397 .of_match_table = of_match_ptr(st_rc_match),
398 .pm = &st_rc_pm_ops,
400 .probe = st_rc_probe,
401 .remove = st_rc_remove,
404 module_platform_driver(st_rc_driver);
406 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
407 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
408 MODULE_LICENSE("GPL");